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ABSTRACT OF THE THESIS

Identifying Traffic Anomalies Interfering with IBR Based Outage Detection

by

Ojas Gupta

Master of Science in Computer Science

University of California San Diego, 2018

Professor Kimberly C. Claffy, Chair
Professor Geoff Voelker, Co-Chair

Internet Background Radiation (IBR) is network pollution, composed of all kinds of

Internet traffic, namely backscatter data (due to spoofing), botnet scans and other traffic pollution

(due to misconfigurations in the networking devices). For many years, IBR collected at routed,

but unused address spaces, known as Network Telescope aka Darknet, has been used in multiple

network research applications such as identifying malicious Internet activities, detecting Internet

outages, etc. The Internet Outage Detection Analysis (IODA) is a research project of UCSD

which uses a predictable signal that can be extracted from IBR to monitor the Internet for

macroscopic Internet connectivity outages. Due to the varied composition of IBR, extracting
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consistent ”normal” IBR traffic is difficult, but at the same time is required to detect outages

accurately. In this report, I investigate and analyze IBR collected at the UC San Diego Network

Telescope (UCSD-NT), with the goal of developing a better understanding of events distorting

the coherent nature of the IBR signal and subsequently devising approaches to detect and remove

traffic triggered by these events. These distortions in the IBR signal can be caused by many events,

such as Distributed Denial of Service (DDoS) attacks, botnet scans, Domain Name Service (DNS)

poisoning, etc. I investigate these events to study their causes by various means of statistical and

experimental tools. In my analysis of three years of IBR data, I detect many short-term events

which distort a stable signal extracted from IBR (used by IODA), by generating traffic bursts.

Also, I identify and analyze a large-scale event: SYNRENT (coined from SYN-BitTorrent), which

caused an increase in the TCP-SYN traffic reaching the UCSD-NT for over two years. I present

a broad characterization of SYNRENT in terms of source IPs, countries, Autonomous Systems

(AS), operating systems, etc. to better understand the phenomenon. This thesis also identifies

possible causes of SYNRENT such as the Distributed Hash Table (DHT) poisoning of BitTorrent

traffic in the Great Firewall of China. To mitigate such distorting events and bursts, I present a

software solution to detect and filter them in real-time: the primary idea is to use the history of

previously observed unique source IPs on destination ports and IPs, to determine the occurrence

of a burst. In addition to proposing and implementing the solution, I provide substantial evidence

to prove that it successfully detects and removes the components that distort the signal from

IODA preferred IBR.
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Chapter 1

Introduction

1.1 Internet Background Radiation

For more than a decade, Internet measurement research has benefited from the use of

unsolicited one-way traffic also known as Internet Background Radiation (IBR)[1][2]. IBR is

network pollution, generated by a vast number of computers all around the globe. The traffic

generated from these computers, is often unknown to their original users. The resulting traffic

aggregate has proven to be a useful source of data for observing network characteristics that are

not revealed by other types of data.

Scientists study and analyze IBR collected at unused but routed network blocks. The

passive traffic monitoring system built on these network blocks are commonly known as Network

Telescope aka Darknet. The communication flow on these network blocks is always unidirectional,

i.e., the network telescope does not respond to traffic it receives. Currently, University of

California San Diego (UCSD) operates one of the world’s largest Network Telescopes[3] (UCSD-

NT) which observes 99% of a /8 IPv4 address block, i.e., 1/256 of the whole IPv4 address space

(Figure 1.1). The volume of IBR collected at this large telescope is also enormous. Currently,

UCSD-NT captures around 1,200 GB of compressed IBR per day (approximately 50 GB per
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hour).

Internet Background Radiation (IBR) is composed of all kinds of Internet traffic. There

are three primary causes of IBR traffic: (i) backscatter data from spoofed denial-of-service (DoS)

attacks, (ii) botnet scans, and (iii) bugs and misconfigurations in networked devices. A DoS

attack tries to flood a victim with traffic from randomly spoofed packets. An attack of high

magnitude can reduce or crash its victim’s ability to serve users. The response packets (e.g.,

SYN-ACK TCP packets in reply to SYNs from the attacker) are sent back to the spoofed IP

addresses, resulting in backscatter data, which is collected at the telescope. Scanning of the

address space in search of vulnerable victims, caused by automated bots or manual initiation, is

another fundamental component forming IBR. Misconfiguration and bugs in networking systems

(firmware or software) can also induce IBR traffic, e.g., by setting a wrong IP address on DNS

or setting wrong byte order. This misconfiguration can assign incorrect network addresses to a

device, generating unsolicited traffic.

Figure 1.1: Illustration of Internet background radiation reaching UCSD Network Telescope
from all around the world. IBR traffic is composed of primarily backscatter data, botnet scans,
and traffic generated by bugs and misconfigurations in networked devices.[4]

Internet background radiation has been extensively used in many opportunistic Internet
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measurement studies, ranging from discovering malicious Internet activities such as identifying

botnet scans[5][6] to performing opportunistic network measurements[7]. Many researchers have

used a signal extracted from IBR that exhibits a regular pattern, to detect Internet connectivity

disruptions in the world[8][9][10] (discussed in the next section).

1.2 Internet Outage Detection and Analysis

Internet Outage Detection and Analysis (IODA) is a large Internet research project by

the Center for Applied Internet Data Analysis (CAIDA)[11], which monitors the Internet to

identify macroscopic Internet outages. The IODA system (Figure 1.2) processes and analyzes

measurements from three sources: i) Global Internet routing (Border Gateway Protocol data),

ii) Internet Background Radiation (IBR collected at UCSD Network Telescope) and iii) Active

probing. IODA inference system combines information from these three data sources, establishes

the possibility of an outage and generates alerts. This activity is monitored and visualized by a

time series visualization tool known as Charthouse[12][13]. Since many years, IODA has been

successful in identifying and detecting numerous Internet outages all around the globe (Figure

1.3).
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Figure 1.2: A high level view of IODA architecture.[14]

Internet background radiation is one of the primary sources of data in IODA for detecting

Internet outages. It is established in previous studies[18], that IBR consists of network pollution

sent from all over the world. Sources sending IBR represent a significant amount of total address

space in terms of IPs, /24 blocks, autonomous systems, regions, and countries. This composition

of IBR makes it an essential and pervasive source of information in IODA. Casado et al. were the

first to explore opportunistic measurement opportunities from IBR in [7]. Following their work in

[8] and [9], Dainotti et al. extracted signals that revealed new dynamics of long-term connectivity

disruptions. They used the fact that IP addresses from disconnected networks stop sending IBR

traffic. Mapping these addresses to their geolocation enables an estimation of the geographic

impact of an event on communications infrastructure.
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(a) Outage in Iraq: October 2016. (b) Outage in Gabon: September 2016.

