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ABSTRACT OF THE DISSERTATION

Design, Dynamics, and Control of Mobile Robotic Systems

by

Nicholas Morozovsky

Doctor of Philosophy in Engineering Sciences (Mechanical Engineering)

University of California, San Diego, 2014

Professor Thomas Bewley, Chair

Mobile robotic systems are increasingly prevalent in several fields of academia,

industry, and everyday life. This dissertation outlines the development of several

means of locomotion for such systems and the tools created and used to design

them. Novel mechanical designs with minimal actuators are combined with ad-

vanced control systems to create dynamic locomotion behavior. A single, unified

Lagrangian dynamics architecture is used to represent a variety of robotic sys-

tems, derived from first principles and applied programmatically. Model-based

control methods are heavily used to take advantage of the known dynamics and

are also applied programmatically for the automatic generation of control laws

and gain scheduling lookup tables. Improvements to encoder velocity estimation

across a wide velocity range are described in detail. A number of key hardware

xv



advances in different fields are exploited to create low-cost, but capable, mobile

robotic systems: additive manufacturing (3D printing), powerful embedded mi-

croprocessors (Arduino, ARM, FPGA), solid state sensors (MEMS accelerometers

and gyroscopes), and inexpensive brushed DC motors. This dissertation presents

both notable results and tactical details of implementation that will be useful to

those designing similar systems.

Several novel robotic systems are presented in this dissertation. First, two

incarnations of a mobile balancing platform with two coaxial wheels with the center

of mass above the center of rotation are presented. Active feedback control is

required to stabilize the system. Next, Switchblade is a patent pending treaded

inverted pendulum designed for maximum mobility over a wide range of terrain

including tight spaces and significant obstacles (e.g. stairs). Multiple variants of

the design are explored, which shows that the vehicle concept is broadly applicable

across different length scales and use cases. SkySweeper is an under-actuated

robotic system designed for multimodal locomotion along wires and cables. Finally,

RAPID is a reconfigurable, automated dynamometer for characterizing small DC

motors, the primary purpose of which is identifying the operating parameters of

motors used in vehicles with model-based control and estimation algorithms.

xvi



Chapter 1

Introduction

Robots and robotic systems have the potential to impact many socially rele-

vant applications from security and search and rescue to health care and recreation.

Locomotion is a key challenge in enabling robots to operate in environments less

structured than the laboratory (perception and manipulation are two other key

challenges). A number of novel locomotion systems and techniques are presented

in this dissertation, along with the tactical details of implementation, which would

prove useful to others undertaking related research. Another major impediment to

the broad adoption of robotic systems is the generally high cost of such systems.

The approaches and solutions developed in this dissertation are not dependent on

expensive components such as precision actuators or motion capture systems. The

primary contributions of this dissertation are:

• Mechanical designs of multiple versions of a treaded inverted pendulum,

utilizing appropriate materials and components at different length scales

(Sec. 5.5).

• Control system designs to dynamically stabilize unstable equilibrium man-

ifolds of treaded inverted pendula despite significant friction in the system

(Sec. 3.2).

• Documentation of a broadly applicable method of programmatically deriving

equations of motion and control systems for robotic systems (Sec. 2.2 and

App. B).

1
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• Algorithms to accurately estimate velocity, over a wide range including very

low speed, from an imperfect quadrature encoder (Sec. 4.2).

• Design of a low degree of freedom cable-locomoting robot capable of surpass-

ing obstructions on the cable (Sec. 1.4.4 and Sec. 5.6).

• Finite state machine controllers for multiple maneuvers of the above cable-

locomoting robot (Sec. 3.3).

• Mechanical design of a reconfigurable motor dynamometer which can easily

be manufactured with a 3D printer and optional laser cutter (Sec. 5.3).

• Algorithms and documentation to automatically identify parameters of DC

motors with the above dynamometer system (Sec. 4.5).

• Mechanical design of two mobile inverted pendula which can easily be man-

ufactured with a 3D printer and optional laser cutter (Sec. 5.4).

This dissertation is structured into the following chapters:

1. Introduction: summarizes the robotic systems presented and describes the

motivation and background for the research presented, then the architecture

and maneuvers of the specific robotic systems are further explained.

2. Dynamics: outlines the method of Lagrangian dynamics used to model the

presented robotic systems, also details the motor model used for brushed DC

motors.

3. Control: the control system design, including linearization, feedforward con-

trol, friction compensation, discretization, integral control, and trajectory

planning.

4. Estimation: explains the algorithms used to estimate parameters and states

of the robotic systems using low-cost sensors, such as inertial MEMS sensors

and encoders.

5. Prototypes: describes the development of the physical prototypes and com-

pares their experimental performance to simulation results.
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6. Conclusions: summarizes the contributions made in this dissertation and

suggests possible future directions.

DC Motor Dynamometer

This dissertation, in part, describes the development of an automated dy-

namometer to characterize brushed direct current (DC) motors. The unique me-

chanical design allows the testing of a wide range of motor sizes. The motor under

test is subjected to a given pulse width modulated (PWM) voltage signal and po-

sition, current, and voltage measurements are simultaneously recorded from the

integrated sensor suite. An electromechanical motor model is developed by com-

bining the voltage and torque balance equations of the system. A least-squares

algorithm is used to estimate the parameters that best fit the observed data to

the specified gray-box model. The system retains a low cost by using off-the-shelf

electronics and cheaply fabricated mechanical parts. The inertia and friction of

the system are carefully modeled, removing the need for an expensive torque sen-

sor. The mechanical drawings, electrical schematics, and software are open source

and freely available for download. Consistent parameter estimates from a set of

high-tolerance and well-documented identical motors demonstrate the accuracy

and precision of the system.

Switchblade

A versatile unmanned ground vehicle (UGV) should be able to traverse

rough terrain while retaining a small form factor for navigating confined spaces.

Such a (patent pending) vehicle, dubbed Switchblade, is developed in the present

work via an effective combination of a novel transforming mechanical design, ca-

pable onboard electronics, and advanced feedback control algorithms. A single

chassis holds the actuators, sensors, electronics, and battery. Shafts protruding

from either side of this chassis connect to tread assemblies. Rotation of this shaft

causes the treads to advance for translational movement; rotation about this shaft

causes the entire tread assembly to rotate with respect to the chassis. Vehicle

orientation is estimated via onboard filtering of optical encoders and MEMS ac-
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celerometers and gyroscopes. In its horizontal configuration, Switchblade oper-

ates as a differential-drive treaded platform. In its various upright configurations,

Switchblade operates as a mobile inverted pendulum, capable of surmounting ob-

stacles, including stairs, that would otherwise be impassable by a vehicle of its

size. Design-for-manufacturing (DFM) and design-for-assembly (DFA) techniques

are employed to reduce cost, part count, complexity, and assembly time without

sacrificing system capabilities. Results from a working prototype are discussed.

The resulting platform is well suited for a variety of socially relevant applications,

including reconnaissance, mine exploration, and search & rescue.

Stairs are a primary challenge for mobile robots navigating indoor, human

environments. Stair climbing is a useful, if not necessary, capability for mobile

robots in urban search & rescue, security, cleaning, telepresence, elder care, and

other applications. Existing stair climbing robots are large, expensive, and not

always reliable, especially when descending stairs. In this paper, we present a

novel approach for stair climbing that is achievable by a small mobile robot with

minimal actuators and sensors, and thus cost. The proposed robot has articulated

tread assemblies on either side of a chassis. Using feedback control, the robot

can balance on the edge of a single step. As the robot drives up the step, the

chassis pivots to maintain the center of mass directly above the contact point. The

dynamics of the system are derived with the Lagrangian method and a discrete-

time integral controller with friction compensation is designed to stabilize a stair

climbing trajectory. The algorithms used to estimate the state of the system with

low-cost, noisy, internal sensors are explained in detail. No external motion capture

system is used. Simulation results are compared to successful experimental results.

SkySweeper

SkySweeper is a mobile robot designed to operate in an environment of

cables, wires, power lines, ropes, et cetera. The robot is comprised of two links

pivotally connected at one end; a series elastic actuator at this “elbow” joint can

actuate relative rotation between the two links. The SEA enables the robot to

store additional spring potential energy before commencing a dynamic maneuver.
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At the opposite end of each link is an actuated three-position clamp. The clamp

can either be open, partially closed, such that the clamp can roll (translate) along

the cable, or fully closed, such that the clamp can only pivot on the cable. By

actuating the elbow joint and cleverly choosing the positions of the clamps, the

robot can locomote on the cable in a number of different ways. The particular

method of locomotion can be chosen to minimize energy consumption, maximize

speed, or traverse an obstacle (e.g. a support from which the cable is suspended).

The robot includes sensors (including rotary potentiometers and photodiodes) to

determine the relative angle between the two links, the amount of spring deflec-

tion in the SEA, and whether or not a cable is within the grasp of each clamp.

SkySweeper has the potential to locomote in a more energy efficient manner than

existing cable-locomoting robots. It also operates with a minimal number of ac-

tuators, which reduces cost significantly. Potential applications include power and

communication line inspection, suspension bridge inspection and construction, as

well as entertainment. Data from a prototype, consisting largely of 3D-printed and

off-the-shelf parts, are compared to dynamic simulation results.

1.1 Motivation

1.1.1 DC Motor Dynamometer

Due to their low cost, wide availability, and simple control implementation,

brushed DC motors are desirable actuators for many robotics applications [1], [2].

However, the design process should accurately account for the role of a motor’s dy-

namics. Motor dynamics may potentially be omitted from the system model, but

excluding such dynamics can have significant unintended consequences. Robotic

systems can experience performance degradation and loss of stability when actu-

ator dynamics are ignored [3]. A potential approach is to assume that the manu-

facturer’s specifications for a given motor are accurate. However, variations in the

quality of documentation between manufacturers, often determined from unknown

testing procedures, can result in motors whose dynamics are not reflected fully or

accurately in the manufacturer’s specifications. A motor’s specifications may only
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contain values for one operating point; it may be necessary to operate the motor

at, e.g., a different voltage. Moreover, motor specifications do not characterize

the motor driver circuit, which operates in conjunction with the motor in actual

implementation. Thus, in order to rigorously obtain a reliable actuator model,

a given brushed DC motor and motor driver pair can be subjected to empirical

testing and subsequent parameter identification.

1.1.2 Mobile and Treaded Inverted Pendula

A number of applications motivate small, simple UGVs that can robustly

overcome complex terrain challenges, while also being able to navigate in confined

spaces; such applications include patrol, search & rescue, mine exploration, and the

disposal of improvised explosive devices (IEDs). In such applications, it is generally

advantageous for the vehicles used to be inexpensive, so that multiple vehicles may

be deployed to accomplish a given mission, and the loss of some is acceptable. The

cost of a UGV may be reduced by minimizing its size and mechanical complexity,

noting that advanced feedback control algorithms, once designed, may generally

be implemented at low cost. In order for robots to be accepted and useful in

indoor, human environments, they must be able to locomote unassisted. Three

primary locomotion challenges, beyond stationary and moving obstacle avoidance,

are stairs, doors, and thresholds (a degenerate case of stairs). In this dissertation,

we focus on the stair climbing problem.

1.1.3 Cable Locomotion

Power lines, communication lines, hanging pipe, taut rope, and the like

present an interesting environment for robotic systems to traverse. High wires,

such as power lines (which may also be live at high voltage), are a dangerous en-

vironment in which using robots can improve human safety. Repetitive tasks such

as inspection and monitoring naturally lend themselves to automation. Existing

systems, which will be discussed, have many degrees of freedom and actuators,

which tend to increase system complexity and cost. Application areas in this
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type of environment include power line inspection and maintenance, communica-

tion line inspection, maintenance, and surveillance, suspension bridge inspection,

maintenance, and construction, as well as entertainment and toys.

1.2 Background

1.2.1 Dynamometers

Research in the field of dynamometers has been diverse in terms of both the

actuators under test and the loading conditions. A small-scale dynamometer has

been developed to characterize propeller blades for unmanned air vehicles (UAVs)

[4]. This system uses six thin beam strain gauges to separately measure thrust and

torque. The dynamometer developed in [5] has an active braking system designed

to simulate different nonlinear loading conditions for the purpose of testing nonlin-

ear control algorithms. A strain gauge measures the reaction torque on the braking

assembly. The system was not designed for characterizing different motors. The

test setup in [6] that was used to characterize a brushed DC motor with gearbox

included a braking system with a rope pulling on a force meter. The sensors were

not automatically measured which limited the tests that could be performed on the

motor. A dynamometer for miniature piezoelectric actuators was built in [7]. Cus-

tom optical sensors measured deflection of the actuator. Multiple actuators were

tested under different operating conditions, but the system is specific to small,

bending type actuators. Dynamometers are also used to measure cutting force in

machining operations [8]. Strain gauges and piezoelectric sensors are commonly

used.

Many of the above dynamometers (and several others not mentioned) use

strain gauges to measure force or torque. Strain gauges require precise calibration

and specialized measurement electronics. They must also be carefully mounted

in the system to prevent off-axis forces and torques from perturbing the desired

measurement. Strain gauges significantly increase the cost and complexity of a

dynamometer.
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1.2.2 Mobile Inverted Pendula

Inverted pendula are often used in controls labs as a fundamental teaching

tool. In recent years, mobile inverted pendula have become increasingly popular,

including the Segway Personal Transporter [9]. The Segway is perhaps the only

mobile inverted pendulum to have yet ventured outside of the sheltered lab en-

vironment on a large scale, and is itself largely operated on flat sidewalks. We

now review existing mobile inverted pendula. The most common paradigm today

is a two-wheeled platform ([10], [11]), with steering accomplished by differential

drive. Another class of mobile inverted pendula uses a single ball instead of two

wheels, thereby achieving holonomic locomotion ([12], [13]). Both designs have a

fundamental weakness in common: the maximum obstacle size that such a vehicle

can overcome is limited by the diameter of its wheels or ball.

Legged robots often use a linear inverted pendulum model and calculations

of the zero moment point to maintain balance while stationary or moving [14].

Such robots have a great deal of flexibility when overcoming obstacles: they may

step over or onto an obstacle [15], or even hop over an obstacle [2]; however, they

are also mechanically complex, with many actuators and possible failure points.

1.2.3 Treaded Mobility Platforms

The standard treaded platform (manned versions of which were developed

by the British in WW1, and smaller unmanned versions of which were developed

by the Germans in WW2) consists of two fixed tread mechanisms mounted on op-

posite sides of a central chassis. This type of UGV performs well over a variety of

both smooth and rough terrain (including loose dirt and gravel, sand, snow, mud,

etc.), but cannot generally overcome obstacles larger than the radius of its tread

sprocket. This limitation may be extended by adding additional idler sprockets

to increase the height of the tread assembly (such as the trapezoidal shape of the

treads of an M1 Abrams tank), or by adding secondary articulated treaded seg-

ments or “flippers” (e.g., the iRobot PackBot [16]). Additional treaded segments

may be added to increase a treaded vehicle’s agility [17], but at the expense of

significantly increased cost, complexity, and possible failure points; for instance,
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a serpentine robot may consist entirely of treaded segments [18]. Another no-

table treaded platform is the Vecna Robotics Battlefield Extraction-Assist Robot

(BEAR; see [19]), which has two-segment tread assemblies pivotally attached to

either side of a central torso which also has two manipulator arms. The BEAR

can operate with its articulated tread assemblies in a number of different config-

urations, including dynamically balancing on either end of the tread assemblies

with inverted pendulum control. Note that the BEAR is a large, complex vehicle,

with tread segments large enough to overcome many common obstacles (stairs,

medium-sized rubble, etc.) without utilizing balancing behavior.

1.2.4 Stair Climbing

A number of existing robots are capable of stair climbing, which can gen-

erally be classified into a few categories. These include humanoids, such as those

featured in the DARPA Robotics Challenge [20] [21] [22]. Despite recent advances

prompted by the challenge, it is not necessary, and indeed it is complex and costly,

to locomote in a human manner in a human environment. Alternative form factors

and control strategies can be simpler, cheaper, and faster. Traditional treaded ve-

hicles [16] [23] that are long enough to span multiple step edges can climb stairs in a

straightforward manner. Additional, articulated tread segments can aid in agility,

particularly on the first and last steps [24] [25]. Another class of stair climbing

robots utilize hybrid wheel-leg, or wheg, systems. This includes the popular RHex

hexapod [26] and a number of robots with alternate wheg designs [27] [28] [29].

A unique design utilizes deformable wheels which can transform into treads to fit

into tight places as well as pivot like whegs to overcome steps, but the prototype

presented is still limited to small stairs [30]. Other robots employ a dedicated

mechanism for stair climbing, such as hopping [31] [2] [32] or a system for rais-

ing and lowering the robot in two or more segments [33] [34] [35]. While these

methods can be effective at climbing stairs, the weight and size of the dedicated

stair climbing components detract from the robot’s performance on flat ground and

adds to cost. There has been recent research into stair climbing robots with mobile

inverted pendulum dynamics [36] [37], but both are wheeled systems with wheel
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radii greater than the step height. Another wheeled inverted pendulum robot is

smaller and uses a novel mechanism to climb its own central post, but requires

space on each step to reposition itself and is slow [38]. A number of stair climbing

robots are not capable of climbing standard stairs, that is, they can only climb

stairs with an unrealistically low pitch angle, and/or rise. Some of the vehicles

would be difficult, costly, and inefficient to scale to the size of standard stairs.

1.2.5 Cable Locomotion

We now review existing robots designed to locomote on cables. The appli-

cation of power line inspection has been the largest motivator of cable-locomoting

robotics research. An extensive survey paper was published in 2009 [39], which the

reader is encouraged to review. A few key examples are discussed here. Expliner

is from the Japanese company HiBot which is closely affiliated with the Tokyo

Institute of Technology. It can roll on one or two cables and circumvent multiple

types of obstacles by shifting its center of mass and lifting one of two pulley arms,

lowering it on the other side of the obstacle, shifting its center of mass under the

second arm, and lifting the first arm [40]. LineScout was developed at Hydro-

Québec IREQ directly for field use, it has a sliding mechanism with a redundant

pair of clamps that are only used for overcoming obstacles [41]. The dual-arm

robot presented in [42] has three linear actuators, one in each arm and one in the

chassis. Rotary actuators and powered clamps allow the robot to release one arm

and pivot around obstacles as large as the robot. Cable Crawler, developed by

Bühringer et al. at ETH Zürich, has large enough vertical and horizontal rollers

to be able to passively roll over certain types of obstacles [43].

All the above mentioned robots perform quasi-static maneuvers with many

degrees of freedom and many actuators. The systems are necessarily large, com-

plex, and expensive. This leaves the field open to be disrupted with a mechanically

simple design with few degrees of freedom, but agile, dynamic maneuvers.
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1.3 Approach

In all of the robotic systems presented here, a common design approach

is taken. Low-cost mechanical and electrical off-the-shelf components are utilized

wherever possible (MEMS sensors, optical encoders, brushed DC motors) supple-

menting with custom printed circuit boards (PCBs) to simplify wiring. Rapid

prototyping techniques (3D printing, laser cutting) are used for custom parts with

a fast design-build-test iteration cycle. The design and fabrication of the proto-

types is discussed in detail in Ch. 5. A list of “Rules of Robotics” may be found

in Appendix A.

1.4 Robotic Systems

1.4.1 DC Motor Dynamometer

This dissertation, in part, presents the development of a dynamometer for

brushed DC motors and motor drivers which we call the Reconfigurable Auto-

mated Parameter-Identifying Dynamometer (RAPID). RAPID is capable of simul-

taneously controlling a motor and recording sensor data that are post-processed to

determine the electrical and mechanical parameters of the motor/motor driver sys-

tem. The entire process is automated, requiring minimal user interaction. RAPID,

in Fig. 1.1, is equipped with a suite of sensors to measure rotational position, cur-

rent, and voltage. Furthermore, RAPID can accommodate a variety of motor

geometries and specifications with its unique hardware design.

The intended application for RAPID is to characterize motors for model-

based control systems in robotics applications. RAPID consists of off-the-shelf

parts, custom parts that may be readily fabricated, and open source algorithms.

As such, devices similar or identical to the one discussed in this work may eas-

ily be fabricated for use in many different settings, such as laboratory classes,

academic research, and industrial fabrication and quality assurance. RAPID is

open source: mechanical drawings and software may be freely downloaded at

http://robotics.ucsd.edu/dyno or accessed in Supplemental File 5: DC motor dy-
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Figure 1.1: Dynamometer system.

namometer files.

1.4.2 Mobile Inverted Pendulum

Two incarnations of the prototypical two-wheeled mobile inverted pendu-

lum (i.e. “Segway” like vehicles [9], [10], [11]) have been developed. Though they

have different components (motors, sensors, microprocessors, etc.) and parame-

ters (mass, length, inertia, etc.), they share an identical dynamics formulation and

control design process.

myMIP

The first, myMIP, is an educational platform which was created to serve

as the lab component of the digital control systems class (MAE 143C) taught at

the senior/masters crossover level in Fall 2012, see Fig. 1.2a. This design took

knowledge gained from several generations of inverted pendulum robots to create

the most affordable inverted pendulum possible from primarily off-the-shelf parts.

The development schedule was rushed to get the kits to the students as fast as

possible. It took only one month from drafting an initial Bill of Materials to passing
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(a) myMIP system. (b) eyeFling system.

Figure 1.2: Two mobile inverted pendulum systems.

out 45 kits. The bag of parts with electronics, motors, and mechanical parts cost

$128 each. By the end of the quarter, each student had a mobile working inverted

pendulum robot.

eyeFling

The second, eyeFling, was developed for Brain Corporation as a test plat-

form for their low-power bStem single board computer with the Qualcomm Snap-

dragon processor and neuromorphic computing algorithms, Fig. 1.2b. This robot

is an updated version of the iFling robot, previously developed by Ben Sams in the

lab. The major modifications were the addition of two pan/tilt cameras, mount-

ing the larger bStem electronics, and optimization for fabrication with a low-cost,

single extruder fused deposition modeling (FDM) 3D printer. Following the suc-

cessful adoption of the first three eyeFling prototypes by research scientists at
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Brain Corporation, a further seventeen eyeFling prototypes were assembled.

1.4.3 Switchblade

Figure 1.3: Completed Switchblade prototype.

As in a traditional treaded vehicle, Switchblade has a pair of tread assem-

blies, driven by an internal sprocket, mounted on either side of a central chassis

(Fig. 1.4a). Uniquely, the tread assemblies can rotate continuously about the main

drive axle of the chassis. Changing the angle between the chassis and tread as-

semblies moves the center of mass. There are no physical connections between the

two tread assemblies to keep them parallel, but feedback control may be applied

when it is desired to keep the two tread assemblies in line.

In a horizontal configuration (Fig. 1.4a) the robot functions much like any

other treaded skid-steer robot, with the ability to independently drive each tread

forward or backward to drive and turn. The treads act to minimize contact force on

loose surfaces and maintain traction better than wheels. Note that the actuated

tread assemblies make the robot impervious to high-centering. Note also that

the robot operates just as easily “upside down” as “right side up.” Driving over
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(a) Horizontal (b) V-balancing mode (c) C-balancing mode

(d) Chasm crossing (e) Perching on an edge

Figure 1.4: Different operating modes of the Switchblade design.

rough terrain may induce unwanted vibration in the chassis, this vibration can be

reduced by pivoting the chassis in response to a disturbance. Given the nature

of the coupled system, the greatest disturbance rejection is realizable at the end

of the chassis farthest from the pivoting axis. One application of such an active

suspension system is image stabilization for a camera mounted in or on the chassis.

