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Defining Dysbiosis for a Cluster of 
Chronic Diseases
Lamont J. Wilkins  1, Manoj Monga2 & Aaron W. Miller2,3

The prevalence of many chronic diseases has increased over the last decades. It has been postulated 
that dysbiosis driven by environmental factors such as antibiotic use is shifting the microbiome in 
ways that increase inflammation and the onset of chronic disease. Dysbiosis can be defined through 
the loss or gain of bacteria that either promote health or disease, respectively. Here we use multiple 
independent datasets to determine the nature of dysbiosis for a cluster of chronic diseases that includes 
urinary stone disease (USD), obesity, diabetes, cardiovascular disease, and kidney disease, which often 
exist as co-morbidities. For all disease states, individuals exhibited a statistically significant association 
with antibiotics in the last year compared to healthy counterparts. There was also a statistically 
significant association between antibiotic use and gut microbiota composition. Furthermore, each 
disease state was associated with a loss of microbial diversity in the gut. Three genera, Bacteroides, 
Prevotella, and Ruminococcus, were the most common dysbiotic taxa in terms of being enriched or 
depleted in disease populations and was driven in part by the diversity of operational taxonomic units 
(OTUs) within these genera. Results of the cross-sectional analysis suggest that antibiotic-driven loss of 
microbial diversity may increase the risk for chronic disease. However, longitudinal studies are needed 
to confirm the causative effect of diversity loss for chronic disease risk.

Many chronic diseases are on a trend of increasing prevalence. Cardiovascular disease, obesity, diabetes, urinary 
stone disease (USD), asthma, and inflammatory bowel disease (IBD) are all on the rise, among others1–6. These 
chronic inflammatory diseases often exist as co-morbidities with common physiological manifestations, which 
both compound the burden on patients and suggests common origins7–9. While a number of genetic and envi-
ronmental factors contribute to the manifestation of chronic disease, an emerging hypothesis postulates that 
dysbiosis, an imbalance in the composition and metabolic capacity of our microbiota, increases the risk of devel-
oping chronic disease10–13. Dysbiosis can contribute to the onset of chronic disease in one of three general ways. 
First, pathogens and their functions can be acquired or opportunistically overgrow to promote disease, termed 
gain of function dysbiosis. Gain of function dysbiosis leads to infectious diseases such as cholera or streptococcal 
pharyngitis, but can also lead to chronic inflammation14–16. Second, health-protective bacteria and their functions 
may be lost or suppressed, which then promotes the onset of disease, termed loss of function dysbiosis. Loss of 
function dysbiosis has been linked to chronic diseases such as IBD, USD, obesity, and others17–26. Finally, some 
combination of loss and gain of function dysbiosis may be required for the onset of disease, such as with recurrent 
Clostridium difficile infection27.

The complexity of the microbiome presents unique challenges to our understanding of the role of dysbio-
sis in disease. Each individual harbors thousands of unique microbial operational taxonomic units (OTUs)28,29. 
Compounding this issue is the considerable inter-individual variability in the composition of the microbi-
ome30,31. Given the hyper-variable nature of high-throughput 16S rRNA data combined with the high levels of 
inter-individual variability, any two random populations of individuals are likely to harbor a proportion of OTUs 
unique to each population, with no relevance to any phenotype. To help restrict false-discoveries associated with 
this issue, false-discovery rate corrections are commonly integrated into microbiome studies32. Despite the lim-
itations of microbiome studies, many clinical studies use the differential abundance of OTUs between healthy 
and disease populations at a single time-point to determine if dysbiosis contributes to the disease, which can 
lead to erroneous results when it comes to the nature of dysbiosis and microbial taxa involved. Thus, a number 
of questions remain surrounding conclusions that dysbiosis contributes to the manifestation of disease. First, is 
the differential abundance of OTUs between two populations driven by inter-individual variability of the two 
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populations or disease status? Second, what features of microbial taxa contribute to them being identified as 
dysbiotic? Finally, are there taxa consistently found to be dysbiotic across chronic disease states, indicative of 
common, dysbiosis-driven disease processes?