(c) Outage in Mexico: October 19, 2016

Figure 1.3: Example outages detected by IODA in 2016. Blue represents Active Probing, green
represents BGP and red represents IBR collected at the UCSD-NT. a) For the first week of
October 2016, IODA detected daily outages in Iraq that affected Iraqi Internet Connectivity.
b) In September 2016, IODA detected Outages in Gabon, which were imposed amid political
clashes. c) On 19th October 2016, IODA detected an outage that affected Mexican Internet
connectivity for over an hour. [15][16][17]
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Figure 1.4: Diurnal pattern observed in IBR collected at UCSD Network Telescope to illustrate
predictable IBR behavior. The cause of this pattern is because during work hours machines are
active and generate more traffic than during non-work hours.

The IODA project detects an outage using a stable signal extracted from IBR in the

following two steps: firstly, it geolocates all the source IPs in the extracted signal to obtain the

traffic composition regarding countries, ASes, and regions, and secondly, it checks for sudden

changes (drops or deviations) in the packet rate from a particular area, suggesting outages. If a

drop in the traffic originating from a region or country is encountered, IODA combines this alert

with the results from BGP and active probing, to predict an outage.

Ideally, the signal extracted from IBR to be used in IODA should be strong (statistically

significant), stable (low noise), and globally pervasive (seen in most networks). However, due

to its nature, IBR is not stable and does not always have a consistent pattern. Generally, IBR
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follows a diurnal pattern, since more machines are active during work hours (see Figure 1.4).

This regular pattern in IBR is disrupted by bursts of traffic, resulting in disturbances (random

spikes and drops) in IBR signal. These are typically caused by DoS attacks, scans, etc. Since

IODA uses traffic drops to detect outages, with the presence of these irregularities, it becomes

difficult for IODA to infer outages from IBR.

Figure 1.5: Time series graph of Internet Background Radiation collected at UCSD for previous
five years. Unique source IPs are used to illustrate IBR traffic. Before July 2015, IBR signal
was consistent and stable for IODA, as it was continuously monitored and filtered for events
disrupting IBR signal (for e.g. spoofed traffic, conflicker scanning, potential backscatter traffic,
BitTorrent traffic collected on UDP ports). After July 2015, IBR has included unusual traffic
from many events (BitTorrent traffic on TCP, MIRAI botnet) which distort its predictable signal.

Figure 1.5 portrays the time series graph of the extracted IBR signal (in terms of unique

source IPs) on UCSD-Network Telescope used by IODA for the last five years. The graph shows
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that before July 2015, IBR signal is consistent and stable for IODA, as it was continuously

monitored and filtered for events disrupting IBR signal (for e.g. spoofed traffic, conflicker

scanning, potential backscatter traffic, BitTorrent traffic collected on UDP ports). After July

2015, IBR has witnessed unusual traffic from many events (BitTorrent traffic on TCP-SYNRENT,

MIRAI botnet) that contaminated its consistent signal, thus reducing the accuracy of outage

detection. There is an immediate need to filter these irregularities for IODA to detect outages

accurately.

1.3 Objective

Previously, Internet background radiation had been filtered and sanitized[19][8], to stabi-

lize its signal for IODA, but this was done only till June 2015. Since then a significant amount of

evolved traffic has contaminated the stable signal extracted from IBR (refer Figure 1.5). The exist-

ing filters fail to remove this emerged erratic traffic due to its unprecedented traffic composition.

The primary objective of my thesis is to investigate and analyze IBR collected at UC San Diego

Network Telescope, with the goal of developing a better understanding of these events distorting

the coherent nature of IODA preferred IBR signal and subsequently devising approaches to detect

and remove these events.

1.4 Organization of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 presents an overview of the

previous works done in studying and sanitizing IBR along with the experimental tools. Chapter

3 provides empirical details about the events identified and explains the characterization of the

events. Chapter 4 covers the proposed solutions, relevant experiments, and results. Chapter 5

concludes the thesis, mentioning ideas for future work.
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Chapter 2

Background and Related Work

Internet background radiation (IBR), the unsolicited one-way Internet traffic collected

at unassigned address space (network telescope), has been used in Internet measurement and

network analysis studies for many years. IBR reflects fundamentally nonproductive traffic,

either malicious (flooding backscatter, scans for vulnerabilities, worms, DDoS attacks) or benign

(misconfiguration at different layers of the protocol stack). Due to this varied composition of IBR,

defining coherent ”normal” IBR traffic is difficult. To use IBR in certain types of opportunistic

network analysis, such as outage detection, sanitizing IBR by filtering out disturbances is essential.

The primary objective of my thesis is to investigate these disturbances in IBR and devise strategies

to detect and filter them.

Section 2.1 covers Literature Review regarding Internet Background Radiation in the

following manner: Subsection 2.1.1 discusses the significant components of IBR, followed by

Subsection 2.1.2 mentioning previous studies and work done in identifying malicious Internet

activities using IBR. Subsection 2.1.3 describes the previous work done in establishing the

importance of IBR in Internet outage detection. Subsection 2.1.4 discusses previous work in

sanitizing IBR to make the IBR signal consistent for IODA. The last section 2.2 highlights the

main experimental tools I used in the analysis of IBR.
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2.1 Literature Review

2.1.1 Composition of Internet Background Radiation

There has been much work done in analyzing Internet Background Radiation. Benson et

al. performed a major characterization of IBR traffic observed at two large network telescopes

[18]. They extracted various IBR components, using the datasets from UC San Diego Network

Telescope[3] and Merit Network Telescope[20]. UCSD-NT and Merit-NT cover 99% and 67% of

different /8 IPv4 address blocks respectively, thus collecting a massive amount of IBR. In her work,

Benson focuses towards answering questions like ”Who sends IBR?”, ”What is IBR made of?”

etc. They analyzed many aggregations (IP addresses, /24 IP blocks, prefixes, ASes, and countries),

and observed a significant amount of sources compared to the total address space announced

in BGP. Along with the sources, they studied the composition of IBR. They accomplished this

task by characterizing IBR along two basic dimensions: transport layer protocol and application.

Their work has shown that TCP (due to scanning and backscatter) and UDP (due to Peer-to-Peer

traffic and misconfigurations in the networking devices) were the major contributors of IBR in

2012 and 2013. Their study concluded that IBR has the potential to represent an Internet-wide

view concerning the address space it covers as well as its overall traffic composition. Due to these

salient attributes, IBR has played a significant role in many Internet research studies.

2.1.2 IBR in detecting malicious Internet activities

In [3], using the UCSD Network Telescope, Dainotti et al. identified and studied a stealth

botnet scan of VoIP-related SIP servers, carried out in 2011. They presented multiple approaches

and techniques to determine the scanning behavior of botnet. They used a Hilbert-curve map[21]

to project the 16 million IP addresses in the telescope. Using the Hilbert curve, they identified

the reverse byte ordering sequence in the destination IPs in packets from the botnet. To further

investigate the characteristics of the botnet, they inferred machine composition using p0f tool[22],
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distribution of IP addresses at country-level and AS-level, etc. Thus, IBR along with these

sophisticated analysis methods [6] provides us a means to detect and fight against large-scale

malicious activities. Since 2011, many unprecedented events have occurred that need to be studied

and analyzed. In my work, I investigate and examine some of these suspicious events by using

the approaches and tools mentioned in the above study.