The robot may balance on either end of the treads by taking advantage of

the tread transferring torque to the idler sprocket. In a wheeled design, the idler

wheel would be passive unless a second motor was driving it or if a chain or belt

connected the front and rear wheels. When the robot is balancing on the sprockets

coaxial with the pivoting axis, a side view of the robot resembles the letter “V”
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(Fig. 1.4b), this maneuver is referred to as V-balancing mode. Alternatively, the

robot may balance on the distal sprockets of the treads, a side view of which resem-

bles a crude version of the letter “C” (Fig. 1.4c), this is called C-balancing mode.

By driving the treads, rotating the angle of the tread assemblies, or actuating both

simultaneously, the robot is able to maintain its balance.

Unlike the canonical inverted pendulum, the unstable equilibrium point (the

angle of the chassis with respect to gravity at which the center of mass is directly

over the contact point with the ground) is not constant and instead depends on

the angle of the tread assemblies with respect to the chassis, and their relative

mass distributions. This angle can be calculated with the known properties of the

vehicle. There are multiple maneuvers, some dynamic and some quasi-static, for

transitioning between the horizontal configuration and the upright configurations.

One such maneuver for uprighting into V-balancing mode will be discussed in

section 3.2.1.

The maximum height of the robot in V-balancing mode is the length of

the treads with the center of mass approximately central, whereas in C-balancing

mode, the maximum height is the length of the chassis plus the length of the tread

assemblies minus the radius of the sprocket, with the center of mass above the

treads. The added height in C-balancing mode allows the robot to stand up taller,

climb larger obstacles, and to see farther with the onboard camera. The ground

clearance of the chassis can be nearly the length of the tread assemblies, allowing

the robot to pass over minor obstacles.

The separation angle between the chassis and the tread assemblies is here-

after referred to as the V-angle. The maximum V-angle achievable in V-balancing

mode is dependent on the mass properties of the tread assemblies and chassis and

is less than or equal to 180°. In the present design, the tread assemblies are longer

than the chassis, such that the chassis may rotate continuously and pass through

the tread assemblies while in C-balancing mode.

The maximum obstacle size that the robot can overcome is related to its

overall height. When the robot is horizontal, its height is the diameter of the tread

sprocket; when the robot is upright, its height is related to the tread length. The
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total height of the robot is thus variable over a large range, and can be adjusted as

necessary: the robot can upright itself to overcome large obstacles, then lay itself

back down to, e.g., pass freely underneath parked cars.

To overcome an obstacle larger than the sprocket radius, the robot ap-

proaches the obstacle while balancing upright, “leans” onto the obstacle by shifting

its center of mass over the point of contact with the obstacle, then drives over the

obstacle. An alternative maneuver to climb stairs uses the chassis of the robot as a

lever. The robot approaches the step in a horizontal configuration, and rotates the

chassis against the step; leveraging against this contact point appropriately while

driving the treads, the center of mass may be pushed on top of the step. The tread

assemblies may then be rotated up onto the step. After these moves, the robot is

backwards relative to how it approached the step; to climb additional steps, the

robot must reorient itself. If the length of the robot is less than the length of the

step, the robot can flip itself in place on the step. The entire sequence can be

repeated to climb multiple steps.

Using the independent nature of the tread assemblies, the robot may drive

over a chasm or ditch nearly as wide as the tread assembly is long. The tread

assemblies are rotated 180° apart and the chassis is positioned vertically, such that

the center of mass is centered above the main drive axle (Fig. 1.4d). Balancing over

a chasm is another unstable equilibrium; dynamic stabilization about the roll axis

is accomplished by pivoting the tread assemblies to tilt the chassis side-to-side.

A particularly advanced, and challenging, maneuver is balancing on an edge,

such as the edge of a step (Fig. 1.4e). Maintaining traction is critical; the material

and shape of the treads and edge determine the critical slip angle. The contact

angle can be controlled to a value less than this. Ultimately, the robot may drive

up a step, contacting only the edge, while pivoting the chassis to keep the center

of mass directly over the edge. This maneuver may be repeated up a staircase

depending on the rise and pitch angle of the stairs, the length of the treads, and

the critical slip angle.

The proposed method of stair climbing via successive perching combines

dynamic inverted pendulum balancing with the mechanical simplicity of a treaded
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Figure 1.5: Switchblade robot perching on the edge of a stair.

design. The robot approaches the first step balanced on the far end of the tread

assemblies with the chassis angled back to keep the center of mass above the contact

point with the ground. Once the tread assemblies make contact with the first step

edge, the chassis pivots forwards, shifting the center of mass above the step edge.

The robot then drives up the step edge, pivoting the chassis appropriately to

maintain the center of mass above the contact point and balancing dynamically

(Fig. 1.5). At the top of the step, the robot transitions to balancing on the top face

of the step and can then climb successive stairs similarly. See Supplemental File 1:

Switchblade video for an animation of the stair climbing sequence. This maneuver

is compatible with a wide range of step dimensions. This paradigm requires only

that the length of the tread, not the sprocket radius, be greater than the rise of

the step. Further, the length of the tread does not need to span multiple step

edges, as in other treaded stair climbing robots. The smaller required size of the

robot decreases cost as well as increases maneuverability in tight spaces, such as

in a partially collapsed building. No additional or dedicated sensors or actuators

are required for stair climbing, and no external feedback system, such as a vision
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system, is required or used.

We have previously described a rudimentary stair climbing maneuver that

can be performed with the same vehicle. Climbing successive stairs required each

step to have sufficient run for the robot to be able to to turn around or flip itself.

This method is still effective for thresholds such as street curbs. The maneuver

presented in this dissertation, dubbed successive perching, does not have this lim-

itation on step geometry. An overview of the maneuvers the vehicle is capable of

is shown in Supplemental File 1: Switchblade video. This vehicle design has been

recognized for scoring well in both versatility and mechanical complexity metrics

[44].

Figure 1.6: Completed Switchblade nano prototype.

Switchblade nano

The nano incarnation of the Switchblade platform (see Fig. 1.6) was an

experiment to see how small the design could be shrunk and still operate in the

same manner. The main motivation for decreasing size was potential commercial-

ization and cost reduction. The robot may be seen performing multiple maneuvers

in Supplemental File 2: Switchblade nano video.
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Figure 1.7: Switchbot prototype.

Switchbot

The last variant of the Switchblade platform is an anthropomorphic version

with additional powered links between the chassis and tread segments (creating

distinct upper and lower leg segments) as well as passive arms and a head (see

Fig. 1.7). The motivation for this project is potential commercialization as a con-

sumer electronics product, with surveillance and patrol features. The appearance

of the upper body was designed by Adam Fairless. The robot may be seen per-

forming multiple maneuvers in Supplemental File 3: Switchbot video.
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Figure 1.8: SkySweeper prototype.

1.4.4 SkySweeper

In this dissertation, in part, we present a novel new design for a cable-

locomoting robot, which has few actuators, but multiple modes of locomotion for

achieving different objectives. SkySweeper is symmetrically comprised of two links

of equal length which are pivotally connected with a rotary series elastic actuator

(SEA) at one end [45], see Fig. 1.8. The SEA consists of a motor and a torsion

spring connected in series. The motor housing is connected to the first link, the

motor shaft is connected to one end of the spring, and the other end of the spring

is connected to the second link. The motor exerts equal and opposite torques on

the first link and the SEA shaft. The spring exerts equal and opposite torques on

the SEA shaft and second link. At the opposite end of each link is an actuated

clamp which can hold on to a cable. The clamp can be in one of three positions,

as illustrated in Fig. 1.9:
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1. Open, in which the clamp is completely open;

2. Rolling, in which the clamp is partially closed and may passively roll along

the cable;

3. Pivoting, in which the clamp is fully closed and may only pivot on the cable.

(a) Open (b) Rolling (c) Pivoting

Figure 1.9: Different clamp positions.

With two three-position clamps, there are a total of nine possible configurations.

A sensor in each clamp detects when a cable is within grasp of the clamp. The SEA

in the joint allows the robot to store extra potential energy before commencing a

dynamic maneuver. By appropriately combining the actuation of the elbow SEA

and the clamps, several modes of locomotion are possible. The robot may be seen

performing multiple maneuvers in Supplemental File 4: SkySweeper video.

Inchworm

In this maneuver, the robot has both clamps on the cable, one in pivoting

position and the other in rolling position. The SEA is first actuated to increase the

angle between the two links, then the positions of the clamps are alternated, the

direction of the SEA is reversed to close the angle between the two links, and the

clamp positions alternate again. The entire procedure is repeated which creates a
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successive “inchworm”-like motion to traverse the cable. This sequence of motions

can be performed slowly (quasi-statically) for precise position control or quickly

(dynamically with the SEA) to move faster.

Swing & Roll

The robot begins with both clamps on the cable, the motor in the SEA

is allowed to spin idly. The first clamp is in the pivoting position and then the

second clamp opens, causing the second link to pivot and fall away from the cable.

As the center of mass rotates under the first clamp, the first clamp switches to

the rolling position and the momentum from the swinging second link causes the

robot to roll along the cable. If the first clamp were in rolling position the entire

time, there would be zero net horizontal displacement. This maneuver requires

nearly zero control effort (just the small amount of energy required to actuate

the clamps) and instead converts some of the gravitational potential energy into

translational kinetic energy. Rolling resistance limits how far the robot will roll

before coming to a stop. If the cable has a downward slope sufficient to overcome

the rolling resistance, the robot will continue to roll. This maneuver allows efficient

locomotion on horizontal and downward sloping cables.

Swing-Up

After the robot performs the previous maneuver, it comes to a rest with

only the first clamp on the cable and both links hanging down vertically. In order

to perform the inchworm maneuver, it is necessary to swing the second link up to

grasp the cable. The swing-up maneuver starts with the first clamp in pivoting

position on the cable and the second clamp open hanging down. A sinusoidal input

is sent to the motor and the robot pivots and swings until the second clamp can

grasp the cable. The frequency and magnitude of the sinusoid are chosen based on

the physical parameters of the system. This maneuver is also useful for installing

the robot on the cable.
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Backflip

Instead of rolling along the cable, as in the inchworm and swing & roll

maneuvers, the robot may also move along the cable by flipping end-over-end.

The robot starts with both clamps on the cable in the pivoting position. In this

configuration, all degrees of freedom of the robot are constrained, except for the

spring in the SEA. The motor is driven to preload the spring and then the second

clamp is opened. The force of the SEA and gravity cause the second link to rapidly

pivot away from the cable. The motor continues (with less power) to rotate the

second link relative to the first as the entire robot pivots about the first clamp until

the second clamp grasps the cable. The spring is then preloaded in the opposite

direction and the first clamp opens. The entire robot pivots about the second

clamp in a similar manner as before until the first clamp can grasp the cable. This

sequence of motions can be repeated for successive flips. An important advantage

of this maneuver is that overhead obstacles, such as supports from which the cable

hangs, may be bypassed.

All of the aforementioned maneuvers happen in the plane of the robot.

The clamps constrain the robot from twisting out of plane. In an application

environment, high winds could make some of the maneuvers (swing-up, backflip)

untenable. Existing cable-locomoting robots are also susceptible to high winds.

Due to the symmetry of the links and clamps, all maneuvers can be performed to

move in either direction.
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Chapter 2

Dynamics

In this chapter, the dynamics of the DC motor dynamometer are derived

from first principles, Newton’s second law and a voltage balance across the mo-

tor terminals. Next, the Lagrangian method of determining equations of motion

is shown, without loss of generality, for a constrained system. The motor model

from the dynamometer fits cleanly into the dynamical model. Finally, the partic-

ular equations of motion and constraints of the different robotic systems is shown.

While the repeated presentation of the same process may appear redundant, it is

useful for learning purposes to see the process applied multiple times. It is also

educational to first derive the equations of motion by hand (with copious calcula-

tion of partial derivatives) before skipping to the programmatic derivation of the

equations, see Sec. 2.2. The author only found it necessary to derive the equations

for a mobile inverted pendulum by hand before switching to the programmatic

method. Systems with higher degrees of freedom will have exponentially more

partial derivatives to calculate.

2.1 DC Motor Dynamometer

The dynamometer system (Fig. 1.1), comprised of the motor under test

and the reconfigurable inertial load constitute a simple single degree of freedom

mechanical system, and as such, it is straightforward to write the equations of

motion from Newton’s second law.

26
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Figure 2.1: Results from spin down tests with different loading configurations of

inertial disc.

In order to understand the dynamics of the base system (without a motor

installed), we perform multiple spin down tests. We manually apply an impulse

to the system and log the position data as the inertial disc slows to a stop due to

friction (Fig. 2.1). A total of 44 trials were run, clockwise and counter-clockwise, at

different initial speeds, and in three configurations of the inertial disc: fully loaded

(8 bolts and 24 nuts, Fig. 2.1a), half loaded (4 bolts and 12 nuts, Fig. 2.1b), and

unloaded (0 bolts and 0 nuts, Fig. 2.1c). The linear slope of the system slowing

down demonstrates that Coulomb friction is dominant and viscous and quadratic

drag are negligible. We would then expect to be able to model the dynamics with
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the equation:

J
dω

dt
= −c · sgn(ω), (2.1)

where c is the Coulomb friction coefficient. To verify this model, we performed

a simple linear regression for each of the trials. In each case, the coefficient of

determination, R2, of the linear fit (2.1) exceeded 0.98, indicating a good fit.

The bearings are the main source of Coulomb friction in the system. Adding

nuts and bolts to the inertial disc increases both inertia and weight, which increases

the radial load on the bearings, increasing friction. The friction is not directly

proportional to the inertia, otherwise the ratio c/J would be constant and spin

down tests with different inertias would have the same slope. This is clearly not the

case, as can be seen by the different slopes in Fig. 2.1. We thus use the following

two term model to characterize the Coulomb friction:

c = α + βJ. (2.2)

Since the nuts and bolts are all added at the same distance from the axis of rotation,

the added weight is directly proportional to the added inertia. Thus the increased

Coulomb friction from the increased weight is captured by the βJ term. From (2.1)

and (2.2), we can solve for the minimum, unloaded inertia of the base system. We

call the empirically measured, averaged slopes of the spin down tests x, y, and z

for the unloaded, half loaded, and fully loaded cases, respectively. Using (2.1) and

noting that the signum function will always be the opposite sign of dω
dt

for a spin

down trial, we can write:

(JB)x = −[α + β(JB)],

(JB + JN)y = −[α + β(JB + JN)],

(JB + 2JN)z = −[α + β(JB + 2JN)],

where JB is the inertia of the unloaded base system and JN is the inertia of 4 bolts

and 12 nuts. These three equations can be solved for the three unknowns: JB, α,
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and β in terms of the known values JN , x, y, and z:

JB = 2JN(y − z)/(x− 2y + z), (2.3)

α =
−2JN(x− y)(y − z)(x− z)

(x− 2y + z)2
,

β =
2(x− y)(y − z)

x− 2y + z
− y.

We find JB = 3.37 · 10−5 kg·m2, α = 1.72 · 10−3 N·m, and β = 2.68 N·m/(kg·m2).

With the dynamics of the base system understood, we can proceed to derive

equations from first principles that describe the electrical and mechanical dynamics

of the motor and base system together. Taking into account the inductance l and

resistance r of the motor armature wire, and the back EMF generated when the

motor spins, which is equal to the motor constant, k, times the motor shaft velocity,

ω, we can write the following voltage balance across the motor terminals:

V = l
di

dt
+ ri+ kω, (2.4)

where i is the current through the motor armature wire and V is the voltage across

the motor terminals. The torque generated by the motor is

τ = ki, (2.5)

where the torque equals the same motor constant, k, times the current, i. The net

torque from the motor, subtracting frictional losses, is

τN = ki− bω − cM · sgn(ω), (2.6)

where b and cM are the viscous and Coulomb friction coefficients of the motor,

respectively. The two equations above (2.4), (2.6) form the commonly accepted

brushed DC motor model [46]; however we choose to use a simplified electrical

model with the the average voltage and without inductance:

V = ri+ kω, (2.7)

where V = VSu is defined in section 5.3.2. The inductance of the armature wire of

a small DC motor can be on the order of 10−4 Henries, which is multiple orders of
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magnitude smaller than the other parameters being estimated. The PWM signal

to the motor also increases the frequency of di
dt

faster than the sampling frequency.

Both of these factors make it difficult to estimate the inductance. The simplified

model (2.7) also allows us to write an equation for the torque generation of the

motor (not including frictional losses) as a function of the signed PWM duty cycle

u ∈ [−1, 1] and speed ω, instead of a function of current as in (2.5):

τ = σu− ζω, where (2.8)

σ = kVS/r, ζ = k2/r.

The expression for the stall torque, σ, is found by setting u = 1 and ω = 0 in (2.5)

and (2.7), and solving for τ . The expression for the back EMF damping coefficient

(an electrical term that does not include frictional effects), ζ, can be found by

setting u = 1 and i = 0 in (2.5), (2.7), and (2.8) and solving for ζ. This is a more

useful formulation than (2.5) because it is more practical to control a motor by

voltage PWM (see section 5.3.2) than controlling current. For these reasons, we

choose not to estimate the inductance.

If the motor under test has a gearbox, with reduction γ, the total effective

inertia of the motor and gearbox is

JE = JGearbox + γ2JMotor.

The total system inertia, JS, includes the minimal base inertia, found in (2.3), any

additional inertia from nuts and bolts added to the inertial disc (known a priori),

and the inertia of the motor under test:

JS = JB + nBoltsJBolt + nNutsJNut + JE. (2.9)

We can write the torque balance of the entire system, starting with (2.1)

and adding the torque of the motor (2.6):

JS
dw

dt
= ki− bω − cS · sgn(ω), (2.10)

where Coulomb friction from the motor and base system are combined into the

one parameter cS:

cS = α + β(JS − JE) + cM . (2.11)
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We subtract the effective inertia of the motor and gearbox so that the Coulomb

friction calculated from the results of the spin down tests only reflects the inertial

disc with any nuts or bolts and all Coulomb friction contributions from the motor

are lumped into cM .

This model is only applicable when the system is in motion, as it accounts

for Coulomb and viscous friction, but not stiction. We thus ignore measurements

where the velocity is zero. In the general case, Coulomb friction is nonlinear

because of the step at zero velocity, however, in this case, we are ignoring data

with zero velocity and thus fitting two linear models to the data with non-zero

velocity, bypassing the nonlinearity.

Thus we have two equations (2.7) and (2.10) that completely describe the

electrical and mechanical dynamics of the motor in RAPID. We use gray-box

modeling to find the five unknown parameters of the system: r, k, JS, b, and cS

that best fit the observed data to the prescribed model [47]. The effective inertia

of the motor, JE, and the Coulomb friction of the motor, cM , can be recovered

from JS and cS with equations (2.9) and (2.11) respectively.

2.2 Lagrangian Dynamics

The Lagrangian method of dynamics is a powerful tool to describe the be-

havior of rigid body systems and is broadly applicable to robotics. Lagrangian

dynamics has several advantages over other dynamical formulations (though they

are mathematically equivalent), it does not require the explicit calculation of inter-

nal forces and it is straightforward to impose both holonomic and non-holonomic

constraints [48]. Furthermore, it lends itself to programmatic derivation of equa-

tions of motions starting only with geometric relations. App. B contains MATLAB

code (using the symbolic math toolbox) that automatically generates equations of

motion for a mobile inverted pendulum given just the system configuration, with-

out requiring the calculation by hand of the kinetic or potential energies. The

nonlinear equations can be used directly as the plant model for a simulation and

can be linearized to design a controller, see Ch. 3.
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The Lagrangian of a system is written as the difference of the kinetic energy,

T , and potential energy, V , of the system

L = T − V. (2.12)

A system with n degrees of freedom has a vector of generalized coordinates q ∈ Rn

and generalized forces Q ∈ Rn. The Euler-Lagrange equations are

d

dt

(
δL
δq̇i

)
− δL
δqi

= Qi, (2.13)

which can be rewritten into the form

M(q)q̈ + F (q, q̇) = Q,

where M(q) is the positive definite mass matrix and F (q, q̇) is the vector of forces.

Constraints in the form

A(q)q̇ = 0 (2.14)

can be appended thusly

M(q)q̈ + F (q, q̇) = Q+ A(q)Tλ, (2.15)

where λ is the Lagrange multiplier. We can avoid the need to calculate λ by first

defining S(q) as an orthonormal basis for the null space of A(q). Then premulti-

plying (2.15) by S(q)T

S(q)TM(q)q̈ + S(q)TF (q, q̇) = S(q)TQ. (2.16)

In the case where S is constant (not a function of q), ν and ν̇ can be defined by

q̇ = Sν and q̈ = Sν̇ and (2.16) can be further simplified

STM(q)Sν̇ + STF (q, q̇) = STQ.

In which case it is trivial to solve for ν̇ since STM(q)S is positive definite, and

therefore, invertible.

ν̇ = (STM(q)S)−1ST [Q− F (q, q̇)],
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and similarly

q̈ = S[STM(q)S]−1ST [Q− F (q, q̇)]. (2.17)

which is simply a set of nonlinear second order differential equations which can be

marched forward in time by traditional means. In the case where the constraints

are dependent on q, an alternate technique can be used to apply the constraints,

see the latter half of Sec. 2.4.4 for an example.

In the (common) case that the generalized forces Q are exerted by DC

motors in the robot, we can set Q = Bτ , where τ ∈ Rnu is the vector of motor

torques, nu is the number of motors, and the matrix B ∈ Rn×nu maps the motor

torques to the generalized coordinate, often with equal and opposite elements for

an internally mounted motor. We can then substitute into (2.17)

q̈ = S[STM(q)S]−1ST [Bτ − F (q, q̇)]. (2.18)

Next substituting the motor model (2.8) derived in section 2.1

q̈ = S[STM(q)S]−1ST{B[Σu− Z(q̇)]− F (q, q̇)}, (2.19)

where Σ ∈ Rnu×nu is the diagonal matrix of motor stall torques and Z(q) ∈ Rnu is

the vector of back EMF damping terms.

The following sections develop equations of motion for robotic systems using

the above approach, which is broadly applicable to robotics systems.

2.3 Mobile Inverted Pendula

Both the myMIP (Fig. 1.2a) and eyeFling (Fig. 1.2b) share the same dy-

namics, but with different parameters (masses, lengths, inertias, and motor pa-

rameters). Following the above discussion of Lagrangian dynamics, we start by

defining the generalized coordinates in Fig. 2.2

q =
(
γ x φ θ

)T
,

where γ is the angle of the motor shaft with respect to vertical, x is the horizontal

displacement of the center of rotation, φ is the wheel angle with respect to vertical,
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Figure 2.2: Coordinate system for Mobile Inverted Pendulum.

and θ is the angle of the chassis with respect to vertical. The motor is housed in

the chassis, so the relative rotation of the motor shaft is given by γ−θ. The kinetic

energies of the motors, wheels, and chassis are given, respectively, by

TM =
1

2
JM(γ̇ − θ̇)2,

TW =
1

2
(mW ẋ

2 + JSφ̇
2),

TC =
1

2
[mC(ẋ− LC θ̇ cos θ)2 + L2

C θ̇
2 sin θ2 + JC θ̇

2].

The potential energy is

V = g[mCLC cos θ + r(mW +mC)].

