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As high-throughput sequence data becomes increasingly used in a variety of 

fields, there is a growing need for computational tools that facilitate analyzing and 

interpreting the sequence data to extract biological meaning.  To date, several 

computational tools have been developed to analyze raw and processed sequence data in 

a number of contexts.  However, many of these tools primarily focus on well-studied, 

reference organisms, and in some cases, such as the visualization of molecular signatures 

in expression data, there is a scarcity or complete absence of tools.  Furthermore, the 

compendium of genome-scale data in publicly accessible databases can be leveraged to 

inform new studies.  The focus of this dissertation is the development of computational 

tools and methods to analyze high-throughput genome-scale sequence data, as well as 

applications in mammalian, algal, and bacterial systems.  Chapter 1 introduces the 

challenges of analyzing high-throughput sequence data.  Chapter 2 presents the Signature 

Visualization Tool (SaVanT), a framework to visualize molecular signatures in user-
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generated expression data on a sample-by-sample basis.  This chapter demonstrates that 

SaVanT can use immune activation signatures to distinguish patients with different types 

of acute infections (influenza A and bacterial pneumonia), and determine the primary cell 

types underlying different leukemias (acute myeloid and acute lymphoblastic) and skin 

disorders.  Chapter 3 describes the Algal Functional Annotation Tool, which biologically 

interprets large gene lists, such as those derived from differential expression experiments.  

This tool integrates data from several pathway, ontology, and protein domain databases 

and performs enrichment testing on gene lists for several algal genomes.  Chapter 4 

describes a survey of the Chlamydomonas reinhardtii transcriptome and methylome 

across various stages of its sexual life cycle.  This chapter discusses the identification and 

function of 361 gamete-specific and 627 zygote-specific genes, the first base-resolution 

methylation map of C. reinhardtii, and the changes in chloroplast methylation throughout 

key stages of its life cycle.  Chapter 5 presents a comparative genomics approach to 

identifying previously uncharacterized bacterial microcompartment (BMC) proteins.  

Based on genomic proximity of genes in 131 fully-sequenced bacterial genomes, this 

chapter describes new putative microcompartments and their function. 
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Chapter 1: 
 
 
 
 
 

Computational tools and methods to analyze 
high-throughput sequence data 
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As high-throughput sequence data becomes increasingly used in a variety of fields 

(Reuter et al., 2015), there is a growing need for computational tools that facilitate the 

analysis and interpretation of sequence data to extract biological meaning.  Illustrating 

the diversity of biological applications for high-throughput sequencing, its utility has 

moved beyond genome sequencing and measuring transcript abundance to also include 

surveys of protein binding (Furey, 2012), methylation profiling (Krueger et al., 2012), 

chromatin conformation (Stadhouders et al., 2013), replication and transcription activity 

(Ingolia et al., 2009), and large-scale spatial genome structure (van de Werken et al., 

2012).  Furthermore, as these studies become more common, the compendium of 

processed sequence data gets larger – the repository Gene Expression Omnibus (GEO) 

(Barrett et al., 2013) contains over one million expression profiles, MSigDB 

(Subramanian et al., 2005) catalogs more than ten thousand molecular signatures, and 

more than 150 million single nucleotide polymorphisms (SNPs) are described in dbSNP 

(Sherry et al., 2001). 

The vast amount of publicly-accessible sequence data can be leveraged to extract 

additional biological information or re-use in new contexts (Rung and Brazma, 2013).  

For example, thousands of previously-published cell-specific gene expression profiles 

have been combined to identify genes specifically regulated in immunological cell types 

and skin diseases (Swindell et al., 2013).  Classifiers trained on gene expression profiles 

have been used to determine the tissue of origin for metastatic tumors (Ojala et al., 2011), 

and as well as determine tissue-specific expression (Kohane and Valtchinov, 2012).  

However, sequence data that can be reutilized and used in new contexts is not limited to 

expression profiles.  Genome sequence data, when taken in combination across hundreds 
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of genomes, can also provide key biological insights (Rogers and Gibbs, 2014).  Similar 

approaches can also be applied to methylation data (McCarthy et al., 2014) and protein 

binding profiles (Ouma et al., 2015).  However, the vast collection of data necessitates 

the development of computational tools, methods, and algorithms to efficiently 

interrogate and interpret existing data. 

 To date, several computational tools have been developed to analyze raw and 

processed sequence data in a number of contexts.  For example, tools have been created 

to functionally interpret large lists of genes (or coordinates) derived from large, genome-

scale experiments.  Such tools include Gene Set Enrichment Analysis (GSEA) 

(Subramanian et al., 2005), the Database for Annotation, Visualization, and Integrated 

Discovery (DAVID) (Huang da et al., 2009), Ingenuity (Kramer et al., 2014), Genomic 

Regions Enrichment of Annotations Tool (GREAT) (McLean et al., 2010).  Many of 

these tools are routinely used in differential gene expression analyses and ChIP-seq 

experiments.  The general methodology of these tools is the computation of statistics that 

describe the enrichment or difference between the gene or coordinate set and a 

background set of genes, such as by performing hypergeometric (DAVID, Ingenuity, 

GREAT) or Kolmogorov–Smirnov (GSEA) tests.  

However, even in such contexts, these tools primarily support widely-studied 

reference genomes that have been manually curated over a large span of time, such as the 

human and mouse genomes.  Such tools do not generally support relatively newer 

genomes, such as those of green alga and diatoms, which hinders genomic analyses in 

these species.  To this end, this dissertation describes the development of tools tailored to 

these organisms (Chapter 3). 
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Regardless of model species, there is a scarcity of tools to integrate other genome-

scale data that may provide biological insights, such as molecular signatures.  Signatures 

are collections of genes that are characteristic of a particular cell type, developmental 

time point, or disease state (Nilsson et al., 2009).  Several large-scale efforts by consortia 

aiming to systematically profile cell types of interest have generated large compendiums 

of expression data from which molecular signatures can be generated.  For example, the 

Immunological Genome Project (ImmGen) (Heng et al., 2008) has profiled 214 cell types 

important in immunology.  Furthermore, thousands of expression profiles from GEO may 

also be used to generate signatures, and tens of thousands are catalogued in repositories 

such as MSigDB.  However, despite their utility, determining the behavior of these 

signatures in newly-generated expression experiments is not straightforward.  Chapter 2 

of this dissertation describes SaVanT, a tool to visualize molecular signatures. 

Lastly, advances in the cost-effectiveness of sequencing can be leveraged to 

design multifaceted approaches to understanding the biology of species such as algae and 

bacteria.  For example, genome-wide transcript abundance data can be supplemented 

with the methylation status of each gene to create a multi-layered model.  An example of 

a combinatorial approach is shown in Chapter 4, which describes a study that interrogates 

methylation, expression, and genomic variation in Chlamydomonas reinhardtii 

throughout its sexual life cycle.  Another approach, which leverages the breadth of 

complete bacterial genome sequences, is used to identify proteins involved in the 

formation of bacterial microcompartments (see Chapter 5).  Bacterial microcompartments 

are polyhedral structures present in bacterial cytosol that encapsulate distinct metabolic 

processes (Yeates et al., 2010).   
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Chapter 2: 
 
 
 
 
 

SaVanT -- a web-based tool for the sample-level 
visualization of molecular signatures in 

gene expression profiles 
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Abstract 

Molecular signatures are collections of genes characteristic of a particular cell type, 

tissue, disease, or perturbation.  Signatures can also be used to interpret expression 

profiles generated from heterogeneous samples.  Large collections of gene signatures 

have been previously developed and catalogued in the MSigDB database.  In addition, 

several consortia and large-scale projects have systematically profiled broad collections 

of purified primary cells, molecular perturbations of cell types, and tissues from specific 

diseases, and the specificity and breadth of these datasets can be leveraged to create 

additional molecular signatures.  However, to date there are few tools that allow the 

visualization of individual signatures across large numbers of expression profiles.  

Signature visualization of individual samples allows, for example, the identification of 

patient subcategories a priori on the basis of well-defined molecular signatures.  Here, we 

generate and compile 10,985 signatures (636 newly-generated and 10,349 previously 

available from MSigDB) and provide a web-based Signature Visualization Tool 

(SaVanT; http://pathways.mcdb.ucla.edu/savant), to visualize these signatures in user-

generated expression data.  We show that using SaVanT, immune activation signatures 

can distinguish patients with different types of acute infections (influenza A and bacterial 

pneumonia).  Furthermore, SaVanT is able to identify the prominent signatures within 

each patient group, and identify the primary cell types underlying different leukemias 

(acute myeloid and acute lymphoblastic) and skin disorders.  The development of 

SaVanT facilitates large-scale analysis of gene expression profiles on a patient-level basis 

to identify patient subphenotypes, or potential therapeutic target pathways. 
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Background 

Molecular signatures are collections of genes with an associated biological interpretation.  

For example, signatures can be generated from genes associated with specific cell types, 

diseases, or perturbations of cells by stimulatory signals.  Signatures are typically 

generated from expression experiments that identify genes upregulated in a specific 

subset of samples when compared to a much broader group.  Once generated, these 

signatures can be used to provide insights into the composition of heterogeneous samples.  

Signatures can also be composed of genes specifically associated with a disease.  For 

example, molecular signatures from breast cancer samples have identified subphenotypes 

indistinguishable by traditional histological analyses [1], which can in turn be used 

predict tumor invasiveness and inform patient treatment options. 

 

Generally, the generation of molecular signatures involves the identification of a set of 

genes that are overexpressed in a subgroup of samples compared to the entire dataset.  

Several methods have been used to identify these genes, such as hierarchical clustering 

[2], machine learning [3], and neural networks [4].  In combination, these methods have 

led to the creation of thousands of molecular signatures and gene sets, which are 

compiled in established repositories such as MSigDB [5].   Furthermore, some signatures 

are manually curated for certain biochemically-determined pathways, such as 

REACTOME [6] and KEGG [7].   In general, the most popular current pathway 

enrichment tools, Ingenuity [8], GSEA [5], and DAVID [9], calculate enrichment of 

molecular signatures that have the highest statistical overlap with a gene list that the user 

has filtered by analysis of their expression study.  By limiting the analysis to a single 
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gene list, all of the individual variation of each expression profile is lost and further 

subcategorization of patient groups based upon these signatures is not immediately 

possible.  Therefore the utility of signatures is limited by a lack of tools that are able to 

visualize the actual expression level of the signature genes within each user-supplied 

individual expression profile.   

 

Furthermore, the current repositories of signatures are not exhaustive, and their signatures 

can be supplemented by additional signatures generated from large studies.  For example, 

several consortia and large-scale projects have collected expression data with the aim of 

systematically profiling, and in some cases generating molecular signatures for, a diverse 

group of cells, tissues, and diseases.  These include collections of immune cell subsets 

[10-13], other primary and cultured cells [14, 15], tissue types [16, 17], cytokine-

activated immune cells [18, 19], and skin diseases [20, 21].  Collectively, these projects 

have produced over 3,000 expression profiles for more than 600 cell and tissue types.  

The specificity and breadth of these expression experiments can be leveraged to create 

molecular signatures that are not currently represented in MSigDB that can then be used 

to interpret new datasets.   

 

To overcome the limitations of existing tools, we have generated 636 new signatures 

from expression dataset collections and supplemented them with 10,349 signatures from 

MSigDB for a total of 10,985 signatures and have developed a web-based Signature 

Visualization Tool (SaVanT), to visualize these signatures in user-generated expression 

profiles.  SaVanT is able to analyze user-supplied expression studies and visualize the 
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average gene expression of molecular signatures across each individual expression 

profile.  Through several examples, we show that SaVanT can be used to distinguish 

inflammatory patterns found between patients with different acute infections, identify the 

neoplastic cell type in leukemia samples, and provide insights into the immune response 

of several skin diseases.  Through the visualization of molecular signatures, SaVanT 

allows users to efficiently leverage existing biological knowledge to interpret 

transcriptomic experiments. 
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Results 
 

Generation of New Signatures 

To leverage the vast number of reference expression profile repositories and add to 

MSigDB, we generated new molecular signatures using publicly-available expression 

data retrieved from a collection of repositories and sources (Table 1).  Normalized data 

was used where available from the original study, but in lieu of preprocessed data, frozen 

robust multiarray analysis (fRMA) [22] normalization was used.  Samples corresponding 

to biological replicates were averaged at the probe level, and genes with multiple probes 

were represented by the probe with the highest average intensity across all samples.  In 

total, 4,677 microarray profiles were retrieved to generate molecular signatures. 

 

Molecular signatures were generated from expression data by computing genome-wide 

‘proportional median’ (PM) values.  PM values are calculated by dividing the intensity of 

a microarray probe in a particular sample by the median intensity of the same probe 

across all samples in the corresponding data series.  Therefore, high PM values are 

assigned to genes that are highly expressed in a certain sample relative to the others.  A 

molecular signature consists of the top genes ranked in order of descending PM values.  

PM values have been previously used to generate signatures for a variety of skin diseases 

and conditions [20].  We note that the signatures we generated are ranked lists, while the 

signatures of MSigDB are unranked collections of genes.  Using this PM metric, 636 

ranked molecular signatures were created.  The signatures represent a diverse set of 

biological states, as a consequence of the variety of sources used: we generated signatures 
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for 158 tissue types, 277 cell types, 70 primary cells, 114 molecular perturbations, and 17 

skin diseases. 

 

To assess and validate the use of proportional median values to create molecular 

signatures, we have annotated the genes from two representative signatures generated 

from the Human Primary Cell Atlas: an adipocyte-specific signature and a keratinocyte-

specific signature (Supplementary Tables 1 and 2).  The annotations assigned to the top 

genes (by PM rank) are characteristic of the distinct biology underlying the samples.  For 

example, the adipocyte signature contains genes required for fatty acid processing and 

metabolism (fatty acid binding protein 4 [FABP4]), lipogenic proteins (lipogenic protein 

1/THRSP), regulatory genes (adipogenesis regulatory factor/C10orf116), as well as genes 

known to be uniquely expressed in adipocytes, such as adiponectin (ADIPOQ).  

Similarly, the keratinocyte signature contains several keratin genes (keratin 6AII, keratin 

14I, keratin 2II), envelope proteins (small proline-rich protein 1A [SPRR1A]), and 

regulatory genes involved in keratinocyte differentiation and maintenance (keratinocyte 

differentiation-associated protein [KRTDAP]).  The enrichment of adipocyte- and 

keratinocyte-related annotations for the top genes in each respective signature suggests 

that our PM values capture genes that are specifically representative of the cell type or 

state of interest. 

  

Visualization of Molecular Signatures 

In order to visualize molecular signatures across any expression data of interest, we have 

developed the Signature Visualization Tool (SaVanT).  SaVanT is a web-accessible tool 
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that accepts matrices of gene expression data (i.e., from RNA-seq or microarray 

experiments) and produces a visual representation of the signatures across the submitted 

samples as an interactive heatmap.  The key step in the SaVanT pipeline is to create a 

‘sample-signature’ matrix whose columns are the input samples and the rows are the 

user-selected molecular signatures (Figure 1).  Using the default settings, every cell in 

this matrix contains the average value of signature genes for a particular signature-sample 

combination.  This average value is computed by looking up the top genes for the user-

selected signature in the SaVanT database and subsequently averaging the values of these 

genes in a particular sample in the user-submitted data.  The sample-signature matrix is 

displayed by SaVanT as an interactive heatmap that can be optionally clustered along its 

axes.  Alternatively, the ‘sample-signature’ matrix can consist of sums instead of mean 

values, and can be converted to z-scores or filtered by minimum values. 

 

In order to enhance the visualization of the ‘sample-signature’ matrix, several optional 

steps can be used to transform the user-uploaded data or the ‘sample-signature’ matrix 

(Figure 2).  For example, to dampen the effects of the large dynamic ranges characteristic 

of RNA-seq data, expression values can be log-transformed, converted to ranks, as well 

as shown as the difference from the mean value of all the samples.  Once the sample-

signature matrix is computed, its values can be converted to z-scores.  On the submission 

page, an interactive description of the steps to create the matrix is shown, reflecting the 

chosen parameters.  Clustering of the sample-signature matrix can be performed using 

several distance metrics (Euclidean distance or Pearson correlation) as well as different 

linkage parameters.  The heatmap produced by SaVanT is interactive, and additional 
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information (such as the sample-signature combination, p-values, and the matrix value) 

are shown as hover-over boxes. 

 

Analyses of Example Datasets 

To demonstrate the capabilities of SaVanT, we provide biologically-motivated examples 

using publicly-available datasets retrieved from GEO [23].  

 

Cell type identification within tissue samples 

SaVanT can be used to identify the relative abundance of cell types found within tissue 

samples.  To demonstrate this capability, we retrieved samples from patients with acute 

myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) (Figure 3A).   Using 

a panel of signatures representing different hematopoietic cells, SaVanT produced 

heatmaps identifying the principal cell type in AML samples (monocytes) and ALL 

samples (B cells).  Furthermore, the heatmap identifies one ALL sample that may be 

misclassified (the first sample in the heatmap), although we could not find supporting 

metadata to support this. 

 

Discrimination of disease phenotypes 

Often the main goals of expression studies of clinical samples are to distinguish between 

clinical phenotypes and to identify the molecular signatures that differ between 

phenotypes to provide insight on disease pathogenesis.  To demonstrate the ability of 

SaVanT to accomplish both goals, expression data was retrieved from a study profiling 

expression of whole blood samples collected daily from 17 patients with either influenza 
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A or bacterial pneumonia [24].  The study found enrichment of interferon, cell cycle 

genes, apoptosis, DNA damage, B cell , CD4+ T helper cells, and neutrophils in bacterial 

versus influenza-induced pneumonia.  We used SaVanT to visualize equivalent gene 

signatures from MSigDB or cell type-specific expression profiles on a per-patient basis, 

filtering for those signatures that are statistically different between bacterial pneumonia 

and influenza.  The clustered heatmap produced by SaVanT separates the acute infection 

samples into two groups: the predominantly influenza cluster was characterized by higher 

signature values for type I interferon pathways, B cells, cell-cycle, DNA damage, and 

apoptosis.  The bacterial pneumonia cluster was composed of 92% bacterial pneumonia 

samples, characterized by higher neutrophil signature values relative to influenza.  Five 

other samples were clustered as outliers.  In addition to identifying the main clusters 

between disease groups, the SaVanT analysis displays intra-disease differences in 

molecular and cellular pathways.  For example, there are two different bacterial 

subclusters in which one group has higher B cell signatures with the other higher in 

neutrophils.   Furthermore, upon examination of the influenza group we can see that the 

misclassified bacterial pneumonia samples still have higher neutrophil signatures, but 

also have high type 1 interferon signatures, potentially identifying the reason for 

misclassification and targeting for further investigation.    If the group structure of the 

submitted samples is known, as in this case, the tag ‘SAVANT_GROUP’ can be included 

in the submitted expression matrix with integers designating group membership of the 

samples, which automatically runs an ANOVA analysis on the signature-sample matrix. 

  

Dermatoses 
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Lastly, in order to illustrate the analyses of heterogenous tissue samples, we used 

expression data from a collection of skin diseases [20] and analyzed these using 

signatures for specific cell types found in the skin (Figure 3C).   The predominant 

signature for most samples is that of keratinocytes, which illustrates that while our 

signature values cannot be interpreted as quantitative estimates of cell type fractions, a 

higher relative value does reflect that the underlying cell type is more abundant than 

those associated with other lower scoring signatures. Within these dermatoses we also 

find several samples that have weaker keratinocyte signatures, but higher values for other 

signatures (designated by blue boxes).  For example, the macrophage signature is 

elevated in leprosy lesions (erythema nodosum leprosum, lepromatous leprosy, and 

reversal reaction), as would be expected from the presence of macrophages within the 

granulomas in these biopsies.  Furthermore, signatures derived from hematopoietic cells 

are elevated in tissue samples from patients with Stevens Johnsons disease, which are 

collected from blister fluid, along with mucosis fungoides, a T cell neoplasm, and 

sarcoidosis, which also typically has abundant granulomas.  Overall, these signatures help 

interpret the components of these skin biopsies, which may in large part underlie the 

differences in gene expression between them. 