2.1.3 IBR in Internet Outages Detection

In addition to identifying malicious Internet activities, IBR has also been used to analyze

macroscopic Internet events that are unrelated to malware. One significant use of IBR has been

done in analyzing country-wide Internet connectivity disruption, caused by censorship due to

political events in two countries: Egypt and Libya[8]. In this work, Dainotti et al. studied Internet

outages using multiple sources of large-scale Internet data such as BGP routing control plane, IBR,

active probing measurements, etc. They used a geolocation database to determine the IP addresses

of the given countries in IBR. They observed many plummets in the number of packets captured

per second by the UCSD-NT from the source IPs of Egypt and Libya. These sudden drops in

the Internet traffic from the above countries matched the withdrawals and re-announcements of

BGP routes of the countries’ networks. Their work was one of the first instances where IBR was

used to study Internet outages and acted as a stepping stone for the IODA project. The main

idea proposed in their work is to study IBR to observe and detect changes in the traffic from the

affected regions to determine an outage.

Another notable work in detecting Internet outages is done in [9], where Dainotti et al.

studied the impact of geophysical events (like earthquakes) on the Internet connectivity. They

proposed generating and using a new metric of local IBR activity based on the unique number

of source IP addresses per hour. Subsequently, to detect Internet outages at a finer granularity,

Benson et al. analyzed IBR to gain insight into AS-level outages in [10]. These studies prove that

a consistent IBR signal is a helpful source of information in detecting Internet outages. My work
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in this thesis is fundamental in preserving the consistency in erratic IBR signal used by IODA.

For my analysis, I use their proposed metric of unique source IP addresses. Use of this metric as

opposed to packet rate makes the data consistent and immune to bursts of traffic from a few hosts.

2.1.4 Sanitizing IBR

To use IBR, we must understand that unpredictable events and decisions influence the

reliability of IBR as a source. IBR contains bursts of traffic, spoofed IP addresses, backscatter

data, botnet scans, etc., making the data inconsistent with irregular spikes and drops. To provide

consistency in IBR traffic, Dainotti et al. identified and filtered spoofed traffic from IBR, while

estimating Internet address space utilization in [19]. Presence of spoofed traffic can significantly

distort results by implying that fake addresses are active. To mitigate the effects of spoofing on

IBR measurements, they identified large portions of spoofed traffic by using various heuristics.

They also built signatures for their filters by identifying suspicious traffic components. They

manually isolated and analyzed the suspicious traffic, and further defined filters to remove it.

In [8], Dainotti et al. also devised various IBR cleansing techniques to make it usable

for outages detection. To make the IBR signal consistent, they identified and filtered Conficker

scanning traffic by selecting TCP SYN packets with destination port 445 and packet size 48 bytes.

They also removed potential backscatter traffic flows by filtering TCP SYN-ACK or RST, or

ICMP echo replies (which are captured by telescope when its IPs are spoofed in DoS attacks).

Their work provides an exhaustive study of detecting and filtering noise from regular IBR and

thus acts as an inspiration for my thesis. Earlier, the events were being identified and filtered by

manual driven methods. However, it is important to note that these previous works have sanitized

IBR before 2015 and since then IBR has become extremely noisy and incoherent. The existing

filters fail to detect and remove the new evolved erratic traffic. My work entails a semi-automatic

approach to detect and remove this erratic traffic caused by these events.

Benson further sanitized IBR, by studying the pattern of BitTorrent traffic in her Ph.D.
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dissertation[1]. She discovered that BitTorrent traffic collected on UDP ports accounted for a

sizable portion of IBR. Since it has unpredictable and bursty temporal behavior, it is difficult

to leverage BitTorrent traffic for opportunistic inferences. She investigated the origin of the

massive BitTorrent traffic. She also provided evidence that this traffic is a part of intentional or

unintentional index poisoning attacks on the Distributed Hash Table (DHT). DHT index poisoning

is the pollution of the DHT with erroneous entries. Her work also explains the strategies used in

extracting precise signatures from the UDP payload of BitTorrent traffic and creating appropriate

filters.

Given the advantages of Internet Background Radiation outlined in previous sections; it

can be concluded that IBR is an essential building block for comprehensive monitoring, network

analysis, and detection of macroscopic Internet events. However, irregularity in IBR signal,

caused by erratic events is hampering its usage in Internet outage detection by the IODA. Thus, it

is crucial to sanitize the Internet Background Radiation and make it ideal for the IODA project.

2.2 Experimental Tools

Analyzing and extracting crucial information from IBR is a challenging task, because of

its large size. UCSD-NT collects approximately 50 GB of compressed IBR traffic every hour. To

process this massive amount of IBR data, I use a wide range of tools and software in my thesis.

2.2.1 Corsaro

Corsaro[23] is an open source software suite for performing large-scale analysis of trace

data. It is specifically designed to be used with IBR captured by network telescopes. Corsaro

allows quick analysis of trace data on a per-packet basis and provides a mechanism for aggregating

results based on customizable time intervals. The trace analysis logic is separated into a set of

plugins, that can be added or removed as per user’s requirements. In addition to the Core Plugins
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that are distributed with Corsaro, the plugin framework makes the creation of new plugins as

simple as possible.

The Corsaro distribution also includes several other supporting tools for fundamental

analysis of Corsaro output data. In this thesis, these tools are used in processing the flowtuple

data. Moreover, the proposed solutions are developed as plugins in Corsaro.

2.2.2 Flowtuples

Examining network traffic from pcap files is a time and effort-intensive task. In most

of the studies, only header fields are required to understand the traffic instead of the complete

packet. An alternative approach to analyzing and parsing a humongous pcap file is to extract

the important parts of the header for quick analysis. To extract the important details from the

pcap data, Corsaro creates flowtuples. Flowtuple only includes the eight tuple flow information

namely: i) source IP, ii) destination IP, iii) source port, iv) destination port, v) protocol id, vi)

TCP-flags, vii) time to live and viii) packet length. Converting pcap data to flowtuple format

makes it easy and accessible for researchers in their studies.

2.2.3 Charthouse

Charthouse[12] is a time series visualization tool created by CAIDA to monitor and

visualize Internet background radiation captured by UCSD Network Telescope. This tool is

capable of exploring real-time and historical time-series data. Charthouse provides an interactive

platform to build custom visualizations using specialized post-processing functions. In my thesis,

I have used Charthouse to analyze IBR traffic and also to generate relevant graphs.
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Chapter 3

Analysis of Irregular events

Previous chapters show that Internet background radiation collected at the UCSD-NT

is an invaluable source of information for opportunistic network analysis. IBR demonstrates

typical traits which make it an ideal data source in detecting macroscopic Internet connectivity

outages. The IODA[24] project uses a stable signal extracted from IBR to detect outages. It starts

its detection by geolocating source IPs in IBR to determine the traffic contribution of countries

and regions. Internet connectivity disruption in a region results in less IBR traffic generation

(drop in packet rate). In the event of a substantial packet drop from a region, IODA sends an alert

regarding the possibility of an Internet outage, which is further confirmed by the results of BGP

and active probing.