The Lagrangian, following (2.12), is L = TM + TW + TC − V . Solving the Euler-

Lagrange equations (2.13), we can write equations of motion in the form of (2.18),

where τ is the torque from the motor and the matrix B maps the torque to the

generalized coordinates, in this case, applying equal and opposite torques between
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the motor shaft and chassis

B =


2

0

0

−2

 ,

where the factor of two comes from the fact that there are two motors (right and

left). Using the motor model developed above (2.8)

q̈ = S[STM(q)S]−1ST{B[σu− ζ(γ̇ − θ̇)]− F (q, q̇)}. (2.20)

In this system, we wish to constrain the wheel to the ground (no slip condition,

x = −rφ) and the motor shaft to the wheel (no backlash, γ = φ). The constraint

matrix A can then be written

A =

[
0 1 r 0

1 0 −1 0

]
, (2.21)

an orthonormal basis for the null space of which is

S =


1/
√
r2 + 2 0

−r/
√
r2 + 2 0

1/
√
r2 + 2 0

0 1

 , (2.22)

which completes the equations of motion (2.20) for a mobile inverted pendulum.

2.4 Switchblade

2.4.1 V-Balance

For the V-Balance maneuver shown in Fig. 1.4b, the equations of motions

can be derived as follows. By symmetry, we simplify the model to three bodies in

two dimensions, the angles are defined in Fig. 2.3, where θ and α are the angles of

the chassis and tread assembly from vertical respectively, φ is the rotation angle

of the tread sprocket, and x is the horizontal position of the robot. Motors on the
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Figure 2.3: Coordinate system for V-balance mode and parameters.

robot may exert torques along the axis of rotation between the tread sprocket and

the chassis and between the chassis and the tread assembly.

The kinetic energies of the sprocket, chassis, and tread assembly are given

respectively by

TS =
1

2

[
mSẋ

2 + JSφ̇
2
]
,

TC =
1

2

[
mC

(
ẋ− LC θ̇ cos θ

)2
+mC

(
LC θ̇ sin θ

)2
+ JC θ̇

2
]
,

TT =
1

2

[
mT (ẋ− LT α̇ cosα)2 +mT (LT α̇ sinα)2 + JT α̇

2
]
.

The gravitational potential energy is given by

V = mCgLC cos θ +mTgLT cosα.

We define the generalized coordinates as

q =
(
x φ α θ

)T
. (2.23)

The Lagrangian can be written as L = TS + TC + TT − V . By solving the Euler-

Lagrange equations, we can write the equations of motion in the form

M(q)q̈ + F (q, q̇) = Bτ, (2.24)
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where the τ vector represents the control input torques for motors located in the

robot’s chassis. The first element represents the motor torque between the chassis

and the tread sprocket and the second element represents the motor torque between

the chassis and the tread assembly. Note also that:

M(q) =


mS +mC +mT 0 −mTLT cosα −mCLC cos θ

0 JS 0 0

−mTLT cosα 0 mTL
2
T + JT 0

−mCLC cos θ 0 0 mCL
2
C + JC

 ,

F (q, q̇) =


mCLC θ̇

2 sin θ +mTLT α̇
2 sinα

0

−mTgLT sinα

−mCgLC sin θ

 , B =


0 0

1 0

0 1

−1 −1

 .

We next impose a no-slip constraint between the tread sprocket and the ground,

which will be shown also achieves a coordinate reduction, via

x+ rφ = 0, (2.25)

or equivalently

Aq̇ = 0, A =
(

1 r 0 0
)
.

In this system, A is not dependent on q. We append (2.24) with the inner product

of the constraint matrix A with λ, the Lagrange multiplier:

M(q)q̈ + F (q, q̇) = Bτ + ATλ. (2.26)

A basis for the null space of A is given by

S =


−r 0 0

1 0 0

0 1 0

0 0 1

 . (2.27)

Given that q̇ is in this space, we define ν accordingly as

q̇ = Sν, ν =
(
φ̇ α̇ θ̇

)T
. (2.28)
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Premultiplying by ST and using (2.28), we can rewrite (2.26) as

STM(q)Sν̇ + STF (q, q̇) = STBτ. (2.29)

Noting that the dynamics of x and φ are directly coupled by (2.25), we can choose

a reduced coordinate set qr =
(
φ α θ

)T
. Likewise truncating the top row of

(2.27), Sr = I3×3 and we see that q̇r = ν directly from (2.28).

Finally, we model the torque output τ from each motor linearly as (derived

from (2.8))

τ = σu− ζω, σ =
kγV

R
, ζ =

(kγ)2

R
, (2.30)

where σ is the stall torque, u is the control input (limited to [−1, 1]), ζ is the

damping coefficient of the motor, ω is the speed of the motor shaft relative to the

motor body, k is the motor constant, γ is the gear ratio of the transmission, V is

the nominal voltage applied across the terminals, and R is the terminal resistance.

Substituting the motor model, we can rewrite (2.29) using (2.30), where Z(q) is

effectively Rayleigh’s dissipation function

STM(q)Sν̇ + STF (q, q̇) = STB[Σu− Z(q̇)], (2.31)

σ =

(
σS 0

0 σT

)
, Z(q̇) =

(
ζS(φ̇− θ̇)
ζT (α̇− θ̇)

)
.

Concatenating qr and ν yields a complete state vector x (recycling the superfluous

generalized coordinate x for lack of a longer alphabet). Rewriting (2.31), we see

that this nonlinear system is affine in the inputs:

x =

(
qr

ν

)
, ẋ = f(x) + Γ(x)u,

f(x) =

(
ν

−[STM(q)S]−1ST [F (q, q̇) +BZ(q̇)]

)
,

Γ(x) =

(
03×2[

STM(q)S
]−1

STBΣ

)
.
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Figure 2.4: Generalized coordinates for Switchblade C-Balancing.

2.4.2 C-Balancing

The dynamics for the C-Balancing maneuver can be derived similarly as

in the above section, with different expressions for kinetic and potential energy as

functions of similar generalized coordinates which are defined in Fig. 2.4. The full

equations of motion are left as an exercise to the reader. The chassis is shorter

than the tread assemblies and can rotate continuously, passing freely through the

tread assemblies.
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2.4.3 Perching

In order to create a simulation and design a controller, we first derive the

dynamics of the system using the Lagrangian method. By symmetry, we simplify

the model to three bodies in two dimensions, the generalized coordinates are de-

fined in Fig. 2.5, θ and α are the angles of the chassis and unified right and left

tread assemblies from vertical respectively, φ is the rotation angle of the unified

right and left tread sprockets, and w is the distance between the tread sprocket

and the contact point on the step edge measured along the tread. The radius of

curvature of the step edge is ρ; a sharp edge is modeled by setting ρ = 0. The

inertial frame XY is fixed at the center of the curved edge. Motors on the robot

exert torques between the tread sprocket and the chassis and between the chassis

and the tread assembly.

The kinetic energies of the unified sprockets, unified tread assemblies, chas-
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sis, unified sprocket motors, and unified tread assembly motors are given, respec-

tively, by

TS =
1

2
{mS[(ẇ cosα− α̇(r cosα + ρ cosα + w sinα))2

+ (ẇ sinα− α̇(r sinα− w cosα + ρ sinα))2] + JSφ̇
2},

TT =
1

2
{mT [(α̇(r cosα− LT sinα + ρ cosα + w sinα)− ẇ cosα)2

+ (α̇(LT cosα + r sinα− w cosα + ρ sinα)− ẇ sinα)2] + JT α̇
2},

TC =
1

2
{mC((ẇ cosα− α̇(r cosα + ρ cosα + w sinα) + LC θ̇ sin θ)2

+ (α̇(r sinα− w cosα + ρ sinα)− ẇ sinα + LC θ̇ cos θ)2) + JC θ̇
2},

TSM =
1

2

[
JSM(φ̇− θ̇)2

]
, TTM =

1

2

[
JTM(α̇− θ̇)2

]
,

where mS, mT , JS, JT , JSM , and JTM represent the combined masses and inertias

of the right and left components for simplicity. The gravitational potential energy

is given by

V = g[mS(r sinα− w cosα + ρ sinα)

+mT (LT cosα + r sinα− w cosα + ρ sinα)

+mC(LC cos θ + r sinα− w cosα + ρ sinα)].

We define the generalized coordinates as

q =
(
w φ α θ

)T
.

The Lagrangian can be written as L = TS +TT +TC +TSM +TTM −V . By solving

the Euler-Lagrange equations, we can write the equations of motion in the form

M(q)q̈ + F (q, q̇) = Bτ +
δP

δq̇
, (2.32)
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The (positive definite) mass matrix, M(q), is given by:

M1,1(q) =m, M1,2(q) = 0,

M1,3(q) =− (r + ρ)m, M1,4(q) = −LCmC sin(α− θ),

M2,2(q) =JS + JSM , M2,3(q) = 0,

M2,4(q) =− JSM ,

M3,3(q) =JT + JTM +mTLT (LT − 2w) +m[(r + ρ)2 + w2],

M3,4(q) =LCmC [(r + ρ) sin(α− θ)− w cos(α− θ)]− JTM ,

M4,4(q) =mCL
2
C + JC + JSM + JTM ,

where m = mS +mT +mC . The vector F (q, q̇) is given by:

F1(q, q̇) =mTLT α̇
2 −mwα̇2 −mg cosα +mCLC θ̇

2 cos(α− θ),

F2(q, q̇) =0,

F3(q, q̇) =2α̇mwẇ +mg(r + ρ) cosα + g(mw −mTLT ) sinα

− 2LT α̇mT ẇ −mCLC θ̇
2[(r + ρ) cos(α− θ) + w sin(α− θ)],

F4(q, q̇) =LCmC [(r + ρ)α̇2 cos(α− θ)− 2α̇ẇ cos(α− θ)

+ α̇2w sin(α− θ)− g sin θ],

The right hand side of (2.32) is the sum of the generalized forces of the system.

The power dissipation function P [49] accounts for the Coulomb friction of the

treads rubbing against the tread assemblies and the Coulomb friction between the

chassis and tread assemblies

P = −µkmgr
sinα

(φ̇− α̇)− cT (α̇− θ̇), (2.33)

where µk is the coefficient of kinetic friction between the treads and tread assem-

blies and mg/ sinα is the normal force acting on the treads from the step edge at

equilibrium. The coefficient cT is a constant defined by the physical parameters

of the system (mass, length, coefficient of kinetic friction between the chassis and

tread assemblies, and gravitational acceleration). The contribution to the gener-

alized forces can be determined from Fq = δP/δq̇ taking special care to maintain
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the sign of the direction-dependent force by using the signum function

δP

δq̇
=


0

−µkmgr
sinα

· sgn(φ̇− α̇)
µkmgr
sinα

· sgn(φ̇− α̇)− cT · sgn(α̇− θ̇)
cT · sgn(α̇− θ̇)

 . (2.34)

The matrix B in (2.32) maps τ , the control input torque vector for the motors in

the chassis, to the generalized coordinates:

B =


0 0

−1 0

0 −1

1 1

 .

The first element of τ represents the motor torque between the chassis and the

tread sprockets and the second element represents the motor torque between the

chassis and the tread assemblies. We model the torque output τκ from each motor

linearly as (derived from (2.8))

τκ = σκuκ − ζκωκ, σκ =
γκkκV

Rκ

, ζκ =
(γκkκ)

2

Rκ

, (2.35)

where σκ is the stall torque, uκ is the control input (limited to [−1, 1]), ζκ is the

back EMF damping coefficient of the motor, ωκ is the speed of the motor shaft

relative to the motor body, kκ is the motor constant, γκ is the gear ratio of the

transmission, V is the nominal battery voltage, and Rκ is the terminal resistance

[50]. Substituting the motor model (2.35), we can rewrite (2.32):

M(q)q̈ + F (q, q̇) = B[Σu− Z(q̇)] +
δP

δq̇
, (2.36)

Σ =

[
σS 0

0 σT

]
, Z(q̇) =

(
ζS(θ̇ − φ̇)

ζT (θ̇ − α̇)

)
.

We next impose a no-slip constraint between the tread sprocket and the step edge,

which will be shown also achieves a coordinate reduction, via

w + r(φ− α) + ρ(π/2− α) = 0. (2.37)
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In two dimensions, this is a holonomic constraint which we can differentiate with

respect to time to write in the form

A1q̇ = 0, A1 =
(

1 r −(r + ρ) 0
)
.

We can write additional constraints depending on whether the treads are in stiction

with (not moving relative to) the tread assemblies (φ̇ = α̇)

A2q̇ = 0, A2 =
(

0 1 −1 0
)
,

or the tread assemblies are in stiction with the chassis (α̇ = θ̇)

A3q̇ = 0, A3 =
(

0 0 1 −1
)
.

These three constraints can be combined by stacking the row vectors to form a

constraint matrix Aβ. In this system, Aβ is not dependent on q. We append

(2.36) with the inner product of the constraint matrix Aβ with λβ, the Lagrange

multiplier:

M(q)q̈ + F (q, q̇) = B[Σu− Z(q̇)] +
δP

δq̇
+ ATβλβ. (2.38)

We assume that the no-slip constraint always holds, but are interested in the

different combinations of tread/tread assembly and chassis/tread assembly stiction.

This results in four possible constraint matrices

• No-slip only, ANS = A1

• No-slip with treads in stiction, AT = [A1;A2]

• No-slip with chassis in stiction, AC = [A1;A3]

• No-slip with treads and chassis in stiction, ATC = [A1;A2;A3]

We can find orthonormal bases Sβ for the null spaces of Aβ

SNS =


−r/
√
r2 + 1 (r + ρ)/

√
(r + ρ)2 + 1 0

1/
√
r2 + 1 0 0

0 1/
√

(r + ρ)2 + 1 0

0 0 1

 , (2.39)
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ST =


ρ/
√
ρ2 + 2 0

1/
√
ρ2 + 2 0

1/
√
ρ2 + 2 0

0 1

 ,

SC =


−r/
√
r2 + 1 (r + ρ)/

√
(r + ρ)2 + 2

1/
√
r2 + 1 0

0 1/
√

(r + ρ)2 + 2

0 1/
√

(r + ρ)2 + 2

 ,

STC =


ρ/
√
ρ2 + 3

1/
√
ρ2 + 3

1/
√
ρ2 + 3

1/
√
ρ2 + 3

 .

Given that q̇ is in this space, we define νβ and ν̇β accordingly

q̇ = Sβνβ, q̈ = Sβ ν̇β (2.40)

since Sβ are constant-valued matrices. Premultiplying by STβ and using (2.40), we

can rewrite (2.38) as

STβM(q)Sβ ν̇β + STβ F (q, q̇) = STβB[Σu− Z(q̇)] + STβ
δP

δq̇
.

Solving for the acceleration terms ν̇β,

ν̇β = [STβM(q)Sβ]−1STβ {B[Σu− Z(q̇)] +
δP

δq̇
− F (q, q̇)}. (2.41)

Premultiplying by Sβ and using (2.40)

q̈ = Sβ[STβM(q)Sβ]−1STβ {B[Σu− Z(q̇)] +
δP

δq̇
− F (q, q̇)}, (2.42)

which is a set of second order nonlinear differential equations which can be marched

forward in time by traditional means, choosing the appropriate Sβ as time pro-

gresses as a function of the state, see section 3.2.3.
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Figure 2.6: Generalized coordinates of four degree of freedom Switchbot model.

2.4.4 Switchbot

Four Degree of Freedom Model

To start, we simplify the robot to four bodies in two dimensions: the upper

body, unified left and right upper legs, unified left and right pulleys that drive the

treads. The generalized coordinates are labeled in Fig. 2.6, θ is the angle of the

upper body from vertical, γ is the angle of the unified upper legs from vertical,

α is the angle of the unified lower legs from vertical, φ is the angle of the unified

pulleys, and x is the horizontal displacement of the pulleys in the inertial frame

XY . Motors in the robot exert equal and opposite torques on the upper body

and each upper leg (hip motors), and between each upper leg and lower leg (knee

motors). Motors embedded in the lower legs exert torque on the pulleys (pulley

motors), but have a reaction torque that is out of plane. When the robot is driving

forward, the left and right out of plane reaction torques cancel each other out. The
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kinetic energies of the unified pulleys, unified lower legs, unified upper legs, and

upper body are given, respectively, by

TP =mP ẋ
2 + JP φ̇

2,

TL =mL(L2
Lα̇

2 − 2LLα̇ẋ cosα + ẋ2) + JLα̇
2,

TU =mU [(LKα̇ cosα− ẋ+ LU γ̇ cos γ)2 + (LKα̇ sinα + LU γ̇ sin γ)2] + JU γ̇
2,

TB =
1

2
{mB[(LKα̇ cosα− ẋ+ LH γ̇ cos γ + LB θ̇ cos θ)2

+ (LB θ̇ sin θ + LKα̇ sinα + LH γ̇ sin γ)2] + JB θ̇
2}.

Note that the factors of 1
2

that may commonly be expected for kinetic energy

terms are cancelled out in TP , TL, and TU because the mass and inertia terms

are multiplied by two to account for the left and right sides. The gravitational

potential energy is given by

V =g[2mP r + 2mL(r + LL cosα) + 2mU(r + LK cosα + LU cos γ)

+mB(r + LK cosα + LH cos γ + LB cos θ)].

We define the generalized coordinates as

q =
(
x φ α γ θ

)T
.

The Lagrangian can be written as L = TP + TL + TU + TB − V . By solving the

Euler-Lagrange equations, we can write the equations of motion in the form

M(q)q̈ + F (q, q̇) = Bτ, (2.43)

The (positive definite) mass matrix, M(q), is given by:

M1,1(q) = mB + 2mU + 2mL + 2mP , M1,2(q) = 0,

M1,3(q) = −(LKmB + 2LLmL + 2LKmU) cosα,

M1,4(q) = −(LHmB + 2LUmU) cos γ, M1,5(q) = −LBmB cos θ,

M2,2(q) = 2JP , M2,3(q) = 0, M2,4(q) = 0, M2,5(q) = 0,

M3,3(q) = 2JL + L2
KmB + 2L2

LmL + 2L2
KmU ,

M3,4(q) = LK(LHmB + 2LUmU) cos(α− γ), M3,5(q) = LBLKmB cos(α− θ),

M4,4(q) = mBL
2
H + 2mUL

2
U + 2JU , M4,5(q) = LBLHmB cos(γ − θ),

M5,5(q) = mBL
2
B + JB,
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The vector F (q, q̇) is given by:

F1(q, q̇) =(LKmB + 2LLmL + 2LKmU)α̇2 sinα + (LHmB + 2LUmU)γ̇2 sin γ

+ LBmB θ̇
2 sin θ,

F2(q, q̇) =0,

F3(q, q̇) =(LHmB + 2LUmU)LK γ̇
2 sin(α− γ)

− (LKmB + 2LLmL + 2LKmU)g sinα + LBLKmB θ̇
2 sin(α− θ),

F4(q, q̇) =LBLHmB θ̇
2 sin(γ − θ)− (LHmB + 2LUmU)g sin γ

− (LHmB + 2LUmU)LKα̇
2 sin(α− γ),

F5(q, q̇) =− LBmB[LKα̇
2 sin(α− θ) + LH γ̇

2 sin(γ − θ) + g sin θ],

The matrix B in (2.43) maps τ , the control input torque vector for the motors in

the chassis, to the generalized coordinates:

B =



0 0 0

1 0 0

0 1 0

0 −1 1

0 0 −1


.

The first element of τ represents the motor torque exerted on the pulleys, the

second element is the motor torque exerted between the lower and upper legs

(knee motors), and the third element is the motor torque exerted between the

upper legs and the body (hip motors). We model the torque output τκ from each

motor linearly as (derived from (2.8))

τκ = σκuκ − ζκωκ, σκ =
γκkκV

Rκ

, ζκ =
(γκkκ)

2

Rκ

, (2.44)

where σκ is the stall torque, uκ is the control input (limited to [−1, 1]), ζκ is the

back EMF damping coefficient of the motor, ωκ is the speed of the motor shaft

relative to the motor body, kκ is the motor constant, γκ is the gear ratio of the

transmission, V is the nominal battery voltage, and Rκ is the terminal resistance
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[50]. Substituting the motor model (2.44), we can rewrite (2.43):

M(q)q̈ + F (q, q̇) = B[Σu− Z(q̇)], (2.45)

Σ =


2σP 0 0

0 2σK 0

0 0 2σH

 , Z(q̇) =


2ζP (φ̇− α̇)

2ζK(α̇− γ̇)

2ζH(γ̇ − θ̇)

 .

The factors of 2 come from the combined left and right motors. We next impose

a no-slip constraint between the tread sprocket and the step edge, which will be

shown also achieves a coordinate reduction, via

x+ rφ = 0. (2.46)

In two dimensions, this is a holonomic constraint which we can differentiate with

respect to time to write in the form

Aq̇ = 0, A =
(

1 r 0 0 0
)
.

In this system, A is not dependent on q. We append (2.45) with the inner product

of the constraint matrix A with λ, the Lagrange multiplier:

M(q)q̈ + F (q, q̇) = B[Σu− Z(q̇)] + ATλ. (2.47)

An orthonormal basis for the null space of A is given by

S =



−r/
√
r2 + 1 0 0 0

1/
√
r2 + 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (2.48)

Given that q̇ is in this space, we define ν accordingly as

q̇ = Sν, ν =
(
φ̇ α̇ γ̇ θ̇

)T
. (2.49)

Premultiplying by ST and using (2.49) and its time derivative, we can rewrite

(2.47) as

STM(q)Sν̇ + STF (q, q̇) = STB[Σu− Z(q̇)]. (2.50)
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Solving for the acceleration terms ν̇,

ν̇ = [STM(q)S]−1ST{B[Σu− Z(q̇)]− F (q, q̇)}. (2.51)

Premultiplying by S and using (2.49)

q̈ = S[STM(q)S]−1ST{B[Σu− Z(q̇)]− F (q, q̇)}, (2.52)

which is a set of second order nonlinear differential equations which can be marched

forward in time by traditional means.

Seven Degree of Freedom Model

In order to simulate and control maneuvers where the left and right legs

are not together, we must expand the model to seven bodies in two dimensions,

separating the left and right upper and lower legs and pulleys. The generalized

coordinates are labeled in Fig. 2.7, we reuse coordinates from Fig. 2.6, but append

them with R or L subscripts to denote the right or left component. The no-slip

constraint on the right pulley is implicitly defined in this formulation x , −rφR.

The parameters (masses, lengths, inertias, stall torques, and damping coefficients)

are the same as in the four degree of freedom system. The kinetic energies of the

right and left pulleys, right and left lower legs, right and left upper legs, and upper

body are given, respectively, by

TPR =
1

2
[(mP r

2 + JP )φ̇2
R],

TPL =
1

2
{mP [(LKα̇L sinα − LKα̇R sinαR + LH γ̇L sin γL − LH γ̇R sin γR)2

+ (rφ̇R − LKα̇L cosαL + LKα̇R cosαR − LH γ̇L cos γL + LH γ̇R cos γR)2

+ JP φ̇
2
L]},

TLR =
1

2
{mL(L2

Lα̇
2
R + 2 cosαRLLα̇Rφ̇Rr + φ̇2

Rr
2) + JLα̇

2
R},
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Figure 2.7: Generalized coordinates of seven degree of freedom Switchbot.

TLL =
1

2
{mL[(LKα̇R sinαR − (LK − LL)α̇L sinαL − LH γ̇L sin γL + LH γ̇R sin γR)2

+ (rφ̇R + LKα̇R cosαR − (LK − LL)α̇L cosαL − LH γ̇L cos γL + LH γ̇R cos γR)2]

+ JLα̇
2
L},

TUR =
1

2
{mU [(LKα̇R sinαR + LU γ̇R sin γR)2 + (rφ̇R + LKα̇R cosαR + LU γ̇R cos γR)2]

+ JU γ̇
2
R},

TUL =
1

2
{mU [(LKα̇R sinαR + LH γ̇R sin γR − (Lh− Lu)γ̇L sin γL)2

+ (rφ̇R + LKα̇R cosαR + LH γ̇R cos γR − (LH − LU)γ̇L cos γL)2] + JU γ̇
2
L},

TB =
1

2
{mB[(LB θ̇ sin θ + LKα̇R sinαR + LH γ̇R sin γR)2

+ (rφ̇R + LKα̇R cosαR + LH γ̇R cos γR + LB θ̇ cos θ)2] + JB θ̇
2}.
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The gravitational potential energy is given by

V =g{mB(r + LK cosαR + LH cos γR + LB cos θ)

+mL[2r + LK cosαR + LL cosαR − LH cos γL + LH cos γR − (LK − LL) cosαL]

+mP (2r − LK cosαL + LK cosαR − LH cos γL + LH cos γR)

+mU([2r + 2LK cosαR + LH cos γR + LU cos γR − (LH − LU) cos γL]}.