 

 

Discussion 

SaVanT provides an interactive platform for compiling and visualizing molecular 

signatures in order to interpret user-submitted data.  The newly-generated signatures that 

supplement MSigDB, leverage the specificity and depth of large expression studies to 
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capture the biology pertaining to specific diseases, cell types, and immune states.  The 

functions of the top genes in our signatures often reflect signature-specific characteristics.  

The adipocyte and keratinocyte signatures as representative examples, with each of their 

top 10 genes reflecting specific association to the differentiated cell lineages. 

 

Moreover, in addition to compiling a large database of signatures, we also provide a 

framework that enables their mining and visualization to help interpret user-supplied 

expression data.  To this end, we provide very flexible options to enable different 

analyses.  For example, signature values can be filtered to only display those above a 

certain threshold or clustered using a number of different options.  Furthermore, SaVanT 

has been optimized to quickly scan more than 10,000 signatures in seconds, thus allowing 

all signatures to be computed against user-uploaded expression matrices. 

 

The power of SaVanT is illustrated in the examples shown in Figure 3.  The fundamental 

objectives of each analysis are distinct: identification of inflammatory states that 

differentiate two clinical presentation (Fig. 3A), identification of the neoplastic cell types 

in a liquid tumor (Fig. 3B), and gaining insights into the composition of heterogeneous 

biopsies (Fig. 3C).  Viral infection, including influenza is characterized by a strong 

induction of a type I interferon antiviral response, composed of genes induced by 

interferon α and β stimulation [25, 26], and this is reflected in the signature-sample 

heatmap.  The neoplastic cell type present in a leukemia can be seen using the signature-

sample heatmap, and misclassified patients identified.  Lastly, the cell type compositions 

of skin biopsies from a number of dermatoses can be determined from expression data.  
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In the future we plan to continue to develop SaVanT by adding more signatures, along 

with additional features that facilitate the interpretation of complex expression patterns. 

 

Methods 

Expression Data Retrieval and Processing 

Microarray data was retrieved from Gene Expression Omnibus (GEO) for samples and 

series listed in Supplementary Table 2.  Raw CEL files were processed using the ‘affy’ R 

package and were normalized using the ‘frma’ R package in conjunction with the 

respective ‘frmavecs’ package for the platform used.  Intensities for multiprobe genes 

were taken from the probe with the highest mean expression across all samples.  Samples 

annotated as biological replicates in the GEO series description were combined by taking 

the average value of probes in the replicates. 

 

Signature Generation 

‘Proportional median’ (PM) values were calculated by dividing the intensity of a probe in 

a particular sample by its median value across all samples.  For PM calculations, datasets 

from different sources were considered independently (i.e., the denominator was 

composed of only samples within a certain series when calculating PMs for a sample 

within that series).  PMs were calculated at the probe level, and PM values were 

subsequently associated with gene symbols using the platform-specific annotation tables 

from GEO. 

 

Signature Visualization 
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In order to produce the sample-signature heatmap with SaVanT, the user-submitted 

expression matrix is processed by a series of scripts.  Ambiguous values, such as those 

for gene symbols appearing multiple times in the user input, are resolved by taking the 

average value of all instances.  Optional transformations (log-transformation and/or 

conversion to ranks, in that order) are performed on the input expression matrix, and the 

‘sample-signature matrix’ is created by taking the average (or sum, optionally) of 

expression values for genes in every signature-sample pair.  If conversion to z-scores is 

selected, the mean and standard deviation is computed for the entire ‘sample-signature’ 

matrix, which are used to convert the values to z-scores.  Clustering is optionally 

performed by the R ‘heatmaps.2’ function of the ‘gplots’ package.  The signature-sample 

matrix is displayed interactively using a modified version of the HighCharts JavaScript 

library. 
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Tables 

 

Table 1 

Expression Data Source 
 

Reference Platform Normalization # Signatures 
Generated 
 

 

Human U133A/GNF1H Gene 
Atlas (BioGPS) 
 

 

Su AI et al. (2004) PNAS 
 

Affymetrix 
U133A/GNF1H 

 

fRMA 
 

84 

Mouse MOE430 Gene Atlas 
(BioGPS) 
 

Lattin JE et al. (2008) 
Immunome Res. 

Affymetrix 430 2.0 
Array 

fRMA 94 

Immunological Genome 
Project (ImmGen) 
 

Heng TS et al. (2008) 
Nature Immunology 

Affymetrix Gene 1.0 
ST  

Pre-processed 214 

Human Cell Types (Swindell) Swindell WR et al. (2013) 
BMC Genomics 

Affymetrix Genome 
Plus 2.0 

fRMA 24 

Macrophage Activation 
 

Xue J et al. (2014) 
Immunity 

Illumina HumanHT-
12 V3.0 

Pre-processed 80 

Primary Cell Atlas Mabbott NA (2013) BMC 
Genomics 

Affymetrix U133 
Plus 2.0 

fRMA 26 

Skin Diseases (“DermDB”) Inkeles MS et al. (2015) 
J. Invest. Dermatol. 

Mixed fRMA 23 

 

 

Supplementary Table 1 

Gene 
Symbol PM Value Gene Description Notes 

FABP4 577.23 Fatty Acid Binding Protein 4, Adipocyte 
encodes the fatty acid binding protein found in 
adipocytes;  FABPs roles include fatty acid 
uptake, transport, and metabolism. 

ADIPOQ 563.24 Adiponectin, C1Q And Collagen Domain 
Containing 

gene is expressed in adipose tissue 
exclusively; encoded protein circulates in the 
plasma and is involved with metabolic and 
hormonal processes 

COL3A1 519.97 Collagen, Type III, Alpha 1 

encodes the pro-alpha1 chains of type III 
collagen, a fibrillar collagen that is found in 
extensible connective tissues such as skin, 
lung, uterus, intestine and the vascular system 

ADH1B 494.47 Alcohol Dehydrogenase 1B (Class I), Beta 
Polypeptide 

a member of the alcohol dehydrogenase 
family;  metabolize a wide variety of 
substrates, including ethanol, retinol, other 
aliphatic alcohols, hydroxysteroids, and lipid 
peroxidation products 

THRSP 468.30 Thyroid Hormone Responsive; Lipogenic 
Protein 1 

shown to be expressed in liver and 
adipocytes, particularly in lipomatous modules 
; also found to be expressed in lipogenic 
breast cancers 
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RBP4 458.86 Retinol Binding Protein 4, Plasma  

COL1A2 452.31 Collagen, Type I, Alpha 2  

SRPX 350.80 Sushi-Repeat Containing Protein, X-Linked  

TIMP4 338.46 TIMP Metallopeptidase Inhibitor 4  

C10orf116 317.78 Adipogenesis Regulatory Factor  

 

Supplementary Table 2 

Gene 
Symbol 

PM 
Value Gene Description Notes 

SPRR1A 1238.97 Small Proline-Rich Protein 1A 

cross-linked envelope protein of 
keratinocytes; first appears in the cell 
cytosol, but ultimately becomes cross-
linked to membrane proteins by 
transglutaminase 

KRTDAP 1186.22 Keratinocyte Differentiation-Associated Protein 
may function in the regulation of 
keratinocyte differentiation and 
maintenance of stratified epithelia 

KRT6A 1175.16 Keratin 6A, Type II 

consist of basic or neutral proteins which 
are arranged in pairs of heterotypic keratin 
chains coexpressed during differentiation of 
simple and stratified epithelial tissues 

KRT14 1173.01 Keratin 14, Type I 

usually found as a heterotetramer with two 
keratin 5 molecules, a type II keratin;  
together they form the cytoskeleton of 
epithelial cells.  

SPRR1B 1040.41 Small Proline-Rich Protein 1B 

cross-linked envelope protein of 
keratinocytes; diseases associated with 
SPRR1B include epidermolytic 
hyperkeratosis 

FLG 883.49 Filaggrin  
FLG2 880.08 Filaggrin Family Member 2  
DSC1 772.33 Desmocollin 1  
KRT2 678.45 Keratin 2, Type II  
DMKN 647.12 Dermokine  
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Figures 

 

 

 

Figure 1. Constructing ‘Signature-Sample’ Matrix From Expression Data 

The SaVanT pipeline converts user-submitted expression data into a signature-sample 

matrix whose columns are the submitted samples and rows are the user-selected 

molecular signatures.  By default (shown above), every cell in this matrix contains the 

average value of signature genes for a particular signature-sample combination. The 

breakdown for an example cell in the signature-sample matrix is shown in red.  The 

matrix value is computed by looking up the genes in any given user-selected signature in 

the SaVanT database (middle panel) and subsequently averaging the values of these 

genes in a particular sample in the user-submitted data (left and right panels). Above, 

samples are designated with numbers, genes with letters, and signatures with Roman 

numerals. 

 

 

Sample 
1 2 3 ... 

A 0.25 2.5 0 ... 
B 0.5 0.1 5 ... 
C 1 0.5 0.75 ... 
D 0.75 0.75 0.8 ... 
E 0 1 0 ... 
F 0.4 0.7 0.1 ... 
... ... ... ... ... 

G
en

e 

Signature 

I II III 
A B C 
D E F 
... ... ... 

G
en

es
 

In
 S

ig
na

tu
re

 I II III 
1 0.5 0.25 0.7 

2 1.625 0.55 0.6 

3 0.4 2.5 0.88 

Signature 

Sa
m

pl
e 

USER-SUBMITTED 
EXPRESSION DATA 

COMPILED 
SIGNATURES 
IN DATABASE 

‘SIGNATURE-SAMPLE’ 
MATRIX 
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Figure 2. SaVanT Pipeline 

In the first step, an expression matrix containing values for genes in several samples is 

optionally converted to ranked lists of genes in samples or log-transformed.  The 

expression matrix is then converted into a signature-sample matrix as described in Figure 

1 using the selected signatures.  Optionally, the signature-sample matrix is converted to 

differences from mean values, converted to z-scores, and/or clustered to produce a final 

heatmap. 

 

 

 

 

 

 

 

Expression Matrix 

Optional 
Transformations 

convert to 
ranks 

Selected Signatures 

Signature-Sample 
Matrix 

Output 
Heatmap 

Optional Transformations 

V
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Matrix File Name: GSE6269-GPL96_series_matrix-2.filteredForEcoliAndInfluenza.txt
 
Using top 50 genes in each signature
 
Input Matrix Transformations: convert to ranks
Heatmap Display Options: values converted to z-scores
 
Sample clustering metric: Euclidean Distance (Ward Linkage) 
Signature clustering metric: Euclidean Distance (Complete Linkage)
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Matrix File Name: DebugMatrix3
 
Using top 50 genes in each signature
 
Input Matrix Transformations: log-transform, use difference from mean value
 
Sample clustering metric: Pearson Correlation (Single Linkage) 
Signature clustering metric: Pearson Correlation (Complete Linkage)
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Figure 3. SaVanT Distinguishes Between Patients, Cell Types, and Underlying 

Biology 

(A) SaVanT output for expression data from acute myeloid leukemia (AML) and acute 

lymphoblastic leukemia (ALL) patients.  (B) SaVanT output for expression data from 99 

patients with acute infections (either Influenza A or bacterial pneumonia).  The infection 

type for each patient is represented by a hatched circle (Influenza A) or filled triangle 

(bacterial pneumonia).  The numbers below each cluster quantify the proportion of 

infection types.  (C) SaVanT output for expression data from different skin diseases. 

  



	

27 

References 

1. Pedraza V, Gomez-Capilla JA, Escaramis G, Gomez C, Torne P, Rivera JM, Gil 
A, Araque P, Olea N, Estivill X, Farez-Vidal ME: Gene expression signatures in 
breast cancer distinguish phenotype characteristics, histologic subtypes, and 
tumor invasiveness. Cancer 2010, 116:486-496. 

 
2. Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, Etienne-

Grimaldi MC, Schiappa R, Guenot D, Ayadi M, et al: Gene expression 
classification of colon cancer into molecular subtypes: characterization, 
validation, and prognostic value. PLoS Med 2013, 10:e1001453. 

 
3. Bartsch G, Jr., Mitra AP, Mitra SA, Almal AA, Steven KE, Skinner DG, Fry DW, 

Lenehan PF, Worzel WP, Cote RJ: Use of Artificial Intelligence and Machine 
Learning Algorithms with Gene Expression Profiling to Predict Recurrent 
Nonmuscle Invasive Urothelial Carcinoma of the Bladder. J Urol 2016, 
195:493-498. 

 
4. Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, Berthold F, 

Schwab M, Antonescu CR, Peterson C, Meltzer PS: Classification and 
diagnostic prediction of cancers using gene expression profiling and artificial 
neural networks. Nat Med 2001, 7:673-679. 

 
5. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, 

Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP: Gene set 
enrichment analysis: a knowledge-based approach for interpreting genome-
wide expression profiles. Proc Natl Acad Sci U S A 2005, 102:15545-15550. 

 
6. Fabregat A, Sidiropoulos K, Garapati P, Gillespie M, Hausmann K, Haw R, Jassal 

B, Jupe S, Korninger F, McKay S, et al: The Reactome pathway 
Knowledgebase. Nucleic Acids Res 2016, 44:D481-487. 

 
7. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M: Data, 

information, knowledge and principle: back to metabolism in KEGG. Nucleic 
Acids Res 2014, 42:D199-205. 

 
8. Kramer A, Green J, Pollard J, Jr., Tugendreich S: Causal analysis approaches in 

Ingenuity Pathway Analysis. Bioinformatics 2014, 30:523-530. 
 
9. Huang da W, Sherman BT, Lempicki RA: Systematic and integrative analysis 

of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 
4:44-57. 

 
10. Heng TS, Painter MW, Immunological Genome Project C: The Immunological 

Genome Project: networks of gene expression in immune cells. Nat Immunol 
2008, 9:1091-1094. 



	

28 

 
11. Kim CC, Lanier LL: Beyond the transcriptome: completion of act one of the 

Immunological Genome Project. Curr Opin Immunol 2013, 25:593-597. 
 
12. Shay T, Kang J: Immunological Genome Project and systems immunology. 

Trends Immunol 2013, 34:602-609. 
 
13. Xue J, Schmidt SV, Sander J, Draffehn A, Krebs W, Quester I, De Nardo D, 

Gohel TD, Emde M, Schmidleithner L, et al: Transcriptome-based network 
analysis reveals a spectrum model of human macrophage activation. 
Immunity 2014, 40:274-288. 

 
14. Mabbott NA, Baillie JK, Brown H, Freeman TC, Hume DA: An expression atlas 

of human primary cells: inference of gene function from coexpression 
networks. BMC Genomics 2013, 14:632. 

 
15. Swindell WR, Johnston A, Voorhees JJ, Elder JT, Gudjonsson JE: Dissecting the 

psoriasis transcriptome: inflammatory- and cytokine-driven gene expression 
in lesions from 163 patients. BMC Genomics 2013, 14:527. 

 
16. Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, 

Hayakawa M, Kreiman G, et al: A gene atlas of the mouse and human protein-
encoding transcriptomes. Proc Natl Acad Sci U S A 2004, 101:6062-6067. 

 
17. Lattin JE, Schroder K, Su AI, Walker JR, Zhang J, Wiltshire T, Saijo K, Glass 

CK, Hume DA, Kellie S, Sweet MJ: Expression analysis of G Protein-Coupled 
Receptors in mouse macrophages. Immunome Res 2008, 4:5. 

 
18. Teles RM, Graeber TG, Krutzik SR, Montoya D, Schenk M, Lee DJ, 

Komisopoulou E, Kelly-Scumpia K, Chun R, Iyer SS, et al: Type I interferon 
suppresses type II interferon-triggered human anti-mycobacterial responses. 
Science 2013, 339:1448-1453. 

 
19. Montoya D, Inkeles MS, Liu PT, Realegeno S, Teles RM, Vaidya P, Munoz MA, 

Schenk M, Swindell WR, Chun R, et al: IL-32 is a molecular marker of a host 
defense network in human tuberculosis. Sci Transl Med 2014, 6:250ra114. 

 
20. Inkeles MS, Scumpia PO, Swindell WR, Lopez D, Teles RM, Graeber TG, Meller 

S, Homey B, Elder JT, Gilliet M, et al: Comparison of molecular signatures 
from multiple skin diseases identifies mechanisms of immunopathogenesis. J 
Invest Dermatol 2015, 135:151-159. 

 
21. Wong D, Kea B, Pesich R, Higgs BW, Zhu W, Brown P, Yao Y, Fiorentino D: 

Interferon and biologic signatures in dermatomyositis skin: specificity and 
heterogeneity across diseases. PLoS One 2012, 7:e29161. 

 



	

29 

22. McCall MN, Bolstad BM, Irizarry RA: Frozen robust multiarray analysis 
(fRMA). Biostatistics 2010, 11:242-253. 

 
23. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, 

Marshall KA, Phillippy KH, Sherman PM, Holko M, et al: NCBI GEO: archive 
for functional genomics data sets--update. Nucleic Acids Res 2013, 41:D991-
995. 

 
24. Parnell GP, McLean AS, Booth DR, Armstrong NJ, Nalos M, Huang SJ, Manak J, 

Tang W, Tam OY, Chan S, Tang BM: A distinct influenza infection signature 
in the blood transcriptome of patients with severe community-acquired 
pneumonia. Crit Care 2012, 16:R157. 

 
25. Randall RE, Goodbourn S: Interferons and viruses: an interplay between 

induction, signalling, antiviral responses and virus countermeasures. J Gen 
Virol 2008, 89:1-47. 

 
26. Haller O, Kochs G, Weber F: The interferon response circuit: induction and 

suppression by pathogenic viruses. Virology 2006, 344:119-130. 
  



30 

Chapter 3: 
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Algal Functional Annotation Tool: a web-based
analysis suite to functionally interpret large
gene lists using integrated annotation and
expression data
David Lopez1, David Casero1, Shawn J Cokus1, Sabeeha S Merchant2,3 and Matteo Pellegrini1,3*

Abstract

Background: Progress in genome sequencing is proceeding at an exponential pace, and several new algal
genomes are becoming available every year. One of the challenges facing the community is the association of
protein sequences encoded in the genomes with biological function. While most genome assembly projects
generate annotations for predicted protein sequences, they are usually limited and integrate functional terms from
a limited number of databases. Another challenge is the use of annotations to interpret large lists of ‘interesting’
genes generated by genome-scale datasets. Previously, these gene lists had to be analyzed across several
independent biological databases, often on a gene-by-gene basis. In contrast, several annotation databases, such as
DAVID, integrate data from multiple functional databases and reveal underlying biological themes of large gene
lists. While several such databases have been constructed for animals, none is currently available for the study of
algae. Due to renewed interest in algae as potential sources of biofuels and the emergence of multiple algal
genome sequences, a significant need has arisen for such a database to process the growing compendiums of
algal genomic data.

Description: The Algal Functional Annotation Tool is a web-based comprehensive analysis suite integrating
annotation data from several pathway, ontology, and protein family databases. The current version provides
annotation for the model alga Chlamydomonas reinhardtii, and in the future will include additional genomes. The
site allows users to interpret large gene lists by identifying associated functional terms, and their enrichment.
Additionally, expression data for several experimental conditions were compiled and analyzed to provide an
expression-based enrichment search. A tool to search for functionally-related genes based on gene expression
across these conditions is also provided. Other features include dynamic visualization of genes on KEGG pathway
maps and batch gene identifier conversion.