Ideally, the signal extracted from IBR to be used in IODA should be strong (statistically

significant), stable (low noise), and globally pervasive (seen in most networks). IBR has been

previously sanitized by filters created by manual driven methods[19][8][1] before 2015. These

filters effectively remove erratic data (irregular traffic) from a predictable pattern of IBR. Figure

3.1 portrays non-erratic signal extracted from IBR by deploying filters. However, with time, new

events have emerged with intermittent erratic behavior. Figure 1.5 shows that the last three years

of IBR traffic collected at the UCSD-NT is erratic with random spikes and drops. Erratic traffic
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Figure 3.1: Time series graph of unfiltered IBR traffic and non-erratic IBR traffic collected at
the UCSD-NT. Both traffics are represented in terms of unique source IPs. Non-erratic IBR
traffic is obtained by deploying filters mentioned in [19][8][1].
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Figure 3.2: Illustration of short-term and long-term events. Traffic bursts with duration of
smaller than one day are called short-term events. Traffic bursts with duration of more than one
day are called long-term events.

in IBR interferes with IODA’s outage inference system. Therefore, to make IODA’s inference

system effective, new events generating erratic traffic need to be analyzed and filtered.

The first step towards sanitizing Internet background radiation is to understand the traffic

responsible for the erratic behavior in IBR. Understanding the traffic corresponds to identifying

the commonly targeted ports, IPs, protocols, etc. After identifying the components of the erratic

traffic, signatures can be extracted and used to create appropriate filters. Figure 1.5 depicts

irregular bursts of traffic observed after July 2015; thus, I started my analysis by studying the

traffic of July 2015.

In my analysis, I encounter many erratic events in IBR. These events are identified and

classified into two major categories based on their duration (Figure 3.2): i) short-term events
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(exists for less than one day) and ii) long-term events (continues for more than one day). The rest

of the chapter contains a detailed analysis of both types of events. The basis of the categorization

is the difference in their respective nature and duration of traffic. As the name suggests, short-term

events are non-persistent and must be removed. Coarser filters can be used in removing them,

without much overhead and traffic loss. On the other hand, removing long-term events is not

always desirable. In some scenarios, long-term events generate persistent and continuous traffic,

maintaining the regular behavior of IBR signal. Thus, long-term events should be first analyzed

and if need be, removed.

In my thesis, I use two types of data: flowtuple and pcap. First, I inspect IBR traffic using

flowtuple data to gain insights about its traffic composition, followed by investigating pcap data,

by parsing payload of network packets.

3.1 Short term events: Traffic bursts

Short-term events are non-persistent network glitches which result in generating or redi-

recting bursts of Internet traffic. These events contribute toward an intermittent and erratic signal

in IBR traffic. Since these short-term events last for a small duration of time (less than one day),

they can cause substantial packet rate variations in IBR. These traffic bursts can be caused either

by malicious (backscatter, botnet scans) or benign (misconfiguration, bugs, erroneous entries in

DNS) activities.
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Figure 3.3: Multiple instances of traffic bursts generated by short-term events, observed in
IBR traffic (in terms of unique source IPs). The graph shows the IBR traffic captured by the
UCSD-NT for August, 2017.

Presence of such intermittent bursts of traffic in IBR affects the utility of IBR in inferring

opportunistic network measurements. In my analysis of the last three years of IBR traffic captured

by the UCSD-NT, I observe many short-term events. Figure 3.3 portrays multiple instances of

traffic bursts generated by short-term events in IBR collected at the UCSD-NT. These traffic

bursts interfere with the detection of Internet connectivity outages. Due to the nature of these

packet rate variations, traffic bursts can overwhelm the predictable signal of IBR, generated from

countries with few IP addresses. Since IODA’s heuristics check for drops and deviations in the

predictable signal of IBR, bursts can significantly affect the effectiveness of its use for IODA

inferences.

19



(a) (b)

(c) (d)

(e)

Figure 3.4: Example of different types of individual bursts observed in IBR. a) Traffic burst
observed on a single destination port 5673 on 29 May 2015. b) Traffic burst observed on 4
July 2017 on destination IP X.217.86.34 and destination ports: 27015-28014. c) Traffic burst
observed on 26 July 2017 on destination IP X.18.32.14 and destination ports: 27015-28014.
d) Traffic burst observed on 12 Sept 2017 on destination IP X.217.31.103 and destination
port 34001. e) Traffic burst observed on 7 Oct 2017 on destination IP X.33.13.233. The
figures indicate that that short-term traffic bursts usually target a few set of destination IPs and
destination ports.
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The first step towards removing these erratic bursts is to study and characterize a common

signature and pattern present in individual bursts. To study traffic composition of these short-term

events, I extracted the traffic generated by them. I studied half a dozen of randomly selected

short-term traffic bursts from IBR. On analyzing few of these individual events, I observe that

short-term traffic bursts usually target a few set of destination IPs and destination ports. Figures

3.4 depict individual traffic bursts observed in IBR signal, affecting specific destination ports and

IPs. These set of destination IPs and ports can be used as a criterion in creating filters to remove

short-term bursts[19][1].

3.2 Long term events: SYNRENT

After the analysis of short-term events (traffic bursts), I investigate long-term events which

have a lifespan of more than one day. Figure 1.5 depicts that non-erratic IBR signal is consistent

till 4th July 2015 due to previously deployed filters. However, 4th July 2015 onwards, UCSD-NT

started capturing an enormous amount of erratic traffic, which was not filtered by the existing

filters. The average number of unique source IPs soared from ∼50,000 to ∼350,000 per day. This

rise in the number of unique source IPs in overall IBR signal is the result of an increase in TCP

component of IBR. I have termed this event ”SYNRENT” after its composition of TCP-SYN

packets and its relevance to BitTorrent.

21



Figure 3.5: Time series graph of SYNRENT traffic in terms of unique source IPs collected at
the UCSD-NT. It categorizes the SYNRENT traffic into two phases depending upon the nature
of the traffic, in terms of affected destination IPs and destination ports. The first phase started on
4th July 2015 till 29th July 2015. The second phase started on 29th July 2015 and continued till
June 2017.

UCSD-NT observes SYNRENT in two phases as per its extracted signature. The major

differences in both of these phases are the destination ports and address spaces targeted. Figure

3.5 illustrates both the phases of SYNRENT traffic. Phase one started on 4th July 2015 and

continued till 29th July 2015. Phase two started on 29th July 2015 and continued for two years

till June 2017. The following subsections entail the detailed analysis and traffic composition of

both the phases of SYNRENT.
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Figure 3.6: Time series graph of non-erratic IBR and TCP traffic collected at the UCSD-NT for
previous three years. The collinearity in the graph shows that TCP traffic is primarily responsible
for the rise in non-erratic IBR traffic.
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3.2.1 SYNRENT: Phase 1

On 4th July 2015, UCSD-NT observed an unusual increase in non-erratic IBR traffic.