We define the generalized coordinates as

q =
(
φR φL αR αL γR γL θ

)T
.

The Lagrangian can be written as L = TPR+TPL+TLR+TLL+TUR+TUL+TB−V .

By solving the Euler-Lagrange equations, we can write the equations of motion in

the form

M(q)q̈ + F (q, q̇) = Bτ, (2.53)

The (positive definite) mass matrix, M(q), is given by:

M1,1(q) = JP + (mB + 2mU + 2mL + 2mP )r2, M1,2(q) = 0,

M1,3(q) = r(LKmB + LKmL + LLmL + LKmP + 2LKmU) cosαR,

M1,4(q) = −r(LKmL − LLmL + LKmP ) cosαL,

M1,5(q) = r(LHmB + LHmL + LHmP + LHmU + LUmU) cos γR,

M1,6(q) = −r(LHmL + LHmP + LHmU − LUmU) cos γL,

M1,7(q) = rLBmB cos θ,

M2,2(q) = JP , M2,3(q) = 0, M2,4(q) = 0,

M2,5(q) = 0, M2,6(q) = 0, M2,7(q) = 0,

M3,3(q) = JL + L2
KmB + L2

KmL + L2
LmL + L2

KmP + 2L2
KmU ,

M3,4(q) = −LK cos(αL − αR)(LKmL − LLmL + LKmP ),

M3,5(q) = LK cos(αR − γR)(LHmB + LHmL + LHmP + LHmU + LUmU),

M3,6(q) = −LK cos(αR − γL)(LHmL + LHmP + LHmU − LUmU),

M3,7(q) = LBLKmB cos(αR − θ),
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M4,4(q) = JL + L2
KmP +mL(LK − LL)2,

M4,5(q) = −LH cos(αL − γR)(LKmL − LLmL + LKmP ),

M4,6(q) = LH cos(αL − γL)(LKmL − LLmL + LKmP ), M4,7(q) = 0,

M5,5(q) = JU + L2
HmB + L2

HmL + L2
HmP + L2

HmU + L2
UmU ,

M5,6(q) = −LH cos(γL − γR)(LHmL + LHmP + LHmU − LUmU),

M5,7(q) = LBLHmB cos(γR − θ),

M6,6(q) = JU + L2
HmL + L2

HmP + L2
HmU + L2

UmU − 2LHLUmU , M6,7(q) = 0,

M7,7(q) = mBL
2
B + JB.

The vector F (q, q̇) is given by:

F1(q, q̇) =r sinαL(LKmL − LLmL + LKmP )α̇2
L

− r sinαR(LKmB + LKmL + LLmL + LKmP + 2LKmU)α̇2
R

+ r sin γL(LHmL + LHmP + LHmU − LUmU)γ̇2L

− r sin γR(LHmB + LHmL + LHmP + LHmU + LUmU)γ̇2R

− LBmBr sin θθ̇2,

F2(q, q̇) =0,

F3(q, q̇) =L2
Kα̇

2
LmL sin(αL − αR) + L2

Kα̇
2
LmP sin(αL − αR)− LKgmB sinαR

− LKgmL sinαR − LLgmL sinαR − LKgmP sinαR − 2LKgmU sinαR

− LKLLα̇2
LmL sin(αL − αR) + LHLK γ̇

2
RmB sin(αR − γR)

− LHLK γ̇2LmL sin(αR − γL) + LHLK γ̇
2
RmL sin(αR − γR)

− LHLK γ̇2LmP sin(αR − γL) + LHLK γ̇
2
RmP sin(αR − γR)

− LHLK γ̇2LmU sin(αR − γL) + LHLK γ̇
2
RmU sin(αR − γR)

+ LKLU γ̇
2
LmU sin(αR − γL) + LKLU γ̇

2
RmU sin(αR − γR)

+ LBLKmB θ̇
2 sin(αR − θ),

F4(q, q̇) =(LKmL − LLmL + LKmP )(−LK sin(αL − αR)α̇2
R + LH sin(αL − γL)γ̇2L

− LH sin(αL − γR)γ̇2R + g sinαL),
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F5(q, q̇) =L2
H γ̇

2
LmL sin(γL − γR) + L2

H γ̇
2
LmP sin(γL − γR) + L2

H γ̇
2
LmU sin(γL − γR)

− LHgmB sin γR − LHgmL sin γR − LHgmP sin γR − LHgmU sin γR

− LUgmU sin γR − LHLKα̇2
RmB sin(αR − γR) + LHLKα̇

2
LmL sin(αL − γR)

− LHLKα̇2
RmL sin(αR − γR)− LHLLα̇2

LmL sin(αL − γR)

+ LHLKα̇
2
LmP sin(αL − γR)− LHLKα̇2

RmP sin(αR − γR)

− LHLKα̇2
RmU sin(αR − γR)− LKLU α̇2

RmU sin(αR − γR)

− LHLU γ̇2LmU sin(γL − γR) + LBLHmB θ̇
2 sin(γR − θ),

F6(q, q̇) =LHgmL sin γL − L2
H γ̇

2
RmP sin(γL − γR)− L2

H γ̇
2
RmU sin(γL − γR)

− L2
H γ̇

2
RmL sin(γL − γR) + LHgmP sin γL + LHgmU sin γL

− LUgmU sin γL − LHLKα̇2
LmL sin(αL − γL) + LHLKα̇

2
RmL sin(αR − γL)

+ LHLLα̇
2
LmL sin(αL − γL)− LHLKα̇2

LmP sin(αL − γL)

+ LHLKα̇
2
RmP sin(αR − γL) + LHLKα̇

2
RmU sin(αR − γL)

− LKLU α̇2
RmU sin(αR − γL) + LHLU γ̇

2
RmU sin(γL − γR),

F7(q, q̇) =− LBmB(LK sin(αR − θ)α̇2
R + LH sin(γR − θ)γ̇2R + g sin θ).

The matrix B in (2.53) maps τ , the control input torque vector for the motors in

the chassis, to the generalized coordinates:

B =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 −1 0 1 0

0 0 0 −1 0 1

0 0 0 0 −1 −1


.

The first element of τ represents the motor torque exerted on the right pulley, the

second the left pulley, the third the between the right lower and upper leg, the

fourth between the left lower and upper leg, the fifth between the right upper leg

and the body, and the sixth between the left upper leg and the body. We model

the torque output τκ from each motor linearly as in (2.44) (derived from (2.8)) and
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we can rewrite (2.53):

M(q)q̈ + F (q, q̇) = B[Σu− Z(q̇)], (2.54)

Σ =



σP 0 0 0 0 0

0 σP 0 0 0 0

0 0 σK 0 0 0

0 0 0 σK 0 0

0 0 0 0 σH 0

0 0 0 0 0 σH


, Z(q̇) =



ζP (φ̇R − α̇R)

ζP (φ̇L − α̇L)

ζK(α̇R − γ̇R)

ζK(α̇L − γ̇L)

ζH(γ̇R − θ̇)
ζH(γ̇L − θ̇)


.

At this point we need to constrain the system such that the left pulley is in contact

with the ground and does not slip. The method of imposing constraints on the

Lagrangian dynamics heretofore used is inadequate because the constraint matrices

Aβ and their orthonormal null space bases Sβ are functions of q. Instead, we use

the method developed by Udwadia and Kalaba [51]. Constraints are written in

the form

A(q, q̇)q̈ = b(q, q̇) (2.55)

By inspection, when the left pulley is in contact with the ground

LK(cosαR − cosαL) + LH(cos γR − cos γL) = 0

which can be differentiated twice with respect to time to be written in the form of

(2.55)

Ay(q, q̇) =
(

0 0 −LK sinαR LK sinαL −LH sin γR LH sin γL 0
)

(2.56)

by(q, q̇) =LKα̇
2
R cosαR − LKα̇2

L cosαL + LH γ̇
2
R cos γR − LGγ̇2L cos γL.

Assuming that the right and left pulleys are collocated when q = 07×1, then in

order for the left pulley to not slip on the ground

− rφL = −rφR − LK sinαR − LH sin γR + LH sin γL + LK sinαL (2.57)
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which can again be differentiated twice with respect to time to be written the form

of (2.55)

Ax(q, q̇) =
(
−r r −LK cosαR LK cosαL −LH cos γR LH cos γL 0

)
(2.58)

bx(q, q̇) =− LKα̇2
R sinαR − LH γ̇2R sin γR + LH γ̇

2
L sin γL + L+Kα̇2

L sinαL.

Concatenating (2.56) and (2.58)

A(q, q̇) =

[
Ay(q, q̇)

Ax(q, q̇)

]
, b(q, q̇) =

(
by(q, q̇)

bx(q, q̇)

)
. (2.59)

We append the constraints (2.59) to (2.53), moving F (q, q̇) to the right hand side,

with

Mq̈ = B(Σu− Z)− F +MA+
M{b− AM

−1[B(Σu− Z)− F ]}, (2.60)

dropping the dependence of M , F , A, A+
M , Z, and b on q and q̇ for clarity. A+

M

is the generalized Moore-Penrose M -inverse of the constraint matrix A, which is

related to the Moore-Penrose pseudoinverse by

(AM−1/2)+ = M1/2A+
M

with AM−1AT invertible, we can rewrite (2.60) as

Mq̈ = B(Σu− Z)− F + AT (AM−1AT )−1{b− AM−1[B(Σu− Z)− F ]},

and premultiplying both sides by M−1

q̈ = M−1 {B(Σu− Z)− F + AT (AM−1AT )−1{b− AM−1[B(Σu− Z)− F ]}
}
,

(2.61)

we arrive at a set of second order nonlinear differential equations which can be

marched forward in time by traditional means.
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Figure 2.8: Generalized coordinates of SkySweeper.

2.5 SkySweeper

We simplify the model to three bodies in two dimensions. The generalized

coordinates are defined in Fig. 2.8, where θ and α are the angles of the first and

second links, respectively, from vertical, γ is the rotation angle of the SEA shaft

from vertical, and x, y is the position of the clamping end of the first link. The

SEA spring deflection is then given by α − γ and the link separation angle is

θ + π − α. The mass is assumed to be distributed uniformly along both links,

each with length 2L and mass mL, the SEA shaft has rotational inertia JJ , but

negligible mass compared to each link. In this model, the cable is assumed to be

horizontal and rigid.
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The kinetic energies of the first link, joint, and second link are given re-

spectively by:

T1 =
1

2

{
mL[(ẋ+ Lθ̇ cos θ)2 + (ẏ + Lθ̇ sin θ)2] + JLθ̇

2
}
,

TJ =
1

2

{
JJ γ̇

2
}
,

T2 =
1

2

{
mL[(ẋ+ 2Lθ̇ cos θ + Lα̇ cosα)2 + (ẏ + 2Lθ̇ sin θ + Lα̇ sinα)2] + JLα̇

2
}
.

The spring and gravitational potential energy is given by:

V =
1

2
k(α− γ)2 +mLg[2y − L(3 cos θ + cosα)].

We define q, the vector of n generalized coordinates, as

q =
(
x y θ γ α

)T
.

The Lagrangian can be written as L = T1 + TJ + T2 − V . By solving the Euler-

Lagrange equations, we can write the equations of motion in the form

M(q)q̈ + F (q, q̇) = Bτ, (2.62)

The (positive definite) mass matrix, M(q), is given by:

M1,1(q) = 2mL M2,5(q) = mLL sinα

M1,2(q) = 0 M3,3(q) = 5mLL
2 + JL

M1,3(q) = 3mLL cos θ M3,4(q) = 0

M1,4(q) = 0 M3,5(q) = 2mLL
2 cos(α− θ)

M1,5(q) = mLL cosα M4,4(q) = JJ

M2,2(q) = 2mL M4,5(q) = 0

M2,3(q) = 3mLL sin θ M5,5(q) = mLL
2 + JL

M2,4(q) = 0

and the vector F (q, q̇) is given by:

F (q, q̇) =



−mLL[3θ̇2 sin θ + α̇2 sinα]

mL[L(3θ̇2 cos θ + α̇2 cosα) + 2g]

mLL[3g sin θ − 2Lα̇2 sin(α− θ)]
−k(α− γ)

mLL[2Lθ̇2 sin(α− θ) + g sinα] + k(α− γ)


.
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The vector B maps τ , the control input torque for the motor in the elbow SEA,

to the generalized coordinates:

B =
(

0 0 −1 1 0
)T

.

Depending on the positions of the clamps, there may be holonomic and/or

non-holonomic constraints on the system. We use the method of undetermined

Lagrange multipliers, similarly to [1] and [11], to apply both holonomic and non-

holonomic constraints. We first write the constraints in Pfaffian form: A(q)q̇ = 0

and append (2.62) with the inner product of the constraint matrix A(q) with the

Lagrange multiplier λ:

M(q)q̈ + F (q, q̇) = Bτ + A(q)Tλ. (2.63)

Then we solve for S(q), the orthonormal basis for the null space of A(q). Given

that q̇ is in this space, we define the reduced coordinate vector ν accordingly as

q̇ = S(q)ν. (2.64)

Premultiplying by S(q)T and using (2.64), we can rewrite (2.63):

S(q)TM(q)S(q)ν̇ + S(q)TF (q, q̇) = S(q)TBτ. (2.65)

The acceleration of the full coordinate vector, q̈, can be recovered using (2.64) and

its time derivative.

The choice of S(q) depends on the positions of the two clamps. If both

clamps are open, there are no constraints on the system (and the robot will simply

fall): AOO(q) = () and SOO(q) = I5x5. If clamp one is in rollling position and

clamp two is open, there is a holonomic constraint y = 0, which can be expressed

ARO(q) = (0 1 0 0 0) with the corresponding orthonormal null space basis:

SRO(q) =



1 0 0 0

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


.
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If clamp one is in pivoting position and clamp two is open, there is the same holo-

nomic constraint as above plus the non-holonomic constraint ẋ = 0. Concatenating

both constraints yields the matrices:

APO(q) =

[
0 1 0 0 0

1 0 0 0 0

]
, SPO(q) =



0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


.

In the case where clamp one is in pivoting position and clamp two is in rolling

position, there is an additional holonomic constraint that the height of the second

clamp is zero: y − 2L(cos θ + cosα) = 0, accordingly:

APR(q) =


0 1 0 0 0

1 0 0 0 0

0 1 2L sin θ 0 2L sinα

 , SPR(q) =



0 0

0 0

0 − sinα

sin θ
√

sin2 α/ sin2 θ+1

1 0

0 1√
sin2 α/ sin2 θ+1


.

When both clamps are in the rolling position, we can remove the ẋ = 0 constraint,

which gives:

ARR(q) =

[
0 1 0 0 0

0 1 2L sin θ 0 2L sinα

]
,

SRR(q) =



1 0 0

0 0 0

0 0 − sinα

sin θ
√

sin2 α/ sin2 θ+1

0 1 0

0 0 1√
sin2 α/ sin2 θ+1


.

If both clamps are in the pivoting position, we add an additional non-holonomic

constraint to APR(q), that the horizontal speed at the second clamp is zero: ẋ +
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2L(θ̇ cos θ + α̇ cosα) = 0 which fully constrains the system except for γ:

APP (q) =


0 1 0 0 0

1 0 0 0 0

0 1 2L sin θ 0 2L sinα

1 0 2L cos θ 0 2L cosα

 , SPP (q) =
(

0 0 0 1 0
)T

The additional three possible clamping configurations can be modeled by an ap-

propriate coordinate transformation and using the above constraint matrices, es-

sentially mirroring the two links. M(q), F (q, q̇), and B also change slightly with

the coordinate transformation to account for the asymmetry of the SEA.

Finally, we model the torque output τ from the brushed direct current

motor linearly as (derived from (2.8)):

τ = σu− ζω, σ =
ΓkMV

r
, ζ =

Γk2M
r

, (2.66)

where σ is the stall torque, u is the control input (limited to [−1, 1]), ζ is the back

EMF damping coefficient of the motor, ω is the speed of the motor shaft relative

to the motor body (in this case, γ̇ − θ̇), Γ is the gear ratio of the transmission,

kM is the motor constant, V is the supply voltage, and r is the terminal resistance

[50]. Substituting the motor model (2.66) and moving the F (q, q̇) term to the right

hand side, we can rewrite (2.65):

S(q)TM(q)S(q)ν̇ = S(q)T {B[σu− ζ(γ̇ − θ̇)]− F (q, q̇)}. (2.67)

Formulating the Lagrangian dynamics does not yield any insight into the

internal forces of the system, such as the normal force between the clamp and

the wire. Since knowledge of such forces is useful for design purposes (e.g. how

much force the clamp will have to withstand without opening during a dynamic

maneuver and what coefficient of static friction is required to prevent slipping),

we can formulate equations for these forces as a function of the state variables

(the generalized coordinates and their time derivatives). If clamp one is closed and

clamp two is open, the reaction force along clamp one, and its x and y components,

are given by:

R = mL{g[cos θ + cosα cos(θ − α)] + L[θ̇2 + α̇2 cos(θ − α)]} (2.68)

Rx = R sin θ, Ry = R cos θ.
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Note that by design, the clamp cannot exert a reaction torque and may only exert

a horizontal reaction force when in the pivoting position.

2.6 Backlash

2δ

Motor Load

γ α

Figure 2.9: Illustration of backlash between motor and load.

Backlash is generally present in robotic systems, but frequently ignored.

The nonlinear nature of backlash can make system modeling and control design

much more complicated. In some cases, backlash can be reasonably ignored, if it

is sufficiently small or if system is preloaded (e.g. by gravity), but it can cause

instability in some systems. Backlash can be modeled as a switched system with

two different constraint matrices (2.14), depending on whether or not the system

is in backlash. An additional degree of freedom is introduced such that the motor

shaft angle, γ, is not the same as the output shaft angle, α, the maximum gap

between them is defined as 2δ, see Fig. 2.9. When the motor shaft engages the

output shaft and γ̇ = α̇, the constraint matrix in the Lagrangian mathematically

enforces the constraint. With the system defined thusly and two different S ma-

trices (one perhaps being the identity matrix in the case of no other constraints),

we only need to determine conditions between switching between the constraint

matrices (coupling and uncoupling conditions).
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• If the system is uncoupled, it will become coupled when the absolute value

of the relative position is greater than or equal to δ and the relative velocity

has the same sign as the relative position.

• If the system is coupled, it will become uncoupled when the sign of the

relative acceleration, calculated from the uncoupled dynamics, is the opposite

of the sign of the relative position.

Example code as may be included in the plant model of a simulation is below:

1 gap = x(2) - x(3);

2 relVel = x(6) - x(7);

3 relAccel = xdot(6) - xdot(7); % uncoupled relative acceleration

4

5 if coupledOld == 0 % uncoupled

6 % if gap is >= backlash and relative speed is same sign as ...

gap, couple

7 if (abs(gap) >= delta) && (sign(relVel) == sign(gap)) % ...

positive or negative engagement

8 coupled = sign(gap);

9 resetVel = ( J2*x(6) + Jg*x(7) )/(Jg+J2);

10 resetPos = [x(1); x(3)+sign(gap)*delta; x(3); x(4); ...

x(5); resetVel; resetVel; x(8);];

11 else % stay uncoupled

12 coupled = 0;

13 end

14 else % coupled

15 % if relative acceleration is opposite sign as gap, uncouple

16 if sign(relAccel) == -sign(gap) % accelerating to open gap, ...

uncouple

17 coupled = 0;

18 else % stay coupled

19 coupled = coupledOld;

20 end

21 end

Much prior research has been done on the topic of backlash (see [52] for a survey
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paper), but to the author’s knowledge, the use of different constraint matrices in

a switched system with Lagrangian dynamics and the relative acceleration uncou-

pling condition is novel.
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Chapter 3

Control

3.1 Mobile Inverted Pendulum

We can again treat the design of controllers for myMIP (Fig. 1.2a) and

eyeFling (Fig. 1.2b) as one, since the only relevant difference between the two

is physical parameters. Given the previously defined constraints (2.21), both γ

and x are superfluous coordinates, so we can define a reduced coordinated vector

qr = (φ θ)T . We also define
¯
S as the bottom two rows of (2.22), then q̇r =

¯
Sν

and q̈r =
¯
Sν̇. We finally define a full state vector x and see that this nonlinear

system is affine in the input

x =

(
qr

q̇r

)
, ẋ = f(x) + g(x)u,

f(x) =

(
q̇r

¯
S[STM(q)S]−1ST [−Bζ(φ̇− θ̇)− F (q, q̇)]

)
,

g(x) =

(
02×1

¯
S[STM(q)S]−1STBσ

)
.

To design a controller to stabilize the unstable equilibrium at the origin (balancing

upright), we linearize the system about the origin

ẋ = Ax+ Bu, A =
δf

δx

∣∣∣
x=04×1

, B = g(x)
∣∣∣
x=04×1

.

65
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Since the controller will be implemented with digital electronics, we next discretize

the system with a step size h = 0.01 seconds.

xk+1 = Fxk +G(uk),

F = Φ(h), Φ(τ) = eAτ ,

G = Θ(h), Θ(τ) =

∫ τ

0

eAηBdη.

The linear quadratic regulator (LQR) method is used to create a controller, we

define weighting matrices using Bryson’s method [53]. The values of QC and RC ,

the continuous time weighting matrices, will vary slightly for myMIP and eyeFling,

though we choose NC = 04×1 for both. The continuous time weighting matrices

are converted to discrete time by

QD =

∫ h

0

ΦT (τ)QCΦ(τ)dτ,

RD =

∫ h

0

ΘT (τ)QCΘ(τ) +RCdτ,

ND =

∫ h

0

ΦT (τ)QCΘ(τ)dτ.

A discrete state feedback matrix K is found using the discrete-time LQR method

and the control law takes the form u = Kx. See App. B for the programmatic

linearization and discretization of the system and the calculation of the discrete

time state feedback matrix.

3.2 Switchblade

3.2.1 V Balancing

Equilibrium Manifold

We wish to stabilize the unstable equilibrium manifold with the center of

mass directly over the contact point. By statics, the equilibrium condition is

mCLC sin θ∗ +mTLT sinα∗ = 0.
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This expression can equivalently be found by examining the dynamics and setting

the velocity and acceleration terms to zero. Given the values of the parameters

mC , mT , LC , and LT of the developed prototype (see Sec. 5.5), it is possible to

solve for α∗ and θ∗ only in a limited range. We will design a controller for the

equilibrium point at α∗ = θ∗ = 0.

Linearization and LQR

We begin by linearizing the system about the desired operating point, the

unstable equilibrium with all states and control inputs equal to zero.

ẋ = Ax+ Bu, A =
δf

δx

∣∣∣
x=0

, B = g(x)
∣∣∣
x=0

. (3.1)

A state feedback gain matrix Kc is found using the linear quadratic regulator

(LQR) method. The weighting matrices are determined by Bryson’s method [53]:

Qc = diag

([
1

(3π)2
1

(1/8)2
1

(1/8)2
1

(8π)2
1

(7/2)2
1

(7/2)2

])
Rc = diag

([
1

(1/4)2
1

(1/2)2

])
, Nc = 06×2.