Conclusions: The Algal Functional Annotation Tool aims to provide an integrated data-mining environment for
algal genomics by combining data from multiple annotation databases into a centralized tool. This site is
designed to expedite the process of functional annotation and the interpretation of gene lists, such as those
derived from high-throughput RNA-seq experiments. The tool is publicly available at http://pathways.mcdb.
ucla.edu.
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Background
Next-generation sequencers are revolutionizing our abil-
ity to sequence the genomes of new algae efficiently and
in a cost effective manner. Several assembly tools have
been developed that take short read data and assemble
it into large continuous fragments of DNA. Gene pre-
diction tools are also available which identify coding
structures within these fragments. The resulting tran-
scripts can then be analyzed to generate predicted pro-
tein sequences. The function of these protein sequences
are subsequently determined by searching for close
homologs in protein databases and transferring the
annotation between the two proteins. While some ver-
sions of the previously described data processing pipe-
line have become commonplace in genome projects, the
resulting functional annotation is typically fairly minimal
and includes only limited biological pathway information
and protein structure annotation. In contrast, the inte-
gration of a variety of pathway, function and protein
databases allows for the generation of much richer and
more valuable annotations for each protein.
A second challenge is the use of these protein-level

annotations to interpret the output of genome-scale
profiling experiments. High-throughput genomic tech-
niques, such as RNA-seq experiments, produce mea-
surements of large numbers of genes relevant to the
biological processes being studied. In order to inter-
pret the biological relevance of these gene lists, which
commonly range in size from hundreds to thousands
of genes, the members must be functionally classified
into biological pathways and cellular mechanisms.
Traditionally, the genes within these lists are exam-
ined using independent annotation databases to assign
functions and pathways. Several of these annotation
databases, such as the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [1], MetaCyc [2], and Pfam [3],
include a rich set of functional data useful for these
purposes.
However, presently researchers must explore these dif-

ferent knowledge bases separately, which requires a sub-
stantial amount of time and effort. Furthermore,
without systematic integration of annotation data, it
may be difficult to arrive at a cohesive biological picture.
In addition, many of these annotation databases were
designed to accommodate a single gene search, a meth-
odology not optimal for functionally interpreting the
large lists of genes derived from high-throughput geno-
mic techniques. Thus, while modern genomic experi-
ments generate data for many genes in parallel, their
output must often still be analyzed on a gene-by-gene
basis across different databases. This fragmented analysis
approach presents a significant bottleneck in the pipe-
line of biological discovery.

One approach to solving this problem is integrating
information from multiple annotation databases and
providing access to the combined biological data from a
single comprehensive portal that is equipped with the
proper statistical foundations to effectively analyze large
gene lists. For example, the DAVID database integrates
information from several pathway, ontology, and protein
family databases [4]. Similarly, Ingenuity Pathway Analy-
sis (IPA) provides an integrated knowledge base derived
from published literature for the human genome [5].
The integrated functional information and annotation
terms are then assigned to lists of genes and for some
analyses, enrichment tests are performed to determine
which biological terms are overrepresented within the
group of genes. By combining the information found in
a number of knowledge bases and performing the analy-
sis of lists of genes, these tools permit the efficient pro-
cessing of high-throughput genomic experiments and
thus expedite the process of biological discovery. How-
ever, most of these integrated databases have been
developed for the analysis of well-annotated and thor-
oughly studied organisms, and are lacking for many
newly genome-enabled organisms.
One large group of organisms for which integrated

functional databases are lacking are the algae. The algae
constitute a branch in the plant kingdom, although they
form a polyphyletic group as they do not include all the
descendants of their last common ancestor. As many as
10 algal genomes have been sequenced, including those
of a red alga and several chlorophyte algae, with several
more in the pipeline [6-11]. Algal genomic studies have
provided insights into photosymbiosis, evolutionary rela-
tionships between the different species of algae, as well
as their unique properties and adaptations. Recently,
there has been a renewed interest in the study of algal
biochemistry and biology for their potential use in the
development of renewable biofuels [reviewed in [12]].
This has promoted the study of varied biochemical pro-
cesses in diverse algae, such as hydrogen metabolism,
fermentation, lipid biosynthesis, photosynthesis and
nutrient assimilation [13-20]. One of the most studied
algae is Chlamydomonas reinhardtii. It has a sequenced
genome that has been assembled into large scaffolds
that are placed on to chromosomes [6]. For many years,
Chlamydomonas has served as a reference organism for
the study of photosynthesis, photoreceptors, chloroplast
biology and diseases involving flagellar dysfunction
[21-25]. Its transcriptome has recently been profiled by
RNA-seq experiments under various conditions of nutri-
ent deprivation [[26,27], unpublished data (Castruita M.,
et al.)].
While Chlamydomonas has been extensively charac-

terized experimentally, annotation of its genome is still

Lopez et al. BMC Bioinformatics 2011, 12:282
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approximate. Although KEGG categorizes some C. rein-
hardtii gene models into biological pathways, other
databases - such as Reactome [28] - do not directly pro-
vide information for proteins of this green alga. Compli-
cating the analysis of Chlamydomonas genes is the fact
that there are two assemblies of the genome in use (ver-
sion 3 and version 4) and multiple sets of gene models
have been developed that are catalogued under diverse
identifiers: Joint Genome Institute (JGI) FM3.1 protein
IDs for the version 3 assembly, and JGI version FM4
protein IDs and Augustus version 5 IDs for the version
4 assembly [11,29]. The differences between these
assemblies are significant; for example, the version 3
assembly contains 1,557 continuous segments of
sequence while the fourth version contains 88. Although
the version 3 assembly is superseded by version 4, users
presently access version 3 because of the richer user-
based functional annotations. In addition, other sets of
gene predictions have been generated using a variety of
additional data, including ESTs and RNA-seq data, to
more accurately delineate start and stop positions and
improve upon existing gene models. One such gene pre-
diction set is Augustus u10.2. As such, there are a vari-
ety of gene models between different assemblies being
simultaneously used by researchers, presenting compli-
cations in genomics studies. To facilitate the analysis of
Chlamydomonas genome-scale data, we developed the
Algal Functional Annotation Tool, which provides a
comprehensive analysis suite for functionally interpret-
ing C. reinhardtii genes across all available protein iden-
tifiers. This web-based tool provides an integrative data-
mining environment that assigns pathway, ontology, and
protein family terms to proteins of C. reinhardtii and
enables term enrichment analysis for lists of genes.
Expression data for several experimental conditions are
also integrated into the tool, allowing the determination
of overrepresented differentially expressed conditions.

Additionally, a gene similarity search tool allows for
genes with similar expression patterns to be identified
based on expression levels across these conditions.

Construction and Content
Integration of Multiple Annotation Databases
The Algal Functional Annotation Tool integrates anno-
tation data from the biological knowledge bases listed in
Table 1. Publically available flat files containing annota-
tion data were downloaded and parsed for each indivi-
dual resource. Chlamydomonas reinhardtii proteins
were assigned KEGG pathway annotations by means of
sequence similarity to proteins within the KEGG genes
database [1]. MetaCyc [2], Reactome [28], and Panther
[30] pathway annotations were assigned to C. reinhardtii
proteins by sequence similarity to subsets of UniProt
IDs annotated in each corresponding database. In all
cases, sequence similarity was determined by BLAST.
BLAST results were filtered to contain only best hits
with an E-value < 1e-05.
Gene Ontology (GO) [31] terms were downloaded

from the Chlamydomonas reinhardtii annotation pro-
vided by JGI. These GO terms were associated with
their respective ancestors in the hierarchical ontology
structure to include broader functional terms and pro-
vide a complete annotation set. Pfam domain annota-
tions were assigned by direct search against protein
domain signatures provided by Pfam. InterPro [32] and
user-submitted manual annotations are based on those
contained within JGI’s annotation of the C. reinhardtii
genome [11]. These methods were applied to four types
of gene identifiers commonly used for C. reinhardtii
proteins: JGI protein identifiers (versions 3 and 4) and
Augustus gene models (versions 5 and 10.2). In total,
over 12,600 unique functional annotation terms were
assigned to 65,494 C. reinhardtii gene models spanning
four different gene identifier types by these methods
(Table 2). These assigned annotations may be explored
for single genes using a built-in keyword search tool as
well as an integrated annotation lookup tool which dis-
plays all annotations for a particular identifier.

Assignment of Annotation from Arabidopsis thaliana
To extend the terms associated with C. reinhartdii
genes, functional terms were inferred by homology to
the annotation set of the plant Arabidopsis thaliana
(thale cress). Identification of orthologous proteins was
based on sequence similarity and subsequent filtering of
the results by retaining only mutual best hits between
the two sets of protein sequences. The corresponding
Arabidopsis thaliana annotation was used to supple-
ment GO terms and was similarly expanded to contain
term ancestry. The A. thaliana annotations of the Map-
Man Ontology [33] and MetaCyc Pathway database [2]

Table 1 List of annotation resources integrated into the
Algal Functional Annotation Tool
Resource URL Reference

KEGG http://www.genome.jp/kegg/ [1]

MetaCyc http://www.metacyc.org/ [2]

Pfam http://pfam.sanger.ac.uk [3]

Reactome http://www.reactome.org/ [28]

Panther http://www.pantherdb.org/pathway [30]

Gene Ontology http://www.geneontology.org/ [31]

InterPro http://www.ebi.ac.uk/interpro [32]

MapMan
Ontology

http://mapman.gabipd.org/ [33]

KOG http://www.ncbi.nlm.nih.gov/COG/grace/
shokog.cgi

[35]

Primary databases used to functionally annotate gene models and integrated
into the Algal Functional Annotation Tool.
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were also used to provide more complete annotation
coverage of the C. reinhardii genome.

Functional Term Enrichment Testing
The hypergeometric distribution is commonly used to
determine the significance of functional term enrich-
ment within a list of genes. In this test, the occurrence
of a functional term within a gene list is compared to
the background level of occurrence across all genes in
the genome to determine the degree of enrichment. A
p-value based on this test can be calculated from four
parameters: (1) the number of genes within the list, (2)
the frequency of a term within the gene list, (3) the
total number of genes within the genome, and (4) the
frequency of a term across all genes in the genome.
This test effectively distinguishes truly overrepresented
terms from those occurring at a high frequency across
all genes in the genome and therefore within the gene
list as well. The cumulative hypergeometric test assigns
a p-value to each functional term associated with genes
within a given list, and all functional terms are ranked
by ascending p-value (i.e. by descending levels of enrich-
ment). Huang et al. reviews the use of the hypergeo-
metric test for functional term enrichment [34]. The
Algal Functional Annotation Tool computes hypergeo-
metric p-values using a Perl wrapper for the GNU
Scientific Library cumulative hypergeometric function
written in C to provide a quick and accurate implemen-
tation of this statistical test.

Dynamic Visualization of KEGG Pathway Maps
Individual pathway maps from KEGG provide informa-
tion on protein localization within the cell, compart-
mentalization into different cellular components, or of
reactions within a larger metabolic process. Visualization
of proteins from gene lists onto pathway maps is useful
for their interpretation. The Algal Functional Annota-
tion Tool utilizes the publicly available KEGG applica-
tion programming interface (API) for pathway
highlighting. The information linking C. reinhardtii pro-
teins to identifiers within the KEGG database is used to
determine the subset of KEGG IDs within the supplied
gene list associated with a particular pathway. The Algal
Functional Annotation Tool also deduces which proteins
within the pathway are located within the genome of C.

reinhardtii but not found in the gene list and sends the
corresponding identifiers to the KEGG API to be high-
lighted in a different background color. This API inter-
face is implemented using the SOAP architecture for
web applications.

Integration of Expression Data
The expression levels of C. reinhardtii genes have been
experimentally characterized under numerous conditions
using high-throughput methods such as RNA-seq
[[26,27], unpublished data (Castruita M., et al.)]. These
expression data were compiled and analyzed to deter-
mine which genes are over- and under-expressed in
each experimental condition. The expression data was
preprocessed to normalize the counts for uniquely map-
pable reads in any experiment. Genes exhibiting greater
than a two-fold change in expression compared to aver-
age expression across all conditions with a Poisson
cumulative p-value of less than 0.05 were considered
differentially expressed. Using this data, C. reinhardtii
genes were associated with conditions in which they
were over- and under-expressed.
The compiled expression data was also analyzed to

find functionally related genes based on their expression
levels across the different experimental conditions
[[26,27], unpublished data (Castruita M., et al.)]. Genes
demonstrating low variance of expression across all
samples were not considered. This analysis was per-
formed for three representations of the expression data:
absolute counts, log counts, and log ratios of expression.
By this method, C. reinhardtii genes are each associated
with 100 genes with the most similar expression pat-
terns to determine potentially functionally related genes.

Gene Identifier Conversion
Due to the existence of several protein identifier types
(FM3.1, FM4, Au5, Au10.2), different identifiers are
associated with an individual protein within the Chlamy-
domonas genome. In order to extend annotations from
one identifier type to another, matching protein identi-
fiers are deduced by sequence similarity filtering for
mutual best hits between identifiers using BLAST.
Matching identifiers with 100% sequence coverage are
kept, and the rest of the mutual best hits are filtered to
include only those proteins with matches with at least

Table 2 Number of gene identifiers associated with annotation databases
Identifier Type Total Gene IDs KEGG Reactome Panther Gene Ontology MapMan KOG Pfam InterPro

JGI v3.0 14598 5348 2740 1147 6563 5214 9139 7166 7532

JGI v4.0 16706 4232 1949 1085 7568 3171 9973 7305 8151

Augustus v5.0 16888 4686 2983 1673 4334 3160 5123 8202 5202

Augustus u10.2 17302 4583 3326 1913 6956 3892 8977 8691 7464

Number of Chlamydomonas reinhardtii identifiers with at least one functional annotation for each primary database, shown per identifier type.
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75% coverage. Potential ambiguities involving proteins
similar to multiple other proteins are resolved by con-
sidering only the reciprocal best hit from the BLAST
query in the opposite direction. The information derived
by this analysis is used to convert gene identifiers
between different types, which allows the Algal Annota-
tion Tool to work with multiple protein identifier types.

Web-Based Interface and Updates
The web interface of the Algal Functional Annotation
Tool consists of a set of portals that give access to the
different types of analyses available. Results are shown
within expandable/collapsible HTML tables that display
annotation information along with the statistical results
of the analysis. When expanded, the results table shows
which gene identifiers contain a specific annotation along
with further information regarding matching gene identi-
fiers and BLAST E-values. Updates to the Algal Func-
tional Annotation Tool are semi-automated using a set of
Perl scripts that parse and process updated flat files from
the various integrated annotation databases at regular
intervals. Currently, functional data from the primary
annotation databases is set to be updated every 4 months.

Utility and Discussion
Comprehensive, Integrated Data-Mining Environment
The Algal Functional Annotation Tool is composed of
three main components - functional term enrichment
tests (which are separated by type), a batch gene identi-
fier conversion tool, and a gene similarity search tool. A
‘Quick Start’ analysis is provided from the front page, fea-
turing enrichment analysis using a sample set of data-
bases containing the richest set of annotations (Figure 1).
From any page, the sidebar provides access to the ‘Quick
Start’ function of the tool.
Numerous other enrichment analyses - including

enrichment using pathway, ontology, protein family, or
differential expression data - are available within the
Algal Functional Annotation Tool. Enrichment results
are always sorted by hypergeometric p-value and when-
ever possible contain links to the primary database’s
entry for that annotation or to the protein page of the
gene identifier. The number of hits to a certain annota-
tion term are also displayed alongside the p-value, and
results may always be expanded to show additional
details, such as the specific gene IDs within the list
matching a certain annotation (Figure 2). These results

Figure 1 Algal Functional Annotation Tool. The front page of the Algal Functional Annotation Tool. A ‘Quick Start’ analysis is available to test
for enrichment using the richest annotation databases included in the tool. Other features accessible from the sidebar include more specific
enrichment tests (based on biological pathways, ontology terms, or protein families), a gene identifier conversion tool, a manual annotation
search tool, and an expression similarity search tool.

Lopez et al. BMC Bioinformatics 2011, 12:282
http://www.biomedcentral.com/1471-2105/12/282

35



are downloadable as tab-delimited text files which may
then be further analyzed or used in conjunction with
other databases.
Dynamic visualization of KEGG pathway maps may be

accessed from the results table for KEGG pathway
enrichment by clicking on any pathway name. The pro-
teins in the list that are members of the particular biolo-
gical pathway will appear in red, while those proteins
existing in Chlamyomonas reinhardtii but not in the list
appear in green (Figure 3). Alternatively, by expanding
the pathway results and following the link at the bottom,
the user may select a custom color scheme for visualizing
the proteins on pathway maps. These custom color
schemes may be designed on a gene-by-gene basis
(choosing colors individually for genes) or in a group-by-
group fashion (such as choosing a color for those pro-
teins found within the organism but not in the gene list).
A list of genes may also be converted into a list of

gene identifiers of another type. This feature allows easy
transformation of gene IDs into corresponding models
for use in other databases that may have additional
annotation information. Additionally, the resulting list
of gene identifiers may be used as a new starting point
for enrichment analysis. Because of the different annota-
tions associated with other gene identifier types (albeit
of the same proteins), enrichment results using a

converted set of gene IDs may yield new biological
information.
The gene similarity search tool, the third component

of the Algal Functional Annotation Tool, accepts single
genes and returns functionally related genes (based on
gene expression across different experimental condi-
tions) using user-specified distance metrics and thresh-
olds. Presently, functionally related genes may be
determined using correlation distance based on absolute
counts, log counts, or log ratios of expression. The
results page shows the original query gene at the top in
gray and any resulting genes, sorted by similarity, are
shown below the query gene (Figure 4). A colormap
based on gene expression is generated for the different
genes across the conditions, and this colormap may be
changed to display absolute expression, log expression,
or log ratios of expression. The distance between any
gene and the original query gene is displayed by hover-
ing the mouse over the gene identifier of interest. Quan-
titative expression data (e.g. absolute counts) are
provided for each experiment by hovering over the col-
ormap. Whenever a description of a gene is available,
this is displayed when hovering over the gene identifier
as well. Links to external databases (e.g. JGI, KEGG)
providing more information about the genes are pro-
vided with the results.

Figure 2 Annotation Enrichment Results. Annotation enrichment results, sorted by ascending hypergeometric p-values, are shown in
expandible/collapsible HTML tables such as the one shown. When expanded, the genes within the user-submitted list containing the expanded
annotation are shown alongside additional statistical information. All results are downloadable as tab-delimited text files.
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Ability to Re-Run Analysis for Subsets of Genes
Once a gene list is supplied and enrichment results have
been returned, a subset of genes corresponding to those
that contain a particular annotation may be isolated and
re-run through the tool to be analyzed as a separate,
smaller gene list. This allows users to select a particu-
larly interesting group of functionally related genes and
isolate them to see if they are also enriched for other
functional terms. This also allows the user to prune
large gene lists into more focused lists of functionally
similar genes and removing some of the inherent noise
associated with high-throughput experimental techni-
ques and their resulting gene lists. This feature of the
tool may be accessed by expanding the enrichment
results of a particular annotation and selecting to re-run
the analysis using only that subset of proteins. From this
step, users may select which database types to query for
enrichment (e.g. pathway, ontology, protein family).

Expanded Annotation Coverage
The methods described to compensate for the incom-
plete annotation coverage of Chlamydomonas reinhardtii
genes resulted in the addition of a vast number of unique

annotations to the genome. While there is a strong over-
lap between pre-existing annotations and those assigned
by inference, many new terms have also been added. The
annotations derived by orthology, however, are not
mixed with the annotations attained directly to decrease
the possibility of false positive associations of functional
terms that may distort the analysis, and to permit a com-
parison with the functional terms derived directly from
the Chlamydomonas annotation.