Previously deployed filters failed to remove the recently observed erratic traffic. The pattern

formed by non-erratic signal of IBR resembled the overall behavior of TCP traffic captured by the

UCSD-NT. The collinearity in Figure 3.6 demonstrates that TCP traffic is primarily responsible

for the rise in non-erratic IBR traffic. To begin my analysis, I studied the traffic composition

corresponding to TCP traffic. I extracted the flowtuple data of two days (3rd and 4th July 2015).

Flowtuple data contains compressed eight-tuple information of packet headers (see chapter 2).

Analysis of Destination Ports

To gain insights into SYNRENT traffic, I studied the TCP component of IBR in terms

of destination ports. In my analysis, I observe that certain TCP destination ports receive more

traffic than the others. Figure 3.7 illustrates the distribution of SYNRENT traffic in terms of

unique source IPs collected on even and odd-numbered destination ports. The graphs show that

SYNRENT traffic targets a specific set of even-numbered destination ports (Figure 3.7a). On the

other hand, odd-numbered ports show no sign of any irregular traffic (Figure 3.7b). Traffic is

observed on destination ports with the following bit pattern: destination port & 0x2081 = 0x0080.

Table 3.1: Bit-pattern formed by the SYNRENT (phase one) targeted destination ports.

Bytes of desti-
nation port

Bit-pattern

1st byte 0
2nd byte 1 0

24



(a) Even-numbered TCP destination ports. (b) Odd-numbered TCP destination ports.

Figure 3.7: Unique source IPs on even and odd TCP destination ports. The graphs show that
SYNRENT traffic targets a specific set of even-numbered destination ports. Odd-numbered
ports show no sign of any irregular traffic. Traffic observed on destination ports form the bit
pattern: destination port & 0x2081 = 0x0080.

After studying the distribution of SYNRENT traffic on destination ports, I observe that

traffic collected on these TCP ports consists of TCP-SYN packets with TCP FLAGS = 0x02.

This obtained information (TCP protocol, TCP-SYN flags and destination ports) is combined to

create a signature representing SYNRENT. I use this derived signature as a criterion to extract

SYNRENT traffic for two days (48 hours). After analyzing the extracted traffic, I observe that the

bit-pattern of destination ports remains constant till 29th July 2015.

Analysis of Destination IPs

To further understand SYNRENT, I investigate its traffic in terms of destination IPs. This

analysis provides a better understanding of the effect of SYNRENT on IBR traffic collected at the

UCSD-NT. The Hilbert graph (Figure 3.8) highlights the address space of the UCSD-NT targeted

by SYNRENT. The graph portrays that phase one of SYNRENT traffic is observed on the entire /8

address space of the UCSD-NT. The dark spots present in the graph represent the routed address

blocks in the UCSD-NT. The sudden rise in the TCP component of IBR on specific destination
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ports raises concerns regarding the intent of the traffic. SYNRENT profoundly resonates with

the classic TCP-SYN flood, attacking the entire UCSD-NT’s address space. Subsection 3.2.3

discusses the possible causes of SYNRENT.

3.2.2 SYNRENT: Phase 2

The second phase of SYNRENT started on 29th July 2015 and continued for almost two

years until June 2017. This phase of SYNRENT observes more traffic than the previous phase.

Figure 1.5 depicts the increase in non-erratic IBR signal towards the end of July 2015. This new

expanded traffic is similar to SYNRENT phase one traffic regarding its protocol and TCP-SYN

flag.

Analysis of Destination Ports

Phase two traffic targets a different but specific set of destination ports, rather than the

bit-pattern formed by phase one traffic. Phase two concentrates on a specific set of ports (19332-

19624). Figure 3.9 depicts the SYNRENT traffic in terms of unique source IPs on destination

ports. It shows that 175,000 unique source IPs are observed every hour on each of these TCP

ports.
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(a) Heatmap for the first hour. (b) Heatmap for the second hour.

(c) Destination IP address graph representing the set bits in SYNRENT Phase 1.

Figure 3.8: Heatmap of destination IPs generated by the Hilbert curve using the SYNRENT
Phase one traffic. The graphs (a and b) highlight the address space of the UCSD-NT targeted by
SYNRENT for two different time periods. They show that phase one of SYNRENT traffic is
observed on the entire /8 address space of the UCSD-NT for the entire duration till 29 June. c)
Bit representation of destination IPs in the form of set bits.
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(a) TCP Even Destination Ports. (b) TCP Even Destination Ports between 19300-19700.

Figure 3.9: Unique source IPs on even TCP Destination ports.

After obtaining the signature of phase two traffic (TCP protocol, TCP-SYN flags and

destination ports), I extracted the TCP component of IBR for six days between 21st September

2015 and 26th September 2015. The data from these six days (144 hours) provides a holistic view

of the entire SYNRENT phenomenon. I have used this data in all my further analysis and studies.

Analysis of Destination IPs

Hilbert curves (Figure 3.10) represent the address space of the UCSD-NT targeted by

phase two of SYNRENT traffic. Instead of covering the entire address space, it forms a specific

bit-pattern in destination IPs. Figure 3.11 and Table 3.2 portray the bit-pattern observed in the

UCSD-NT. UCSD-NT IP addresses (X.B.C.D) satisfying: B & 0x88 = 0x00, C & 0x38 = 0x08 or

0x10 and D & 0x09 = 0x01, observes SYNRENT traffic. To validate the consistency in bit-pattern

of destination IP, I plotted the Hilbert curves of the UCSD-NT address space for 144 hours. I

observe that the pattern formed by SYNRENT in targeting specific destination IPs remains the

same. The pattern followed in targeting the destination IPs and destination ports is unusual.

A plausible explanation for this abnormal pattern can be a bug in the pseudo-random number

generator (PRNG) used by an Internet application that determines which addresses and ports to
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target.

(a) Representing slash eight address space. (b) Representing slash sixteen address space.

Figure 3.10: Heatmap of destination IPs generated by Hilbert curve in SYNRENT Phase 2.
a) Each pixel represents /16 address block in the UCSD-NTs address space. b) Each pixel
represents /24 address block in the UCSD-NT’s address space.

Table 3.2: Bit-pattern formed by the SYNRENT (phase two) targeted destination IPs.

Bytes of des-
tination IP
(IPv4)

Bit-pattern

1st byte x.x.x.x.x.x.x.x
2nd byte 0. . . .0. . .
3rd byte . .0.1.0. . .