As noted, the motor model in (2.30) is valid for a bounded control input u, so each

element from u = Kcx is saturated at unity magnitude.

An important finding is that simply running the controller from certain

statically stable positions (e.g. the tread assembly horizontal α = 90° and the

chassis just past vertical θ = −15◦) is sufficient to upright and stabilize the robot,

see Fig. 3.1. Given these initial conditions, the center of mass is near the end of the

treads by the chassis (Fig. 3.1a), and the control law derived from LQR will drive

the treads backwards (Fig. 3.1b), which will cause the robot to tip forwards leaving

only the tread sprocket in contact with the ground (Fig. 3.1c). Simultaneously,

the V-angle is reduced by actuation of the motors between the chassis and tread

assemblies (Fig. 3.1d) and the treads are driven until the sprocket is back in the

original position (Fig. 3.1e).
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(a) (b) (c)

(d) (e)

Figure 3.1: Maneuver for uprighting into V-balance mode with LQR control with

center of mass indicated.

Discretization

Since the control will be implemented with digital electronics, we must

discretize the system; we choose a sample time of h = 0.01s. We convert our

continuous-time system from (3.1) using the matrix exponential:

F = Φ(h), Φ(τ) = eAτ ,

G = Θ(h), Θ(τ) =

∫ τ

0

eAηBdη.

The continuous time weighting matrices are also transformed (given that Nc = 0):

Qd =

∫ h

0

ΦT (τ)QcΦ(τ)dτ,

Rd =

∫ h

0

ΘT (τ)QcΘ(τ) +Rcdτ,

Nd =

∫ h

0

ΦT (τ)QcΘ(τ)dτ.

A new state feedback matrix Kd is found using the discrete-time LQR method.

Comparing the simulation results between the continuous-time and discrete-time
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state feedback controllers (both applied to the continuous-time dynamic model of

the nonlinear plant) reveals negligible performance loss.

3.2.2 C-Balancing

We wish to stabilize the unstable equilibrium manifold with the center of

mass directly over the contact point. By statics, the equilibrium condition is

mCLC sin θ∗ = (mTLT +mCL0) sinα∗ (3.2)

although this expression can equivalently be found by examining the dynamics

and setting the velocity and acceleration terms to zero. Given the values of the

parameters mC , mT , LC , LT , and L0 of the developed prototype (see Sec. 5.5), it is

possible to solve for α∗ for any θ∗ ∈ [−π, π], but not vice versa. As the magnitude

of θ varies from 0 to π, the height of the center of mass, and thus the dynamics and

the eigenvalues of the linearized system, change significantly. Unlike V-balancing,

it is not possible to derive a single state feedback matrix that performs well across

all values of θ. Instead, we implement a lookup table for gain scheduling. Entries

are generated by spanning θ∗ ∈ [0, π], solving for α∗ using (3.2), and linearizing

about that equilibrium point, similarly to the control design for V-balancing. In

practice, the state feedback matrix is linear interpolated between adjacent entries

in the lookup table based on the absolute value of θ∗.

Also unlike V-balancing, a dedicated sequence of maneuvers is required to

transition from horizontal into C-balancing. A quasistatic method to transform

from horizontal to C-balancing mode is used (Fig. 3.2). First, the robot lifts

itself into an “A” shape by synchronously rotating the tread assemblies out and

pushing them against the ground until the rear panel of the chassis is parallel

to, and in contact with, the ground (Fig. 3.2a - Fig. 3.2g). One of the tread

assemblies is then rotated up and over the top of the chassis until it makes contact

with the ground on the opposite side of the robot (Fig. 3.2h - Fig. 3.2j). Then

both of the tread assemblies are simultaneously rotated towards the chassis until

parallel in concert with the treads rotating to keep the center of mass constant

(Fig. 3.2k). This action lifts the rear of the chassis off the ground and the robot
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure 3.2: Quasistatic maneuver for uprighting into C-Balancing mode.
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is now in C-balancing mode. The chassis may be rotated to any arbitrary angle

while maintaining balance (Fig. 3.2l - Fig. 3.2n). This sequence of moves can be

reversed to transition back to horizontal.

3.2.3 Perching

When the system is in stiction, the control authority is reduced. In the

worst case, when both the treads and chassis are in stiction (Sβ = STC), there is no

effect of the motor torque on the treads or tread assemblies until enough torque is

applied to break the stiction (STTCB = 01×2). We therefore focus our control design

on the case where neither the treads nor the chassis are in stiction (Sβ = SNS).

Noting that the dynamics of w are directly coupled to φ and α by (2.37), we can

choose a reduced coordinate set qr =
(
φ α θ

)T
such that q̇r =

¯
SNSνNS where

¯
SNS is the bottom three rows of (2.39). Similarly, q̈r =

¯
SNS ν̇NS.

Concatenating qr and q̇r yields a complete state vector x. Rewriting (2.41)

and premultiplying by
¯
SNS to recover q̈r from ν̇NS, we see that this nonlinear

system is affine in the inputs:

x =

(
qr

q̇r

)
, ẋ = f(x) + Γ(x)u,

f(x) =

(
q̇r

¯
SNS[STNSM(q)SNS]−1STNS[ δP

δq̇
−BZ(q̇)− F (q, q̇)]

)
,

Γ(x) =

[
03×2

¯
SNS[STNSM(q)SNS]−1STNSBΣ

]
.

Equilibrium Conditions

We seek to find equations to describe the equilibrium manifold of the sys-

tem, that is, we seek to find expressions for x∗ and u∗ such that ẋ = f(x∗) +

Γ(x∗)u∗ = 06×1 given q̇r = 03×1.

Given that STNSM(q)SNS is positive definite, we can solve the matrix ex-

pression

STNS{B[Σu− Z(q̇)] +
δP

δq̇
− F (q, q̇)} = 03×1 (3.3)
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from (2.41) and simplify by appropriately substituting (2.37) and q̇r = 03×1 to get

three equations

−(σSu
∗
1 +mgr cosα∗)/

√
r2 + 1 = 0,

−[σTu
∗
2 + g(mw −mTLT ) sinα∗]/

√
(r + ρ)2 + 1 = 0,

σSu
∗
1 + σTu

∗
2 +mCLCg sin θ∗ = 0. (3.4)

By inspecting the above equations, we see that there are unique solutions for the

feedforward terms u∗1 and u∗2 for a given x:

u∗1 = −mgr cosα∗/σS, (3.5)

u∗2 = g(mTLT −mw) sinα∗/σT . (3.6)

We also see that there is a unique solution for θ∗, combining (3.4), (3.5), and (3.6)

θ∗ = arcsin

(
mr cosα∗ − (mTLT −mw) sinα∗

mCLC

)
. (3.7)

The expression (3.7) can also be derived from a static analysis where the center of

mass is constrained to be directly above the step edge.

We define x̃ = x− x∗ and ũ = u− u∗ such that

˙̃x = f(x̃+ x∗) + Γ(x̃+ x∗)(ũ+ u∗). (3.8)

Friction Compensation

The signum function in (2.34) due to Coulomb friction cannot be linearized

about the origin. Instead we ignore this term in the linearization and add a separate

friction compensator uF to the controller [54]. The linearizable plant dynamics are

fl(x) =

(
q̇r

−
¯
SNS[STNSM(q)S]−1STNS[BZ(q̇) + F (q, q̇)]

)
. (3.9)

There are a number of factors to be considered when designing the friction com-

pensator. The compensator should mitigate both stiction and Coulomb friction

without destabilizing the equilibrium manifold. An obvious choice to “eliminate”

the Coulomb friction may be

uF =

(
− µkmgr
σS sinα

· sgn(φ̇− α̇)

−(cT/σT ) · sgn(α̇− θ̇)

)
.
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aα

bα

-aα

-bα

uFψ

ũψ

Figure 3.3: Friction compensator uFψ as a function of ũψ.

However, practical matters such as backlash and chatter in the physical system

limit the use of the signum function as a candidate compensator. We can instead

saturate a steep line passing through the origin, see Fig. 3.3. It is also inher-

ently difficult to measure near-zero relative velocity with optical encoders (more

in section 4.2.1) and so smoother performance is possible when using the sign of

ũψ instead of the relative velocity. We also desire a function that is simple to

implement on an embedded controller, see section 5.5.1. We come to a friction

compensator with the form

uF =

(
min(max(ũ1aS/bS, −aS), aS)/ sinα

min(max(ũ2aT/bT , −aT ), aT )

)
(3.10)

which is illustrated in Fig. 3.3 and where aS ≤ µkmgr/σS, aT ≤ cT/σT , and aα,

bα can be tuned empirically on the physical system. The effect of the friction

compensator can be seen in section 5.5.3.
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Linearization and Integral Control

We linearize the system at the origin of the transformed system (3.8) using

the linearizable plant dynamics (3.9)

˙̃x = Ax̃+ B(ũ+ u∗), A =
δfl(x̃+ x∗)

δx̃

∣∣∣
x̃=0

, B = Γ(x̃+ x∗)
∣∣∣
x̃=0

.

In order to increase the robustness of the system to disturbances such as parameter

and sensor error, we augment the state vector x̃ with the integrated regulation error

ξ [55], defined by

ξ̇ =

(
(φ− α)− (φ∗ − α∗)
(α− θ)− (α∗ − θ∗)

)
,

noting that φ− α is approximately w when r � ρ. We further define

x̄ =

(
x̃

ξ

)
, C =

(
1 −1 0 0 0 0

0 1 −1 0 0 0

)
,

and the system can now be written

˙̄x = Ax̄+ B(ũ+ u∗), (3.11)

A =

[
A 06×2

C 02×2

]
, B =

[
B

02×2

]
.

Linear Quadratic Regulator

A state feedback gain matrix can be found using the linear quadratic regu-

lator (LQR) method. The weighting matrices are determined by Bryson’s method

[53]. For the horizontal equilibrium where α∗ = θ∗ = π/2

QC = diag

(
1

(k)2
1

(k)2
1

(k)2
1

(π)2
1

(l)2
1

(l)2
1

(4/5)2
1

(7/5)2

)
,

RC = diag

(
1

(2/5)2
1

(1/4)2

)
, NC = 07×2,

where k = 1/8 and l = 7/2.
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Discretization

Since the control will be implemented with digital electronics, we must

discretize the system; we choose a sample time of h = 0.01s. We convert our

continuous-time system from (3.11) using the matrix exponential

x̄k+1 = Fx̄k +G(ũk + u∗),

F = Φ(h), Φ(τ) = eAτ ,

G = Θ(h), Θ(τ) =

∫ τ

0

eAηBdη.

The continuous time weighting matrices are also transformed (given that NC = 0):

QD =

∫ h

0

ΦT (τ)QCΦ(τ)dτ,

RD =

∫ h

0

ΘT (τ)QCΘ(τ) +RCdτ,

ND =

∫ h

0

ΦT (τ)QCΘ(τ)dτ.

A discrete state feedback matrix K is found using the discrete-time LQR method

ũ = Kx̄. The final control law is of the form u = Kx̄ + u∗ + uF . As noted, the

motor model (2.35) is valid for a bounded control input ∈ [−1, 1], so each element

of u is saturated at unity magnitude.

Trajectory Generation and Gain Scheduling

To drive up a step edge, we plan a trajectory that satisfies equilibrium (3.3)

at every point. This approach has the added benefit that the trajectory can simply

be reversed to descend a step edge, while maintaining equilibrium. We vary w from

zero to the length of the tread assembly and choose α∗ to be constant, this results

in a range of values for φ∗ ∈ [φS, φF ]. The value of θ∗ is given by (3.7).

The dynamics (3.9) change considerably across this range, so we choose

nG = 5 values of φ∗ evenly distributed ∈ [φS, φF ], use our constant α∗, solve for

θ∗, and find a discrete-time state feedback matrix K at each point. The weighting

matrices QC and RC are adjusted at each point to keep the norm of K constant.

Five different positions along a step edge climbing equilibrium manifold are shown
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(a) (b) (c)

(d) (e)

Figure 3.4: Stair climbing trajectory with centers of mass of chassis and tread

assemblies as squares, and overall center of mass as a circle.

in Fig. 3.4. We construct a 8×2×nG lookup table containing all of the state feed-

back matrices and linearly interpolate between the entries of the table depending

on the reference value φ∗.

Simulation

We created a simulation in order to validate the model and controller. The

full nonlinear, continuous time dynamics of the system (2.42) are used to represent

the plant. The controller is implemented in discrete time as per above. The

choice of which constraints Sβ to apply at time step ti is determined by logical

functions of the state vector x̄i, the control input ui, and the previous constraint

condition. Starting at rest, both the treads and the chassis are assumed to be

in stiction, Sβ = STC . If and when there is sufficient torque (from combined



77

contributions of F (q, q̇) and u) to break the stiction between the treads and the

tread assemblies and/or the chassis and the tread assemblies, then a different Sβ

is used. If the relative velocity between the treads and the tread assemblies or the

chassis and tread assemblies changes sign (passes through zero), then the system

reenters stiction. Entering stiction is treated as an inelastic collision, where the

angular velocity of the involved bodies is set equal by conservation of momentum.

Simulation results are shown in section 5.5.3.

3.2.4 Switchbot

While the controls for Switchblade nano followed the exact same dynamics

and procedure for deriving control algorithms for V and C-balancing, just with

different parameter values, Switchbot requires separate, though analogous, control

design.

Equilibrium Conditions

With seven degrees of freedom, the equilibrium manifold of the Switchbot

dynamics (2.61) is large and complex. In order to decrease the dimensions of this

space and find reasonable expressions for q∗ and u∗ for which q̈ = 07×1, we make a

number of assumptions:

1. q̇∗ = 07×1.

2. Both pulleys are in contact with the ground.

3. Neither pulley slips against the ground.

4. |γ∗R| = |γ∗L| and |α∗R| = |α∗L|.

5. sgn(γ∗R) sgn(γ∗L) = sgn(α∗R) sgn(α∗L).

6. LK sinα∗R + LH sin γ∗R = LH sin γ∗L + LK sinα∗L (pulleys are collocated).

These assumptions imply that the overall center of mass must be directly above

the pulleys. Note that some of these assumptions may be relaxed to find alternate
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trajectories along the equilibrium manifold. From a static analysis of Fig. 2.7, or

equivalently derived from setting (2.61) equal to zero, we can derive an expression

for the elements of u∗, given the above assumptions

u∗1 =0,

u∗2 =0,

u∗3 ={−g[mLLL + (mB/2 +mU)LK ] sinαR}/σK ,

u∗4 ={−g[mLLL + (mB/2 +mU)LK ] sinαL}/σK ,

u∗5 ={σKu∗3 − g[mULU + (mB/2)LH ] sin γR}/σH ,

u∗6 ={σKu∗4 − g[mULU + (mB/2)LH ] sin γL}/σH .

Trajectory Generation

We seek to create two particular motion trajectories. The first enables the

robot to transition from a statically stable kneeling position (with the lower legs

parallel to and in contact with the ground, αR = αL = π/2, Fig. 3.5a) to an upright

balancing stance, Fig. 3.5b. In this maneuver, we choose to keep the right and left

legs synchronized (φR = φL, αR = αL, γR = γL), so we can simply use the four

degree of freedom dynamic model developed in the first half of Sec. 2.4.4. As with

the maneuver for Switchblade to transition into V-balancing mode (Fig. 3.1), the

center of mass is positioned over the far end of the lower leg (tread assembly). We

choose α∗ ∈ [π/2, 0.25] and θ∗ ∈ [−π/2, 0] and then solve for γ∗ which maintains

the center of mass directly over the pulleys by

γ∗ = arcsin

(
− [LLmL + LK(mU +mB)] sinα∗ + LBmB sin θ∗

LUmU + LHmB

)
. (3.12)

Similar to the Switchblade C-balancing controller (Sec. 3.2.2), we choose nG = 6

evenly spaced points along the trajectory, linearize and discretize the system and

solve for a discrete time state feedback matrix K with LQR at each point. To

schedule gains, we linearly interpolate between adjacent entries in the lookup table

depending on the reference command x∗. The final control law has the form

u = KLUT (x− x∗) + u∗.
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(a) (b)

Figure 3.5: Switchbot uprighting trajectory with centers of mass of chassis and

leg segments as dots, and overall center of mass as a roundel.

The second trajectory enables the the robot to pivot its legs alternately,

while stationary or moving horizontally, to, in essence, “moonwalk,” see Fig. 3.6.

For this trajectory, in addition to the assumptions above, we choose θ∗ = 0 and

use the seven degree of freedom dynamic model since the right and left legs will

have different (though opposite, by assumption 4 above) orientations. We choose

α∗R = −α∗L ∈ [−0.25, 0.25] and can reuse (3.12) to find the magnitude of γ∗ since

the pulleys are collocated and the leg positions are mirrored, and setting sgn(γ∗R) =

− sgn(α∗R) and sgn(γ∗L) = − sgn(α∗L). To calculate the reference position of the left

pulley (φL) relative to the position of the right pulley (φR), assuming no-slip, we

can simplify (2.57) by plugging in αL = −αR and γL = −γR

φ∗L = φ∗R +
2

r
(LK sinα∗R + LH sin γ∗R). (3.13)

To create a controller, we split the system into two identical halves with the same

dynamics (using the four degree of freedom model with half the mass and motors).
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Figure 3.6: Switchbot moonwalking trajectory with centers of mass of chassis

and leg segments as dots, and overall center of mass as a roundel.

We next choose nG = 5 points evenly spaced in αR ∈ [0.25,−0.25], calculate the

rest of the equilibrium state x∗ with (3.12) and keeping θ∗ = 0, linearize and

discretize the halved system and solve for a discrete time state feedback matrix K

with LQR at each point which is used for both halves. The result is a decentralized

system where the motors in the right leg (u1, u3, and u5) are actuated based on

the states of φR, αR, γR, and θ and the motors in the left leg (u2, u4, and u6)

are actuated based on the states of φL, αL, γL, and θ. This is more tractable to

implement in an embedded controller than a full MIMO controller. The robot may

be seen performing both trajectories in Supplemental File 3: Switchbot video.

3.3 SkySweeper

We formulated a finite state machine controller to implement all maneuvers

listed in Sec. 1.4.4. Each state has three actions: the positions of the two clamps

and the control input u to the motor. To define the transitions between the states,
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𝜃+π-𝜶 > 1.9

𝜃+π-𝜶 < 1.0

State 0: Open
Clamp 1: Pivoting
Clamp 2: Rolling
u = -0.65

State 1: Close
Clamp 1: Rolling
Clamp 2: Pivoting
u = 0.40

Figure 3.7: SkySweeper inchworm maneuver finite state machine.

𝜃+π-𝜶 > 1.9t > 0

State 3: Swing
Clamp 1: Pivoting
Clamp 2: Open
u = 0

State 4: Roll
Clamp 1: Rolling
Clamp 2: Open
u = 0

State 2: Hold
Clamp 1: Pivoting
Clamp 2: Pivoting
u = 0

Figure 3.8: SkySweeper swing & roll maneuver finite state machine.

State 5: Swing
Clamp 1: Pivoting
Clamp 2: Open
u = 0.7sin(π t)

State 6: Hold
Clamp 1: Pivoting
Clamp 2: Pivoting
u = 0

Cable in grasp of clamp 2

Figure 3.9: SkySweeper swing-up maneuver finite state machine.

we limit ourselves to logical expressions with simulated measurements of sensors

that are possible on the prototype: the separation angle between the two links,

θ + π − α, the spring deflection, α − γ, if a cable is within the grasp of either

clamp, and time, see Sec. 5.6.2. State machines for the four different maneuvers

are illustrated in Fig.s 3.7-3.10. The state machines can be practically implemented

as a switch structure in most programming languages. The exact values used in

the logical expressions and the control input to the motor were determined in

simulation.

We created a simulation environment to test the finite state machine con-

troller from above with the dynamic equations of motion from Sec. 2.5. We were

able to test different parameter values virtually before constructing a prototype.
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State 8: Swing 1
Clamp 1: Pivoting
Clamp 2: Open
u = -0.20

State 9: Charge 2
Clamp 1: Pivoting
Clamp 2: Pivoting
u = 1

Cable in grasp of clamp 2

State 7: Charge 1
Clamp 1: Pivoting
Clamp 2: Pivoting
u = -1

𝜶-γ > 1

State 10: Swing 2
Clamp 1: Open
Clamp 2: Pivoting
u = 0.20

𝜶-γ < -1

Cable in grasp of clamp 1

Figure 3.10: SkySweeper backflip maneuver finite state machine.
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Figure 3.11: Simulation results for backflip maneuver.

The set of n second-order differential equations (2.67) can easily be written as 2n

first-order equations and then marched forward in time from a prescribed initial

condition as a switched system dependent on the clamp configuration. In inch-

worm mode, the robot alternates which clamp is in pivoting or rolling position.

This is treated as an inelastic collision where 85% of the momentum is conserved.
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Additionally, a delay of 50ms is imposed when switching clamping configurations

to account for the time it takes the clamps to physically change positions.

All four maneuvers were simulated successfully, animations are included

in Supplemental File 4: SkySweeper video (using parameter values from the pro-

totype). Example code to produce similar animations from MATLAB/Simulink

simulations is included in App. C. Results for the backflip maneuver are shown in

Fig. 3.11. The maximum dynamic load on the clamp during swinging, from (2.68),

is 6.75N or 1.48g.
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Chapter 4

Estimation

On the physical systems we are limited in what states can be observed

directly with the onboard sensors. No external sensors (e.g. motion capture sys-

tems) are used. Thus we design estimators to recreate the full state vector x. The

robots are instrumented with combinations of MEMS accelerometers and gyro-

scopes, quadrature encoders (optical or magnetic), and rotary potentiometers.

4.1 Inertial sensors

A MEMS gyroscope can measure the rotational velocity of a robot chassis

providing a direct measurement of θ̇. We may apply a first-order digital low pass

filter with a cutoff frequency of 60 rad/s to remove high frequency noise.

The MEMS accelerometer outputs acceleration magnitudes in two orthog-

onal axes; by taking the arctangent of the two values, the gravity vector can be

calculated, under the assumption that the body accelerations are small. Adding

a first-order discrete low pass filter attenuates noise as well as disturbances from

body accelerations. This method yields an acceptable estimate of θ only at low

frequencies.

Another method to estimate θ is to numerically integrate the output of

the gyroscope. Integration error and thermal bias build over time, but can be

eliminated using a first-order digital high pass filter, thus creating an estimate

of θ that is valid only at high frequencies. We create a complementary filter by

84
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choosing the accelerometer low pass filter constant µALP and integrated gyroscope

high pass filter constant µGHP such that they sum to unity, which allows the two

measurements to be simply summed for a single estimate of θ valid across a wide

frequency range [56].

µGHP =
1/ωc

1/ωc + h
, µALP =

h

1/ωc + h

We choose the crossover frequency ωc = 0.5 rad/s to trade-off sensor errors such

as body accelerations and integration error. Pseudocode to implement this com-

plementary filter on a variety of embedded microcontrollers is below.

