Lawrence Berkeley National Laboratory

Recent Work

Title

A COURSE IN ELECTRONIC MATERIALS: PROCESS TECHNOLOGY OF SOLID-STATE MATERIALS AND DEVICES

Permalink https://escholarship.org/uc/item/15c8c2jx

Author

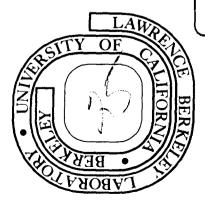
Donaghey, Lee F.

Publication Date 1974-07-01

Submitted to Chemical Engineering Education

LBL-3106 Preprint CV

A COURSE IN ELECTRONIC MATERIALS: PROCESS TECHNOLOGY OF SOLID-S TATE MATERIALS AND DEVICES


Lee F. Donaghey

July, 1974

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

LBL-3106

-iii-

A Course in Electronic Materials:

PROCESS TECHNOLOGY OF SOLID-STATE MATERIALS AND DEVICES

Lee F. Donaghey Inorganic Materials Research Division, Lawrence Berkeley Laboratory, and Department of Chemical Engineering; University of California, Berkeley 94720

A Course in Electronic Materials:

PROCESS TECHNOLOGY OF SOLID-STATE MATERIALS AND DEVICES

LEE F. DONAGHEY University of California, Berkeley Berkeley, Calif. 94720

ľ

The chemical engineer is making increasing contributions to solid state industries, from ultrapurification and single crystal production to process engineering in semiconductor integrated electronics. The rapidly-evolving technological requirements of the highly competitive electronic materials and device industries are creating new horizons for well trained chemical engineers with specialization in solid state engineering: a working knowledge of solid state chemistry, basic device physics, and process chemical engineering. In response to the importance of contributing to solid state engineering education, a new course has been introduced into the chemical engineering curriculum at the University of California, Berkeley.

The foundations of the modern solid state industries developed slowly in the early 1900's. Among the most important concepts was that of crystal lattice defects introduced by Frenkel in 1926. Schottky and Wagner, Fowler and others then developed the statistical mechanics of crystals to describe states of disorder in a nearly perfect lattice. Wilson also contributed to this development with the band theory of solids which was based on quantum mechanics. The recognition of the importance of defects in solids has had a profound influence on our current understanding of many diverse phenomena including solid state reactions, heterogeneous catalysis, semiconductor electronics, photography and laser physics. The defect chemistry of solids is of such continuing importance in solid state engineering that this subject, including the supporting basics of solid state chemistry were chosen for the basis of the new course.

The beginning of electronic device technology began in earnest with the disclosure of the Schottke-barrier field-effect transistor in 1940. At that time the device operated at a net power and it was evident that new experimental technologies were loss, needed for ultrapure single crystal production and device processing. New purification procedures such as zone refining were introduced, as well as techniques able to control surface defects. The new approaches ultimately climaxed in power gain with the Bardeen-Brattain point contact transistor in 1947. Since that time advancements in process technology of solid state devices have appeared at an ever accelerating rate. In recent years, planar processing, large scale integration, and single crystal film processing have expanded the techniques and needed expertise of the process engineer. The basis for understanding these developments in process technology, and techniques for applying them in current applications, form the latter part of the new course.

The main purpose of this course then is to provide students with an introduction to and working knowledge of (a) the chemistry of the solid state, (b) theory and practice of single crystal growth and (c) process operations and technologies for solid state device fabrication. An important theme is that the attainable physical properties of electronic, magnetic and optical materials are often limited by process-induced defects, and as a consequence, fabrication processes must be designed to control materials

properties so as to optimize the performance of the final device. The student acquires an understanding of the methods for control of electrically, magnetically and optically active defects and gains insight into the effect of processing variables on materials and defect-related device properties.

The course is a chemical engineering elective designed for senior and first year graduate students of chemical engineering who are interested in a materials engineering option. Nevertheless, this one-quarter course has attracted students from departments of electrical engineering, chemistry and materials science. A prerequisite for enrollment is a basic course in materials science or materials engineering; most of the chemical engineering seniors at Berkeley, and many entering graduate students have completed this prerequisite. In addition, some chemical engineering students concurrently enroll in an electrical engineering course in Electronic Circuits designed specifically for non-majors.