. .0.0.1. . .
4th byte . . . .0. . .1

Analysis of source IPs

Another important task in understanding the traffic is to examine the source IPs that

generate SYNRENT. One of the main concerns is to see if the same set of source IPs is visible

every hour. Figure 3.12 addresses the question by depicting the presence of source IPs and /24
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Figure 3.11: Destination IP address graph representing the set bits in SYNRENT Phase 2.

address blocks per hour for 144 hours. The first figure portrays that most of the source IPs are

non-persistent, i.e., they are observed only for a short duration (1-2 hours), while the second

figure shows that unlike source IPs, a few /24 blocks are observed every hour in the test dataset.

Figure 3.12: Graph represents the frequency (in terms of hours) of source IPs and /24 address
blocks for six days (144 hours). The first figure portrays that most of the source IPs are non-
persistent, i.e., they are observed only for a short duration (1-2 hours), while the second figure
shows that unlike source IPs, a few /24 blocks are observed every hour in the test dataset.

Figure 3.13 helps in understanding the arrival of source IPs generating SYNRENT traffic.
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It represents the arrival of new source IPs as a cumulative percentage over the period of 144 hours.

The graph indicates that new source IPs are introduced almost every minute. An implementation

bug or a misconfiguration in the networked device can redirect the traffic from a region resulting

in the arrival of new source IPs every hour.

Figure 3.13: Arrival of new source IPs as cumulative percentage for 144 hours.

Analysis of source IPs in terms of operating systems

For understanding and characterizing the source IPs and traffic representing the phe-

nomenon, I use the p0f tool [22] to extract machines/operating systems accountable for the

received packets. The p0f tool is provided with the trace data corresponding to the SYNRENT

traffic. It categorizes the packets according to different operating systems by identifying typical

fingerprints in them. Table 3.3 lists all the OSes encountered while analyzing the SYNRENT
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Table 3.3: Operating systems responsible for the SYNRENT traffic extracted by Michal Za-
lewski’s p0f tool[22].

Operating System Unique source IPs in
SYNRENT traffic

Unique source IPs
in Control traffic

Windows 7 or 8 45,623,881 11,183,037
Windows XP 12,542,438 29,570,919
Linux 3.1-3.10 8,192,539 5,460,600
Linux 2.2.x-3.x 4,887,910 9,460,195
Windows NT kernel 5.x 3,534,271 712,619
Unknown operating system 1,049,203 127,959,106
Windows NT kernel 486,855 1,841,275
Linux 3.x 327,632 2,063,906
Linux 2.2.x-3.x (no times-
tamps)

262,333 8,180,656

Linux 2.6.x 245,706 7,900,819
Linux 2.4.x 213,037 76,702,741

traffic and the control traffic (not SYNRENT). 82.7% and 16.4% of SYNRENT traffic are gener-

ated from Windows users and Linux users respectively. On the other hand, 15.5% and 39.3% of

control traffic (not SYNRENT) is generated from Windows and Linux users respectively. These

stats highlight that the participation of traffic from Windows users rose from merely 15.5% in the

control traffic to 82.7% in the SYNRENT traffic. It shows that the Windows operating system is

the primary source of SYNRENT traffic.

Analysis of source IPs in terms of countries and regions

Now that the operating systems behind the event have been identified, the next step is

to determine the pervasive nature of the SYNRENT traffic. It is important to note whether the

traffic is originating from all over the world or some specific region or country. To identify the

origin of the SYNRENT traffic on a broader granularity of countries, I use an IP geolocation

database to map every source IP to their respective countries. Table 3.4 illustrates the origin of

SYNRENT traffic (in terms of unique source IPs per country/region) from all over the world.

The table demonstrates that China is the most significant source, contributing around 99.76%
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of traffic. Other Chinese speaking regions like Taiwan and Hong Kong, also contribute 0.07%

towards the total SYNRENT traffic.

Table 3.4: Table representing the origin of SYNRENT traffic in the world. The data is obtained
by geolocating source IPs. Out of 28.43M unique source IPs, 28.36M (99.77%) IPs originate
from China.

Country/Regions Number of
unique source
IPs

Percentage
contribution
in total traffic
(28,431,740 IPs)

China 28,364,187 99.76%
Taiwan 15,134 0.05%
Russia 7,840 0.02%
USA 7,417 0.02%
Japan 6,164 0.02%
Hong Kong 5,836 0.02%
South Korea 2,901 0.01%
Malaysia 1,692 <0.01%
Singapore 1,673 <0.01%
Ukraine 1,573 <0.01%
Canada 1,290 <0.01%
Great Britain 1,061 <0.01%
Spain 954 <0.01%
Australia 927 <0.01%
Others(43 Regions) 13,091 <0.04%

Analysis of source IPs in terms of autonomous systems

Studying the origin of the traffic at a finer granularity of autonomous systems provides

significant insight into its origin. I extracted the autonomous systems of the source IPs to study the

traffic pattern. It turns out that as many as 4,280 unique ASes are responsible for 28.43M unique

source IPs. This distribution implies that a multitude of ASes cause and generate SYNRENT

traffic. A plausible explanation behind this significant traffic from China could be the presence of

a common malfunctioning component which affects multiple networks and autonomous systems.
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For example, a bug in the implementation of Great Firewall of China can result in the redirection

of Internet traffic of a significant magnitude.

3.2.3 Potential causes of SYNRENT

At first, the SYNRENT event is only observed and analyzed in TCP traffic, but surprisingly,

even UDP traffic demonstrates similar characteristics. To investigate the association of SYNRENT

with UDP traffic, I plotted UDP traffic on specific destination ports. Figure 3.14 depicts the

traffic on UDP destination ports covering both phases of SYNRENT. After observing the traffic

distribution on both TCP and UDP destination ports, I conclude that traffic on both the protocols

follows an identical pattern. To further validate the hypothesis that traces of SYNRENT are

visible in both protocols, I extracted the common source IPs that send traffic on selected TCP

and UDP destination ports. Figure 3.15 represents the common source IPs sending both TCP and

UDP traffic in the same hour bin.
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(a) Phase 1: UDP Even Destination Ports. (b) Phase 1: TCP Even Destination Ports.

(c) Phase 2: UDP Even Destination Ports. (d) Phase 2: TCP Even Destination Ports.

Figure 3.14: Unique source IPs on even TCP and UDP destination ports during both the phases
of SYNRENT.

On an average around 7.36M source IPs are common to TCP (47%) and UDP (93%)

traffic per hour. These stats provide evidence that SYNRENT traffic on both of these protocols is

tightly coupled. UDP packets contain payloads, which can be further parsed to study the nature

of the traffic. On parsing the pcap data for UDP packets, for common source IPs on specific ports,

I observe that UDP packets contain get peers, ping queries of DHT protocol[25]. This discovery

opens compelling doors for its connection with the BitTorrent traffic.
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Figure 3.15: Common source IPs observed in TCP and UDP components of SYNRENT for
24 hours. The graph depicts that both TCP and UDP follow an identical pattern in source IPs,
tightly coupling both TCP and UDP formats of SYNRENT.