1 // time constant to mix accelerometer and gyroscope

2 omega c = 0.5;

3

4 // loop period, in seconds

5 h = 0.010;

6

7 // integrated gyroscope high pass filter constant

8 mu GHP = (1/omega c) / (1/omega c + h);

9

10 // accelerometer low pass filter constant

11 mu ALP = h / (1/omega c + h);

12

13 // get angle using arctangent of two accelerometer axes

14 acc = atan2(accX,accY);

15 // apply low pass filter

16 accLP = accLPold + mu ALP*(acc - accLPold);

17

18 // numerically integrate gyroscope

19 gyroInt = gyroIntHPold + h*gyro;

20 // apply high pass filter to integrated gyroscope

21 gyroIntHP = mu GHP*(gyroInt);

22

23 // sum components from accelerometer and integrated gyroscope

24 theta = accLP + gyroIntHP;

25

26 // set current values as old
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27 accLPold = accLP;

28 gyroIntHPold = gyroIntHP;

4.2 Quadrature Encoders

The optical encoders precisely measure relative rotation, for example, be-

tween the tread sprockets and tread assemblies and between the chassis and the

tread assemblies in the Switchblade system. Measuring the relative velocity with

the encoders is more difficult, particularly at low velocity. In order to normalize

encoder velocity, we define

M =
2ωhCPR

π
(4.1)

where ω the rotational velocity (in radians per second) of the encoder disc, h is

the sample time, and CPR is number of encoder ticks per revolution, M is then

the number of quadrature encoder ticks per sample time (which is four times more

than the number of rising or falling edges of one channel only).

4.2.1 Real Time Encoder Velocity

Counting the number of encoder ticks in a single time step h has unaccept-

able discretization noise when the speed is low because there are few to no encoder

ticks per time step, M ≤ O(10). A low pass or moving average filter may be ap-

plied to smooth the data, but it inherently adds delay, decreasing the bandwidth

of the system which can cause the controller to fail.

An alternative method is to use a high speed clock (e.g. a field pro-

grammable gate array, FPGA) to measure the time between subsequent encoder

ticks. Using quadrature encoding and counting both rising and falling edges of

both channels of the encoder can increase the resolution by a factor of four (as

well as determine the direction of rotation), but this common method can actually

introduce significant noise to the velocity measurement. In practice, the output

of the A and B channels of the encoder are not ideal square waves (see Fig. 4.1),

the high time is not equal to the low time for a constant speed, ARF 6= AFR and
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Figure 4.1: Illustration of imperfection in quadrature encoder signals.

BRF 6= BFR. Further, the phase offset between the A and B channels is not exactly

90°, and varies between rising and falling edges (ARBR 6= BRAF , BRAF 6= AFBF ,

etc.). What is more consistent is the 360° period from like edge to like edge (ARR,

BFF , etc.), assuming the encoder is mounted concentrically with the shaft. By

measuring the four different periods independently instead of only measuring the

sub-periods between subsequent edges of any type, we maintain the factor of four

increase in resolution (and direction information) without introducing error from

the asymmetry of the signals [57].

When a change of direction occurs, one channel of the encoder will output

two opposite edges before the other channel outputs a single edge. In this case, it

is impossible to measure the instantaneous speed because it is uncertain how far

the encoder rotated before changing direction. However, we know that the average
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velocity between the two edges is zero because the net displacement over the time

interval since the last edge is zero, so we assume a measured speed of zero.

When the speed is great enough that at least two encoder edges pass in

a single time step (M ≥ 2), it is possible to average the two (or more) time

periods to smooth the velocity estimate. The smoothing effect is proportional to

the speed. This is important to not only remove sensor noise from imperfections

in the encoder disc, but also to smooth process noise. The disturbances caused by,

e.g., the sprocket teeth engaging and disengaging with the treads and other factors

can induce significant noise if only measuring one encoder period.

By measuring the amount of time between encoder pulses, it is not possible

to measure a speed of zero. Given the current time and the time since each of the

last edges, it is possible to bound the actual speed by calculating the maximum

speed that would not have yet produced an encoder edge (M < 1). In practice,

after the estimate decays sufficiently, it becomes negligible. Measuring the period

of an encoder pulse is not an instantaneous measurement of speed, in fact, it

only yields the average speed over the interval of the last encoder pulse cycle. As

speed decreases, this measurement delays increases, decreasing the bandwidth of

the system. Using a higher resolution encoder will improve performance, so long

as the high speed clock is still significantly faster (O(100)) than the encoder pulse

rate at the maximum shaft rotational velocity to avoid introducing discretization

error. Encoder resolution is often a function of cost and size. Note that placing the

encoder directly on the motor shaft, instead of the gearbox output shaft, greatly

increases the resolution of the rotation of the output shaft (by a factor of Γ, the

gearbox ratio) without increasing the cost or size of the encoder, at the expense of

not being able to measure the backlash at the gearbox output shaft.

4.2.2 Post Processed Encoder Velocity

In the DC motor dynamometer, we use a high resolution (2500 counts

per revolution) encoder, but cannot measure the time between edges precisely

enough with the National Instruments myDAQ. However, we do not require a real

time estimate of the velocity because the data may be processed after the test
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is complete. Some signal processing and filtering must be done before the data

can be used for parameter identification. In particular, velocity and acceleration

have to be estimated carefully from discrete measurements of position. Any noise

in the original data can be exacerbated by numerical differentiation. The high

resolution of the encoder disc and quadrature counting minimize differentiation

error. We first apply some smoothing to the discrete position data and then use

the second-order central difference approximation of the smoothed data to obtain

velocity data:

θ̂k =
1

6
θk−1 +

2

3
θk +

1

6
θk+1,

ωk = (θ̂k+1 − θ̂k−1)/2h,

where h is the sample time, 0.01 s. Combining the above two equations gives:

ωk = (−θk−2 − 4θk−1 + 4θk+1 + θk+2)/12h. (4.2)

This formula yields an acceptable estimate of velocity, but the discretization-

induced noise is too high to immediately reapply (4.2) to estimate acceleration.

We first apply a 21 time step wide Gaussian filter to smooth out the noise. The

window is chosen to be wide enough to smooth the high frequency discretization

and differentiation noise but not so wide as to eliminate the low frequency signal

of interest. Note that the data is post-processed such that the filter is centered at

the current time step and no phase delay is added.

4.3 Potentiometers

Potentiometers (variable resistors) offer three distinct advantages over quadra-

ture encoders.

1. They are generally cheaper, not just in the cost of the components, but they

also have a cheaper assembly cost because there are fewer parts and wires.

2. Potentiometers give an absolute position measurement and do not require

calibration or reset each time the robot is turned on.
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3. They require less hardware and software to measure position. Only a single

signal to an analog to digital converter (ADC) is necessary to get a position

measurement. A quadrature encoder requires two digital lines to be sampled

constantly (or have interrupt routines) and a state variable is incremented.

However, there are two key disadvantages.

1. Potentiometers have a limited range of measurement. This can be aided by

adding a second potentiometer 180° out of phase with the first, but this adds

cost and complexity, reducing the above advantages.

2. Due to the noise generally present in analog to digital converters, it is difficult

to estimate the relative velocity in real time.

For joint angles that do not move quickly (e.g. hips and knees in Switchbot) or

for control systems that do not require velocity feedback (e.g. SkySweeper) this is

an acceptable trade off.

4.4 Sensor Fusion

Given the estimates of {θ, θ̇} from the MEMS sensors and the encoder

and/or potentiometer measurements, additional joint angles can be computed by

simple addition. Fig. 4.2 illustrates the sensor fusion of an accelerometer, gyro-

scope, and encoders for a mobile inverted pendulum. For the purposes of simu-

lation, we mimic the output of the sensors by manipulating the state vector. For

the encoders, we simply quantize the simulation state given the resolution of the

encoder. For the MEMS gyroscope and accelerometer, we calculate what the sen-

sor output would be given the current position, velocity, and accelerations, add

white noise (the variance of which is based on the manufacturer’s specifications),

and apply the complementary filter as described above.

4.4.1 A Note on Kalman Filtering

Given how useful model-based control (Ch. 3) is, one might expect model-

based estimation (e.g. Kalman filter) to be as broadly used in these robotic sys-
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Figure 4.2: Block diagram of complementary filter with accelerometer, gyroscope,

and encoders.

tems. However, there are a number of disadvantages to using model-based esti-

mation on low-cost real-world robotic systems. Model-based estimation is prone

to estimation error induced by modeling errors (such as friction or backlash) and

sensor noise that is not white. The optimality condition of the Kalman filter does

not hold for nonlinear systems with colored process and sensor noise. Dynamical

systems that experience significant changes in dynamics (such as the complete ro-

tation of the chassis in Switchblade C-balancing, Sec. 3.2.2) require lookup tables

as a function of the reference state, similar to the model-based control strategy,

adding to the memory and computational demands on the embedded microcon-

troller. Systems with sudden changes to the dynamic constraints (such as the

different clamping conditions in SkySweeper, Sec. 2.5, or entering and exiting stic-

tion while perching, Sec. 2.4.3) require not just additional lookup tables, but also

switching conditions to determine which set of lookup tables to use. Estimation

error can quickly become unstable in these systems in the presence of modeling

error. The extended Kalman filter can help, but requires significantly more com-

putational power from the embedded system and is often infeasible for low-cost

microcontrollers. Alternatively, the computationally simple complementary filter
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described in Sec. 4.1 can be broadly applied across platforms, with different dy-

namics, sensors, and actuators with little to no tuning.

4.5 DC Motor Parameter Identification

To identify the parameters of the motor and driver system, RAPID employs

a least-squares algorithm similar to [46]. We define N as the total number of data

points taken during a trial and let f(n) denote the value of f at time nh, where h

is the sample time of 0.01 s. By the above construction, the model can be written

in matrix form:

A(n)x = b(n), (4.3)

where x ∈ R5×1 is the vector of model parameters to be identified. From the set

of system equations (2.7) and (2.10), we write:

A(n) =

[
i(n) ω(n) 0 0 0

0 −i(n) dω
dt

(n) ω(n) sgn(ω(n))

]

x = [ r k JS b cS ]T , b(n) =

[
V (n)

0

]

We further define:

RA ,
N∑
n=1

A(n)TA(n), RAb ,
N∑
n=1

A(n)Tb(n).

If we premultiply both sides by A(n)T and sum over n, we can rewrite (4.3) as

RAx = RAb, solving for x gives x = R−1A RAb, so long as RA is invertible. Whether

or not RA is invertible depends on if the PWM input signal to the motor is suffi-

ciently exciting. For our trials, the percent duty cycle of the PWM signal is given

by a sinusoid sweep discretized at 100 Hz. The sinusoid sweep ramps linearly

up, then down, in both amplitude (maximum: 6V) and frequency (from 0.125 Hz

to 1.0 Hz). The carrier frequency of the PWM signal does not change, only the

percent duty cycle.

We can use different metrics to evaluate how well the identified parameters

fit the observed data to the chosen model. Mean Squared Error (MSE) is the
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mean of the square of the difference between the observed and estimated data

using the identified parameters. The MSE can be calculated separately for the

voltage balance (2.7) and torque balance (2.10). The coefficient of determination

R2 can be calculated:

R2 = 1−
∑N

n=1 ε(n)T ε(n)∑N
n=1 b(n)Tb(n)

where ε(n) is the residual of the fit, ε(n) , b(n)− b̂(n) = b(n)− A(n)x.
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Chapter 5

Prototypes

5.1 Manufacturing Processes

Over the course of the design, manufacture, and assembly of dozens of

robotic prototypes, a variety of manufacturing processes were used, each with its

own advantages and disadvantages. Traditional machining, with a mill or lathe,

can be used for high precision parts in a variety of materials (metals and plastics),

but is time-consuming. The process can be automated somewhat with computer

numerically controlled (CNC) hardware, but CNC mills and lathes are expensive

tools which aren’t always readily available. CNC laser cutting, which like tra-

ditional machining is a subtractive process, is fast, though it can only cut out

two dimensional parts. A large sheet of material can be cut into several parts

sequentially and automatically. The adoption of tab and slot assembly structures,

pioneered by Switchblade (see Sec. 5.5) revolutionized how robots were designed

and built in the Coordinated Robotics Lab (e.g. iCycle, iceCube v.2). Acrylic and

delrin are two common materials used with a laser cutter (other thin materials,

wood, poster board, etc. may also be used), delrin is less brittle than acrylic and

is easier to machine for operations such as tapping threads in a hole. 3D printing,

also known as additive manufacturing, has long been a means of rapid prototyp-

ing, but only recently (c.2010) has the market been disrupted with consumer level

machines (O($1000)). The acquisition of one, and then two, 3D printers in the

lab revolutionized the manufacturing process of robotic prototypes. Switchblade

94
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nano (Sec. 5.5.4) was the first prototype made from parts created on the in-house,

consumer grade (single extruder) finite deposition modeling (FDM) 3D printer.

eyeFling (Sec. 5.4.2), SkySweeper (Sec. 5.6), and Switchbot (Sec. 5.5.5) are also

made from 3D printed parts, as are nearly all of the other modern prototype robots

in the lab. The dyno (Sec. 5.3) and myMIP (Sec. 5.4.1) are both examples of hy-

brid assemblies which use 3D printed and laser-cut parts together, where the use

of the laser cutter saved significant manufacturing time. Other than slow printing

speed, the main limitation of consumer-grade 3D printers is material selection.

The two most common materials are acrylonitrile butadiene styrene (ABS) plas-

tic and polylactic acid (PLA) plastic. ABS is less brittle, but requires a heated

print area and is more prone to warping from thermal stress, making PLA the

more user-friendly option with a higher successful print rate. Another critical fac-

tor for printing parts with an FDM machine is the part orientation. The nature

of layer-by-layer FDM printing inherently creates anisotropic parts. Components

with stress concentrations need to be oriented to minimize the chance of layer

delamination.

5.2 Electronics

Just as the proliferation of low-cost 3D printing shifted the paradigm of

robot prototype manufacturing, the explosion of low-cost embedded electronics

has enabled these robots to be programmed with capable microprocessors and a

variety of sensors. The variety of different embedded controllers are programmed

with different languages and environments.

• Arduino AVR microprocessors, programmed in a user-friendly c-like language

(used in SkySweeper and myMIP).

• National Instruments myDAQ USB data acquisition devices which can be

programmatically sampled in the LabVIEW graphical programming lan-

guage (used in the DC motor dynamometer).

• National Instruments RIO (reconfigurable input/output) series (single board
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Figure 5.1: Switchbot development electronics with low-cost ARM processor.

RIO, compactRIO, myRIO) which feature a field programmable gate array

(FPGA) as well as a traditional microprocessor with a real-time operat-

ing system (RTOS), either a Freescale PowerPC processor or a Xilinx Zynq

System-on-Chip (SoC) which are both programmed in the LabVIEW graph-

ical programming language, which also has textual programming modules

(used in Switchblade, Switchblade nano, and Switchbot).

• bStem board developed by Brain Corporation, powered by the Qualcomm

Snapdragon SoC, which can be programmed quickly in Python (used in eye-

Fling).

• 32-bit ARM Cortex M0 processor, available in a low-cost (< $1) package,

which is programmed in c (used in the tether-less version of Switchbot).

Microelectromechanical system (MEMS) sensors, namely accelerometers, gyro-

scopes, and magnetometers have drastically reduced in size and price, largely due

to their proliferation in smartphones. A variety of online retailers sell sensor and

motor driver modules on breakout circuit boards that are easy to connect to micro-

controllers. Once the electrical modules are selected, it is straightforward to design

a custom circuit board which holds and appropriately connects the modules along
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with other peripherals (switches, fuses, voltage regulators, communication mod-

ules). This method eliminates the “rat’s nest” of wires common in early robotic

prototypes and also decreases size and increases reliability. The electronics package

used in Switchbot, comprised of an ARM Cortex M0 processor, three dual motor

driver modules, a six axis inertial measurement unit, switches, a voltage regulator,

and connectors for motors, encoders, and potentiometers, is shown in Fig. 5.1.

Lithium polymer batteries have been used extensively for their excellent

energy density and capacity to deliver high amounts of current. In situations

where charging cannot be tightly controlled, more stable battery chemistries (e.g.

nickel metal hydride, NiMH) may be preferable.

5.3 DC Motor Dynamometer

The design of RAPID was driven by two main factors: first, being able to

adapt to a wide variety of motors; and second, minimizing cost and complexity.

For ease of use, we impose the requirement that it take less than 15 minutes to

change the motor under test.

5.3.1 Mechanical System

The core function of a dynamometer is to exert a known load on the motor

under test. To minimize cost and retain simplicity, the load in RAPID is provided

by an inertial disc instead of an active or passive braking system. Friction in the

system is an additional load on the motor.

Depending on the power of the motor under test, a larger or smaller inertial

load is required. In order to accommodate a range of motor specifications, the

inertial disc has eight threaded radially symmetric holes, each capable of holding a

single hex head bolt and up to three optional nuts. The removable nuts and bolts

can be added in symmetric pairs to the disc to provide 35 different discrete inertial

loads between 3.37 · 10−5 kg·m2 and 1.31 · 10−3 kg·m2 (see Sec. 2.1).

The inertial disc is rigidly mounted with a clamping hub to an aluminum

shaft, which is supported by ball bearings on either end. One end of the shaft is
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Figure 5.2: Labeled overhead drawing of RAPID assembly.

coupled to the rear of a Jacobs three jaw drill chuck, Fig. 5.2. The jaws of the

chuck are used to hold the output shaft of the motor under test. Most motor

output shafts possess a round cross-section, possibly with a flattened section or a

keyway, nominally used to prevent the shaft from slipping. With the drill chuck,

RAPID can hold most round shaft cross-section shapes so long as they possess

three points of contact 120° apart that are equidistant from the center of the

shaft’s rotation. The chuck can accommodate shaft diameters ranging from 1.00

mm to 6.35 mm (1/4 in). If the output shaft does not meet these requirements, an

adapter can easily be made with a 3D printer that presses onto the output shaft

and has a circular protrusion onto which the chuck can grasp. Since the weight

of the inertial disc is supported by bearings, there is minimal radial load on the

motor shaft.
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Figure 5.3: Adapter plates for three different motors. Face-mounted screws (cen-

ter), clamp for round motor housing only (left), and with added shaft adapter

(right).

Different motors may have different mounting features. RAPID is designed

to be modular and adaptable. The motor under test mounts to an adapter plate

with features specific to the motor, such as face-mounted threaded holes or flat fea-

tures on the motor body, or the adapter plate may clamp around the entire motor

body, Fig. 5.3. These adapter plates can be manufactured on a 3D printer, laser-

cutting machine, or other machinery depending on the motor mounting features.

A set of modifiable drawings of adapter plates with different common mounting

features is available at the aforementioned web site and in Supplemental File 5:

DC motor dynamometer files.

5.3.2 Electrical System

The electrical system is responsible for delivering power to the motor and

measuring several physical values. The sensors, motor driver, and data acquisition
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Table 5.1: Motor Dynamometer Electronics

Use Make & Model

Position Sensor US Digital E6, 2500 CPR

Voltage Sensor 2:3 resistive voltage divider circuit

Current Sensor Allegro ACS712 ELC-05B-T Hall Effect

Motor Driver Toshiba TB6612FNG

Data Acquisition National Instruments myDAQ

device used are listed in Table 5.1, a wiring diagram is shown in Fig. 5.4. Data is

sampled and logged at 100Hz on all sensors. Two National Instruments myDAQ

devices are used to interface the sensors and motor driver over USB with a host

computer running LabVIEW software. The two myDAQ devices need not be

dedicated to RAPID and can be used for a variety of applications such as a software

multimeter or oscilloscope. Other data acquisition devices could also be used by

simply adapting the software. The dedicated electronics are all inexpensive.

An optical quadrature encoder is mounted on the end of the inertial disc

shaft opposite to the motor under test. By counting the rising and falling edges

and comparing the phase delay of the two channels of the encoder, the rotational

position can be measured with a precision of four times the resolution of the encoder

disc with the counter circuit on the myDAQ [58]. The encoder disc has 2500

counts per revolution, so the resolution with quadrature is 6.28 ·10−4 radians. The

counter circuit can read a maximum frequency of 1 MHz [59], which corresponds

to a maximum rotational speed of 628 rad/s.

RAPID is designed to be compatible with different motor drivers. The

motor driver used in the initial testing is listed in Table 5.1 and is connected to

an external power supply. A pulse width modulated (PWM) 5 V square wave

is generated by the timer circuit on the myDAQ [60]. The carrier frequency is

32 kHz and the percent duty cycle is changed at a rate of 100 Hz. The motor

driver amplifies the 5 V PWM input signal to the full voltage of the external power
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Figure 5.4: Wiring diagram for DC motor dynamometer with National Instru-

ments myDAQ devices.

supply. The signed duty cycle of the PWM signal (including direction), u ∈ [−1, 1],

multiplied by the voltage of the power supply, VS, is the average voltage across the

motor terminals, V = VSu. We can not directly measure the voltage across the

motor terminals because the PWM carrier frequency is significantly higher than

the sampling frequency. Instead, we measure the voltage output of the external

power supply, which may be higher than the maximum measurable voltage of the

Analog to Digital Converter (ADC), 10 V. We use a simple voltage divider circuit

made from off-the-shelf carbon film resistors to step down the voltage. The input

of the ADC is connected to an intermediate node of the circuit. The actual voltage

can be recovered by multiplying by the ratio of the resistors in the voltage divider

circuit. Both the signed PWM duty cycle and power supply voltage are logged, so

the average voltage can be calculated by multiplying these two values together.

A current sensor is placed in series between the motor and motor driver.

The bandwidth of the sensor itself is 80 kHz, which is more than twice the PWM

carrier frequency of the motor driver. However, we are only sampling the sensor

at 100 Hz. We implemented a passive first-order low-pass filter with ωc = 93 Hz in
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Table 5.2: Results from Maxon A-max 22 motors

Parameter Motor

Measure 1 2 3 4 5

r Ω 4.054 3.718 3.745 3.749 3.991

k N ·m/A 0.363 0.362 0.357 0.359 0.365

JE kg ·m2 1.7·10−3 1.7·10−3 1.7·10−3 1.7·10−3 1.7·10−3

b N ·m/s 8.7·10−4 9.9·10−4 1.1·10−3 8.4·10−4 9.5·10−4

cM N ·m 3.7·10−3 4.9·10−3 6.2·10−3 5.1·10−3 5.5·10−3

MSE
V 0.101 0.092 0.099 0.087 0.096

N ·m 2.5·10−4 2.9·10−4 2.9·10−4 2.8·10−4 2.5·10−4

R2 0.994 0.994 0.994 0.994 0.993

hardware on the output of the sensor to eliminate high frequency noise from the

PWM signal. We limit the maximum frequency of the PWM duty cycle change to

well below 50 Hz to ensure there is no aliasing.

5.3.3 Experimental Validation

We tested five of the same high-quality motor, the Maxon A-max 22 (5W,

6V) with a 64:1 spur gearbox [61, 62]. The specifications from this manufacturer

are quite detailed and we can thus compare the identified parameters to the spec-

ifications to determine the accuracy of RAPID. Comparing the results of the five

motors indicates the precision.

The expected torque from this motor is on the order of 10−2 N·m, we thus

add four bolts to the inertial disc to increase the total inertia. Average results

from twenty trials of each motor are shown in Table 5.2. A representative plot of

the measured and estimated voltage is shown in Fig. 5.5 and a plot of both sides

of (2.10) with the estimated parameters is shown in Fig. 5.6.

The specifications list a k value of 0.377 N·m/A (accounting for the gear-
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Figure 5.5: Measured and estimated voltage [see (2.7)].

box); the value estimated by RAPID for each of the motors is within 5% of this

value. Given that we can expect a manufacturing tolerance of 1-3%, the accuracy

of the tests is acceptable. The efficiency of the motor driver may also account for

the deviation from the specification, particularly since the values are consistently

lower than the specification. The motor driver also affects the estimation of the

resistance of the armature wire. The motor driver H bridge has an “on” resistance

on the order of 1 Ω, in addition to the resistance in the wire and breadboard. The

motor specification is 1.76 Ω, which is less than the identified resistance. The esti-

mated effective inertia of the motor and gearbox is within 2% of the specifications.

Comparing parameter estimates from motor to motor shows acceptable precision

as well. We see the most motor-to-motor variation in the friction parameters.