To address these questions of defining dysbiosis, we performed an independent analysis of microbiome 
data from multiple sources that spanned a cluster of chronic diseases that included USD, cardiovascular dis-
ease, obesity, diabetes, and kidney disease. Specifically, we quantified the use of antibiotics in disease populations 
compared to healthy controls, which can lead to a loss in microbial diversity relevant to disease processes33–40, 
quantified metrics of loss or gain of microbiota diversity associated with each disease state relative to stochasti-
cally defined populations, determined the similarities and differences in microbial taxa enriched and depleted 
in disease populations, and determined which of these taxa were differentially abundant more than expected 
given their genus-level diversity in samples. These diseases often exist as comorbidities in patients and have all 
been linked to the microbiome to some degree. We hypothesize that if the diseases in question are driven in part 
by dysbiosis, that there will be common metrics of dysbiosis that include antibiotic use, loss or gain of microbial 
diversity, and microbial taxa associated with disease.

Results
Datasets. For cardiovascular disease, obesity, diabetes, kidney disease, and healthy counterparts, 16S rRNA 
sequences from the stool and associated sample metadata were drawn from the April 26th, 2017 version of 
American Gut Project data (AGP), which has an extensive list of metadata that includes antibiotic history and the 
presence or absence of several disease states41. Samples for sequencing were collected between December 2012 
and April 2017 from individuals from a global population. Healthy individuals were defined by the “I do not have 
this condition” entry for diabetes, cardiovascular disease, and kidney disease, as well as “normal” for body mass 
index (“BMI_CAT” in the metadata). Those with “diagnosed” for cardiovascular disease, diabetes, or kidney 
disease, or with “obese” for BMI_CAT were assigned to the appropriate chronic disease state. Health status for 
each defined term were based on self-reported medical diagnoses which may bias results41. A random number 
generator was used to assign random numbers to each sample that fit one of the defined health states for the AGP 
data and the samples with the lowest 300 randomly assigned numbers for each health status were extracted for 
further analysis, except for kidney disease which only had 111 entries. For kidney disease, we extracted samples 
with the lowest 100 numbers for further analysis. For USD, which is not represented in the AGP metadata, 16S 
rRNA sequences and associated sample metadata were downloaded from all publicly available metagenomic 
data from clinical USD studies published at the time of analysis18,20,42,43. Samples for USD studies were collected 
between 2015–2019 and originated in the United States, Canada, India, or China. Samples were defined as healthy 
or USD based on the criteria used in the original study. The entire combined dataset spanned a total of 1468 
samples (Table 1).

Association of antibiotics and chronic disease. For all chronic disease states, individuals were sig-
nificantly more likely to have taken antibiotics in the last year compared to healthy individuals (Fig. 1A). 
Furthermore, antibiotic use in the last year was significantly associated with microbiota composition as 
assessed by a weighted UniFrac analysis followed by a post-hoc PERMANOVA of the regularized AGP datasets 
(Fig. 1B)20,44.

Nature of dysbiosis in chronic disease. The differential abundance of OTUs between healthy and disease 
populations was used to determine if each of the disease states were associated with a depletion or enrichment 
of microbial diversity compared to healthy controls, with the number of OTUs enriched or depleted in disease 
quantified for each pairwise comparison (Fig. 2). The average fold difference in OTUs enriched in healthy cohorts 
vs. disease cohorts reveals that for each disease state, there was significantly more OTUs enriched in healthy 
cohorts than disease cohorts, indicative of a loss of microbial diversity in the gut (Fig. 3). No significant bias for 

Disease State
No. of 
Samples

Sample 
Type Source

Healthy 300 Stool AGP

Cardiovascular disease 300 Stool AGP

Obesity 300 Stool AGP

Diabetes 300 Stool AGP

Kidney disease 100 Stool AGP

Healthy 18 Stool ref.36

USD 18 Stool ref.36

Healthy 13 Stool ref.37

USD 13 Stool ref.37

Healthy 15 Stool ref.18

USD 24 Stool ref.18

Healthy 43 Stool ref.20

USD 24 Stool ref.20

Table 1. Characteristics of datasets used in the meta-analysis.
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group 1 or 2 was detected when health status was stochastically assigned to samples through random assignment 
(see methods).