Benson in her dissertation [26] studied the vast BitTorrent traffic captured by the UCSD-

NT in the datasets of 2012 and 2013. BitTorrent traffic was in the form of Distributed Hash Table

(DHT) queries (get peers, find node and ping) in UDP packets. She analyzed the source of these

UDP packets and found the majority of the traffic originating from China. A potential reason for

this sizable portion of BitTorrent traffic in IBR can be the presence of erroneous entries in DHT.

These entries could have led many BitTorrent clients to search for trackers and seeders in the

UCSD-NT address space. These incorrect entries may have further traversed amongst a large

group of BitTorrent clients, resulting in the rise of BitTorrent traffic in IBR.

BitTorrent uses the DHT protocol on UDP to share metadata and location of the file in

peers. On the other hand, TCP is used to share the contents of the file between seeders and
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clients[25]. Before July 2015, BitTorrent traffic in IBR was observed only on UDP ports in the

form of DHT queries[26]. Erroneous entries in the DHT might have caused BitTorrent clients

from Chinese speaking regions to misconstrue UCSD-NT address space as DHT nodes. This

might have resulted in the massive inflow of UDP traffic. In July 2015, behavior in the BitTorrent

traffic changed substantially. Its possible explanation could be that instead of sharing metadata,

clients started TCP connections with DHT nodes. One of the causes of these TCP connections

could be mistaking DHT nodes as seeders, or sending announce messages via TCP[27]. Often

BitTorrent clients check the HTTP error codes provided by the seeders/servers to check for 404

error code (File Not Found) and consequently stop sending file requests[28]. Since UCSD-NT

supports only one-way traffic, clients never receive 404 error response messages. BitTorrent

clients never receive this message and keep on retrying TCP connections[29]. This activity might

also be the reason behind the enormous rise in TCP-SYN traffic in IBR.

In 2008, the Chinese Government upgraded its censorship system by restricting access to

all prominent peer to peer file sharing platforms like BitTorrent, PirateBay, etc[30][31]. Previously,

users accessing these websites were redirected to the Chinese search giant Baidu[31], until 2015,

when multiple network security reports and blogs [32][33] claimed the presence of DoS attacks

from BitTorrent clients from China. Several websites across the world were affected by a large

number of TCP-SYN packets[34]. The source IPs responsible for these attacks originated from

China. SYNRNET could be either caused by an intentional (user exploiting China’s censorship

system and redirecting the traffic to target random address spaces) or unintentional (DNS bug in

the Great Firewall of China or erroneous entry in the DHT redirecting requests for Chinese files

and videos) activities.
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Chapter 4

Proposed solution

Internet background radiation is a complex mixture of many Internet phenomena. These

phenomena generate enormous bursts of erratic traffic. Ideally, IBR signal required by the

IODA project needs to be consistent and stable with predictable traffic behavior. Presence of

erratic traffic can paralyze its ability to detect outages. Thus, sanitizing IBR is an essential

task in detecting outages effectively. Previously, IBR was sanitized by manually identifying

signatures of the erratic traffic and creating appropriate filters to remove them. However, with

time significant amount of evolved traffic has contaminated the stable signal extracted from IBR

(refer Figure 1.5). The existing filters still work but are insufficient because of the emergence of

new unprecedented anomalous traffic. This traffic distort the stable signal extracted from IBR,

by introducing intermittent erratic traffic. There is an immediate need to come up with a robust

solution that does not only detect and identify erratic traffic but also processes large chunks of

data in real-time with minimal human intervention.

In previous chapters, I analyzed and studied the events responsible for the erratic traffic

in IBR. Analysis of both short term and long term events provide relevant insight into the

characteristics of the erratic traffic. Since I use the metric of unique source IPs per minute, its

usage excludes the effect of traffic caused by bursts of packets from a few hosts. In my analysis,
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I have observed that erratic traffic (both short-term and long-term) observed after July 2015 is

different from pre-July 2015 erratic traffic. Most events target a small set of destination IPs and

ports. Based on this knowledge, I have devised a software solution to detect most of these events

that culminate in traffic bursts in IBR.

This chapter is organized as follows: Section 4.1 describes the proposed solution with the

detailed architecture, Section 4.2 reports the results obtained after applying the solution. Section

4.3 sheds light on interesting findings while using the solution.

4.1 Solution architecture

The proposed solution is structured in two steps. Step one is detecting erratic traffic and

identifying the destination IPs and destination ports affected by this sudden rise in traffic rate.

Once relevant ports and IPs are identified, step two uses these detected ports and IPs in creating

appropriate filters to remove erratic traffic from IBR. The software solution is developed as a

plugin in Corsaro[35], which is a large-scale trace data analysis tool (see Chapter 2).
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Figure 4.1: Detection of a burst using history of previously observed unique source IPs sending
to specific destination IPs. At 3:45 AM, destination IP X.33.13.233 observed 29.7M unique
source IPs. This value is greater than the median value of the stored history times the threshold
index. The user can configure the value of the threshold. For this experiment, the value of the
threshold used is 500.

The method of detecting erratic traffic has two main components: i) Hostburst detection,

and ii) Portburst detection. Both of these components inspect the IBR traffic rate, in terms

of unique source IPs observed per minute. As the name suggests, Hostburst detects erratic

traffic on destination IPs while Portburst detects erratic traffic on destination ports. The critical

aspect of these approaches is keeping history in one-minute bins (e.g., 30 minutes oh history) to

store previously observed unique source IPs on all 16M destination IPs (UCSD-NT) and 65,535

destination ports. Size of history is configurable by users.
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For every new minute, the current traffic is checked against the median value of history.

If the number of unique source IPs in the current minute overshoots the median value of the

history, a traffic burst is detected. Hostburst and Portburst report specific destination IPs and

ports, which observe erratic traffic. These detected ports and IPs are further used in creating

filters. Overshooting criteria is configured by a user-defined threshold value, which determines

the difference in the current traffic and the traffic observed in the history. Figure 4.1 illustrates an

example of using history in detecting erratic traffic.

Figure 4.2: Architecture of history based Hostburst and Portburst software solution.

Figure 4.2 demonstrates the overall architecture of the proposed solution. When Hostburst

and Portburst detect erratic traffic, they extract the corresponding destination ports and IPs

associated with the traffic. Previous chapters show that instead of targeting a single destination
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port and IP, many events (e.g., SYNRENT, short-term bursts) target a set of ports and IPs, forming

a specific bit-pattern. If the number of detected ports and IPs are greater than one, Hostburst and

Portburst are capable of identifying the bit-pattern and reporting it to the user.

Figure 4.3: Example of the cost incurred in applying the filter. Filtering IBR traffic on IP
xxx.18.32.14.21 observes 34% reduction in the number of source IPs generating regular, pre-
dictable traffic.

It is, however, important to note the limitations of the proposed solution. Since the

deployment of filters removes the entire traffic from selected ports and IPs, the filters also remove

the regular and stable traffic present on those destination ports and IPs. This loss of stable traffic

causes a downward shift in the non-erratic IBR signal (Figure 4.3). It creates a trade-off between

using the filter and discarding it. This cost is referred to as the filter cost associated with applying
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the filter.