Slight differences in alignment while mounting the motor in RAPID may account
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Figure 5.6: Torque balance with estimated parameters [see (2.10)].

for this. MSE values are within 2% of full scale and R2 values are close to unity

and compare favorably with other motor parameter identification results in [46],

[63].

5.4 Mobile Inverted Pendulum

5.4.1 myMIP

The design of myMIP was optimized for low-cost and ease of assembly

to facilitate student ownership at a price comparable to a textbook. Several off

the shelf components were used: motors, wheels, microcontroller (Arduino nano),

accelerometer, gyroscope, and motor driver. A 3D printed motor mount holds the

two motors coaxially (in opposite orientations) and provides mounting points for
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(a) Front. (b) Back. (c) Encoder Disc.

Figure 5.7: myMIP custom quadrature encoder.

the laser cut parts which hold the electronics. The cost of off the shelf encoders was

too high and so I developed custom quadrature encoders comprised of a custom

circuit board and a 3D printed encoder disc mounted on the back of the motors

(before the gear reduction), Fig. 5.7. The circuit board has two infrared LED

and phototransistor pairs on one side (Fig. 5.7a), and current limiting and pull-up

resistors, a Schmitt trigger with hysteresis to debounce the signal, and a connector

on the other side (Fig. 5.7b). The LED and phototransistor pairs can detect the

transitions between the gaps and solid portions of the encoder disc (Fig. 5.7c). The

LED and phototransistor pairs are placed 210° apart (90° + 120° for the 3 count

per revolution disc) such that the two channels are out of phase for quadrature

decoding. The width of the gap of the encoder disc was tuned to give equal high

and low times.

5.4.2 eyeFling

The eyeFling prototype (Fig. 1.2b) was designed to be completely 3D printed,

with off the shelf screws and motors. Similar to the earlier iFling prototype, eye-

Fling can pick up standard 40mm ping pong balls by running them over, at which

point the central prow of the body forces them to either side, where they are

pinched between the body and the wheel. Further rotation of the wheel lifts the

balls up into the body and past a one-way spring check valve. Ping pong balls can

be dispensed one at a time (limited by the actuation of a miniature servo motor
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Figure 5.8: Partial eyeFling body assembly with one motor mounted.

with a gate) along the rail and thrown, lacrosse style. Unlike the earlier iFling, the

parts of eyeFling were designed to be printed on a consumer-grade, single extruder

3D printer. The parts were designed to be secured with machine screws and cap-

tive nuts, for secure connections that can be assembled and disassembled multiple

times, Fig. 5.8. Detection sensors (infrared LED and phototransistor pairs) are

placed at several points on the body to keep track of ping pong balls entering

and exiting the body. The battery is mounted high up on the rail in order to

raise the center of mass for reasonable handling with inverted pendulum dynamics

(approximately one wheel radius above the center of rotation, at the top of the

wheel). The electronics (bStem controller board plus adCord motor control board)

are mounted on the rear of the body behind a magnetic, removable cover. In the

second revision, access holes were added to the side of the robot to allow the USB,

HDMI, and power ports to be directly accessed without removing the bStem as

well as a quick release tab to swap batteries.
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5.5 Switchblade

5.5.1 Mechanical Design

The linchpin of this design is the hip joint that pivotally connects each

tread assembly to the chassis of the robot. A novel, patent-pending two degree of

freedom joint is introduced to connect the chassis to each tread assembly (Fig. 5.9).

The joint combines the axis of rotation of the tread assembly with respect to the

chassis and the axis of rotation of the sprocket driving the treads into one stainless

steel shaft. The shaft rides in ball bearings in both the chassis and tread assembly.

The end of the shaft inside the chassis is directly coupled to the output shaft of

the planetary gearbox motor. The other end of the shaft passes through, and

spins freely relative to, a large spur gear which is rigidly mounted to the tread

assembly and the shaft is finally rigidly coupled to the tread drive sprocket. A

second stainless steel shaft is mounted inside the chassis parallel to the first. A

pinion gear, mounted on the end of the second shaft that extends from the chassis,

drives the large spur gear, and hence the rotation of the tread assembly with

respect to the chassis. The other end of the second shaft is directly coupled to

the output shaft of a smaller planetary gearbox motor with a much higher gear

reduction. With both motors mounted in the chassis, this joint independently

transmits two coaxial torques: one to rotate the sprocket driving the treads and a

second to rotate the tread assembly with respect to the chassis. Optical encoders

(360 counts per revolution, CPR) are mounted within the chassis coaxially on both

motor shafts. An additional high resolution (5000 CPR) optical encoder is mounted

on the outboard side of the tread assembly to measure the relative rotation of the

tread shaft. The higher resolution encoder enables better low-speed estimation, see

section 4.2.1 for a detailed discussion. The actuation of the two degrees of freedom

on each hip joint enable the robot to perform its unique suite of maneuvers. A

set of passive, un-actuated wheels is mounted on the end of the chassis opposite

the main drive axles. The wheels prevent the chassis from dragging on the ground

when the tread assemblies are rotated higher than the chassis.

The diameter of the tread sprocket was chosen to give over 25 mm of ground
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Figure 5.9: 2 Degree of freedom hip joint of the v.2 Switchblade: (1) tread

sprocket, (2) spur gear, (3) pinion gear, (4) optional slip ring, (5) main drive axle,

(6) rotation axle, (7) optical encoders, (8) shaft couplers, (9) tread motor, and

(10) rotation motor.
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Figure 5.10: View of the hip joint. Tab-and-slot construction simplifies assembly

and reduces the number of screws required.

clearance for the chassis when in a horizontal configuration, in conjunction with

the motor and gearbox choice to have sufficient torque to lift the weight of the

robot, and a top speed in excess of 2.5 m/s (6 body lengths per second). The

traction between the treads and various ground surfaces is balanced between the

need to grip while accelerating and the need to slip while skid-steering. It is critical

to maintain traction while balancing upright, where a tread slipping may cause the

robot to fall. The off-the-shelf treads (manufactured by VEX Robotics) are made

of acetal and have a spray rubber coating to increase traction. The treads are

continuously supported underneath, any large normal force on the treads will be

transferred to the structure of the tread assembly (also acetal). The power loss

incurred by the smooth sliding contact between the treads and tread assemblies is

included in the dynamic model (2.33). The position of the rear idler sprocket is

adjustable to appropriately tension the treads.

Great pains were taken to minimize the part count, particularly the custom

part count, and to reduce the number of machining operations per custom part.

Off-the-shelf parts were used wherever possible to reduce manufacturing time. All

but two of the custom parts are laser-cut from sheets of acetal, with thread-tapping
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of some holes (thus avoiding the need for nuts) and press-fitting bearings being

the only secondary machining operations. The remaining two custom parts are

formed from stainless steel rod stock with simple operations on a lathe and milling

machine. The symmetry of the design reduces the unique part count and many

parts are orientation-agnostic, simplifying assembly. The 26 unique custom parts

account for 73 pieces used in the assembly of each robot, with most parts being

used in multiple places.

The design process included careful consideration of assembly time. The

parts of the superstructure are quickly assembled with a series of interlocking

tabs and slots (Fig. 5.10), thereby minimizing the number of mechanical fasteners

needed and saving cost, weight, and assembly time. A team of five undergrad-

uates working under our direction constructed 13 Switchblade robots from part

manufacturing to final assembly in 10 weeks.

Many system parameters (masses, lengths, etc.) were directly measured

or taken from the 3D CAD model. Other parameters (stall torques, back EMF

damping coefficients, rotational inertias, coefficients of friction) were determined

empirically with an in situ characterization. We used a least squares algorithm

similar to what is presented in [50].

Embedded Electronics

The Switchblade robot is built around the National Instruments sbRIO 9602

embedded controller. This board has both an FPGA and a PowerPC processor,

which gives flexibility in handling both low-level high-speed tasks (such as reading

optical encoders) and more complex control algorithms (as described in section 3.2)

in real time, and is programmed using the LabVIEW graphical programming lan-

guage, including the Control Design & Simulation and Robotics modules. Built-in

ethernet coupled with a wireless ethernet adapter enables real-time wireless com-

munication, debugging, and deployment of software. An AF-1501 frame grabber

module from moviMED allows for onboard image processing. A 16-bit analog to

digital converter reads the output of the analog sensors and monitors the battery

voltage.
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Figure 5.11: Comparison of simulation results and experimental results for the

Switchblade uprighting maneuver.

5.5.2 V-Balancing Experimental Results

Both the simulation and experimental results may be seen in Fig. 5.11 for

the uprighting maneuver as described in Sec. 3.2.1, plotting the critical angles as

labeled in Fig. 2.3. The plot shows a close, though not perfect, correlation between

simulation and experiment. The discrepancies may be explained by modeling sim-

plifications and errors; in particular, the motor parameters are not particularly well

characterized, and bias error in the measurement of the accelerometer could affect

the drift of φ. Notably, the robot actually uprights faster in the experiment than

in simulation. Supplemental File 1: Switchblade video shows the robot performing

the uprighting maneuver as in Fig. 3.1.
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Table 5.3: Results from horizontal stability tests.

aS RMS

(φ−α)−
(φ∗−α∗)

RMS

(φ̇−α̇)

RMS

u1

Experimental
0 0.044 0.352 0.144

0.06 0.028 0.169 0.167

Simulation
0 0.053 0.466 0.159

0.06 0.038 0.326 0.161

5.5.3 Perching Experimental Results

The increased difficulty of the perching maneuver necessitated two physical

changes to the Switchblade prototype. First, the tread motors were switched to

maxon motors, with much smoother actuation due to a continuously woven rotor

winding. Second, high resolution (5000 CPR) encoders were added to the outside

of the tread assemblies to measure the relative rotation of the tread sprockets with

respect to the tread assemblies with higher resolution than the 360 CPR encoders

mounted in the chassis.

We first look at the performance of the system when stabilizing about a sin-

gle equilibrium point, where α∗ = θ∗ = π/2. We use a narrow beam (ρ = 0.011m)

as a step edge surrogate for testing. We can compare the balancing behavior with

and without the friction compensator (3.10) by choosing aS = 0 or aS = 0.06. In

both cases, bS = bT = 0.04 and aT = 0 (since α∗ = θ∗ the friction between the

chassis and tread assemblies does not need compensation). Due to backlash in the

treads and uncertainty in the velocity estimate, the φ̇ gain is decreased 40% to

eliminate chatter.

As can clearly be seen in Fig. 5.12 and Table 5.3, the controller with the fric-

tion compensator has significantly reduced variance from the reference command

(φ∗−α∗) and the magnitude of the tread velocity (φ̇− α̇) peaks is greatly reduced

without a significant increase in the control effort. The flat sections in the plot of
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with and without friction compensation.
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Figure 5.13: Experimental results for traversing with α∗ = 190°.

φ− α correspond to when the treads are in stiction. Please refer to Supplemental

File 1: Switchblade video to see horizontal stability tests with (aS = 0.06) and

without (aS = 0) the friction compensator.

Given the mass distribution of the robot, climbing the edge of a standard

step, while kinematically possible, see Fig. 3.4, is not practically feasible. The

distance between the center of mass of the chassis and the tread assembly pivot

point (LC in Fig. 2.5) is less than half the length of the tread assemblies. This

means that in order to shift the total center of mass from one end of the tread

assemblies to the other, the inclination angle must be steep (α∗ = 150°). By (3.5),

a significant amount of the torque available from the tread motor is used by the

feedforward term and not available for error regulation (in one direction). This

problem is exacerbated as the height of the center of mass increases, because more

torque is required to recover from a given disturbance. The amount of stiction

and friction between the treads and the tread assemblies further limits the control

authority since the friction limits the amount of torque that can be used for cor-

rection, and there is zero control authority when in stiction. Worse, the normal
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force on the treads increases with α (2.33) which increases the friction and stiction.

With the current prototype build, only a limited traverse is possible. Logged data

from a 10 cm traverse at an inclination of 10 degrees from horizontal (α∗ = 100°)

over 10 seconds is shown in Fig. 5.13, the maneuver is also shown in Supplemental

File 1: Switchblade video. The oscillatory behavior is due to the treads entering

and exiting stiction. The steady state error is due to sensor and parameter errors.

5.5.4 Switchblade nano

The goal of this prototype was to shrink the Switchblade design as much

as feasible as an investigation into possible commercialization. As a surrogate for

designing injection molded plastic parts, 3D printing was extensively used. The

motors, sensors (accelerometer, gyroscope, and encoders), and battery were all

mounted in the chassis, but the processing electronics were off board and connected

via a tether. This sped up development by avoiding the need to design and fabricate

a custom circuit board small enough to fit inside the chassis and allowed the use

of the same sbRIO 9602 control board as used in the full-sized Switchblade, which

enabled maximum code reuse.

Symmetry

All parts (except for the battery clip) are designed to be used twice sym-

metrically in the robot. The motivation was to minimize the part count so fewer

molds have to be made. One chassis half part is used as the top and a second

chassis half part is used as the bottom. The left and right tread assemblies are

identical, one is attached to the top chassis half and the other is attached to the

bottom chassis half. Each chassis half is designed with mounting holes for the

electronics and battery holder, but in practice, only one chassis half will actually

have the electronics and battery holder mounted, see Fig. 5.14. There is only space

for one chassis half to have the electronics and battery holder mounted.
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Figure 5.14: Switchblade nano symmetric half assembly with electronics installed.

3D Printing

The 3D printed part drawings are all toleranced to work with the lab’s 3D

printers. This means:

• Parts are oversized by 0.030 inches in the direction of printing.

• Hole diameters are oversized by 0.020 inches.

• The bottom printed face is chamfered by 0.020 inches.

These features would have to be removed or changed for an alternate manufacturing

process.

Hip Joint

The most critical mechanical component of the robot is the hip joint, where

the tread assembly connects to the chassis. The hip joint was redesigned from the

ground up for the new size and with plastic parts instead of steel. The tread

assembly can rotate continuously with respect to the chassis. All four motors in
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Figure 5.15: Switchblade nano hip joint.

the robot are mounted in the chassis. One motor on each side (left/right) drives

the treads forward and back. One motor on each side (left/right) rotates the entire

tread assembly with respect to the chassis. The pulley that drives the treads has

the same axis of rotation as the entire tread assembly. All components are labeled

in Fig. 5.15. The 40 tooth gear is rigidly connected to the tread assembly. The

tread motor (which drives the pulley which drives the treads) passes through the 40

tooth gear and rotates freely inside the 40 tooth gear. The drive pulley is pressed

on to the tread motor shaft. The 40 tooth gear is driven by the 18 tooth gear.

The 18 tooth gear is pressed on to the output shaft of the boom motor. When the

boom motor turns, the entire tread assembly rotates with respect to the chassis.

The tread assembly has a disc feature which sits in a circular slot in each half of

the chassis. This disc feature constrains the tread assembly to the chassis except

for one rotational degree of freedom.
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Figure 5.16: Switchblade nano belt tension.

Belt Tension

The belt tension is an important parameter. If the belt tension is too tight,

there will be too much rolling resistance and the motor will not be able to turn

the treads quickly. If the belt tension is too loose, the robot may not be able to

balance on the far end of the treads (C-balancing) because of the slack in the belt.

In the extreme case, the driving pulley may slip, also causing the robot to fall.

In the current prototype, there is no active tensioning mechanism, as that

would increase cost. Instead, the exact center-to-center distance of the two pulleys

was adjusted to properly fit the belts on hand. If the manufacturing tolerance in

the length of the belt is small enough, then this strategy can be used.

In Fig. 5.16 there is an example of a belt that is slightly too tight (left)

and a belt that is slightly too loose (right). Both left and right belts should have

the same tension, otherwise the tighter belt will turn less because of the increased

rolling resistance and the robot will appear to pivot about the tighter belt.

Another important consideration is the stiffness of the belt. If the belt is

difficult to deform, then even if the belt tension is low, the motor will not be able

to turn the belt quickly. The belt must be supple and easily bent.

Tread Inner Plate Assembly

In the current prototype, there are four individual pieces which could be

combined into one injection-molded plastic part. The four pieces are distinct in

this prototype due to limitations in our lab’s 3D printer. Fig. 5.17 below shows

these four pieces assembled and glued together.



119

Figure 5.17: Switchblade nano tread inner plate assembly.

Performance

The Switchblade nano prototype was able to reproduce several of the pri-

mary maneuvers of the full-sized prototype.

• Horizontal, skid steer driving

• Overcoming thresholds

• V-balancing, including transitioning to and from horizontal mode

• C-balancing, although the tether physically prevented transitioning to and

from horizontal mode

Supplemental File 2: Switchblade nano video contains demos of the maneuvers and

a teardown. Perching was not attempted with the Switchblade nano prototype.

5.5.5 Switchbot

The goal of the Switchbot project was to put the treaded inverted pendulum

technology from Switchblade into a more anthropomorphic form factor. Adding a

link between the tread assembly and the main chassis (to create a two segment,

human-like “leg”) necessitated a complete redesign. It was deemed infeasible to

power the treads with a motor located in the chassis and a drivetrain going through

both an actuated hip joint and an actuated knee joint. The tread motor was then

placed inside the tread assembly (Fig. 5.18), with a 2:1 bevel gear on the output
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Figure 5.18: Internal view of the Switchbot prototype tread assembly.

of the gearbox to turn the drive pulley (Fig. 5.19a). The wires for the motor

(and quadrature encoder) were routed external to the body. Since a more human

design was intended, support for continuous rotation without tangling wires (with

slip rings) was not necessary. For rapid prototyping purposes, all components are

either 3D printed or available off the shelf.

One of the primary design considerations was minimizing cost, and therefore

motor count. The first round of prototypes utilized four motors: one each for the

right and left treads, one for both hips, and one for both knees. Instead of rigidly

fixing the right upper leg to the left upper leg, and the right lower leg to the

left lower leg, I designed and built a novel, 3D printed, spring clutch limited slip

differential (SCLSD), see Fig. 5.19c. The spring in the differential presses the two

planet gears against the carrier, increasing the static and kinetic friction that resist

relative rotation between the right and left driven bevel gears. When the motor

drives the carrier, both right and left bevel gears will nominally turn the same

amount. The differential prevents damage to the robot if the user were to grab

the legs and twist them in opposite directions. Both the hip and knee motors

are located in the upper body with an SCLSD each to drive the hip and knee

joints, Fig. 5.19d. Individual rotary potentiometers on each joint measure the

relative angle (in blue in Fig. 5.19d), so any difference in angle between the right

and left sides can be directly measured; the robot knows if the legs are skewed
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(a) Tread motor and pulley interface. (b) Knee joint.

(c) Spring clutch limited slip differential

(SCLSD).

(d) Chassis with SCLSDs and hip joints.

Figure 5.19: 3D drawings of Switchbot prototype.

and balancing is not possible. A two degree of freedom hip joint, similar to other

Switchblade prototypes, allows the a driveshaft carrying the knee motor torque to

pass through the hip joint independent of the rotation of the hip joint itself. Bevel

gears on either end of a drive shaft in each upper leg transmits power from the hip

joints (Fig. 5.19d) to the knee joints (Fig. 5.19b).

The National Instruments myRIO embedded controller was used as part

of a pre-release beta program for National Instruments. The myRIO has a much

smaller form factor than the earlier sbRIO (used in Switchblade) with comparable

processing power and was a natural choice for this project to be able to reuse code
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Figure 5.20: Internal view of the four motor Switchbot prototype with onboard

electronics.

from the Switchblade and Switchblade nano projects. Though smaller than the

sbRIO, the myRIO still proved to be the largest component in the first prototype

(upper right of Fig. 5.20). A 1300 mAh 3 cell (11.1V nominal) lithium polymer

battery was used to power the motors and electronics. A Bluetooth module en-

abled wireless communication with a computer for teleoperation. A simple custom

printed circuit board (as mentioned in Sec. 5.2) serves to connect the myRIO to

the motor drivers, encoders, potentiometers, and a gyroscope (the myRIO itself

includes a three-axis accelerometer onboard).

While this prototype could successfully balance and be remotely driven,

the weight of the myRIO prevented the robot from squatting and standing up

straight with the small form factor hip and knee motors. The chassis was also

unrealistically wide. It was decided to move the myRIO off board and connect

it to the onboard motors and sensors over a tether. At this point, a more com-

mercial, consumer-friendly shell was available and the components of the chassis

were significantly compacted, Fig. 5.21. With the myRIO and battery off board,
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Figure 5.21: Internal view of the four motor Switchbot prototype in commercial

shell.
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the weight was significantly reduced, but the limitations of the drivetrain were

beginning to become apparent. Given the small size of the SCLSD (in order to

fit in the chassis) and the limited strength of the printed material, the amount of

spring force that can be applied to increase the friction to resist relative rotation

was minimal. In practice, it took little force, acting at the significant distance of

the legs, to separate the left and right legs. While balancing upright, differences

in friction on each side would cause separation of the legs. The complexity and

added assembly cost of the SCLSD made it less attractive. Furthermore, by using

separate motors for the left and right sides, the motors could be both larger in

size and lower in torque (meaning that plastic gearboxes were viable instead of

metal gearboxes), both of which are factors that decrease cost. The overall cost

impact of switching to the six motor design (Fig. 5.22) may be negligible. Left and

right hip motors in the chassis drive the hip joints directly, with potentiometers

measuring the relative angle between the chassis and each upper leg. Motors were

embedded in the upper legs to actuate the knee joint. An additional single stage

gear reduction between the knee motor and knee joint serves two purposes. First,

with a gear ratio less than one, it multiplies the torque capacity of the knee motor,

which is critical for being able to transition from kneeling to standing. Second, a

potentiometer can be placed coaxial to the knee joint, instead of mounting to the

backside of the motor gearbox, which would increase the width of the upper leg.

The six motor design had much more robust performance, and after in-

creasing the torque and gear ratio of the knee motors, it could lift its own weight

to stand up straight, and transition from a kneeling pose to a standing (balanc-

ing) pose and vice versa, see Supplemental File 3: Switchbot video. Finally, the

Switchbot prototype has been converted back to onboard control electronics using

a low-cost ARM processor. The controller code has been converted from LabVIEW

into c.
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Figure 5.22: Internal view of the six motor Switchbot prototype.
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Figure 5.23: Clamp mechanism, consisting of 1) arms, 2) coupled spur gears, 3)

servo motor, 4) driving spur gear, 5) swivel bearings, 6) rollers, 7) opposite pole

magnets, 8) and 9) locking teeth, and 10) infrared LED and phototransistor.

5.6 SkySweeper

5.6.1 Mechanical Design

The prototype is made almost entirely of 3D-printed and off-the-shelf parts.

This accelerated manufacturing and enabled more flexibility in the design than

traditional machining methods.

The elbow joint pivotally connects the two links and houses an SEA with

a motor and spring system connected in series. The motor is mounted on the first

link such that the motor shaft is coaxial with the axis of rotation between the

two links. The spring system includes two right-handed torsion springs which are

mounted coaxially to the motor shaft. Opposite ends of the springs are rigidly

attached to the second link. The motor shaft is rigidly coupled to an intermediate

arm which engages one of the two free ends of the torsion springs, depending on

the direction of rotation.

The actuated clamp mechanism is shown in detail in Fig. 5.23, it consists



127

of two arms (1) which are coupled to rotate symmetrically with spur gears (2). A

hobby-grade servo motor (3) is used to open and close the arms. A spur gear (4)

connected to the output shaft of the servo meshes with the spur gear connected

to one of the arms. The servo motor is geared down to increase the torque. The

distal ends of the arms house swivel bearings (5), which hold the rollers (6) with a

slip fit; there are four degrees of freedom: all three rotational and axial translation.