Strength of dysbiotic taxa and commonalities across chronic disease states. The proportion of 
independent healthy x disease comparisons in which a particular genus had at least one OTU that was differen-
tially abundant was plotted on a heatmap (Fig. 4). The heatmap reveals that the most common dysbiotic genera 
were the Coprococcus, Prevotella, and Bacteroides for OTUs enriched in the healthy cohorts. For OTUs enriched 
in disease cohorts, the Bacteroides, Ruminococcus, and Blautia genera were most common. Hierarchal clustering 
reveals statistically significant similarities between diabetes and kidney disease when considering potential health 
protective bacteria lost. When considering potential pathogenic bacteria acquired, obesity and USD exhibit a sta-
tistically significant cluster, which also clusters with cardiovascular disease. Diabetes again clustered with kidney 
disease with statistical significance. Additionally, from the heatmaps, it is apparent that each of the diseases is 
associated with a loss of diverse genera more so than the gain of microbial genera, largely corroborating analyses 
based on antibiotic use and the number of dysbiotic OTUs (Fig. 4).

Impact of genus diversity on dysbiotic OTUs. When the total number of OTUs identified in each genus 
is plotted against the number of dysbiotic OTUs identified in each genus, there is a significant correlation between 
the two factors, reflecting the fact that dysbiosis is driven in part by the number of constituent OTUs in each 
genus (Fig. 5). However, the number of genera determined to be dysbiotic more than expected given genus level 
diversity ranged from one (USD) to 14 (kidney disease). Of these, the Bacteroides genus was more likely to be 
dysbiotic for all diseases and Corynebacterium for all but USD. The Anaerococcus genus was more likely to be 
dysbiotic than expected for three of the five disease states (Table 2).

Discussion
In the last ten years, there has been an explosion of metagenome-wide association studies (MWAS) that seek 
to determine if the microbiome contributes to disease processes. Importantly, these studies have revealed that 
there is both considerable diversity in the microbiome with hundreds to thousands of unique bacterial species 
in the gut alone28,29 and a high amount of inter-individual variability30,31. Given these unique characteristics of 
the microbiome, studies on any one population of individuals can be driven simply by the individual variability 
and are thus unreliable. Despite these limitations, one leading hypothesis has emerged that postulates that the 
loss of diversity from our microbiome is increasing the risk of developing chronic disease45–47. Several questions 
remain about defining the nature of dysbiosis for any one particular disease. First, are MWAS results driven by 
inter-individual variability and study design, or are there consistent responses by disease? Second, are different 
diseases consistently associated with the loss of beneficial bacteria or the gain of harmful bacteria? Finally, is 
dysbiosis driven by a general loss or gain of microbial taxa or are there specific taxa that are more important than 
others? To address these questions, we conducted a meta-analysis of MWAS data from multiple sources for a clus-
ter of disease states that included USD, diabetes, cardiovascular disease, obesity, and kidney disease.

Figure 1. The effect of antibiotics on chronic disease and the microbiota. (A) Antibiotic use within the last year 
for individuals with or without chronic disease. For diabetes, cardiovascular disease, kidney disease, obesity, and 
their healthy counterparts, antibiotic history was derived from the subset of AGP samples randomly selected for 
this study (N = 300 for each group except kidney disease which had 100 samples; Table 1). Only one study on 
the microbiome of USD patients included metadata associated with antibiotic use (N = 43 healthy individuals 
and 24 individuals with USD; Table 1). Proportions of antibiotic use were compared between chronic disease 
states and healthy populations with a relative risk ratio followed by a post-hoc Fisher’s exact test, which was 
Holm’s corrected for multiple comparisons. *p < 0.05; **p < 0.01; ***p < 0.001 compared to the healthy 
population. (B) PCoA plot based on a weighted UniFrac analysis the microbiome composition from the AGP 
data. Community composition based on antibiotic use was compared by PERMANOVA with 999 permutations. 
p = 0.006.
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Some of the most striking results of the current study is that every disease in the cluster of chronic diseases 
exhibited a statistically significant association with past year antibiotic use and that antibiotics had a statistically 
significant association with gut microbiota composition up to a year after use, both of which supports the loss of 

Figure 2. An example of differential abundance analysis for each of the disease states. Each dot represents an 
OTU. Grey dots are OTUs that do not exhibit significant differential abundance, while red dots are differentially 
abundant OTUs. (A) Stochastic metadata; (B) USD; (C) Cardiovascular disease; (D) Diabetes; (E) Obesity; (F) 
Kidney disease.