The new course complements several electronic materials and related curricula within the university. The chemical engineering courses in Mass Transfer, Transport Phenomena and Chemical Processing of Inorganic Compounds coordinate with the sections on crystal growth, chemical vapor deposition, oxidation and diffusion. The course treatment of silicon is extended in the electrical engineering courses Processing and Design of Integrated Circuits and Semiconductor Devices; also, the treatment of point defect thermodynamics provides a basis for advanced physical property studies offered in Physics and Chemistry of Semiconductors. Two complementary courses in physical properties are offered in materials science: Thermal and Optical Properties of Materials and Electrical and Magnetic Properties of Materials.

Nevertheless, the treatment of the defect chemistry of solids and relation to chemical phenomena in solid state materials and device processing remains unique to the new course.

COURSE CONTENT

The ten topical sections shown in Table I comprise the course content. The student is introduced to the field of solid state engineering and shown how materials purification, crystal growth and select processing steps influence the performance of solid state devices. Single crystals and working devices serve as in-class examples: 3" dia. germanium crystals, ultra-high purity compound crystals, and silicon memory chips, light-emitting diodes and magnetic thin film memories in different stages of fabrication.

The fundamentals of crystal chemistry are explored in the next section beginning with a review of Bravais lattices and bonding. Magnetic and ferroelectric crystal structures are examined from an ion-centered approach, while optical, semiconducting and superconducting crystals are examined in terms of bonding and band structure. Defects in solids are introduced, and mass action relations between point defects solved by matrix methods to obtain defect equilibria. Factors influencing substitutional ion solubilities in laser crystals are explored. Defect equilibria between electronic defects and impurities are then introduced and related to electronic transport properties.

Section four presents ultrapurification schemes for elements and compounds. The selected removal of electrically active impurities is emphasized. Two purification processes are examined in detail: halide transport purification and zone refining, using a case study approach for silicon and group III-V compounds.

Crystal growth fundamentals are presented in Section five, where phase equilibrium requirements and non-stoichiometry consequences are explored for different growth methods. Interface attachment kinetics and defect densities are related to crystallization driving forces for different growth mechanisms. Czochralski crystal growth of silicon and III-V compounds and solution growth of garnets are treated as extended examples. Interesting interactions are explored between crystal growth phenomena and lattice defects which influence both impurity solubility and growth rates. A typical problem is shown in Homework Example 1.

Reactor design and chemical reaction processes of chemical vapor deposition are presented in Section six, beginning with a discussion of kinetic mechanisms and rate control regimes. Closed system chemical transport crystal growth fundamentals are explored. Finally, commercial reactors, chemical reactions and growth conditions for silicon and gallium arsenide-phosphide are explored. An illustrative problem treated is described in Homework Example 2.

Section seven is devoted to unit processes for solid state device fabrication. For several processes, chemical etching, oxidation and diffusion, there exists a wealth of literature, and easily identified rate dependence on lattice defects. Consequently, these processes serve to exemplify the influence process variables have on physical properties of solid state materials.

In Sections eight through ten, process technologies of selected devices are presented: bipolar and metal-oxide-silicon

(MOS) transistors, solar cells and light-emitting diodes and magnetic thin film memories. For each, the sequence of process operations is identified and the process conditions and critical properties are outlined. The unit processes examined earlier in the course are drawn on as a basis for this section. In homework problems the processing conditions needed to achieve a final device of given characteristics are sought in terms of rate processes and process alternatives.

Demonstrations supplement the lecture and reading material, and provide closer contact with industrial processes.^{*} Czochralski crystal growth is demonstrated, and melt convection simulated. Chemical vapor deposition is demonstrated with a graduate research reactor. The current-voltage characteristics of electronic devices are demonstrated with a semiconductor curve tracer.

A term paper was an integral part of the course during the first two years of development. This project served to integrate the course material with a specific topic of interest to each student. The conditions and deadlines for this assignment were presented at the beginning of the course, with a topic approved and abstract written by mid quarter. The most successful topics chosen are listed in Table II. In the last year, this assignment was omitted to allow greater development of device process technologies with illustrative, extended homework assignments.

There exist no comprehensive text able to cover the broad subject matter treated in the course. Consequently, an extensive set of course notes is provided. The book <u>Solid-State Chemistry</u> by Hannay¹ has served as an introductory text, with reading assignments drawn from the reference list. Slides are used as a *Supported in part by the U.S. Atomic Energy Commission through the Inorganic Materials Research Division of the Lawrence Berkeley Laboratory.

part of many lectures to present examples from the reading. Although the course material appears extensive, experience has shown that well directed homework and reading assignments enable the conscientious student to handle the material without difficulty.