Opposite pole magnets in the rollers (7) align and pull the rollers together. When

the two rollers connect, they form a semicircular profile around the top half of the

cable. The design is currently optimized for an 11mm diameter. The magnets also

provide enough force to prevent the clamp from opening in the event of a power

loss. When the clamp is in pivoting position, the arms are rotated to vertical and

teeth on the rollers (8) engage with teeth on the arms (9), constraining relative

rotation between the rollers and the arms. When the clamp is in rolling position,

the arms are rotated far enough apart to disengage the teeth, but the magnets keep

the rollers together. In the open position, the arms are rotated far enough to pull

the magnets apart. A thin layer of silicone rubber is added to the ABS plastic roller

(6) to increase friction. Square polycarbonate tubing is used to connect the clamps

to the joint, wires are routed through the interior of the tube. For the constructed

prototype, mL = 0.233kg and L = 0.158m for a total mass of 0.466kg and total

length of 0.632m. Other parameters are JL = 0.023kgm2, JJ = 0.0017kgm2,

k = 0.331Nm/rad, σ = 0.754Nm, and ζ = 0.036Nms/rad.

5.6.2 Electronics

An infrared LED and phototransistor pair are mounted in each clamp to

detect when a cable is within grasp, see Fig. 5.23, (10). One rotary potentiometer

measures the angle between the SEA shaft and the first link (γ − θ). The second

potentiometer measures the angle between the SEA shaft and the second link,

which is the same as the angle of the spring deflection (α − γ). Subtracting the

two measurements from π gives the link separation angle (θ+π−α), which is useful

in the controller. The brushed DC motor in the SEA is driven with an off-the-shelf

full H-bridge via a pulse width modulated signal. The finite state machine from
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Figure 5.24: Comparison of simulation and experimental results for the inchworm

maneuver.

section 3.3 is implemented on an Arduino Uno microcontroller, which measures the

analog sensors and commands the actuators accordingly. We chose a 1000 mAh

two cell lithium polymer battery for its low mass and high energy density.

5.6.3 Experimental Results

Data was logged from the prototype while performing the inchworm ma-

neuver on a tensioned rope, see Sec. 1.4.4. Both the simulation and experimental

results may be seen in Fig. 5.24, see also Supplemental File 4: SkySweeper video,

which includes video of the inchworm, swing-up, and backflip maneuvers. The

simulation results match the experimental results, although greater spring deflec-

tion is predicted in simulation. Some slipping on the rope occurs while switching

clamp positions and the vibrational modes of the rope, which are excited by the

movement of the robot, were not included in the simulation. These unmodeled

effects contribute to the discrepancy between the plots.
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Chapter 6

Conclusions

Several novel robotic systems have been presented in this dissertation.

Though the systems are varied, they share a unified Lagrangian dynamics model

and a design methodology that utilizes modern additive manufacturing and em-

bedded electronics. The systems can be used in a wide variety of applications

including border patrol, security, search & rescue, maintenance, construction, and

entertainment. Furthermore, the processes followed in developing dynamical mod-

els, designing control systems, processing sensor data, and building physical pro-

totypes is broadly applicable to the field of robotics. It is the hope of the author

that the methods and tools presented in this dissertation will serve to enable the

reader in his or her own robotic system development.

6.1 Robotic Systems

6.1.1 DC Motor Dynamometer

An inexpensive, open source dynamometer has been presented that can

accurately and precisely fit parameters to a given electromechanical model of a

motor. The motor model developed also proves to be useful in the dynamic for-

mulation of mobile robotic systems. The integrated sensor suite measures several

physical values in the system. The reconfigurable mechanical design allows for

testing a wide range of motors.
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With the motor dynamics identified, a model-based control algorithm may

be developed for a robotic system. Future work may include in situ testing in a

robotic system, using similar algorithms to those developed here, to characterize

and track the motor parameters for motor health monitoring as well as estimating

external friction parameters, such as rolling resistance over different terrain. Online

parameter identification may even be incorporated into the controller [64].

6.1.2 Switchblade

Switchblade is a robotic platform that combines the treads of a tank with

the balancing behavior of an inverted pendulum to reach a new level of agility.

The robot can overcome obstacles on the order of its length instead of the order

of its height. A two degree of freedom hip joint enables the current prototype

to perform complicated maneuvers with a relatively simple internal structure and

wiring. A working prototype has been created that can “stand up” on its own

and maintain its balance. This platform has potential for applications in search

& rescue, mine exploration, homeland security, border patrol, reconnaissance, and

ordnance disposal.

We have presented a novel approach to the problem of stair climbing utiliz-

ing feedback control on this platform. Successful experimental results have been

shown for a prototype traversing across a narrow beam. This method of stair

climbing enables a relatively small robot (length scale on the same order as the

height of a single step) to climb stairs without any external or expensive sensors

and without any dedicated stair climbing hardware. As mentioned in Sec. 5.5.3,

the mass distribution of the current robot is not optimized for climbing standard-

sized stairs. Better performance could be achieved by decreasing the mass and

shifting the center of mass of the chassis further from the tread assembly pivot

point (alternatively, the tread assembly pivot point could move closer to the cen-

ter of the tread assemblies). Stiction and friction could be significantly reduced

by switching from discrete tread links to a timing belt and changing the design of

the tread assemblies to avoid rubbing. All of these changes would act to increase

the control authority of the system. In future work, the robot could perform auto-
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mated parameter identification of a staircase (i.e. rise and run) from sensor data,

such as from a camera or LIDAR [65] [66] [67]. The robot could then calculate

a trajectory and controller to climb the staircase using the algorithms outlined in

this paper. One or more robots could be used to autonomously map a multi-story

building, such as in a fire-fighting or urban warfare scenario. The perching con-

troller could be expanded to balance on uneven geometry, adaptively estimating

the point of contact, possibly with additional sensors [68].

The Switchblade nano and Switchbot prototypes have both shown signifi-

cant promise in delivering the maneuverability of the full-scale design in a smaller,

and lower cost, form factor.

6.1.3 SkySweeper

SkySweeper is a unique cable-locomoting robot with few actuators, but

many configurations, which leads to multiple modes of locomotion. The dynamics

were derived for the different clamp configurations and finite state machine con-

trollers were developed to perform different maneuvers. Both the dynamics and

controller were integrated into a simulation to validate the concept. Finally, a pro-

totype was constructed and shown to behave as predicted in simulation. Compared

to existing systems, SkySweeper is smaller, less complex, cheaper, and earlier in

the development process. SkySweeper is designed to locomote quickly, and as such

may be better suited to applications other than inspection, such as entertainment.

In future work, the simulation environment can be used to optimize the

spring stiffness, link length, and different maneuvers’ control input sequences to

minimize the cost of transport, defined as the power required to transport mass

over distance. The dynamical model can also be expanded to include the dynamics

of the rope including curvature, such as in a suspension bridge. The clamp design

may be improved to better handle high dynamic loads and could be modified to

enable climbing vertical pipes or rope. Cameras and other sensors for inspection

applications can readily be integrated into the robot. Specific to the power line

environment, energy could be harvested from the surrounding electric field, which

would enable long duration deployments.
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6.2 Development Tools

6.2.1 Dynamics

A systematic process for applying Lagrangian dynamics to robotic sys-

tems has been presented. This process is broadly applicable to many classes of

robots, as illustrated by its application to systems as different as Switchblade and

SkySweeper. Two methods have been presented to impose physical constraints

on the dynamic system. Common constraints, such as backlash, stiction, and no-

slip between a wheel and the ground, have been illustrated. The strength of this

method is that it can be programmatically applied to robotic systems, drastically

reducing the time necessary to develop dynamic equations of motion for a new

system for simulation and control system design.

6.2.2 Controls

Linearization and discretization of nonlinear systems for implementation on

digital control electronics has been shown to be a generally useful technique. Feed-

forward controls are also used to stabilize unstable equilibrium manifolds. Integral

control increases robustness to parameter and sensor error. This control design

can also be achieved in a programmatic fashion for rapid prototyping. For systems

with dynamics that change significantly, lookup tables for gain scheduling can be

employed where subsequent entries are linearly interpolated for a smooth control

law. Lookup tables can also be programmatically calculated. A method of friction

compensation has been presented and validated that decreases the nonlinear effect

of stiction and coulomb friction on a system.

6.2.3 Estimation

The presentation of the complementary filter (Sec. 4.1), as applied to esti-

mating body angle with respect to gravity, while not new, is compact and broadly

useful in mobile robotic systems. An advanced technique to estimate velocity from

quadrature encoder signals has been presented. The method is accurate over a
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wide velocity range, particularly at low velocity, where other common estimation

techniques fail, either with high discretization noise or phase delay. The method

also smoothes process noise at higher speeds without adding phase delay. The def-

inition of theM number is useful to define different velocity regimes, normalizing

for encoder resolution and sampling time. The method of parameter identification

developed for the DC motor dynamometer is useful not only for motor parameters,

but may also be used to identify friction, rotational inertia, or other parameters of

robotic systems that may be difficult to characterize otherwise.

6.2.4 Prototypes

Over the development of literally dozens of prototypes, several best prac-

tices have become apparent. The recent advent of desktop additive manufacturing

(3D printing) both increases the potential complexity of rapid prototyped parts

and significantly decreases the time of the design-build-test iteration cycle. The

explosion of low-cost, capable embedded electronics dovetails with the prolifera-

tion of 3D printers, easing the creation of mobile robotic systems. Custom printed

circuit boards can simplify wiring, ease debugging, and increase robustness.
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Appendix A

Nick’s Rules of Robotics

1. Never disassemble a working robot.

2. If it works the first time, you’re testing it wrong.

3. When in doubt, lubricate.

4. Never underestimate the estimation problem.

5. If specs for a part are listed differently in two places, they’re both wrong.

6. Glue, tape, and zip-ties are not engineering solutions (though they might

work in a pinch).

7. Do not leave lithium polymer batteries charging unattended.

8. Always have a complete CAD model, including screws and fasteners, before

constructing your robot.

9. Avoid using slip rings if at all possible.

10. Clamping collars are always better than set screws. If you have to use set

screws (e.g. for cost reasons), use a driving flat and an appropriate thread-

locking agent.

11. Always check polarity before plugging a component into a power source.
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Appendix B

Lagrangian Dynamics Code

The code in this appendix will generate the equations of motion for a mobile

inverted pendulum (e.g. myMIP or eyeFling) and generate the linear quadratic

regulator (LQR) state feedback gains for the linearized and discretized system

with and without state augmentation with integrated regulator error. The gener-

alized coordinates and parameters are defined in Fig. 2.2. The code can directly

be translated to other robotic systems by adding coordinates, etc. This code is

implemented in MATLAB and makes use of the Symbolic Math Toolbox, although

similar code may be written for Mathematica or Python (with the SymPy library).

The code below may also be found in Supplemental File 6: eyeFlingEOM.m

1 % eyeFlingEOM.m

2 % derive equations of motion for a mobile inverted pendulum

3 % all coordinates (gamma, x, phi, theta) absolute CCW from vertical

4

5 % define symbolic variables as real numbers

6 % generalized coordinates and their time derivatives, and input u

7 syms gamma x phi theta gammad xd phid thetad gammadd xdd phidd ...

thetadd u real

8 % geometrical coordinates

9 syms xw yw xc yc real

10 % system parameters, lengths, masses, inertias, motor torque, etc.

11 syms Lc r mw mc g Jw Jc Jm sw bw real

137



138

12

13 % define vectors of generalized coordinates

14 q = [gamma; x; phi; theta]; % positions

15 qd = [gammad; xd; phid; thetad]; % velocities

16 qdd = [gammadd; xdd; phidd; thetadd]; % accelerations

17

18 % define positions of centers of mass of rigid bodies in x and y

19 % coordinates in terms of generalized coordinates

20

21 % wheel COM location (same as center of rotation)

22 xw = x;

23 yw = r;

24

25 % chassis COM location

26 xc = xw - Lc*sin(theta);

27 yc = yw + Lc*cos(theta);

28

29 % take jacobian of x and y positions with respect to generalized

30 % coordinates and multiply by vector of velocities to find

31 % velocities of centers of mass of rigid bodies

32

33 % velocity of wheel COM

34 xwd = jacobian(xw,q) * qd;

35 ywd = jacobian(yw,q) * qd;

36

37 % velocity of chassis COM

38 xcd = jacobian(xc,q) * qd;

39 ycd = jacobian(yc,q) * qd;

40

41 % kinetic energies, using velocities of centers of mass defined

42 % above. 0.5*[mass*(COM velocity)ˆ2 +

43 % rotational inertia*(rotational velocity)ˆ2] for rigid bodies

44 % 0.5*motor inertia*(relative velocity)ˆ2 for motor

45 Tw = 0.5*(mw*(xwdˆ2 + ywdˆ2) + Jw*phidˆ2);

46 Tc = 0.5*(mc*(xcdˆ2 + ycdˆ2) + Jc*thetadˆ2);

47 Tm = 0.5*(Jm*(gammad-thetad)ˆ2);

48

49 % gravitational potential energy, use y coordinates of centers



139

50 % of mass of rigid bodies

51 V = mw*g*yw + mc*g*yc;

52

53 % Lagrangian

54 L = Tw + Tc + Tm - V;

55

56 % set up Euler-Lagrange equations

57 one = simplify(collect(jacobian(L,qd))); % delta L / delta qd

58 two = simplify(collect(jacobian(one,[q' qd'])));

59 three = two*[qd; qdd]; % d/dt (delta L / delta qd)

60 four = transpose(simplify(collect(jacobian(L,q)))); % delta L / ...

delta q

61 five = three - four;

62

63 % get mass matrix, coefficients of acceleration terms

64 M = simplify(jacobian(five,qdd));

65

66 % everything else is F

67 F = simplify(five - M*qdd);

68

69 % generalized forces/torques

70 B = [ 2;

71 0;

72 0;

73 -2];

74 % u: + torque exerted on gamma, - torque exerted on theta

75 nu = length(u);

76

77 % motor back EMF damping

78 Z = bw*(gammad-thetad);

79

80 % define constraints in form Ac(q)*qd = 0

81

82 % no-slip constraint, xd + r*phid = 0

83 Ans = [0 1 r 0];

84

85 % no backlash constraint, gammad + phid = 0

86 Awa = [1 0 -1 0];
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87

88 % concatenate constraints

89 Ac = [Awa; Ans];

90

91 % find orthonormal basis of null space of constraint matrix

92 S = null(Ac);

93 z = sqrt(sum(S.ˆ2));

94 S = [S(:,1)./z(1) S(:,2)./z(2)]; % columns form orthonormal ...

null space basis

95

96 % SB doesn't include superfluous coordinates gamma or x

97 SB = S(end-1:end,:);

98

99 % substitute superfluous variables

100 xexp = -r*phi;

101 xdexp = -r*phid;

102 Fc = subs(F,[x; xd; gamma; gammad],[xexp; xdexp; phi; phid]);

103 Zc = subs(Z,[x; xd; gamma; gammad],[xexp; xdexp; phi; phid]);

104

105 % reduced coordinate vectors

106 qr = [phi; theta];

107 qrd = [phid; thetad];

108 n = length(qr);

109

110 % net motor torque

111 tau = sw*u-Zc;

112

113 % determine equilibrium manifold

114 eq1 = S'*(-Fc + B*tau);

115

116 % impose zero velocities

117 eq2 = subs(eq1,qd,zeros(2*n,1));

118

119 % solve for expression for uˆ*

120 f1qs = eq2(1);

121 f1j = jacobian(f1qs,u);

122 ustar = simplify(-(f1qs - u*f1j)/f1j);

123
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124 % define intermediate variable to solve for sin(thetaˆ*)

125 syms sintheta real

126 f2qs = eq2(2);

127 f2qss = subs(f2qs,sin(theta),sintheta);

128 f2j2 = jacobian(f2qss,sintheta);

129 sinthetastar = simplify(collect(-(f2qss - sintheta*f2j2)/f2j2));

130 sinthetastar = simplify(subs(sinthetastar,u,ustar));

131

132 % for a mobile inverted pendulum on level ground, both uˆ* and

133 % thetaˆ* are equal to zero

134

135 %% define system parameters

136

137 mc = 1.150; % kg of chassis

138 mw = 2*0.064; % kg of both wheels

139 r = 0.141/2; % m

140 Lc = r; % m

141 Jw = 0.5*mw*rˆ2; %kg*mˆ2

142 Jc = mc*Lcˆ2; %kg*mˆ2

143 V = 11.1; % V, nominal 3 cell LiPo

144

145 % wheel motor parameters from DC motor dynamometer, Pololu 37D, ...

18.75:1

146 rw = mean([3.4903 3.3826]);

147 kw = mean([0.1409 0.1455]);

148 sw = kw*V/rw;

149 bw = (kwˆ2)/rw;

150 Jm = 4.5894e-04; % kg*mˆ2

151

152 g = 9.81; % m/sˆ2

153 ts = 0.01; % sec, = 100 Hz

154

155 %% linearize to get controller

156

157 % substitute parameter values into expressions

158 Ss = subs(S);

159 SBs = subs(SB);

160 Fcs = subs(Fc);
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161 Zs = subs(Zc);

162 StMSs = subs(S'*M*S);

163

164 % complete nonlinear dynamics

165 Anl = SBs*(StMSs\(-Ss'*(Fcs+B*Zs)));
166 Bnl = SBs*(StMSs\(Ss'*B*sw*u));
167

168 % take jacobian of nonlinear dynamics with state vector and ...

input vector

169 Al = jacobian(Anl, [qr; qrd]);

170 Bl = jacobian(Bnl, u);

171

172 % substitute values into jacobian, can be a slow process for

173 % larger systems; can save execution time by writing symbolic

174 % expression for jacobian to a file and calling it as a

175 % function (programmatically)

176 Als = subs(Al, [qr; qrd], zeros(2*n,1));

177 Bls = subs(Bl, [qr; qrd], zeros(2*n,1));

178

179 % construct state space system matrices

180 A = [zeros(n) eye(n); double(Als)];

181 Bc = [zeros(n,nu); double(Bls)];

182

183 % set up integral control, xi dot = phi = C * x

184 C = [1 0 0 0];

185 ni = size(C,1);

186 Ai = [A zeros(2*n,ni); C zeros(ni)];

187 Bi = [Bc; zeros(ni,nu)];

188

189 % define Q and R weighting matrices

190 Qi = 1/(pi)ˆ2;

191 Q = [1/(2*pi)ˆ2 1/(0.125)ˆ2 1/(6*pi)ˆ2 1/(3.5)ˆ2];

192 R = 1/(0.5)ˆ2;

193

194 % create diagonal matrices

195 Qi = diag([Q Qi]);

196 Q = diag(Q);

197
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198 % solve discrete algebraic riccati equation (DARE) with

199 % Matlab's lqrd command, which automatically converts

200 % continuous [A, B] to discrete time with sample time ts

201

202 [K,~,~] = lqrd(A,Bc,Q,R,ts);

203 K = -K % flip sign to fit convention u = K*x, output to screen

204

205 % with integral control

206 [Ki,~,~] = lqrd(Ai,Bi,Qi,R,ts);

207 Ki = -Ki % flip sign to fit convention u = K*x, output to screen

This code can be expanded to programmatically calculate all the entries

of a lookup table for gain scheduling for a system with dynamics that change

significantly along a trajectory of interest. The equilibrium manifold can be defined

as a set of vectors of equilibrium positions and then a discrete time state feedback

matrix can be found for each vector (by linearizing, etc. about that vector) with

the use of a for loop. The lookup table of state feedback matrices can be stored in

a three dimensional array.



Appendix C

MATLAB Plotting Code

The code in this appendix creates a sequence of PNG images animating a

mobile inverted pendulum (e.g. myMIP or eyeFling) from a MATLAB/Simulink

simulation. The sequence of PNG images can be converted to a movie file with

Apple QuickTime Player 7 (not the most recent version). The code below may

also be found in Supplemental File 7: eyeFlingPlot.m

1 % eyeFlingPlot.m

2 % animate eyeFling simulation

3

4 % get data from simulation

5 t = scope state.time;

6 phiP = scope state.signals.values(:,1);

7 thetaP = scope state.signals.values(:,2);

8 uP = scope u.signals.values(:,1);

9

10 % load data file with parameter values

11 load eyeFling

12 msP = P(1);

13 mcP = P(2);

14 LcP = P(3);

15 RadP = P(9);

16

17 % no-slip condition

144
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18 xP = -RadP*phiP;

19

20 MAKE IMG SEQ = 1;

21 prefix = 'eyeFlingPlot'; % filename

22 path = ['animations/']; % directory to store images

23 count = 0;

24

25 % circle for wheel

26 plot sprocket = RadP*[cos([0:.1:2*pi]') sin([0:.1:2*pi]')];

27

28 % line for chassis

29 plot chassis = [0 0; 0 LcP];

30

31 % sprocket COM location (same as joint location)

32 xs = xP;

33 ys = RadP;

34

35 % chassis COM location

36 xc = xs - LcP*sin(thetaP);

37 yc = ys + LcP*cos(thetaP);

38

39 % Total COM location

40 xcm = (msP*xs + mcP*xc)/(msP+mcP);

41 ycm = (msP*ys + mcP*yc)/(msP+mcP);

42

43 % 25 frames per second with data at 100 Hz

44 fpl=4;

45

46 % bound figure to fit min and max position locations

47 dim = [min(xs)-LcP max(xs)+LcP min(ys)-LcP max(ys)+LcP];

48

49 fig = figure('Position',[0 0 720 480]);

50 for i = 1:fpl:length(t)

51

52 % rotate chassis by thetaP, then offset position by xs and ys

53 chassis = plot chassis*[cos(thetaP(i)) sin(thetaP(i)); ...

-sin(thetaP(i)) cos(thetaP(i))];

54 chassis(:,1) = chassis(:,1) + xs(i);
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55 chassis(:,2) = chassis(:,2) + ys;

56

57 % rotate sprocket by phiP, then offset position by xs and ys

58 sprocket = plot sprocket*[cos(phiP(i)) sin(phiP(i)); ...

-sin(phiP(i)) cos(phiP(i))];

59 sprocket1(:,1) = sprocket(:,1) + xs(i);

60 sprocket1(:,2) = sprocket(:,2) + ys;

61

62 %Plot that stuff

63 plot(chassis(:,1),chassis(:,2),'g','LineWidth',2)

64 hold on; % don't overwrite current figure

65 plot(sprocket1(:,1),sprocket1(:,2),'b')

66 plot(sprocket1(1,1),sprocket1(1,2),'r.') % marker to ...

observe sprocket rotation

67 plot(xj(i),yj(i),'go','MarkerSize',10*abs(uP(i))+1) % plot ...

control effort

68

69 % plot ground

70 plot([0 dim(2)],[0 0],'k')

71 plot([0 dim(1)], [0 0],'k')

72

73 % plot centers of mass

74 plot(xc(i),yc(i),'go','MarkerSize',8*sqrt(mcP))

75 plot(xcm(i),ycm(i),'ko','MarkerSize',8*sqrt(mcP+msP))

76

77 hold off;

78 axis 'equal'

79 axis(dim)

80

81 % title with current time

82 title(['t: ',num2str(round(100*t(i))/100),' sec.']);

83 drawnow

84 pause(0.1);

85

86 if MAKE IMG SEQ

87 %save png with incremental filename

88 saveas(fig,strcat(path,prefix,num2str(count),'.png'));

89 count = count + 1;
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90 end

91

92 if i == 1

93 pause(0.5)

94 end

95

96 end

This code can be expanded to plot more complex systems or geometric shapes (e.g.

Fig. 3.4, the stair climbing animation in Supplemental File 1: Switchblade video,

and the spring force meter in the simulation animations in Supplemental File 4:

SkySweeper video).
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