4.2 Results

Along with proposing the solution to the problem of identifying erratic traffic, my thesis

also provides results to justify its accuracy. To validate the correctness, I have selected multiple

instances of erratic traffic identified by Hostburst and Portburst. To test my solution, I ran it for a

period of 10 months from January to October in 2015 and on specific periods in 2017.

Figure 4.4: Detecting and filtering traffic burst on 29th May 2017 on destination port 5673.
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Figure 4.5: Detecting and filtering traffic burst on 4th July 2017 on destination IP X.217.86.34.
A range of ports 27015-28014 received the traffic with bit pattern dst port & 0x3C80 = 0x6900.
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Figure 4.6: Detecting and filtering traffic burst on 26th July 2017 on destination IP X.18.32.143.
A range of ports 27015-28014 received the traffic with bit pattern dst port & 0x3C80 = 0x6900.
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Figure 4.7: Detecting and filtering traffic burst on 12th Sept 2017 on destination IP X.217.31.103
and destination port 34001.
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Figure 4.8: Detecting and filtering traffic burst on 7th Oct 2017 on destination IP X.33.13.233.

Figures 4.4-4.8 prove that the proposed solution does an efficient work in identifying and

removing erratic traffic from IBR signal. This sanitization of IBR signal makes the extracted

signal stable and ideal for effective outage detection. This validates that Hostburst and Portburst

are capable of detecting and filtering short-term as well as long-term erratic traffic events.

Removing long-term events is not always desirable. In some scenarios, they generate persistent

and continuous traffic, maintaining the regular behavior of IBR signal. Figure 3.2 depicts a

scenario, where the magnitude of IBR traffic increases and unlike other traffic bursts, doesn’t

decrease in time. Due to their persistent nature, long-term events cannot be referred to as erratic

events without the complete analysis of their duration. However, my solution uses the stored

history of observed source IPs to determine the persistent nature of events and consequently alerts

the user. The user can further decide whether to filter the observed long-term event.
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4.3 Interesting Findings

Long-term event SYNRENT observed in IBR captured by the UCSD-NT, doesn’t explain

the erratic IBR traffic observed in two periods: September 2016 and Nov 2017 - Feb 2018. To

further detect these events, I used Hostburst and Portburst to analyze IBR data in those periods.

The obtained results reveal the presence of two interesting events in IBR: 1) MIRAI botnet, and

2) Phase three of SYNRENT.

Figure 4.9: Mirai botnet traffic observed on port 2323 in September 2016

On running Portburst in the time frame of May 2016-Sept 2016, I detected persistent

traffic in IBR. Traffic suddenly increased on certain TCP destination ports 23 and 2323. Figure

1.5 portrays an increase in the IBR traffic observed on ports 2323 in Sept 2016. Ports 23 and 2323

are used for Telnet. On further analysis, I found out that the event responsible for the traffic is
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Figure 4.10: SYNRENT traffic observed in Nov 2017 - Feb 2018.

caused by the infamous ”Mirai” Botnet[36]. The Mirai botnet caused one of the biggest DDoS

attacks by leveraging compromised Internet-of-Things (IoT) devices. It expanded its botnet by

targeting networked devices running Linux like home routers, IP cameras, etc.

In previous sections, I concluded that events responsible for generating SYNRENT traffic

stopped in June 2017. However, after analyzing the IBR traffic of Nov 2017 - Feb 2018, Hostburst

and Portburst reveal the presence of a large amount of TCP and UDP traffic on destination

ports 19332-19622. On further investigation, I observe that this new detected traffic resembles

SYNRENT (phase two) in terms of its signature (range of destination ports, destination IPs,

TCP-SYN flags, BitTorrent, etc.). Figure 4.10 shows the traces of SYNRENT traffic present

during Nov 2017 till Feb 2018.
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Chapter 5

Conclusion and Future Work

Internet background radiation is network pollution, generated by a vast number of com-

puters, often unknown to their original users. IBR collected at unused but routed network blocks,

has been used in Internet measurement and network analysis studies for many years. The pas-

sive traffic monitoring system built on these network blocks are commonly known as Network

Telescope aka Darknet. UCSD’s Internet Outage Detection and Analysis (IODA) is a research

project which uses a signal extracted from IBR (that exhibits a regular and non-erratic pattern), to

monitor the Internet for macroscopic Internet connectivity outages. IBR reflects fundamentally

nonproductive traffic, either malicious (backscatter, botnet scans, worms, DoS attacks) or benign

(misconfiguration or bugs). Ideally, the signal extracted from IBR to be used in IODA should

be strong (statistically significant), stable (low noise), and globally pervasive (seen in most

networks), but due to the varied composition of IBR, extracting stable ”normal” IBR traffic is

difficult. Previously, Internet background radiation had been filtered and sanitized to stabilize

its signal for IODA, but this was done only till June 2015. After July 2015, significant new

erratic traffic components have been observed, disrupting the regular non-erratic signal extracted

from IBR. These events result in generating traffic bursts which interfere with IODA’s inference

system.
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In my thesis, I have investigated and analyzed three years of IBR traffic (2015-2018)

collected at the UCSD-NT. During my analysis, I detected many short-term events resulting in

traffic bursts. Along with short-term events, I analyzed a long-term event SYNRENT (TCP-

SYN - BitTorrent) which disrupted the regular pattern in non-erratic signal extracted from IBR.

SYNRENT affected the TCP component of IBR traffic by sending a large magnitude of TCP-

SYN requests, for over two years. I presented a broad characterization of SYNRENT in terms

of source IPs, countries, autonomous systems, operating systems, etc. to better explain the

phenomenon. This thesis also identified the potential cause of SYNRENT as the Distributed Hash

Table (DHT) poisoning of BitTorrent traffic (erroneous entry in DHT) originating from China. To

mitigate such distorting events and bursts in IBR, I presented a software solution (Hostburst and

Portburst) to detect and filter this erratic traffic in IBR in real-time. The primary idea is to use the

history of previously observed unique source IPs on destination IPs and ports, to determine the

occurrence of a burst/irregular event. In addition to proposing and implementing the solution,

I provided substantial evidence that proves the effectiveness of my solution in detecting and

filtering irregular/erratic events.

In the current version, Hostburst and Portburst follow a coarser approach in filtering out

irregular traffic. In the event of burst detection, entire traffic on detected destination ports and

IPs is removed, resulting in traffic loss. This scenario can be improved by creating a less-coarse

solution by using more information like protocol IDs, flags, packet size, etc., in creating the

filters. It will result in less overhead in terms of traffic loss from the removed ports and IPs. By

observing the recent trends in IBR, it is fair to conclude that unprecedented events like SYNRENT,

MIRAI, etc., will continue to disrupt the extracted non-erratic IBR signal with more intensity

and sophistication. Even though Hostburst and Portburst will identify most of the erratic events

in IBR, manual investigation of IBR traffic from time to time will ensure its effectiveness and

accuracy.
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