SUMMARY

In the three years during which this course has been given the emphasis has expanded from the fundamentals of solid state chemistry and control of electrically active defects toward a fuller explication of unit processes and technologies for currently important electronic devices such as bipolar and MOS integrated circuits, light-emitting devices, and "bubble domain" magnetic memories. Whereas the former emphasis is more important for materials engineers, this subject causes chemical engineers the most difficulty. The exploration of basic processes such as crystal growth, oxidation and diffusion provides students with a better understanding of the effect of process variables on defectrelated physical properties. Coverage of the process technologies for specific solid state devices tends to kindle the most interest and is more important for preparing chemical engineers for roles in solid state industries. Many alumni of this course have already launched successful careers in local electronics and solid state materials industries, where the demand for the chemical engineer with specialized skills in materials is increasing.

Table I. Outline of Berkeley's Course on Electronic MaterialsReferences1. Introduction: Solid-State Engineering;1,2

Materials and Devices; Process
Technologies.
2. Crystal Chemistry: Crystal Structures and 1,3-5
Bonding; Energetics of Defects; Point Defect

- Equilibria; Laser Crystal Chemistry.
 3. Electronic Defect Structure: Equilibria with 1,3,4 Impurities; Transport Properties and Lattice Defects.
 4. Ultrapurification: Purification Schemes; 6,7,8 Halide Transport; Zone Refining.
- 5. Crystal Growth: Use of Phase Equilibria; 1,9,10 Czochralski Crystal Growth; Growth from Solution.
- 6. Chemical Vapor Deposition: Kinetic Mechanisms; 11,12 Chemical Transport; Vapor Phase Epitaxy of Silicon and Gallium Arsenide-Phosphide.
- 7. Processing of Silicon Devices: Photoresist 2,11 Technology; Chemical Etching; Oxidation; Diffusion.
- Discrete Component Processing: MOS Technologies; 11,13
 Packaging.
- 9. Electro-optical Device Processing: Solar Cells; 14,15 Light-Emitting Diodes; Heterostructure Devices
 10. Magnetic Device Processing: Magnetic Thin Films; 16,17 Garnet Film Memories.

Table II. Term Paper Topics

- MOS Processing Techniques.
- Ion Implantation Techniques for the Manufacture of New Semiconductor Devices.
- Recent Innovations in Zone Refining.
- Photoresist Properties and Use in Semiconductor Processing
 Operations.
- Light Emitting Diode Processing.
- Laser Crystals: How they work and Some Preparative Methods.
- Modification of Solvent Compositions for Liquid Phase

Epitaxial Growth of Magnetic Thin-Film Garnets.

Homework Example 1: Neod

Neodemium Distribution in Czochralski Grown $CaWO_A$

The addition of Na_2^{0} to the melt significantly affects the solubility of Nd^{3+} ions in $CaWO_4$ through charge compensation with Na^+ ions. In this problem the distribution of Nd^{3+} along a $CaWO_4$ crystal grown by the Czochralski method is to be calculated from distribution coefficients for Nd and Na and from properties of the diffusion boundary layer at the crystallizing interface. The instantaneous ion concentrations in the crystal are calculated by solving mass action relations for Schottky defect formation, Nd substitution on a Ca site with Ca vacancy formation, Na substitution on a Ca site with formation of an oxygen vacancy, and the time-dependent Na_2^{0} and $Nd_2^{0}_3$ concentrations in the melt. This problem demonstrates the interdependence of defect mass action relationships with crystal growth conditions. Homework Example 2: Chemical Vapor Deposition of GaAs P

Phase equilibrium temperatures and deposition rates are explored within a barrel reactor in which gallium arsenidephosphide solid solutions are deposited from GaCl , As_4 , P_4 and HCl source vapors transposed by H_2 . The vapor-solid reaction equilibria,

$$GaCl + \frac{1}{4} As_4 + \frac{1}{2} H_2 = GaAs_{(in solid solution)} + HCl$$

$$GaCl + \frac{1}{4} P_4 + \frac{1}{2} H_2 = GaP_{(in solid solution)} + HCl$$

are solved simultaneously to deduce the equilibrium temperature and solid solution composition for the overall reaction,

$$GaCl + \frac{1 - x}{x} As_4 + \frac{x}{4} P_4 + \frac{1}{2} H_2 = GaAs_{1-x} P_x + HCl$$

Side reactions are omitted in this simplified analysis. The deposition rates at lower temperatures are determined by solving the set of component molar flux equations for a film boundary layer. This problem provides useful criteria for understanding commercial reactors for electro-optical film deposition.