Example - Sulfur-Related Genes
Using a filtered list of C. reinhardtii genes derived from
transcriptome sequencing of the green alga under sul-
fur-depleted conditions [26], the Algal Functional Anno-
tation Tool found enrichment for annotations related to
sulfur metabolism, cysteine and methionine metabolism,
and sulfur compound biosynthesis. For each annotation,
the results may be expanded to reveal the genes con-
taining that particular annotation. Furthermore, there is
significant overlap between terms directly assigned to C.
reinhardtii proteins and those inferred from A. thaliana
orthology. Visualization of the sulfur metabolism KEGG
pathway shows that a majority of the enzymes involved

Figure 3 Dynamic Visualization of Gene Lists onto KEGG Pathway Maps. Dynamic KEGG pathway maps may be visualized to show the
different proteins within a user-submitted gene list. Shown is the ‘Sulfur Metabolism’ dynamic pathway with the matching proteins submitted
highlighted in red. In this example, the submitted gene list is drawn from literature characterizing Chlamydomonas under sulfur-deprived
conditions [26].
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in this biological process is in the sample list, and the
reactions they catalyze may be seen on the pathway
map. The results for any enrichment analysis may be
downloaded as a tab-delimited text file. Taking a gene
found to be associated with the KEGG pathway ‘Sulfur
metabolism’ by this enrichment analysis (JGI v. 3 ID
206154) as a starting input into the gene similarity
search tool, the genes corresponding to sulfate transpor-
ter, methionine synthase reductase, and cysteine dioxy-
genase were found within the top 15 results using the
correlation metric between log counts.

Future Directions
As with all tools that integrate data from multiple exter-
nal sources, the power of analysis using the Algal Func-
tional Annotation Tool is ultimately limited by the
quality of the annotations within the primary databases.
With the steady growth of knowledge in these annotation

databases, the utility of the analyses provided is expected
to increase in the future as more biological associations
are assigned to genes. Additionally, as Chlamydomonas
reinhardtii genes continue to be experimentally charac-
terized, the assignment of manual annotations will also
fill in the gaps left by automated annotation assignment
and thus expand the annotation coverage throughout the
genome, further improving the results generated by our
portal. Lastly, the extensible nature of the Algal Func-
tional Annotation Tool will allow us to add other algal
organisms in the future using the same platform so that
genomic data from other algal model organisms may be
analyzed in a similar fashion as that currently available
for Chlamydomonas reinhardtii.

Conclusions
The Algal Functional Annotation Tool is intended as a
comprehensive analysis tool to elucidate biological

Figure 4 Expression Similarity Search Tool Results. An example of the results from the Gene Similarity Search Tool. Pairwise distances
between resulting genes and the submitted gene are shown in the lower right corner when the mouse hovers over a gene of interest.
Whenever applicable, a short description of the resulting gene is also shown when hovering over a gene. Expression data is shown when
hovering over a point of the colormap.
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meaning from gene lists derived from high-throughput
experimental techniques. Annotation sets from a num-
ber of biological databases have been pre-processed and
assigned to gene identifiers of the green alga Chlamydo-
monas reinhardtii, and this annotation data may be
explored in multiple ways, including the use of enrich-
ment tests designed for large gene lists. Furthermore,
the site enables the visualization of proteins within path-
way maps. Using several methods, such as inferring
annotations from orthologous proteins of other organ-
isms, the initially sparse annotation coverage of C. rein-
hardtii is alleviated, allowing for a more effective
functional term enrichment analysis. Other functions of
the tool include a batch gene identifier conversion tool
and a manual annotation search tool. Lastly, similar
genes based on expression across several conditions may
be explored using the gene similarity search tool.

Availability and Requirements
Project name: Algal Functional Annotation Tool
• Public web service: http://pathways.mcdb.ucla.edu;

Free and no registration.
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The green alga Chlamydomonas reinhardtii undergoes gametogenesis and mating upon nitrogen starvation. While the steps
involved in its sexual reproductive cycle have been extensively characterized, the genome-wide transcriptional and
epigenetic changes underlying different life cycle stages have yet to be fully described. Here, we performed transcriptome
and methylome sequencing to quantify expression and DNA methylation from vegetative and gametic cells of each mating
type and from zygotes. We identified 361 gametic genes with mating type-specific expression patterns and 627 genes that are
specifically induced in zygotes; furthermore, these sex-related gene sets were enriched for secretory pathway and alga-specific
genes. We also examined the C. reinhardtii nuclear methylation map with base-level resolution at different life cycle stages.
Despite having low global levels of nuclear methylation, we detected 23 hypermethylated loci in gene-poor, repeat-rich regions.
We observed mating type-specific differences in chloroplast DNA methylation levels in plus versus minus mating type gametes
followed by chloroplast DNA hypermethylation in zygotes. Lastly, we examined the expression of candidate DNA
methyltransferases and found three, DMT1a, DMT1b, and DMT4, that are differentially expressed during the life cycle and
are candidate DNA methylases. The expression and methylation data we present provide insight into cell type-specific
transcriptional and epigenetic programs during key stages of the C. reinhardtii life cycle.

Chlamydomonas reinhardtii is a unicellular, biflagellate
species of green alga found primarily in freshwater and
soil (Harris et al., 2009). C. reinhardtii is an important

reference organism for diverse eukaryotic cellular and
metabolic processes, including photosynthetic biology
(Rochaix, 2001), flagellar function and biogenesis
(Silflow and Lefebvre, 2001), nutrient homeostasis
(Grossman, 2000; Merchant et al., 2006; Glaesener et al.,
2013), and sexual cycles (Goodenough et al., 2007). The
nuclear and chloroplast genomes of C. reinhardtii have
been fully sequenced, enabling genomic and epi-
genomic analyses (Maul et al., 2002; Merchant et al.,
2007). The approximately 112-Mb haploid C. reinhardtii
nuclear genome comprises 17 chromosomes. The cir-
cular chloroplast DNA (cpDNA) genome is 203 kb and
present in 80 to 100 copies per cell that are organized
into eight to 10 nucleoprotein complexes called nucle-
oids, which are distributed through the stroma.

Like many unicellular eukaryotes, C. reinhardtii has a
biphasic life cycle where haploid cells can reproduce
vegetatively by mitotic division or, alternatively, un-
dergo a sexual cycle. Vegetative cells can propagate
indefinitely when provided with nutrients and light.
Upon nitrogen starvation, however, cells stop dividing
and differentiate into gametes whose mating type (plus
orminus) is determined genetically by an approximately
300-kb mating type locus on chromosome 6, with two
haplotypes,MT+ andMT2 (Umen, 2011; De Hoff et al.,
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2013). Gametes express a set of mating-related pro-
teins that are different between minus and plus cells
and that allow cells of opposite mating type to recog-
nize each other and fuse to form a quadriflagellate
zygote. Upon fertilization, the heterodimeric KNOX/
BELL-type homeodomain proteins gamete-specific
minus (GSM1) and gamete-specific plus (GSP1) initi-
ate a zygote-specific developmental program that
includes flagellar resorption, fusion of organelles
including nuclei and chloroplasts, destruction ofMT2
cpDNA, and secretion of a thick, environment-
resistant cell wall that protects the zygospore from
cold, desiccation, and other environmental stresses
(Cavalier-Smith, 1976; Catt, 1979; Grief et al., 1987;
Brawley and Johnson, 1992; Goodenough et al., 2007;
Lee et al., 2008). Upon return to favorable conditions of
light and nutrients, zygospores undergo meiosis to
produce four haploid progeny (two MT+ and two
MT2) that can reenter the vegetative life cycle. While
nuclear loci segregate in a Mendelian pattern of 2:2,
both chloroplast and mitochondrial genomes are in-
herited uniparentally, with cpDNA inherited from the
MT+ parent and mitochondrial DNA from the MT2
parent (Nakamura, 2010; Nishimura, 2010).
While previous high-throughput expression studies

have focused on the transcriptional programs under-
lying processes such as nutrient deprivation (Nguyen
et al., 2008; González-Ballester et al., 2010; Toepel
et al., 2011, 2013; Schmollinger et al., 2014), environ-
mental responses (Simon et al., 2008, 2013; Matsuo
et al., 2011; Fang et al., 2012), flagellar biogenesis
(Albee et al., 2013), lipid accumulation (Miller et al.,
2010; Boyle et al., 2012; Lv et al., 2013), and diurnal
rhythms (Idoine et al., 2014; Panchy et al., 2014), only a
few studies have explored the genome-wide tran-
scriptional and epigenetic changes associated with the
sexual cycle (Kubo et al., 2008; Ning et al., 2013;
Aoyama et al., 2014). Several genes expressed in the
early zygote, termed EZY genes, have predicted
functions related to cell wall production, vesicular
transport, and secretion (Ferris and Goodenough,
1987; Ferris et al., 2002; Kubo et al., 2008). A separate
analysis of zygospore transcripts following light-
induced germination revealed the up-regulation of
photosynthetic and Met synthesis pathways (Aoyama
et al., 2014).
DNA methylation studies have also been conducted

on both the nuclear and chloroplast genomes (Hattman
et al., 1978; Dyer, 1982). cpDNA methylation has been
studied more extensively and shows dramatic changes
in 5-methylcytosine (5meC) content at different stages
of the C. reinhardtii life cycle. Vegetative cells have low
levels of 5meC in cpDNA, while gametes show a sub-
stantial increase within cpDNA (12% 5meC in MT+
gamete cells and 4% in MT–; Royer and Sager, 1979;
Feng and Chiang, 1984). In zygotes, MT2 cpDNA is
eliminated while MT+ cpDNA becomes hyper-
methylated. While differential cpDNA methylation
was once thought to be part of a restriction-methylation
system regulating uniparental inheritance (Burton

et al., 1979), this model is unlikely, since loss of cpDNA
methylation in MT+ cells does not result in its de-
struction in zygotes (Umen and Goodenough, 2001),
and ectopic methylation of MT2 cpDNA does not
spare it from destruction (Bolen et al., 1982). However,
previous studies are consistent with a role for 5meC in
promoting cpDNA replication upon zygote germina-
tion, which can influence the amount of residual MT2
cpDNA that is inherited by exceptional progeny (Umen
and Goodenough, 2001; Nishiyama et al., 2004). An
alternative proposed mechanism involves the digestion
of MT2 cpDNA by differentially localized or activated
nucleases that are methylation insensitive early in zy-
gote development before chloroplast fusion (Nishimura
et al., 2002).

Several methyltransferase enzymes that modify
cpDNA have been investigated biochemically (Sano
et al., 1981), and one candidate chloroplast methyl-
transfersase gene has been cloned (Nishiyama et al.,
2002, 2004). Since that time, the genome sequence of
C. reinhardtii has become available (Merchant et al.,
2007) and extensively annotated (Blaby et al., 2014) so
that a comprehensive identification of genes encoding
DNA methyltransferases can be undertaken.

Few studies have focused on the role of nuclear cy-
tosine methylation in C. reinhardtii, but previous work
has shown that induced silencing of nuclear trans-
genes does not correlate with transgene cytosine
methylation levels, leaving open the question of what
role cytosine methylation plays in chromatin structure
and gene expression in C. reinhardtii (Cerutti et al.,
1997). To date, the absence of detailed methylation
maps has precluded a clear view of methylation
patterns in the nuclear and chloroplast genomes of
C. reinhardtii.

Here, we have performed RNA sequencing (RNA-
seq)-based transcriptome analysis and bisulfite DNA
sequencing of C. reinhardtii at different life cycle
stages. We identify sex- and mating-related changes in
gene expression, including genes that are preferen-
tially expressed in gametes of each mating type or in
zygotes. We generated a high-resolution map of
nuclear and chloroplast cytosine methylation during
the life cycle and identified candidate DNA
methyltransferases whose expression profiles corre-
late with dynamic changes in cpDNA methylation
patterns.

RESULTS

To quantify nuclear gene expression and 5-cytosine
DNA methylation throughout the C. reinhardtii life cy-
cle, we collected RNA and DNA samples at various
stages for RNA andwhole-genome bisulfite sequencing
(Fig. 1). Samples were collected from vegetative and
gametic cells of both mating types and zygotic stages to
enable multiple comparisons. The design of the exper-
iment was for matched DNA and RNA samples, but
the RNA protocol was modified to avoid degradation.
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We note that for transcriptome studies, our vegetative
samples were prepared in a different manner from
those used for typical nitrogen-starvation studies. We
grew all cultures to saturation on solid agar medium
and then resuspended cells at high density (approxi-
mately 2 3 107 mL21) under illumination in liquid
medium (high-salt medium) with or without nitrogen
for approximately 3 to 5 h. Under these conditions,
neither culture grew measurably, but the cultures
without nitrogen expressed the gametic program and
efficiently mated at greater than 90% efficiency, while
the cultures with nitrogen could not mate and did not
express gametic marker genes (see below). The advan-
tage of this procedure is that it minimizes the differ-
ences between the plus and minus nitrogen cultures
that would normally be attributable to growth rate
differences and thereby allows more reliable identifi-
cation of mating-related gene expression. For DNA
methylation studies, the vegetative and gametic sam-
ples were obtained from growing nitrogen-replete and
nitrogen-starved samples, respectively, as described in
“Materials and Methods.” Actively growing cultures
were used for studies of methylation in vegetative cells,
since agar plate-grown cells are already partially ga-
metic and would require additional rounds of division
in order to remove preexisting methylation.

Sequence Polymorphisms between R3 (MT+) and CJU10
(MT–) Parental Strains

As a prelude to transcriptome and methylome anal-
yses, we cataloged the genetic differences (single-
nucleotide variants, insertions, and deletions) between
our two parental strains using genome resequencing
(Fig. 2A; Gallaher et al., 2015). In total, the two strains
differ by 0.16% in their nuclear genomes, and most of

these differences are single-nucleotide variants. Of all
the variants, 98.2% are localized to two regions, one of
length 2.2 Mb on chromosome 17 and one of 2 Mb
encompassing the mating locus on chromosome 6 (Fig.
2B), where mating-type haplotype differences have
been observed previously (De Hoff et al., 2013). Addi-
tionally, the chloroplast genome of the CJU10 strain
contains an insertion adjacent to the ATP synthase sub-
unit betaaadA (atpB) gene of a spectinomycin resistance
marker (aminoglycoside-39-adenylyltransferase [aadA])
flanked by the Rubisco large subunit (rbcL) 59 promoter
and photosystem II CP43 (psbC) 39 untranslated region
(Fig. 2C; Goldschmidt-Clermont, 1991; Umen and
Goodenough, 2001).

Gamete and Zygote-Specific Genes

Following the quantitation of RNA-seq data for all of
our samples, we identified genes withmating type- and
zygote-specific expression patterns using a series of
filters to screen for genes matching the expression pat-
terns of known gametic and zygotic genes. We required
that mating type-specific genes be expressed in gametes
at least 4-fold higher than in vegetative cells of the same
mating type and at least 10-fold higher than in gametes
or vegetative cells of the opposite mating type. For
zygote-specific genes, we required that expression be at
least 4-fold higher in early zygotes than in any other
sample. Using these criteria, we identified 293 and 68
genes whose expression is specific to plus and minus
gametes, respectively, and 627 genes whose expression
is specific to zygotes (Fig. 3A; Supplemental Table S1).
Genes whose expression is known to be gamete or zy-
gote specific, including GSM1 (minus gametes), SAG1
(plus gametes), and EZY1 (early zygotes), were

Figure 1. C. reinhardtii sexual life cycle and se-
quenced samples. Vegetative C. reinhardtii cells
of each mating type (MT+ and MT2) can be in-
duced to undergo gametogenesis by nitrogen
starvation. Gametes of opposite mating type rec-
ognize each other through flagellar adhesion and
fuse to form a diploid zygote. During zygote
maturation, MT2 cpDNA is eliminated, flagella
are resorbed, and a thick zygote cell wall forms.
Upon return to nitrogen and light, zygospores
undergo meiosis to form four haploid progeny
(two of each mating type, all containing unipa-
rentally inherited MT+ parental cpDNA) that
reenter the vegetative cycle. Colored boxes
designate samples and material sequenced. Blue
and red unfilled circles represent MT+ and MT–
chloroplast genomes, respectively. Filled pink
and light blue circles represent nuclear DNA
from MT+ and MT– strains, respectively. BS-Seq,
Bisulfite sequencing.
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retained by our filters (Armbrust et al., 1993; Kurvari
et al., 1998; Ferris et al., 2002, 2005; Lee et al., 2008). Of
the 32 previously described zygotic genes (Matters and
Goodenough, 1992; Armbrust et al., 1993; Uchida et al.,
1993, 1999; Kuriyama et al., 1999; Suzuki et al., 2000;
Ferris et al., 2002; Kubo et al., 2008), 25 were in our
zygote data set, while the remaining seven (EZY6,
EZY15,EZY16,EZY17,EZY21,EZY23, and Lysozome 1A)
were found to have significant expression in other
samples and, therefore, were excluded from the zygote-
specific set (Supplemental Tables S1 and S2).
We functionally classified the predicted proteins

encoded by genes whose expression was plus gamete
specific, minus gamete specific, or early zygote specific.
Protein localization prediction revealed the enrichment
of putative secretory proteins in plus-gamete (MT+)
and zygote-specific sets (Fig. 3B). We also assessed the
conservation and phylogenetic distribution for homo-
logs of each protein in a set of nested phylogenetic do-
mains that encompass different taxonomic levels from
cellular organisms (prokarya, archaea, and eukarya)
to the single species level of C. reinhardtii (Fig. 3C).
Zygote and gamete expression groups were enriched for
C. reinhardtii-specific genes and/or alga-specific genes.
In addition, gametic genes were underrepresented for
more widely conserved genes (i.e. those with homologs
outside of chlorophyte algae). Consistent with these
findings, the gametic and zygotic gene lists were also
depleted to various extents for GreenCut2 and CiliaCut
genes, whose members are associated with conserved
photosynthetic and flagella/basal body functions
(Merchant et al., 2007; Karpowicz et al., 2011; Heinnickel
and Grossman, 2013; Fig. 4, A and B); however, the
overall low numbers of genes in these categories pre-
cluded obtaining a significant statistical result in all cases
but one. Gene Ontology, Kyoto Encyclopedia of Genes
and Genomes, and MapMan (Kanehisa and Goto, 2000;

Harris et al., 2004; Thimm et al., 2004) classification of
predicted proteins encoded by gametic and zygotic
genes was performed using the Algal Functional
Annotation Tool (Lopez et al., 2011) but had limited
utility because of the large number of nonconserved
proteins in these groups and incomplete annotations.
Nonetheless, we found significant enrichment in two
MapMan categories for zygotic genes, cell wall and
transport, both of which may relate to the requirement
for new cell wall biosynthesis in zygotes (Fig. 4, C andD).
Indeed, examination of manually curated early zygotic
gene annotations revealed numerous cell wall-related
protein-coding genes as described below.

Volvocine cell walls are composed primarily of gly-
cosylated hydroxyproline-rich glycoproteins (HRGPs)
that enter the secretory pathway and are exported to the
extracellular space where they coassemble (Woessner
et al., 1994). The thick and environment-resistant cell
walls of zygospores are formed by a specialized set of
HRGPs that are synthesized shortly after fertilization
(Minami and Goodenough, 1978; Catt, 1979; Grief et al.,
1987). Manual annotation and inspection of zygotic up-
regulated genes verified the MapMan ontology assign-
ments of cell wall and transport categories as described
in Supplemental Table S1. At least 57 zygotic genes are
predicted HRGPs or have putative cell wall biogenesis-
related functions that include secretion, glycosylation,
and metabolism of nucleotide sugars (e.g. UDP-Glc
4-epimerase, pyrophosphorylase, dehydrogenase,
dTDP-6-deoxy-L-lyxo-4-hexulose reductase related,
and exotosin-like glycosyltransferase) or sugarmetabolite
transport (e.g. ATP-binding cassette transporter, triose
phosphate transporter, and UDP-GlcNAc transporter).
Among these were some previously identified early
zygotic genes as noted in Supplemental Table S1
(EZY4, EZY11/UDP-glucose:protein transglucosylase1
[UPT1; also known as UPTG1]/EZY12/UDP-glucose

Figure 2. Genetic differences between R3 (MT+) and CJU10 (MT2) parental strains. A, Genetic differences, categorized by
variant type (single-nucleotide variants [SNVs], insertions, and deletions), are shown with the total number of variant loci and
total bases. B, Large-scale view of chromosomes 6 and 17, where 98.5% of the identified variants are located. Locations of se-
quence differences are shown in red. The region of chromosome 6 containing the mating locus is denoted by the blue bar.
C, Schematic representation of the antibiotic resistance transgene insertion in CJU10 cpDNA. The aadA gene, alongwith the rbcL
59 promoter and the psbC 39 untranslated region (UTR), is inserted between inverted repeat region B (IRB) and the endogenous
atpB gene.
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dehydrogenase1, EZY14/triose phosphate transporter14,
and EZY22; Kubo et al., 2008).