Figure 3. Average fold difference in the number of OTUs enriched in either the healthy group/stochastic 
group 1 or in the disease group/stochastic group 2. Positive values reflect greater enrichment in healthy group/
stochastic group 1, whereas negative values reflect greater enrichment in disease group/stochastic group 2. 
Significance was determined with a one-sample t-test against an expected value of 1. *p < 0.05; **p < 0.01; 
***p < 0.001.
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function dysbiosis hypothesis (Fig. 1). Further evidence that a loss of microbial diversity increases risk of devel-
oping the chronic diseases studied here comes from the differential abundance analyses, in which individuals 
from each of the disease states exhibited a statistically significant propensity for the reduced presence of bacteria 
in their gut compared to their healthy counterparts (Fig. 3).

Past studies have shown both direct and indirect links between antibiotic use and the risk of developing 
USD20,35,48–51 and obesity37–39,52,53. For diabetes, the literature is mixed with some studies concluding that anti-
biotics increase the risk of diabetes54–57, some that conclude repeated antibiotic use but not single antibiotic use 
increases diabetes risk58, and some that conclude antibiotics protect against diabetes54,59,60. For cardiovascular 
disease, animal studies show that antibiotics lead to a reduction in microbial activity that promotes cardiovas-
cular disease61. However, outcomes using antibiotic therapy to treat cardiovascular disease in a clinical setting to 
date have been mixed62,63. In addition to the specific diseases above, another meta-analysis of MWAS studies that 
spanned multiple unrelated diseases has been published. In that meta-analysis, it was found that some diseases 
such as enteric diarrheal disease, Clostridium difficile infection, and IBD were associated with loss of function 
dysbiosis, whereas diseases such as colorectal cancer, autism spectrum disorder, liver diseases, and Parkinson’s 
disease were associated with gain of function dysbiosis64.

Among the taxa that were most consistently found to be depleted in disease individuals were the Bacteroides, 
Coprococcus, Prevotella, Ruminococcus, and Sutterella (Fig. 5). However, subsequent analysis suggests that the 
association of some of these taxa with dysbiosis is closely tied to their number of constituent OTUs in the gut, 
indicative of a non-specific response. Some taxa, primarily Bacteroides, Corynebacterium, and Anaerococcus 
were identified as dysbiotic more than expected given their diversity, indicative of a more specific physiological 
interaction between these taxa and disease (Table 2). Past studies have concluded that Bacteroides either has a 
health-protective65–67 or health-antagonistic response68–70. Results from the current analysis show that this genus 
is strongly associated with both health and disease in terms of the number of independent populations it was 
found to be associated with (Fig. 4) and thus it is likely that some OTUs within the genus provide more of a 
protective effect and others more of a detrimental health impact. The Corynebacterium and Anaerococcus genera 
were only associated with the healthy individuals in our meta-analysis. Corynebacterium is most often associated 
with diphtheria, an illness that primarily affects the respiratory system71. The number of independent healthy 
populations associated with Corynebacterium here suggests that this genus of bacteria may play a more beneficial 
role in the context of the gut microbiota. Anaerococcus sp. are commonly associated with the normal flora of the 
skin, mouth, and gut, but are also often recovered from clinical specimens such as vaginal discharge and chronic 
infectious wounds72.