References

- N. B. Hannay, <u>Solid-State Chemistry</u>, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1967.
- 2. D. Baker, D. C. Koehler, W. O. Fleckenstein, C. E. Roden and R. Sabia, <u>Physical Design of Electronic Systems</u>, Vol. 3, <u>Integrated Device and Connection Technology</u>, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1972.
- R. A. Swalin, <u>Thermodynamics of Solids</u>, John Wiley and Sons, New York, N.Y., 1962.
- 4. N. N. Greenwood, <u>Ionic Crystals, Lattice Defects and</u> <u>Nonstoichiometry</u>, Chemical Publishing Co., Inc., New York, N.Y., 1970.
- 5. K. Nassau, "The Chemistry of Laser Crystals," in <u>Applied</u> <u>Solid State Science, Advances in Materials and Device</u> <u>Research</u>, R. Wolfe and C. J. Kriersman, eds., Vol. 2, <u>Academic Press</u>, New York, N.Y., 1971, pp. 173-299.
- M. Zief and R. Speights, eds., <u>Ultrapurification</u>, <u>Methods</u> and <u>Techniques</u>, M. Dekker, New York, N.Y., 1972.
- H. Schafer, <u>Chemical Transport Reactions</u>, Academic Press, New York, N.Y., 1964.
- W. G. Pfann, <u>Zone Melting</u>, John Wiley and Sons, Inc., New York, N.Y., 2nd Edition, 1966.
- R. A. Laudise, <u>The Growth of the Single Crystals</u>, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1972.
- 10. R. L. Parker, "Crystal Growth Mechanisms: Energetics, Kinetics and Transport," in <u>Solid State Physics, Advances</u> <u>in Research and Applications</u>, H. Ehrenreich, F. Seitz and D. Turnbull, eds., Vol. 25, Academic Press, New York, N.Y., 1970, pp. 152-299.

11. R. M. Burger and R. P. Donovan, eds., <u>Oxidation</u>, <u>Diffusion</u> and <u>Epitaxy</u>, Prentice-Hall, New York, N.Y., 1967.

- 12. S. A. Shaikh, "Chemical Vapor Deposition of $GaAs_{1-x}P_x$, Reactor Design and Growth Kinetics," M.S. Thesis, University of California, Berkeley, September 1972.
- H. R. Camenzind, <u>Electronic Integrated Systems Design</u>,
 Van Nostrand Reinhold Co., New York, N.Y., 1972.
- 14. I. Hayashi, M. B. Panish and F. K. Reinhart, J. Appl. Phys., <u>42</u>, 1929 (1971).
- 15. H. C. Casey, Jr. and F. A. Trumbore, Mater. Sci. Eng., <u>6</u>,
 69 (1970).
- 16. A. H. Bobeck and H. D. E. Scovil, Scientific American, June 1971, pp. 78-89.
- 17. 1972 Wescon Technical Papers, Session 8, <u>Magnetic Bubbles</u>, Institute of Electrical and Electronic Engineers, San Francisco, Calif.

Biographical Information

Lee F. Donaghey received the B.A. degree in Physics from Harvard College, and the M.S. and Ph.D. degrees in Materials Science from Stanford University. His industrial experience has been in the semiconductor and microwave electronics industries. Following a postdoctoral appointment at the Royal Institute of Technology, Stockholm, he joined the Chemical Engineering faculty at the University of California, Berkeley in 1970. His research interests are concerned with the synthesis, thermochemistry and process kinetics of electronic materials.

Recommended Topical Headings

The current "solid state revolution" in microelectronics has generated a need for chemical engineers with specialization in electronic materials.

The defect chemistry of solids provides an essential basis for relating chemical processing phenomena to solid state device performance.

Solid state chemical fundamentals and transport phenomena are combined in crystal growth, oxidation and solid state diffusion.

This work was done under the auspices of the U. S. Atomic Energy Commission.

-LEGAL NOTICE-

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. TECHNICAL INFORMATION DIVISION LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720