Besides cell wall and secretory pathway genes, we
also noted in the zygote gene set predicted functions
that may be related to other zygotic processes, including
elimination ofMT– cpDNA, zygotic cpDNAmethylation,
and packaging for long-term dormancy, nuclear fusion
(karyogamy), chloroplast fusion, and flagellar resorption
(Goodenough et al., 2007). These annotations include
predicted chloroplast-targeted DNA-binding proteins
such as a DNA recombination protein A homolog and
predicted nuclease (EZY19/Cre07.g314650), chloroplast-
targeted DNAmethyltransferases (DMT1A,DMT1B, and
DMT4; discussed below), and a chloroplast-targeted

dynamin (EZY8/Cre06.g25065) that may be involved
in chloroplast fusion (Kubo et al., 2008). Predicted
nucleus-targeted zygotic proteins include several DNA-
binding transcription factors (EZY18/Cre02.g091550,
Regeneration Protein A [RegA]/RlsA-like protein7/
Cre14.g617200, and zygote-specific transcription factor
1A/Cre17.g719200) such as RLS7 that contains a SAND
domain (Duncan et al., 2006, 2007) related to RegA, a
repressor of germ cell fate in Volvox carteri (Kirk et al.,
1999), and several types of chromatin-related proteins
(Cre03.g184900, Cre08.g367000, Cre08.g400200, Cre09.
g401812, and histone H1/Cre13.g567450) that may be
involved in nuclear DNA packaging in preparation for
zygospore dormancy. Minutes after fertilization and

Figure 3. Gamete- and zygote-specific genes. A, Box and whisker plots of gene expression profiles for gamete- and zygote-
specific genes. Values are plotted relative to themaximum expression value of each of the genes. A total of 293 and 68 geneswere
expressed specifically in MT+ and MT– gametes, respectively. A total of 627 genes were expressed specifically in zygotes. B,
Localization predictions for proteins encoded by gamete-specific (gam.mt+ and gam.mt2) and zygote-specific genes, compared
with all predicted proteins in the C. reinhardtii proteome (all). Data are plotted as the fraction predicted for each of four com-
partments, with total numbers indicatedwithin each graph portion: secretory in blue; chloroplast (Chloro.) in green;mitochondria
(Mito.) in purple; and other in gray. Valueswith asterisks are significantly different from the total proteome distribution (*, P, 0.05
and **, P , 0.01). C, Predicted protein groups as described in B are plotted according to the taxonomic distribution of encoded
proteins from each category. From bottom (C. reinhardtii-specific proteins; dark green) to top (all cellular organisms; gray) are
increasingly broad phylogenetic distributions. Samples with asterisks indicate significant enrichment or depletion in a taxonomic
category relative to the distribution of all proteins (*, P , 0.05; and **, P , 0.01).
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prior to flagellar resorption, the four basal bodies and
flagella of newly formed zygotes (two from each par-
ent) move to a single apical location via an unknown
mechanism. One possible participant in this process could
be the striatedfiber protein SF-assemblin (Cre07.g332950),
a zygote up-regulated gene whose protein product in
vegetative cells associates with rootlet microtubules that
are proximal to basal bodies and are thought to play a role
in the organization of the rootlet structure (Lechtreck et al.,
2002). Two other cytoskeletal proteins whose genes
are up-regulated in zygotes are a flagella-associated pro-
tein of unknown function, FAP79 (Cre04.g217908), and
the flagella length regulatory protein LF5/FAP279
(Cre12.g538300; Tam et al., 2013), which may be re-
lated to flagellar resorption that begins 2 or 3 h after fer-
tilization. Lastly, we identified a gene for a predicted
secreted trypsin-related protease (Cre06.g287750), which
could contribute to the rapid postfertilization degradation
of gametic plasma membrane surface proteins such as
fusion protein1 and generative cell specific1, a process
that is thought to restrict polygamy (fusion between
more than two gametes; Liu et al., 2010).

DNA Methylation of the Nuclear Genome

We conducted bisulfite sequencing of vegetative,
gametic, and zygotic samples to generate DNA meth-
ylation profiles. The nuclear genome had an average
per-site CG methylation of less than 0.75% in all
samples, and this level of methylation did not differ

significantly between plus and minus strains or at dif-
ferent life cycle stages (Fig. 5A). However, CG methyla-
tion densities greater than 80% were identified for 23 loci
that ranged in size between 10 and 22 kb (Fig. 5B;
Supplemental Table S3). The highly methylated regions
are enriched for repeats, and their overall protein-coding
gene densities are significantly lower than average,
although there are still genes in these regions (Fig. 5C).
In addition, one example where methylation was strain
specific is shown in Figure 5D, although most hyper-
methylated sites did not have strain-specificmethylation
patterns. The expression levels of genes overlapping
hypermethylated loci are not strongly correlated with
degree of methylation (Supplemental Table S4).

Chloroplast Methylation Changes during the Life Cycle

In contrast to the relatively stable pattern of cytosine
methylation in nuclear DNA, the C. reinhardtii chloro-
plast genome underwent dynamic changes in cytosine
methylation throughout the life cycle (Fig. 6A). In the
vegetative stage, global per-cytosinemethylationwas less
than 2% for both mating types for all cytosine contexts
(CG, CHG, and CHH). After gametogenesis, cpDNA
methylation increased in a mating type-dependent
manner. MT+ gametes had an average of approxi-
mately 10% per-site CG methylation, while MT2 gam-
etes had an average of approximately 3%. A large
increase in 5meCwas observed for all sequence contexts
during zygote development, with 54% (CG)methylation

Figure 4. Functional annotation of proteins
encoded by gamete- and zygote-specific genes.
Functional annotations for gamete- and zygote-
specific gene lists are shown as bar plots showing
the fraction of total proteins in each groupwith the
specified annotation. The total number of genes in
each annotation category versus the number of
genes with the described annotation are shown.
Significant differences between all genes and
gamete- or zygote-specific genes were calculated
with the hypergeometric test, and significant
P values are shown. A, GreenCut2 genes
(Karpowicz et al., 2011;Heinnickel andGrossman,
2013). B, CiliaCut genes (Merchant et al., 2007).
C, MapMan cell wall-related genes (Thimm et al.,
2004). D, MapMan transport-related genes.
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reached by 24 h. Methylation levels began to drop during
germination to an average per-site CG methylation level
of 45%. CHG and CHH methylation levels were lower
thanCGmethylation levels in all cases, and this difference
was particularly notable in germinated zygotes, where
CHH and CHG methylation dropped from their peak
zygotic levels much faster than CG methylation did.

For all life cycle stages andmating types, methylation
of cpDNA is uniformly distributed in the chloroplast
genome without bias toward genes or other sequence
features (Fig. 6B). With the exception of two large
inverted repeats in the chloroplast sequence, where
methylation cannot be measured accurately with short
reads, average methylation levels tabulated in 1-kb in-
tervals rarely deviated more than 5% from the global
average, suggesting that no specific regions of the
chloroplast genome are targeted for methylation.

DNA Methyltransferases

In order to further explore the mechanisms respon-
sible for the dynamic patterns of DNAmethylation, we

identified candidate cytosine methyltransferases from
the predicted C. reinhardtii proteome based on the
presence of predicted DNA cytosine methylase do-
mains (see “Materials and Methods”). We found a total
of six candidate methyltransferases with different do-
main architectures (Supplemental Fig. S1), including a
homolog of V. carteri MET1, a putative nuclear methyl-
transferase (Babinger et al., 2007). As described below,
three predicted methyltransferases, DMT1a, DMT1b,
and DMT4, had expression patterns and/or predicted
localization sequences suggesting a role in cpDNA
methylation. Each of these predicted proteins has DNA
methylase as well as bromo-adjacent homology (BAH)
domains.DMT1a,DMT1b, andDMT4were all expressed
in gametes and showed the highest levels of expression
in zygotes, coinciding with elevated levels of methyla-
tion in the zygotic samples (Fig. 7). DMT1a and DMT1b
are near the mating locus in its telomere-proximal do-
main and encode highly similar paralogs. Both genes
had higher expression in MT+ than in MT2 gametes, a
pattern that matches the methylation bias seen in ga-
metic cpDNA from the two mating types (Fig. 6A).
DMT1a and DMT1b sequences have been described

Figure 5. Nuclear methylation at different C. reinhardtii life cycle stages. A, Bulk averages of 5meC in the nuclear genome for
each sample and categorized by the fraction of 5meC in each of three sequence contexts (CG, CHG, and CHH). B, Scaled
representations of the 17 C. reinhardtii chromosomes, with 23 hypermethylated regions larger than 10 kb shaded in blue. C, Plots
comparing gene and repeat densities of hypermethylated regions relative to the entire genome. D, Genome browser display of
nuclear cytosine methylation frequency at two representative hypermethylated loci from chromosome 6. Two representative
examples of strain-specific hypermethylated loci are shown side by side, with a gene track below for genomic context. In the
coverage plot, blue represents unmethylated cytosines (converted by bisulfite treatment), red represents methylated cytosines
(unconverted), and gray represents total coverage (including reads from the opposite strand that do not provide methylation
information).
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previously as a single gene (Nishiyama et al., 2002), but
the published cDNA sequence is a hybrid with 59 se-
quences derived from DMT1a and 39 sequences from
DMT1b (National Center for Biotechnology Information
[NCBI] gene identifiers 5722229 and 5722231). Consis-
tent with subcellular targeting predictions (Fig. 7), the
DMT1a presequence directs chloroplast localization
(Nishiyama et al., 2002). While the MT+ strain copy of
DMT1a appears to be intact, a survey of structural var-
iants derived from genome resequencing data led to
the identification of a point insertion in exon 10 of the
MT2 strain copy of DMT1a leading to a frame shift and
premature termination before the methyltransferase
domains (Fig. 8B). This insertion was observed in MT–
transcriptome data. Furthermore, this point insertion is
found in the genome of 12 out of 13 MT– strains rese-
quenced by Gallaher et al. (2015). No variants predicted
to be deleterious were found within the DMT1b gene.
Targeting predictions of DMT1b suggest that it is

mitochondria localized. Although the mitochondrial
genome is largely devoid of cytosine methylation (1%–
2% global per-cytosine methylation), the zygote sample
at 24 h shows evidence of methylation (approximately
13% global per-cytosine methylation; Supplemental
Fig. S2).DMT4 is also predicted to encode a chloroplast-
targeted cytosine methyltransferase and is one of the 361
genes identifiedwith a strong zygotic expression pattern
(Fig. 3A), consistent with a possible participation of
DMT4 in zygotic cpDNA hypermethylation.

DISCUSSION

The dynamic changes in gamete- and zygote-specific
mRNA abundance and DNA methylation presented in
this work provide a framework for understanding cell
differentiation during the C. reinhardtii sexual life cycle.
A previous study of plus and minus gamete-specific

Figure 6. Chloroplast genome methylation at
different life cycle stages. A, Bulk cytosine meth-
ylation frequencies for cpDNA at different life
cycle stages plotted for each methylation context.
The mating type of each sample (+, 2, or diploid
+/2) and time of zygote development and ger-
mination (g) are shown below the graph. B, Plot of
average CG methylation frequency for each sam-
ple in 1-kb bins across the chloroplast genome.
The two inverted repeat regions are shaded in
gray. Plots are color coded according to the legend
at right.

Figure 7. Candidate chloroplast methyltransferases in C. reinhardtii. The protein domain structure of each candidate methyl-
transferase is shown schematically (green =DNAmethylase domain and red = BAHdomain). Predicted localizations from PredAlgo
andWolfPSORT (Cp = chloroplast andMt =mitochondria) are shown alongside the log-transformed normalized expression level of
each candidate from different RNA-seq samples. FPKM, Fragments per kilobase of transcript per million mapped reads.
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genes focused on cell type genes whose expression was
up-regulated during the process of mating (Ning et al.,
2013). However, direct comparison with the previous
data is confounded by differences in annotation between
genome versions used to define transcripts as well as in
the different clustering criteria used in the two studies.
Here, we made use of culture conditions that were
designed to suppress the differential transcript abun-
dance signal resulting from growing versus nongrowing
nitrogen-starved cultures to help identify gamete-
specific transcripts. Our method identified known ga-
metic genes whose expression is mating type limited
(expressed preferentially in plus versus minus gametes
or vice versa). However, because we used nitrogen
resupply of stationary phase cultures to create non-
growing vegetative samples, we may have missed
highly stable gametic transcripts that did not turn over
after nitrogen addition. Nonetheless, nitrogen resupply
for several hourswas completely effective at suppressing
mating, so the transcriptome differences wewere able to
identify in our gametic versus vegetative samples are
likely tied to gametogenesis-related functions and per-
haps less relevant for other nitrogen-starvation re-
sponses such as neutral lipid accumulation.

Sex-related genes evolve rapidly and, therefore, are
expected to appear younger and have a more restricted
phylogenetic distribution than other genes (Swanson
and Vacquier, 2002). Indeed, using phylogenomic pro-
filing, we found an enrichment of C. reinhardtii-specific
genes belonging to the plus or minus gamete up-
regulated categories and zygote up-regulated cate-
gory (Fig. 3C). This finding underscores the importance
of species-specific and clade-specific genes as potential
drivers of cell type specialization related to sex and
speciation. Although the functions of these genes are
difficult to predict, since they have no homologs out-
side of C. reinhardtii or volvocine algae, we did find
enrichment for secretory pathway targeting signals
within the plus gamete and zygote predicted proteins
(Fig. 3B), which could indicate a role for sex-related
proteins in the plasma membrane, cell wall, or extra-
cellular space. Manual annotation of zygotic genes
showed that their predicted functions match processes
such as glycosylation and transport that are associated
with cell wall formation. In addition, we identified or
confirmed the expression of zygotic genes that may be
associatedwith other poorly understood differentiation
processes, including chloroplast fusion, MT– cpDNA

Figure 8. Single-base insertion variant in DMT1a leads to a premature stop codon. A, The DMT1 locus on chromosome 6
containing DMT1a and DMT1b is shown below its context in the entire chromosome. B, The diagram at top shows an enlarged
chromosomal region containing the DMT1 locus with genomic coordinates and adjacent genes. The position of the insertion
variant inDMT1a is indicated by the yellow triangle. Below is an expanded viewof exon 10 fromDMT1a showing the single-base
insertion in the MT– strain (CJU10) and the altered protein-coding sequence and premature stop codon caused by the cytosine
insertion, shown in boldface and marked with the yellow triangle.
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elimination, DNA methylation, and cytoskeletal re-
modeling (Supplemental Table S1). Deeper investiga-
tion of these genes may yield insights into the cell
biology of zygote differentiation that may have paral-
lels in other zygospore-forming algae (Brawley and
Johnson, 1992) and even in plants where pollen cells
must undergo a similar process of dormancy and re-
activation when exposed to appropriate conditions
(Brown and Lemmon, 2011). Early zygotes in C. rein-
hardtii also undergo dramatic changes in their cyto-
skeleton. Unlike the case in animals, where paternal but
not maternal centrioles are contributed to zygotes
(Avidor-Reiss et al., 2015), in C. reinhardtii, both pa-
rental basal bodies (structurally similar to centrioles)
and flagella are retained initially in zygotes but even-
tually are disassembled and rebuilt during germination
(Cavalier-Smith, 1976). Nonetheless, investigation of
conserved zygotically up-regulated cytoskeletal pro-
teins such as LF5 and SF-assemblin may shed light on
more general mechanisms involved in controlling the
dynamic behavior of flagella/cilia and basal bodies
during cellular remodeling and life cycle transitions.

DNA Methylation Changes during the Life Cycle

In contrast to many organisms in which a large
fraction of the nuclear genome is methylated (Smith
and Meissner, 2013; Bestor et al., 2015), we found rela-
tively low levels of cytosine methylation in the nuclear
genome of C. reinhardtii, consistent with previous sur-
veys that were not as high resolution as reported here
(Hattman et al., 1978; Feng et al., 2010). Interestingly,
we did identify 23 hypermethylated loci larger than
10 kb (Supplemental Table S3) that tended to occur
within gene-poor, repeat-rich regions of the genome.
However, the mechanism that leads to the methylation
of these loci remains unknown. Previous studies on the
silencing of transgenes in C. reinhardtii found that
inserted transgene repeats were frequently methylated,
but they reported little correlation betweenmethylation
and gene expression (Cerutti et al., 1997). On the other
hand, in the related colonial alga V. carteri, where
methylcytosine frequency is slightly higher than in
C. reinhardtii (1.1% versus approximately 0.75%), nu-
clear methylation did appear to be associatedwith gene
silencing (Babinger et al., 2001, 2007). Interestingly,
V. carteri also has a more repeat-rich genome than
C. reinhardtii with many active transposons (Miller
et al., 1993; Ueki and Nishii, 2008; Prochnik et al., 2010)
and may have retained or evolved higher levels of nu-
clear methylation activity than C. reinhardtii to suppress
transposon activity.
The low frequency of cytosine methylation in the

nuclear genome contrasts with the dynamic and
abundant cytosine methylation in the chloroplast ge-
nome. The overall patterns we observed are in agree-
ment with previous findings that vegetative cpDNA
from both mating types had low levels of cytosine
methylation and that gametes showed elevated levels,
with MT+ cpDNA having a 2- or 3-fold higher

frequency of methylcytosine compared with MT–
cpDNA (Royer and Sager, 1979; Dyer, 1982). We ob-
served hypermethylation in zygotes, which has also
been seen previously. Our study extended these earlier
results by examining genome-wide methylation in
cpDNA at single-base resolution. Unlike the methyla-
tion of nuclear DNA, which was mostly restricted to a
few loci, cpDNA cytosine methylation was uniformly
distributed across all regions and sequence feature
types (genic, intergenic, repeats, exons, introns, etc.).
This finding has implications for the function of cpDNA
methylation and the enzymes that are responsible for
methylating cpDNA (elaborated in the next section).
Previous models of cpDNA inheritance invoked a
methylation-restriction system similar to that in pro-
karyotes where sequence-specific methyltransferases
protect MT+ cpDNA from site-specific restriction en-
donucleases. However, the non-sequence-specific dis-
tribution of methylcytosines we observed and the
modest differences between levels of MT+ and MT–
cpDNA methylation in gametes are not consistent with
a methylation-restriction mechanism. Moreover, if
cpDNA methylation were related to methylation and
restriction, it would be most effective if it were estab-
lished at the gametic stage of the life cycle. Instead, the
majority of cpDNA methylation occurs in zygotes and
is pervasive genome wide. The purpose of this massive
methylation is unknown but is likely tied to the pack-
aging and protection of cpDNA in zygospores, where it
may be dormant for many years before germination
(Brawley and Johnson, 1992).

DNA Methyltransferases

Our survey of candidate methyltransferases revealed
two candidates with expression patterns and predicted
chloroplast targeting sequences that make them likely
responsible for cpDNA methylation: DMT1a and
DMT4. Both genes have detectable expression in gam-
etes and zygotes (Fig. 7). DMT1a and DMT1b are
physically and genetically linked to the mating locus
and, furthermore, theMT– linked copy ofDMT1a has a
point mutation that is predicted to generate a truncated,
nonfunctional protein. Although they are linked to the
mating locus, the DMT1a/b locus could still recombine
with the mating-type locus or be subject to gene con-
version, possibly leading to the creation of strains
where the levels of gametic cpDNA in MT+ and MT–
parents are equivalent. Such strains, if they could be
isolated, would be useful for testing the significance of
differential gametic cpDNA methylation and the con-
tribution of the DMT1a gene to gametic cpDNA meth-
ylation levels.