Figure 4. Heatmaps showing the most common dysbiotic genera for each disease. Genera were counted for 
each independent population comparison had at least one dysbiotic OTU associated with it. The proportion 
of populations each genera showed up in is plotted. (A) Genera depleted in the disease populations (potential 
probiotic bacteria lost); (B) Genera enriched in disease populations (potential pathogenic bacteria). Hierarchal 
cluster analysis shows clustering of disease states with the approximately unbiased alpha levels (AU) and 
bootstrap probability (BP) provided for each cluster (AU/BP). AU values > 95 are considered significant and are 
bolded.
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Numerous MWAS studies have demonstrated statistically significant interactions between the microbiome 
and disease processes. However, questions remain about the consistency of results obtained from single studies 
and whether there are common dysbiotic origins for related diseases. Importantly, our results show that for the 
cluster of chronic diseases that span USD, diabetes, kidney disease, obesity, and cardiovascular disease, there is 
a statistically significant association with antibiotic use and a loss of microbial diversity. Furthermore, several of 
the dysbiotic taxa are shared between different disease states suggesting that there are some common dysbiotic 
associations for these diseases. However, as the current data represents a retrospective analysis of data from a sin-
gle time-point, prospective, longitudinal clinical studies are required to understand the underlying mechanisms 
between antibiotics, loss of function dysbiosis, and the onset of chronic disease.

Figure 5. Total genus diversity vs. dysbiotic OTUs per genus. Correlations were calculated with a Spearman’s 
rank order correlation (r). (A) Cardiovascular disease; (B) Obesity; (C) Diabetes; (D) Kidney disease; (E) USD.

Genus USD Diabetes
Kidney 
Disease Obesity Cardiovascular disease

Bacteroides * * * * *

Corynebacterium * * * *

Anaerococcus * * *

Coprococcus * *

Oscillospira * *

Prevotella * *

Rothia * *

Sutterella * *

Bifidobacterium *

Blautia *

Eubacterium *

Faecalibacterium *

Fusobacterium *

Leptotrichia *

Parabacteroides *

Peptoniphilus *

Porphyromonas *

Ruminococcus *

Staphylococcus *

Veillonella *

Table 2. Microbial genera that were identified as dysbiotic more than expected based on the number of unique 
OTUs identified per genus.

https://doi.org/10.1038/s41598-019-49452-y
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Materials and Methods
Data processing. Raw sequencing data for all studies were demultiplexed and quality-controlled with default 
parameters in QIIME73. An open reference strategy was used to assign OTUs with 97% homology compared 
to a reference database composed of the Greengenes V13.8 dataset74–76. Datasets were combined prior to OTU 
assignment to allow for direct comparisons. OTUs that did not match any of sequences in the reference database 
were then classified de novo, which first clusters unclassified sequences based on homology, picks a representative 
sequence, and assigns taxonomy based on a 94% similarity threshold to the reference database77. Chloroplasts, 
mitochondria, and chimeric sequences were removed from datasets as well as those that had <10 representations 
across each dataset as previously described74,75. The final OTU count across all datasets was 35,582. Datasets were 
regularized with a negative binomial Wald test, executed by the DESeq2 algorithm, which fits the data to a neg-
ative binomial distribution, to account for differences in sequencing depth in each sample, but does not account 
for the compositional nature of the data78,79.

Association of antibiotics and chronic disease. To determine if antibiotics were associated with chronic 
disease, we quantified the proportion of individuals who had taken antibiotics in the last year for cardiovascu-
lar disease, obesity, diabetes, and kidney disease compared to their healthy counterparts in the AGP data. For 
USD, only one of the four studies included in our meta-analysis had metadata associated with antibiotic use20. 
Proportions were compared with a relative risk ratio followed by a post-hoc, Fisher’s exact test, using a Holm’s 
correction for multiple hypotheses.

In order for antibiotic use to have a meaningful impact on chronic disease, we expect that antibiotics would 
exhibit a statistically significant association with microbiota composition. Therefore, we also conducted a 
weighted UniFrac beta-diversity analysis on all regularized data from the AGP dataset, which were all collected 
and processed by the same group, followed by a post-hoc PERMANOVA against antibiotic use in the past year.