Although the predicted DMT1- and DMT4-encoded
methyltransferases have accessory BAH domains that
are implicated in protein-protein interactions and tar-
geting to specific loci (Callebaut et al., 1999; Yang and
Xu, 2013), the nonspecific pattern of cpDNA methyla-
tion we observed and attribute to the predicted DMT1a
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and DMT4 proteins suggests that their targeting is not
sequence specific. The BAH domains in these proteins
may serve other functions, such as general targeting of
the methyltransferase enzymes to chloroplast nucleoids.
The lack of sequence specificity predicted for DMT1a
and DMT4 may also prove useful for biotechnology
applications that require nonspecific DNA cytosine
methylation activity.

MATERIALS AND METHODS

Sample Generation for Bisulfite-Treated DNA

Chlamydomonas reinhardtii strains R3 (CC-620 R3 NM MT+) and CJU10
(UmenandGoodenough, 2001)were grown in high-saltmedium to concentrations
of 3.43 106 and 3.53 106 cells mL21, respectively. A total of 100 mL of each strain
culture was used for DNA and RNA isolation as vegetative samples. Cells were
collectedby centrifugation (3,500 rpm for 5min), resuspended in high-saltmedium
without nitrogen, and after 15 h, 40 mL of each strain culture was collected as
gametic samples. Gametes were mixed and checked for mating efficiency (85%
efficient), and after 1 h, a 40-mL sample was collected, corresponding to the 1-h
zygote sample. Mixed gametes were split into two flasks: (1) cells in the first were
collected after 24 h, corresponding to the 24-h zygote sample; (2) cells in the second
were resuspended in water and plated with high-salt medium, incubated in the
light for 24 h, incubated for 5 d in the dark, and resuspended in Tris-EDTA-NaCl
(TEN) buffer with 0.2% (v/v) Nonidet P-40, at which time half of the culture was
collected as 6-d zygote samples. The remaining half was transferred to Tris-acetate
phosphatemedium, incubated in the light for 24 h, and collected as the germinated
zygote sample.

DNA Isolation and Purification for Bisulfite Treatment

Cellswere resuspended in 4mLof TENbuffer,with the exception of 24-h and
6-d zygotes. The 24-h and 6-d zygotes were resuspended in 10 mL of TEN,
mixed for 1min, and repelleted (repeated three times) followed by resuspension in
4mLof TEN.A total of 400mLof 20% (w/v) SDS and 400mLof 20% (v/v) sarkosyl
was added to each sample. For 24-h and 6-d zytores, 4 mL of zirconium beadswas
also added followedbyvortexing for 5min. A total of 200mL of pronase E solution
(10 mg mL21) was then added, and samples were incubated at 37°C for 30 min.
A total of 2.5 mL of phenol (10 mM Tris-Cl, pH 8, saturated) was added, followed
by 2.5 mL of chloroform:isoamylalcohol (24:1). The phases were separated by
centrifugation (5,000 rpm for 10 min) at 10°C, and the upper phase (4.5 mL) was
transferred into 9 mL of 100% ethanol and incubated overnight at220°C. Nucleic
acidswere collected by centrifugation, resuspended in 1mLof 10mMTris-Cl, pH8,
and 100 mL of RNase (5 mg mL21) was added. After RNase treatment, samples
were extracted againwith1mLof phenol:chloroform:isoamylalcohol (25:24:1), and
DNA was precipitated with 0.3 M sodium acetate and 70% (v/v) isopropanol for
30 min at room temperature.

DNA Library Preparation

A total of 500 ng of purified genomic DNA was sheared by sonication with
Covaris S2 to generate DNA fragments spanning from 100- to 400-bp size range.
Library preparation was carried out using NEBNext DNA Library Prep Master
Mix (Set for Illumina; New England Biolabs; catalog no. E6040) according to the
manufacturer’s instructions with minor modifications. The ligation was per-
formed using Illumina TruSeq Adapters (catalog no. 15025064), and DNA size
selection (200- to 400-bp range) was carried out with AMPure XP beads
(BeckmanCoulter) prior to bisulfite conversion using the EZDNAMethylation-
Lightning Kit (Zymo; catalog no. D5030). The bisulfite-treated DNA was am-
plified using Illumina Primer Cocktail Mix (catalog no. 15027084) and MyTaq
Mix (Bioline; catalog no. BIO-25045) according to the following program: 98°C
for 2 min; 12 cycles of 98°C for 15 s, 60°C for 30 s, and 72°C for 30 s; and then
72°C for 5 min.

RNA Library Preparation

Total RNA isolation for RNA-seq analysis was performed as described
previously (De Hoff et al., 2013) with additional DNase treatment (2 units of

Roche RNase-free DNase per 110 mg of total RNA, 37°C for 20 min) before final
Qiagen RNeasy column purification.

Genomic Variation

Genomic reads were aligned using Burrows-Wheeler Aligner version 0.6.2
(Li andDurbin, 2010), with default parameters, to the version 5.0 assembly of the
C. reinhardtii CC-503 genome (Merchant et al., 2007). After removing duplicates
with Picard MarkDuplicates (http://broadinstitute.github.io/picard/), we ap-
plied Genome Analyzer Tool Kit (McKenna et al., 2010) base quality score
recalibration, insertion/deletion realignment, and small variant discovery
(DePristo et al., 2011). This was followed by hard filtering of variants with
extensive manual calibration guided by inspections in Integrative Genomics
Viewer (Thorvaldsdóttir et al., 2013).

RNA-seq Analysis

RNA-seq data were aligned to the C. reinhardtii genome (assembly version
5.5; Phytozome version 10.3 gene annotation) with TopHat version 2.0.10 using
the annotation to guide spliced alignment. Default parameters were kept, with
the exception of constraining intron lengths to less than 5 kb. Expression levels
were quantified using Cufflinks version 2.2.1 to compute fragments per kilo-
base of transcript per million mapped reads.

Identification of Gamete- and Zygote-Specific Genes

Gamete- and zygote-specific genes were identified by applying a series of
filters to the fragments per kilobase of transcript per million mapped reads data
generated asdescribed above.Wedefinedgamete-specific genes for eachmating
typeas those thathaveexpression inall samples (excluding thezygote) that is less
than 10% of the expression level in the gamete of that mating type. Zygote-
specific genes were defined as those whose expression in all other samples was
less than 25%of the expression level in the zygote. Expressionvalues for samples
with replicates were averaged.

Bisulfite-Treated DNA Sequencing Analysis

Raw sequence data were demultiplexed using standard Illumina barcode
indices and checked for quality using FastQC (version 0.10.1). Bisulfite-converted
sequences were aligned to the C. reinhardtii nuclear genome (November 2011
assembly) and chloroplast genome using the BS-Seeker2 alignment pipeline
version 2.0.5 (Guo et al., 2013). Default whole-genome bisulfite alignment pa-
rameters were chosen with the following exceptions: Bowtie2 was used as the
aligner, and local alignments were enabled. Methylation levels were called for
cytosines covered by at least four reads. Sequence data have been deposited in
NCBI’s Short Read Archive under the accession numbers SRR2051057,
SRR2051058, SRR2051059, SRR2051060, SRR2051061, SRR2051062, SRR2051063,
and SRR2051065.

Identification of Candidate Methyltransferases

To identify candidate DNA methyltransferases, protein sequences of
C. reinhardtii (Phytozome version 10 gene annotation) were scanned against the
Pfam-A database (release 27) using the stand-alone PfamScan scripts provided
by the Wellcome Trust Sanger Institute. The presence of the C-5 cytosine-
specific DNA methylase domain (PF00145) was used as a criterion for assign-
ment as a cytosine methyltransferase.

Sequence data have been deposited in NCBI’s Short Read Archive under
the accession numbers SRR2051057, SRR2051058, SRR2051059, SRR2051060,
SRR2051061, SRR2051062, SRR2051063, and SRR2051065.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Candidate methyltransferases in C. reinhardtii.

Supplemental Figure S2. Methylation patterns for C. reinhardtii mitochon-
drial DNA.
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Supplemental Table S1. Annotation of gamete and zygote specific genes.

Supplemental Table S2. Expression values for gamete and zygote specific
genes.

Supplemental Table S3. Coordinates of hypermethylated regions in nu-
clear genome with repeat data.

Supplemental Table S4. Methylation and expression data for genes in
regions with strain specific methylation patterns.
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Abstract: Bacterial microcompartment (MCP) organelles are cytosolic, polyhedral structures
consisting of a thin protein shell and a series of encapsulated, sequentially acting enzymes. To date,
different microcompartments carrying out three distinct types of metabolic processes have been
characterized experimentally in various bacteria. In the present work, we use comparative genomics
to explore the existence of yet uncharacterized microcompartments encapsulating a broader set of
metabolic pathways. A clustering approach was used to group together enzymes that show a strong
tendency to be encoded in chromosomal proximity to each other while also being near genes for
microcompartment shell proteins. The results uncover new types of putative microcompartments,
including one that appears to encapsulate B12-independent, glycyl radical-based degradation of 1,2-
propanediol, and another potentially involved in amino alcohol metabolism in mycobacteria.
Preliminary experiments show that an unusual shell protein encoded within the glycyl radical-based
microcompartment binds an iron-sulfur cluster, hinting at complex mechanisms in this
uncharacterized system. In addition, an examination of the computed microcompartment clusters
suggests the existence of specific functional variations within certain types of MCPs, including the
alpha carboxysome and the glycyl radical-based microcompartment. The findings lead to a deeper
understanding of bacterial microcompartments and the pathways they sequester.

Keywords: microcompartment; carboxysome; bacterial organelle; metabolic pathways; glycyl
radical enzymes

Introduction
Over the last few decades, the general view that bac-
teria have simple internal structures has changed.
Electron microscopy investigations have demon-
strated that bacteria produce a wide variety of intra-
cellular inclusions.1,2 The discovery and subsequent
isolation of one particular class of polyhedrally
shaped bodies dates back almost 40 years.3 These
giant proteinaceous bodies, called bacterial micro-
compartments (hereafter referred to as MCPs) are
typically 80–150 nm in diameter and consist of a set
of interior enzymes surrounded by a thin protein
shell reminiscent of a viral capsid.4–8 MCPs have
been proposed to serve diverse functional roles:

Abbreviations: BMC, bacterial microcompartment shell protein;
Eut, ethanolamine utilization; Etu,ethanol utilization; Grp, glycyl
radical-based 1,2-propanediol utilization; MCP, microcompart-
ment; PCC, pairwise correlation coefficient; Pdu, propanediol
utilization.
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believed to provide the conduits for substrates and
products to cross the shell.4,23–25 Another gene fam-
ily (ccmL/csoS4/eutn/pduN), which is distinct from
the BMC family, is typically present as well and is
believed to code for minor vertex proteins in the
shell.23 Genomic analyses have shown that the
encapsulated enzymes and the BMC shell proteins
are frequently encoded within the same operon,

Figure 1. Morphology of MCPs and models of their

sequestered pathways. (A) Thin-section EM of a dividing

cell of the cyanobacterium Synechocystis sp. PCC6803

(left) along with an enlargement of a single carboxysome

(right, courtesy of Wim Vermaas). (B) Electron micrographs

of a thin-section of Salmonella enterica serovar

Tyhpimurium LT2 (left; Reproduced from Ref. 96, with

permission from Thomas Bobik) and purified Pdu

microcompartments (right; Reproduced from Ref. 8, with

permission from Thomas Bobik). (C) Models for CO2 fixation

and 1,2-propanediol and ethanolamine metabolism in the

carboxysome, Pdu and Eut microcompartments,

respectively. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

improving flux through key metabolic pathways,9 

sequestering cytotoxic or volatile intermediates in a 
pathway,10,11 and protecting the encapsulating 
enzymes from exposure to competing or reactive 
molecules (e.g., O2),

12 all while allowing passage of 
substrates and products across the shell. Biochemi-
cal and structural studies have revealed microcom-
partments to be mechanistically complex entities, 
warranting their classification as organelles (Fig. 1).

The enzymes and metabolic pathways encapsu-
lated by microcompartments are diverse, allowing 
the delineation of a few distinct classes of MCPs.7 

The founding member is the carboxysome, present 
in cyanobacteria and some chemoautotrophs.3,13 The 
carboxysome houses two enzymes: RuBisCO (a low 
efficiency enzyme essential to autotrophic fixation of 
carbon dioxide) and carbonic anhydrase [Fig. 1(B)]. 
The catalytic efficiency of RuBisCO is improved by 
having its CO2 substrate produced by carbonic anhy-
drase inside the MCP, where its escape might be 
retarded by the shell.14,15 Two carboxysome subtypes 
(alpha and beta) are delineated by their partially 
distinct protein components; they are distributed 
along phylogenetic lines within chemoautotrophs 
(alpha only) and cyanobacteria (alpha or beta). Bio-
chemical and genetic studies have been conducted 
on two other microcompartments: the Pdu microcom-
partment of enteropathic Salmonella enterica16–18 

and the Eut microcompartment of Salmonella (also 
found in some strains of Escherichia coli) (refs. 
11,19,20). These MCPs metabolize 1,2-propanediol 
and ethanolamine, respectively [Fig. 1(B)].

In contrast to the metabolic variations presented 
by different MCPs, the proteins that self-assemble to 
form the outer shell are homologous across the 
disparate functional types. MCP shells are composed 
mainly by proteins bearing one or sometimes 
two tandem bacterial microcompartment (or BMC) 
domains, identified first by Shively and coworkers.13 

We refer to these major shell components as BMC 
shell proteins. Bacterial microcompartments them-
selves are sometimes referred to as BMCs, but in 
this paper we refer to microcompartments as MCPs 
to avoid confusing the compartment with its main 
structural proteins. In each MCP, a few (three to 
seven) different paralogs of the BMC shell protein 
assemble, from a few thousand copies in total, to 
form the shell (Supporting Information Fig. S1). 
Crystallographic studies have given insight into the 
significance of the conserved BMC domain and how 
it relates to microcompartment shell organization as 
a whole.4,5,8,21,22 In particular, structures of several 
BMC shell proteins have revealed that they gener-
ally assemble as cyclic homohexamers, which pack 
side-by-side to build a molecular layer4,5,21,23 (Sup-
porting Information Fig. S1). The center of each hex-
amer is typically perforated by a narrow pore along 
the sixfold axis of symmetry; these pores are
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consistent with the idea that expression and assem-
bly of the distinct MCP components occur in a coor-
dinated fashion.7 Mechanisms underlying the target-
ing of enzymes to their correct destination in MCPs
have been partially clarified. Experiments show
that, for a few cases, short N-terminal sequence
extensions are necessary and sufficient to target
enzymes to the MCP interior or lumen.26–30 In
another case, a C-terminal region has been shown to
be important for targeting an interior protein.31

Genomic studies offer prospects for new discov-
eries related to MCPs. A current search of sequence
databases for proteins bearing a BMC domain indi-
cates that microcompartments are distributed across
approximately 17% (265 out of 1568) of the fully
sequenced bacterial genomes currently available.
Several comparative genomics analyses have sug-
gested the existence of other types of MCPs besides
the three currently studied,4,8,21,22 but clear meta-
bolic models have not been developed. The ever-
expanding body of genomic sequences, combined
with the tendency of BMC shell proteins to be
encoded in proximity to the enzymes they encapsu-
late, suggests bioinformatics strategies for predicting
the existence of novel metabolic schemes within
MCPs. In this study, we sought to identify poten-
tially novel MCP pathways by searching for the co-
occurrence of groups of enzyme-encoding genes in
MCP operons. The approach is based on the idea
that groups of enzymes that tend to occur together
within individual MCP operons are likely to repre-
sent encapsulated pathways. Here, we describe how
our method recapitulates the metabolic pathways
hosted in known MCPs, while also uncovering MCPs
that are novel or that represent variations on previ-
ously studied types.

Results
MCP operons were examined across the 113 fully
sequenced bacterial genomes where BMC shell pro-
teins could be identified. Based on their identified
PFAM domains and annotations from the KEGG
Orthology system, proteins encoded by genes proxi-
mal to BMC shell genes were collapsed into distinct
Protein Functional Groups intended to represent
unique cellular functions. In order to cluster these
into disjoint sets that might each represent one type
of MCP, we evaluated in a full pairwise fashion the
tendency of every pair of Protein Functional Groups
to co-occur within individual MCP operons. Statisti-
cal tests were applied throughout the procedure to
maximize the likelihood of producing biologically
meaningful results (see Methods and Fig. 2).

Our genomic context-based approach produced
10 candidate metabolic clusters containing between
two and 13 proteins and enzymes (Fig. 3). Protein
Functional Groups are represented as nodes, with
two nodes being connected by a line or edge when

their tendency to co-occur was judged to be statisti-
cally significant. Among the 10 clusters, four were
consistent with well-characterized, canonical MCPs:
carboxysomes of the alpha and beta type, along with
the Pdu and Eut microcompartments. Most of the
enzymes known to participate in MCP function were
found to be effectively clustered, in some cases to-
gether with other unanticipated Protein Functional
Groups. Of particular interest, a number of poorly

Figure 2. Schematic for identifying pairs of proteins or

enzyme families that tend to co-occur in the context of

microcompartment (MCP) operons. As step 1, BMC-proximal

genes and their encoded proteins are collected following our

operational definition of a MCP operon (see Methods). In

step 2, to gain clarity and statistical power, the BMC-

proximal genes are assigned to Protein Functional Groups,

grouping together similar protein sequences where possible.

In step 3, the co-occurrence tendency is evaluated by a

pairwise correlation coefficient (PCC) for every pair of

Functional Groups. In the last step, after applying statistical

confidence tests, strongly linked Protein Functional Groups

are clustered together. Different clusters identify MCPs with

distinct metabolic functions. The scheme shown is a

simplification; application to real genomic data leads to more

MCP types and more proteins per cluster.
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not co-occur as strongly with BMC shell proteins
within the genomes of cyanobacteria that produce
beta carboxysomes. CcmM and CcmN play important
roles in organizing the enzymes and shell proteins of
the beta carboxysome through specific protein–pro-
tein interactions,31,32 and CcmM has been shown to
carry redox-sensitive carbonic anhydrase activity.33

Alpha-carboxysome. Cluster 2 represents the
alpha carboxysome. Eight Protein Functional
Groups are clustered (Fig. 3). These include three
proteins well-established to be part of the alpha car-
boxysome: the carbonic anhydrase CsoS3 (or
CsoSCA), the RubisCO small subunit, and the CsoS2
protein, whose function remains enigmatic.14,21,34

The correlations between these three Protein Func-
tional Groups were high, based on their co-occur-
rence across 14 organisms included here (see Sup-
porting Information). These results are consistent
with the canonical genomic organization reported in
the literature for the alpha carboxysome12,14,34 and
with the essential features of CO2 fixation.

Five additional Protein Functional Groups are
also found clustered with the alpha-carboxysome:

Figure 3. Clusters of proteins and enzymes predicted by a computational approach to constitute distinct kinds of

microcompartments. Clusters have been numbered from 1 to 10. Each Protein Functional Group is represented as a node

(plain white for strong nodes, light gray for weak nodes) and a significant correlation between two nodes is represented as an

edge. Protein Functional Groups are labeled with their corresponding gene name when consistent annotations are available

across the different species. Clusters 1, 2, 3, and 5 are related to the canonical microcompartments (beta and alpha

carboxysomes, and Pdu and Eut microcompartments, respectively). Cluster 4 is related to the cob operon, which upon closer

inspection is seen to relate to the Pdu MCP. Clusters 6–9 relate to a presumptive MCP for glycyl radical-based propanediol

utilization (which we name Grp), along with variations under which it appears in different species. Cluster 10 identifies a

potential MCP in mycobacteria that could involve amino alcohol metabolism. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]

characterized or previously uncharacterized MCP 
types emerged from the analysis. The features of 
these MCPs are discussed below.

Carboxysomes and Pdu and Eut gene clusters 
For the clusters corresponding to previously charac-
terized MCP types, we analyzed the results for the 
presence of (1) enzymes well-established to be 
involved in that MCP, and (2) unexpected enzymes 
that could provide new insights into how these 
MCPs might function in diverse microbes.

Beta-carboxysome. Cluster 1 represents the beta 
carboxysome (Fig. 3). A total of nine cyanobacterial 
genomes form the basis for cluster 1. The beta carbox-
ysome is unusual compared to the alpha carboxysome 
and the Eut and Pdu MCPs in that its component 
genes are typically distributed across multiple 
genomic regions rather than residing in a single op-
eron.5,8,12,23 This is seen in the clustering results, 
which identify strong connections only between two 
proteins in the beta carboxysome, namely CcmM and 
CcmN; genes for the RuBisCO large and small subu-
nits, which perform the key CO2 fixing reaction, do
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bacterioferritin, pterin-4a-carbinolamine dehydra-
tase homologues, an ATP-binding protein homolo-
gous to CbbQ, along with its activation protein
(CbbO), and cobyrinic acid a,c-diamide synthase
(CobQ). The presence of these noncanonical genes
appears to arise from their co-occurrence in the
vicinity of the BMC shell gene csoS1D, which was
recently confirmed to be a bona fide carboxysome
shell protein.35 The tendency of CsoS1D to be
encoded near some of the proteins identified here
was reported in an earlier analysis,35 but the biologi-
cal relevance of these BMC-proximal genes has not
been clarified yet.

The CsoS1D protein24 belongs to a group of
BMC shell proteins that each contain two tandem
BMC domains, and which assemble as pseudo-hex-
americ trimers.4,25,36,37 Tandem domain BMC shell
proteins from different kinds of MCPs have been
shown to support both open and closed pore confor-
mations.4,25,36 In the case of the Eut MCP, it was
proposed that the open conformation in the tandem
BMC protein EutL is required for transporting bulky
cofactors across the shell for their use by the encap-
sulated ethanolamine utilizing enzymes. The core
enzymes of the carboxysome—carbonic anhydrase
and RuBisCO—do not require cofactors, leaving the
purpose of a large pore in CsoS1D unexplained. We
propose here, based on the tight genomic association
of CsoS1D with various complex enzymes, that this
shell protein likely supports the transport of mole-
cules—possibly including bulky cofactors—for as-yet
undefined reactions that might occur within variant
forms of the alpha carboxysome in diverse bacteria.

The identities of the above five noncanonical
Protein Functional Groups that appear linked to the
alpha carboxysome allow for speculation regarding
possible functional variations within this type of
MCP. Two of the associated Protein Functional
Groups, CbbQ and its activation protein, modulate
the conformation and activity of RuBisCO, inducing
a twofold increase in its Vmax.

38 CbbQ relies on ATP
for activity, raising the prospect of nucleotide trans-
port across the alpha carboxysome shell. A third pro-
tein, bacterioferritin, is known to form molecular
cages for iron storage. Its functional connection to
the alpha carboxysome, if any, is unknown. The
remaining two Protein Functional Groups identified
here have functions likely related to cofactor synthe-
sis. One is CobQ, which uses glutamine or ammonia
as a substrate in a reaction for synthesis of cobala-
min,39 a cofactor used in other MCPs but not previ-
ously associated with the carboxysome. The involve-
ment of ammonia is intriguing in view of the
enzyme’s relatively high Km (26–200 lM) for this
substrate,40 along with the well-established confine-
ment or channeling of ammonia between enzymes in
other metabolic contexts.41,42 The possibility that
ammonia could be used for a reaction inside a func-

tionally extended form of the alpha-carboxysome
constitutes a hypothesis for future testing.

The final Protein Functional Group strongly co-
occurring with the canonical proteins of the alpha-
carboxysome appears by sequence analysis to be dis-
tantly related to pterin-4 alpha-carbinolamine dehy-
dratase (PCD), though key catalytic residues
believed to play a role in PCD activity43 are not
obviously preserved by sequence alignments to the
enzymes co-occurring with the alpha-carboxysome
genes. PCD is involved in tetrahydrobiopterin recy-
cling, where it catalyzes the reversible conversion of
4a-hydroxytetrahydrobiopterin to dihydrobiopterin.44

Only tentative connections can be suggested
between these Protein Functional Groups. For exam-
ple, we note that tetrahydrobiopterin is often seen
as a cofactor for aromatic amino acid hydroxylases,45

which also require non-heme iron for activity;46 this
would provide a potential link to bacterioferritin.
Also intriguing is the observation that some ferritin-
like proteins are encapsulated within a different
kind of protein compartment, considerably smaller
than an MCP, known as the encapsulin nanocom-
partment.47 Although clear functional relationships
between these additional proteins found to be associ-
ated with alpha carboxysome operons cannot be
established at the present time, recent experimental
studies confirm that bacterioferritin and the enzyme
homologous to PCD are in fact upregulated in con-
cert with the canonical carboxysome genes.48

Pdu microcompartment. Cluster 3 represents
the Pdu MCP (Fig. 3). It contains all the enzymes
known to operate in the 1,2-propanediol utilization
pathway (Fig. 1), with the exception of PduH and
PduV. These enzymes share identical domains with
other clustered enzymes (PduH with PduD and
PduV with EutP respectively) and thus were missed
by our approach due to the inability in each case to
segregate the homologous enzymes into two distinct
groups. The Protein Functional Group annotated as
hisG was represented as a weak node due to its
tendency to occur at the margins of the pdu operon.

Cluster 4 contains a few enzymes involved in
synthesizing the cobalamin cofactor (Fig. 3). This
cluster of cob genes was not automatically joined to
the canonical Pdu MCP (cluster 3) by our analysis,
but the two clusters appear to be functionally linked.
Experimental studies show that the pdu and cob
operons are both tightly regulated by the PocR pro-
tein, and that propanediol degradation is dependent
on cobalamin, B12.

18,49 In most cases we observe
that the cob genes are adjacent or peripheral to the
pdu operon and not interspersed with the BMC shell
proteins. Thus in our analysis the correlations
between these distinct clusters of Protein Functional
Groups were not significant enough to merge the
Pdu and Cob pathways into a single cluster.
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weakly interconnected at a level not sufficient for
them to be automatically joined by our approach—
they appear to represent variations within a com-
plex type of MCP. Finally, a 10th cluster appears to
represent a distinct entity. Findings related to these
two presumptive MCP types—clusters 6–9 and clus-
ter 10— are discussed below.

A putative glycyl radical-based MCP. Among
several enzymes identified in cluster 6, one of partic-
ular note belongs to a diverse family of glycyl radical
enzymes. The identification (in Vibrio furnissi M1)
of BMC shell genes interspersed with an enzyme
from this family was discussed by Wackett et al.55

Based on sequence similarity, this enzyme has been
previously annotated as a pyruvate formate lyase.
However, the sequence similarity is low, and other
considerations discussed subsequently argue that
this enzyme, and the MCP that harbors it, most
likely utilizes 1,2-propanediol rather than pyruvate,
in a B12-independent pathway. We report here that
these enzymes are encoded in a genomic pattern
substantially conserved across more than 20 species
examined, suggesting the existence of a broadly dis-
tributed class of microcompartment apart from the
better-known MCPs.

Cluster 7 consists of two co-occurring Functional
Groups: an enzyme similar to the C-terminal domain
of PduO (an ATP/cobalamin adenosyltransferase
involved in vitamin B12 synthesis in the Pdu path-
way), and a MIP family channel protein known to
transport small neutral metabolites across the mem-
brane.56 Cluster 8 includes two drug resistance pro-
teins along with two regulatory proteins and a phos-
photransacylase (a PduL homolog). Strikingly, an
analysis of the operons supporting clusters 7 and 8
showed that the enzymes identified in cluster 6 were
also present, though our algorithmic approach did
not automatically detect connections between cluster
6 and either cluster 7 or 8. The Protein Functional
Groups represented by clusters 7 and 8 are only
sometimes present in the larger set of operons that
contain cluster 6 as the conserved core (Fig. 4). This
is consistent with the failure of our automatic proce-
dure to connect clusters 7 and 8 to cluster 6; they
appear to represent specific compositional variations.

Clusters 7 and 8 contain a number of proteins
or enzymes without obvious relationships to glycyl
radical-based metabolism. The MIP channel protein
from cluster 7 could be responsible for importing the
substrate or substrates of this MCP, but the role of
the enzyme similar to the PduO C-terminus is
unclear. Among the five organisms found to have
these two genes, three belong to the set of more
than 20 where the cluster 7 genes occur together
with the core enzymes of cluster 6. When present,
these genes are found dispersed between multiple
BMC shell protein genes (Fig. 4). Cluster 8,

Likewise, there are no experimental data tying these 
particular cobalamin synthesis reactions directly to
the Pdu MCP. Nonetheless, B12 is a required cofactor 
for 1,2-propanediol degradation and there are a few 
bacterial species where the genomic arrangement is 
distinct, and suggestive of a closer relationship. The 
cobU cobC and cobS genes are used to synthesize 
the lower ligand of B12, suggesting that lower ligand 
synthesis may be limiting for B12 production in some 
environments. Similarly, the PduX gene often found 
near the end of the pdu operon in enterica bacteria 
is also used for lower ligand synthesis.50

Eut microcompartment. Cluster 5 represents the 
ethanolamine utilization (Eut) MCP. The proteins 
typically encoded by that operon are clustered by 
our method. Some additional proteins, more weakly 
connected, are also identified, including two genes 
coding for a sensor histidine kinase and a response 
regulator. Indeed, it has been previously established 
that among the species associated to the Eut micro-
compartment, some of them present an extended 
version of the canonical operon and embed a two-
component signal transduction system: a histidine 
kinase and its response regulator, referred to as 
EutW and EutV, respectively.19 In vitro assays 
showed that ethanolamine induces a 15-fold increase 
in the rate of autophosphorylation of EutW, followed 
by the activation of EutV through phospho-trans-
fer.19,51 Reciprocally, a closer look at the 17 organ-
isms featuring this variant of the eut operon showed 
that the eutR gene is absent. The latter is known to 
regulate the eut operon in response to ethanolamine 
and adenosylcobalamin (AdoCbl).52 The EutVW and 
EutR regulatory systems appear to exist in mutually 
exclusive species that use Eut MCPs. The observed 
dichotomy appears to be largely phylogenetic; EutV 
and EutW are found mainly in the Firmicutes while 
EutR is found only in the Enterobacteriaceae.

We note that the putative microcompartment for 
ethanol utilization (Etu) discussed by Heldt et al.53

gets grouped with the Eut cluster by our automatic 
clustering. This is because the latter pathway 
includes just two Protein Functional Groups, and 
these are also found in the ethanolamine utilization 
pathway (namely EutG and EutE). The operation of 
this presumptive Etu MCP has not been clarified 
yet by experimental studies, though physiological 
considerations suggest that it may be involved in 
converting ethanol to acetyl-CoA.54

Protein clusters representing new presumptive 
MCP types
Five additional small clusters, besides the clusters 
clearly related to the canonical MCPs discussed
above, are identified in our analysis. They highlight 
systems that have not yet been characterized in 
detail (Fig. 3). Four of these clusters (6–9) are
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composed of four different Protein Functional
Groups, was present in five different species (Fig. 4).
These proteins appear to be associated with drug re-
sistance mechanisms: two transcription regulators
with the canonical helix-turn-helix DNA-binding
motif found in antibiotic-resistance repressors like
TetR,57 two paralogs of a drug resistance protein,

and one yet uncharacterized protein conserved
across the five species. Genes from this group were
sometimes found flanking BMC shell genes at both
upstream and downstream positions within a ge-
nome (Fig. 4). It is presently unclear what functional
connections might relate the glycyl radical-based
enzyme cluster (6) to clusters 7 and 8.

Figure 4. Phylogenetic profile of the BMC-proximal proteins and enzymes from the presumptive glycyl radical-based

propanediol utilization (Grp) microcompartment operon across 23 bacterial species. (A) The 23 microorganisms are extracted

from the analysis of cluster 6 (Fig. 3). Each colored block refers to the presence of a given protein (on the left) in the operon

featured by a given organism (on the top). Cluster 6, corresponding to the core enzymes of the pathway, is depicted in light

blue while supplemental enzymes from clusters 7, 8, and 9 are shown in red, purple and green respectively. A black block

next to a protein name indicates the presence of a presumptive N-terminal targeting extension in this protein compared to

homologues not involved in microcompartments, as analyzed following previously described methods.27 The last row

represents the profile of a divergent BMC shell protein, apparently specific to the Grp MCP, which was subjected to initial

experimental characterization (see text). Next to each organism name, the number of tandem BMC proteins present in the

operon is enclosed in red brackets. (B) Examples of gene organization in species featuring the Grp operon. BMC shell genes

are colored in light gray, while the genes clustered by our approach are colored consistently with their corresponding clusters

depicted in panel A. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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phyla.55 The key enzyme from cluster 6 exhibits low
but recognizable sequence similarity to pyruvate for-
mate lyase from Escherichia coli (21% amino acid
sequence identity), and glycerol dehydratase from
Clostridium butyricum (33% identity). Both of those
enzymes belong to a broad family of glycyl-radical
enzymes.60–62 Experimental studies demonstrate
that a pyruvate-formate lyase activase enzyme,
which converts Gly734 (G-H) into a glycine radical
(G*) in the active site of pyruvate formate lyase, is
necessary for activating the latter, and for triggering
the reaction in anaerobic conditions.63 Glycyl radical
enzymes generally require such activators to modify
a critical residue in their active site.61,62,64 A glycyl-
radical enzyme activase is indeed present in cluster
6; its occurrence is perfectly correlated with the
presence of the glycyl-radical enzyme across the
genomes in our analysis (Fig. 4). The activase is
known to use S-adenosyl methionine as a substrate
to generate the required radical,65,66 and a closer
look at the genomic context showed the presence in
some cases of a S-adenosylmethionine synthase gene
(Supporting Information).

Pyruvate formate lyases contain two adjacent
cysteine residues within their active sites, which are
believed to be important in radical transfer.56 Other
types of glycyl radical enzymes, such as B12

independent glycerol dehydratase, ribonucleotide
reductases, and 1,2-propanediol dehydratases, con-
tain only one of those cysteine residues. Sequence
alignments indicate that the glycyl radical enzymes
in our cluster 6 MCP contain only one cysteine.
This, coupled with the closer similarity of the cluster
6 glycyl radical enzyme to a B12-independent glyc-
erol dehydratase, calls into question its annotation
as a pyruvate formate lyase. Likewise, experimental
studies highlighted that two of the organisms repre-
sented in cluster 6, Proteus mirabilis and Esche-
richia fergusonii are not able to ferment glycerol,67

suggesting that glycerol is not the primary substrate
for this type of MCP. Conversely, it has been shown
that the enzyme annotated as glycerol dehydratase
from Clostridium butyricum is also able to catalyze
the dehydration of 1,2-propanediol to propionalde-
hyde.68 Further evidence that 1,2-propanediol is the
primary substrate in these systems comes from the
upregulation of microcompartment genes when 1,2-
propanediol is metabolized anaerobically in Rosebu-
ria inulinivorans.69 The 1,2-propanediol arises from
the anaerobic degradation of fucose, followed by
conversion to propionaldehyde by a B12-independent
glycyl-radical enzyme in R. inulinivorans that is
highly similar to the glycerol dehydratase in Clos-
tridium butyricum.68 Consistent with this theme,
one of the cluster 6 microcompartments identified in
Clostridium phytofermentans (Supporting Informa-
tion) has been shown to be involved in fucose/rham-
nose degradation (GSM333252 data from the Gene

Cluster 9, whose genes also occasionally occur 
with those of cluster 6, involves two Protein Func-
tional Groups similar to those found in the expanded 
version of the eut operon: a histidine kinase sensor 
and a response regulator receiver. These genes occur 
in the operon containing the glycyl radical-based 
degradation enzyme in about half of the species 
examined, but their frequent location at the 
upstream end of the operon, along with their ab-
sence from the other half of the species, caused 
them to cluster separately.

Diverse MCP operons encoding a glycyl radical 
enzyme have been noted in the literature, and a 
just-published survey (see Supporting Information 
in Ref. 31) suggests the potential for multiple types 
of MCP based on those operons. In the present 
study, the diverse MCP operons belonging to clusters 
6–9 are seen to share a conserved set of enzymes 
(Fig. 4). We therefore group them for the present as 
a single distinct type of MCP, though functional var-
iations are evident.

A presumptive MCP in mycobacteria. Cluster 
10 identifies another distinct type of MCP operon 
present in four organisms (Mycobacterium smegmatis, 
Mycobacterium sp. MCS, Mycobacterium gilvum, and 
Mycobacterium vanbaalenii) and containing at least 
three Protein Functional Groups (Fig. 3): an amino-
transferase, a short chain dehydrogenase similar to 
amino alcohol dehydrogenase, and a GnTR family 
transcriptional regulator that Vindal et al.58 have 
described as belonging to the FadR/HutC subfamily, 
whose members are known to bind ligands such as 
oxidized substrates related to amino acid metabolism 
or long chain fatty acids. Recently, genetic analysis of 
an operon coding for a similar MCP in Rhodococcus 
erythropolis MAK154 highlighted that amino alcohol 
dehydrogenase expression was repressed by a GntR 
transcriptional regulator.59 That repression was 
relieved in the presence of 1-amino-2-propanol, which 
is the substrate of the amino alcohol dehydrogenase. 
After visual examination of the four operons, we 
found other enzymes missed by our automatic 
approach, which allowed for manual improvement of 
the functional predictions. These additional enzymes 
include an amino acid permease and an aldehyde 
dehydrogenase. Beyond a presumptive connection to 
amino alcohol metabolism, a more specific functional 
role for this putative MCP, which was also listed 
among prospective MCPs by Kinney et al.,31 cannot 
be offered at this time.

Genomic characterization of a putative glycyl 
radical-based propanediol utilization (Grp) MCP 
As noted above, the enzymes of cluster 6 exhibit a 
strongly conserved pattern of co-occurrence with 
BMC shell proteins across many bacteria, covering 
23 species from the Firmicutes and Proteobacteria
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Expression Omnibus, submitted by J.L. Blanchard).
Based on these observations, we surmise that the
glycyl-radical enzymes in these MCPs act as B12-
independent 1,2-propanediol dehydratases. In line
with previous naming schemes, we refer to these
systems as glycyl radical-based propanediol utiliza-
tion or Grp MCPs.

Following the initial enzymatic step, similar-
ities are evident between the Grp MCP and the
B12-dependent Pdu (and Eut) MCPs. Cluster 6
contains two Protein Functional Groups related to
enzymes known to be targeted to the Eut or Pdu
microcompartments: the aldehyde dehydrogenases
EutE/PduP and EutJ, which plays a possible role of
chaperone. Other enzymes believed to operate in
the Eut or Pdu MCP are not seen in the glycyl radi-
cal-based cluster 6. However, an enzyme closely
related in sequence to the phosphotransacylase
PduL (whose substrate is propionyl-CoA) is pres-
ent,70 further supporting the hypothesis of a path-
way beginning with 1,2-propanediol as the initial
MCP substrate. The PduL-like Functional Group is
not automatically placed with cluster 6 in our
approach, mainly because of its wide occurrence in
other genomic contexts, including those represented
by cluster 3 (Pdu). This situation highlights a limi-
tation of our approach, which seeks to divide MCPs
based on their use of distinct enzymes. A similar
situation was seen for the Protein Functional
Group representing alcohol dehydrogenases. The
alcohol dehydrogenase functional group clusters
automatically with the Eut MCP (Fig. 3, cluster 5,
EutG), but genes for alcohol dehydrogenases also

co-occur systematically with the 1,2-propanediol
metabolizing enzymes of cluster 6 (Fig. 4).