Defining dysbiosis for each disease state. To determine the nature of dysbiosis for each disease state, 
while considering the multi-dimensional and variable nature of microbiome data, we divided the samples into 
the following independent populations. For USD data, each study was considered an independent population and 
the healthy vs. USD groups were compared against each other within each study. Four populations were available 
for USD and their healthy counterparts. For AGP data, each category of health states was sub-divided into three 
independent sets of 100 samples by assigning samples to one of three groups through the lowest, middle, and 
highest 100 random numbers previously assigned. For kidney disease, only one subset was available. Subdivisions 
provided three independent populations for AGP healthy individuals, cardiovascular disease, obesity, and diabe-
tes. One population was available for kidney disease. Additionally, random numbers were reassigned to AGP data 
independent of metadata. The random numbers generated were used to assign three independent populations 
each for stochastic groups 1 & 2. Groups with stochastic metadata were used to determine if our definition of 
dysbiosis for each disease state were driven by disease or some other stochastic process.

Following subdivisions, differential abundance analysis, calculated as the log fold-change divided by stand-
ard error of negative binomial regularized data (lfcse), was conducted on all relevant pairwise comparisons of 
independent populations using the DESeq2 algorithm78. All p-values for differentially abundant OTUs were 
false-discovery rate corrected, following the Benjamini-Hochberg method80. Differential abundance analysis was 
chosen to define dysbiosis because it gives the specific OTUs enriched in both healthy and disease populations 
rather than net differences in diversity or community composition as with alpha- and beta-diversity respectively. 
Thus, this metric is suitable for identifying situations in which a combination of loss and gain of function dys-
biosis may contribute to disease processes. For USD data, since samples and data were collected independently 
by four different research groups, differential abundance analysis between healthy and USD populations within 
each study was conducted. For AGP data, since all samples were collected, processed, and sequenced by the same 
group, each independent healthy population was compared to each disease population. This resulted in nine 
pairwise comparisons for cardiovascular disease, diabetes, obesity, and stochastic groups 1 & 2, along with three 
pairwise comparisons for kidney disease.

From the results of independent differential abundance analyses, the fold difference in OTUs between the 
healthy and disease populations was calculated as the number of OTUs enriched in the healthy group divided 
by the number of OTUs enriched in the disease group. Absolute values were compared with a one-sample t-test 
against an expected value of 1, indicative of no difference, and p-values were Holm’s corrected for multiple com-
parisons. For purposes of plotting fold difference, raw values below 1 were inverted and made negative.

Strength of dysbiotic taxa and commonalities across chronic disease states. To determine the 
consistency of dysbiotic taxa identified and if there were common dysbiotic genera across the different chronic 
diseases, differentially abundant OTUs for each comparison were first reduced to genera, which allows for greater 
comparison between each disease state but comes with the limitation that physiologically disparate OTUs can 
exist within the same genus. The OTUs that were not classified at least to the genus level were removed from 
further analysis. We counted the number of times a microbial genus had at least one OTU that was enriched in 
either the healthy or disease populations across all pairwise comparisons for each disease. Genera enriched in the 
healthy populations were considered “potentially beneficial” whereas those enriched in the disease populations 
were considered “potentially pathogenic”. The proportion of independent analyses that each genus appeared in 
was plotted in a heatmap in R statistical software using the heatmap.2 function with dendograms generated by the 
hclust function to show clustering by disease state. The bootstrap probability and approximately unbiased alpha 
levels were calculated by the pvclust package with 1000 bootstraps81.

https://doi.org/10.1038/s41598-019-49452-y
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Influence of genus diversity on dysbiotic genera. Next, we sought to determine if dysbiosis was driven 
by a general loss or gain of bacteria in the gut or if some microbial genera had a greater association with disease 
than expected by the number of constituent OTUs within the genus. To do this, for each disease, we plotted the 
total number of OTUs detected per genus against the number of dysbiotic OTUs detected per genus and deter-
mined if there was a Spearman correlation significantly different than 0 with the cor.test function in R statistical 
software. Next, genera in which the number of dysbiotic OTUs was greater than three standard deviations above 
what was expected based on genus diversity were considered to be highly associated with dysbiosis, following the 
three-sigma rule82.

Data Availability
Sequence reads for USD are available at the Sequence Read Archive under Accession #’s SRP140641, SRP140933, 
PRJNA382644, PRJNA304689. American gut project data is available at the European Bioinformatics Institute 
under accession # PRJEB11419.
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