Modeling a glycyl radical-based propanediol
utilization pathway
Looking at the substrates and products of the
enzymes identified computationally (cluster 6), and
also by subsequent visual inspection of the
corresponding operons, one can logically combine the
reactions in a pathway that would use 1,2-propane-
diol as a main metabolic substrate. As a first step in
modeling a reaction pathway, we used the KEGG
webserver71 to identify candidate pathways that
might involve a glycyl radical-based propanediol
dehydratase enzyme. The most likely candidate was
the glycerolipid pathway (K00128), leading to two
products: propionylphosphate and 1-propanol. By
mapping the enzymes identified in our cluster 6 onto
the glycerolipid metabolism pathway, we found that
they could carry out a reaction sequence similar to
the one found in Pdu. The putative 1,2-propanediol
dehydratase in the Grp MCP would play a role analo-
gous to the PduCDE enzyme in the B12-dependent
Pdu MCP; both produce propionaldehyde. This inter-
mediate would then be converted to propionyl-CoA
and propanol by the sequential actions of aldehyde
dehydrogenase and alcohol dehydrogenase, both
found in cluster 6. Based on similarities with the
characterized Pdu pathway, the PduL homolog can be
integrated into the reaction scheme to carry out the
transacylation between propionyl-CoA and propionyl-
phosphate. From these reactions, we can draw a

Figure 5. Proposed model for metabolism in the Grp microcompartment. Similar to the Pdu microcompartment, the

expected final products include propanol and propionyl-phosphate. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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encoded by Sputw3181_0423 in Shewanella putrefa-
ciens and Pecwa_4089 in Pectobacterium wasabiae
exhibit long C-terminal tails extending beyond the
conserved BMC domain; these segments are pre-
dicted by IUPRED72 to be disordered. Short, flexible
extensions of about 10–20 residues have been noted
in previous structural studies,21,23,73 but the exten-
sions observed here are unusually long, ranging
from 80 to 100 residues. Also unusual is the pres-
ence of a BMC shell protein (present in eight of the
species examined) that is especially divergent from
those previously characterized. The occurrence of
this shell protein across various species has been
integrated into Figure 4. Another interesting feature
is the abundance of tandem BMC proteins in the
Grp MCP operons of some bacteria, such as Desulfo-
vibrio salexigens and Desulfovibrio desulfuricans
G20, which exhibit up to three tandem BMC pro-
teins (Fig. 4). The apparently novelty of the shell
proteins in the Grp MCP is consistent with the ex-
pectation that its metabolic features will be different
in substantial ways from those explored so far.

As an initial step in characterizing the protein
components of a Grp MCP, we overexpressed the
unusually divergent shell protein noted above,
Pecwa_4094 from Pectobacterium wasabiae, in E.
coli and purified it to homogeneity. As judged by gel
filtration, the protein appears to assemble into a
homooligomer consistent with a hexamer, by analogy
to previously studied BMC shell proteins. Surpris-
ingly, the purified protein was brown in color and an
absorption spectrum showed broad peaks at 330 and
420 nm, consistent with a partially oxidized iron-sul-
fur cluster (Supporting Information Fig. S2). An
iron-sulfur cluster has been proposed to occupy the
pore of a previously characterized tandem BMC
shell protein, PduT, in the Pdu MCP.25,74,75 The un-
usual shell protein from Pectobacterium wasabiae
reported here is the first single-domain BMC to be
identified as a metalloprotein. Further biochemical
and structural studies on components of this system
will be required to clarify how the shell proteins of
the Grp MCP modulate its function.

Discussion
Since the discovery of the carboxysome and the Pdu
and Eut MCPs, important clues about MCP composi-
tion and function have come from examining
sequence data and genomic organization.12,76–79 In
this study, we have taken those ideas further with
an algorithmic approach aimed at classifying new
and varied types of MCPs, relying on patterns across
more than a hundred bacterial genomes in which
BMC shell proteins can be found. Because each type
of MCP houses a group of enzymes, a central ele-
ment of our strategy was to try to automatically
group together genes that co-occur strongly in the
vicinity of BMC shell proteins. The resulting

prospective pathway likely to occur within the Grp 
MCP (Fig. 5).

Detection of N-terminal extensions in the glycyl 
radical-based propanediol utilization enzymes 
Recent experiments have demonstrated that some 
enzymes in the B12-dependent Pdu system are tar-
geted to the MCP interior via the presence of short
N-terminal extensions in their sequences.27,30 Bioin-
formatics studies suggest that an equivalent mecha-
nism might exist in other MCPs as well.27,28,31 Here, 
we asked whether special N-terminal extensions 
might be evident in the enzymes predicted to be 
associated with the proposed Grp MCP (Fig. 4). Con-
sistent with our previous calculations, we found that 
the phosphotransacylase and the putative glycyl rad-
ical 1,2-propanediol dehydratase both present special
N-terminal extensions.27 Additionally, the enzyme 
similar to the PduO C-terminus in cluster 7 was 
also detected as having such an extension. These
observations support a model that places those 
enzymes within (or physically bound to) the MCP.

The approach we used to identify potential tar-
geting signals is based, not on recognition of any 
particular sequence motif, but on the presence of 
extended sequences at the termini.27 In addition, fol-
lowing recent work,31 we attempted to identify 
potentially conserved sequence motifs in the 
enzymes of the Grp MCP operons that might match 
other established targeting sequences. In our exami-
nation we did not judge matches to potential target-
ing motifs as being statistically significant enough to 
make clear predictions about other targeting mecha-
nisms in this MCP.

Shell proteins of the Grp MCP
In parallel with our analysis of Protein Functional 
Groups from cluster 6 and their genomic organiza-
tion (Fig. 4), we examined the BMC genes that 
would presumably form the shell of the Grp MCP. In 
a typical bacterial genome, an MCP operon for glycyl 
radical-based propanediol utilization contains about 
four distinct BMC shell protein paralogs. According 
to current models for MCP architecture,5,6,25 a few 
thousand copies of these proteins would assemble
into hexagonally-packed arrays in forming the sur-
face of the shell, with pores allowing for molecular 
transport (Supporting Information Fig. S1). Also in 
keeping with other MCP operons, the operons for 
Grp MCPs code for a gene from the ccmL/csoS4/
pduN/eutN family, which are presumed to code for 
minor (e.g., vertex) proteins in the shell.23

Structural studies of shell proteins from differ-
ent MCPs have revealed interesting variations that 
have been ascribed to different functional require-
ments of the distinct shells. The presumptive BMC 
shell proteins for the Grp MCP reveal additional 
variations. For instance, the BMC shell proteins
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clustering strategy was generally effective in detect-
ing genomic patterns and organizing the data in a
functionally relevant form. A minor challenge arose
from the fact that different MCPs actually contain
some overlapping enzyme activities (e.g., alcohol de-
hydrogenases), whereas the clustering approach nat-
urally seeks to generate separate enzyme groupings.
Nonetheless, with some manual analysis to mitigate
such challenges, the method was able to classify two
types of uncharacterized MCPs, while also illuminat-
ing potential variations within previously character-
ized types, most notably the alpha carboxysome.

Our analysis suggests a model for a microcom-
partment for B12-independent, glycyl radical-based
propanediol utilization, for which we have intro-
duced the name Grp. Multiple lines of reasoning
support the proposed operation of such a microcom-
partment. An operon-like organization is evident,
with genes for enzymes dispersed among multiple
BMC shell genes. The enzymes can be sequentially
connected in a pathway for 1,2-propanediol metabo-
lism that resembles the one that occurs in the Pdu
MCP, with the key distinction being the initial reac-
tion, which involves a glycyl-radical enzyme and its
activase in the Grp MCP, instead of a B12 cofactor.
Further experimental studies will be required to test
whether MCPs of the Grp type might be able to
metabolize a wider range of substrates, perhaps
with different specificities in different bacteria.
Finally, multiple enzymes encoded in the operon
reveal special N-terminal extensions; this has been
established as a key mechanism for targeting
enzymes to MCPs.27–29

The encapsulated enzymes and metabolic
intermediates provide clues regarding biological
advantages that could be offered by the Grp micro-
compartment. One of the pathway intermediates is
the cytotoxic propionaldehyde; retaining such inter-
mediates is recognized as a key role for MCPs.10,80

The reactivity of the key glycyl radical enzyme offers
another clue about potential roles for this MCP. The
presence of a glycyl radical in the activated state of
this enzyme renders it sensitive to oxygen, via
oxygen-mediated cleavage of the polypeptide back-
bone. This property is general to glycyl-radical
enzymes, confining their existence to strictly anaero-
bic conditions.62 The suggestion that the Grp MCP
could protect the glycyl-radical enzyme from destruc-
tive oxygen exposure would parallel similar ideas in
other MCPs; enzymes in the Pdu, Eut, and carboxy-
some systems are all sensitive to either damage by
or competition with molecular oxygen.60

In addition to the core pathway illustrated for
propanediol utilization in the Grp MCP, several
genomic variations were found across the species
examined. A few distinct groups of additional
proteins were sometimes present, with different
groups appearing in different bacteria (Fig. 4). The

existence of three types of extensions could be postu-
lated from the gene clusters automatically identified.
The first extension, involving a histidine kinase and
a regulatory sensor, is reminiscent of an analogous
pair observed in the Eut MCP (and also present in
the proposed Etu system). It occurs in about half of
the Grp operons identified here. The similarity sug-
gests that this ubiquitous phosphorylation-based sig-
nal transduction mechanism also regulates the Grp
system, perhaps in response to propanediol. Another
variant of the Grp operon appears in several bacte-
ria in the form of two transcriptional regulators ho-
mologous to the tetR family of repressors at the
upstream end of the operon, and two genes coding
for small multidrug resistance (SMR) family proteins
at the downstream end. It seems unlikely that the
drug resistance proteins are sequestered in the
microcompartment lumen since their primary role is
to export small molecules extracellularly.81 More-
over, their structural properties as transmembrane
efflux proteins seem incompatible with the struc-
tural requirements of a microcompartment shell.
Drug resistance elements are known to be prone to
horizontal gene transfer, and their presence in this
case may be explained by a necessity to be under
the influence of the promoter controlling the expres-
sion of the Grp operon. This extended Grp operon
occurs almost exclusively in enteropathic bacteria.
In another variational form, we identified two pro-
teins homologous to proteins usually found in the
Pdu operon, PduF and PduO. PduF is a channel pro-
tein transporting small metabolites, potentially facil-
itating 1,2-propanediol diffusion in this case.82 A
last variant, highlighted by J. L Blanchard in Rose-
buria inulinovorans69 (but not automatically identi-
fied in our bioinformatics analysis), appears to be
used for anaerobic fucose and rhamnose degrada-
tion. In this variation, which eluded our automatic
analysis owing to its relative rarity, the Grp operon
is extended by the presence of an aldolase, which is
required in a multistep conversion of 6-carbon sug-
ars to 1,2-propanediol, most likely before entering
the MCP. Expression profiling data showed that, in
the presence of fucose or rhamnose in anaerobic con-
ditions, the aldolase and 12 other genes matching
our definition of the Grp operon are indeed found in
the top 20 upregulated genes in Roseburia.

The genomic variations observed in the Grp sys-
tem suggest that MCPs providing core metabolic
functions can be used differently or modified in dis-
tinct ways in diverse bacteria. The existence of a
Eut operon variant with a signal transduction sys-
tem, and alpha carboxysome operons extended by
various additional genes in the vicinity of the speci-
alized CsoS1D shell gene,35 are consistent with this
general view. For the latter, we speculate that
extended functions beyond the canonical alpha car-
boxysome activities (i.e., CO2 fixation) would require
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the Etu MCP was discussed above. In addition, in a
few select bacteria Kinney et al.31 describe potential
MCP types based on fuculose aldolase as a key
encapsulated enzyme; the purpose of such an MCP
could be to sequester the lactaldehyde intermediate.
Indeed, we note that the fuculose aldolase in these
operons carries an extended N-terminal domain that
could be involved in targeting it to the MCP. An
alternate sequence feature in the C-terminal region
of fuculose aldolase has been indicated as a likely
targeting signal by Kinney et al.31

In summary, our bioinformatics approach has
allowed us to more clearly articulate the diversity of
MCPs in up-to-date sequenced genomes, and to glean
new insights from the organization of their underly-
ing operons. Combining these findings with other
recent analyses of MCP operons in the literature, we
can assemble a census of all the microcompartment
types and variants currently supported by genomic
data (Fig. 6). As always with genomic/bioinformatics
approaches, the lack of functional annotations for
many genes leads to challenges and limitations.
Exploring those uncharacterized proteins could be
fruitful. Our initial experimental investigation of an
unusual shell protein from the proposed Grp MCP
supports that view. Meanwhile, further bioinformatics
studies are likely to add additional discoveries, for
example, using different algorithmic approaches, or
using larger data sets as additional genomes are
sequenced. Somewhat different approaches may be
required to gain insights into systems like the beta
carboxsome, where the genomic organization of MCP
components is more fragmented. Bearing in mind
that bioinformatics studies are only predictive, exper-
imental investigations will be necessary to unravel
the biological functions of the new microcompartment
types and variations reported here, and to more fully
understand the mechanisms by which they operate.

Material and Methods

Operational definition of an MCP operon and
BMC-proximal genes
To circumvent the problem of defining true operons
across hundreds of microbes, many without experi-
mentally characterized regulatory signatures, we
adopted a statistical view of MCP operons. We consid-
ered genes encoded within a certain number of open
reading frames (upstream or downstream) of one or
several paralagous BMC shell genes as potentially
belonging to an MCP operon. The general idea of
using conserved (bacterial) chromosomal proximity as
an indicator of functional linkage has been explored
widely and with good success in previous bioinfor-
matics studies.87–91 In our application, proteins whose
genes satisfy the chromosomal proximity requirement
in multiple genomes are statistically likely to be part

the transport of larger molecules, perhaps cofactors, 
and the specialized shell protein CsoS1D could serve
those functions with its larger pore. What additional 
functions might extend the core CO2 fixing reactions 
have not been articulated yet, but preliminary obser-
vations implicate bacterioferritin and a homolog of a 
pterin recycling enzyme in this type of MCP.

Finally, another type of presumptive microcom-
partment was identified, specific to Mycobacterium 
species. Genes for a group of about four proteins or 
enzymes are found interspersed with typically two 
BMC shell protein genes as well as a gene for the 
minor (vertex) shell protein. The enzymes suggest 
potential involvement in amino alcohol metabolism. 
Two of them have been shown to be involved in utiliz-
ing amino alcohols such as 1-amino-2-propanol, while 
other types of proteins occurring in these operons 
include a class III aminotransferase, an amino acid 
permease-associated protein, an aminoglycoside phos-
photransferase, and a protein of unknown function. 
By analogy to other MCP systems, the amino alcohol 
dehydrogenase is likely to represent the key first reac-
tion in some encapsulated pathway. The repression of 
this enzyme by the GntR transcriptional regulator 
would be lifted in the presence of the amino alcohol 
substrate, leading to the expression of structural shell 
proteins and the enzymes to be encapsulated. The per-
mease, while unlikely to be part of the MCP structure 
itself, could facilitate uptake of an amino acid or 
amino alcohol substrate. The structural similarity of 
1-amino-2-propanol to ethanolamine raises the possi-
bility that the mycobacterial MCP discussed here 
could be similar to the Eut microcompartment. How-
ever, the presence of distinct groups of enzymes sup-
ports a separate classification for this presumptive 
MCP. Among the distinctive enzymes appearing to be 
associated with this MCP, the aminoglycoside phos-
photransferases are bacterial antibiotic  resistance  pro-
teins, conferring resistance to many aminoglycosides,83 

while aminotransferases have been presumed to play 
a role in  aminoglycoside  antibiotics biosynthesis.86,87 
This suggests potentially interesting connections 
between this novel MCP  and mycobacterial persist-
ence, a dormant phase of host infection sometimes 
lasting decades,88 though we note that an MCP of this 
type is not found in the M. tuberculosis genome. 
Finally, sequence comparisons (using reciprocal Blast 
searches) between the putative MCP operons across 
different mycobacterium species highlighted one well-
conserved protein (MSMEG_0274 as in Mycobacterium 
smegmatis) whose function is presently unknown.

The automatic computational analysis of MCP 
types presented here does not successfully identify 
all the MCP types proposed in the recent literature. 
Owing to the statistical criteria applied, the compu-
tational approach overlooks potential MCP types 
that occur in only a few instances across the 
genomic data. The failure to automatically classify
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of an encapsulated pathway. The strength of this
assertion depends on the maximum number of ORFs
allowed between a gene in question and a BMC gene;
we elected not to consider actual physical intergenic
distance or direction of transcription. We refer to this
vicinity metric as v. In our analysis, setting v to a
maximum value of five yielded the most consistent
results in subsequent analyses.

Extracting BMC-proximal proteins
BMC genes were collected from fully sequenced
bacterial genomes by scanning for the InterPro pro-
file of the BMC domain (IPR000249)92 against the
UniProt database (release of September 2011) and
mapping the resulting hits onto their corresponding
gene names. Of all the fully sequenced bacterial
genomes present in Uniprot, 113 genomes were iden-
tified as carrying BMC genes; no BMC genes were
identified in the archaea. Following our operational
definition of an MCP operon, the BMC-proximal
genes (i.e., those within v genes of a BMC shell
gene) were retrieved from the EBI integr8 database
and subsequently mapped to their UniProt ID.95

These constituted our starting set of BMC-proximal
proteins. For v ¼ 5, the dataset gathered a total of
3120 BMC-proximal protein sequences.

Classifying BMC-proximal protein into
functional groups
A first assignment of BMC-proximal protein sequen-
ces into internally homologous protein families (or
groups) was based on Pfam HMM queries of our
database using the hmmer package.94,95 Only those
hits reporting an E-value lower than 10"4 were con-
sidered. Proteins exhibiting the same combination of
domains were collapsed into the same group. Of the
3120 proteins, 2616 could be collapsed down to 759
protein groups. We judged that some of these groups
contained somewhat divergent sequences, with pos-
sibly distinct metabolic functions. Therefore, to
increase the sensitivity of our classification, a com-
plementary scan of the dataset searching for KEGG
Orthology annotations71 allowed a subdivision of
some of these groups into smaller ones, leading to a
total number of 807 groups, referred to as Protein
Functional Groups in our analysis.

Pairwise correlation coefficients between
protein functional groups
Each possible pair of Protein Functional Groups was
examined to see if they tended strongly to occur
together within individual MCP operons (Fig. 2).
To obtain a correlation coefficient for each Protein

Figure 6. An updated classification of MCPs including presumptive types identified computationally. Microcompartments are

divided here into seven main classes according to the core enzymes and pathways confined in their lumen; the two

carboxysome subtypes are separated here on the basis of their partially distinct compositions. For some of the MCPs, their

core functions appear to be augmented by the presence of additional groups of proteins or enzymes; some of these may be

directly involved with MCP function while others could be more peripheral (e.g., regulatory). These extensions suggest the

existence of more complex or diverse MCP variants. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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Student’s t-test (confidence interval equal to 0.95),
where the null hypothesis is true if both sample
means are not significantly different. Nodes for
which the test yielded a value more significant than
10"5 were designated as strong, while values inferior
to that limit were synonymous for weak nodes. We
used the remaining pairs as a basis for clustering.

The final list of Protein Functional Groups and
their linkages were clustered using GraphViz(ver-
sion 2.x) with the ‘‘neato’’ layout (Fig. 3). A node was
named either by choosing a consensus string from
genomic annotations, when available, or after one of
the gene names associated with the node when a
consensus could not be established.

Cloning, expression, and purification of the
BMC shell protein Pecwa_4094
A codon-optimized version of the Pecwa_4094 gene
was synthesized by assembly PCR to include an N-
terminal hexa-histidine tag. The gene was cloned
into pET22bþ vector via NdeI and XhoI restriction
sites. Pecwa_4094 was expressed in BL21(DE3) cells
in Luria-Broth at 37%C, shaking at 225 rpm, for 3 h.
Cells were pelleted, frozen and stored at "20%C. The
cells were resuspended in 50 mM Tris pH 7.6, 300
mM NaCl with protease inhibitors and sonicated
until lysed. Lysate was centrifuged at 16,500 rpm to
separate soluble and insoluble fractions for 30 min.
The soluble fraction was filtered through a 0.22 lM
filter before being loaded onto a 5 mL HiTrap Ni
Column at room temperature. Protein was eluted in
one step with 50 mM Tris pH 7.6, 300 mM NaCl,
300 mM imidazole pH 8.
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