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Abstract:  In this paper we provide considerable Monte Carlo evidence on the finite
sample performance of several alternative forms of White’s [1982] IM test.  Using linear
regression and probit models, we extend the range of previous analysis in a manner that
reveals new patterns in the behavior of the asymptotic version of the IM test –
particularly with respect to curse of dimensionality effects.  We also explore the potential
of parametric and nonparametric bootstrap methods for reducing the size bias that
characterizes the asymptotic IM test.  The nonparametric bootstrap is of particular
interest because of the weak conditions it imposes, but the results of our Monte Carlo
experiments suggest that this technique is not without limitations.  The parametric
bootstrap demonstrates good size and power in reasonably small samples, but requires
assumptions that may be auxiliary from the standpoint of a QMLE.  We observe that the
effects of violating one of these auxiliary assumptions has a non-trivial impact on the
size of IM tests that employ this technique.
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1 Introduction

The rapid increase in computational power available to researchers has had

a tremendous impact on the efficiency with which econometric modeling can be

performed.  Where it was once time-consuming and expensive to evaluate multiple

model specifications, it is now quite feasible to evaluate several competitive speci-
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fications in a single study.  In an environment rich with potential models, it be-

comes ever more important to have a single, reliable specification test that can be

used to aid the process of model selection and specification.  This statistic would

encapsulate several of the most important aspects of specification testing into one

number, and serve as a thumbnail sketch of the quality of model specification.

Though such a statistic would not obviate the need for more in-depth specification

testing, it would serve as a good filter to narrow the field of candidates.

The information matrix (IM) testing procedure introduced by White in 1982

offers a conceptually appealing way to perform just this kind of omnibus specifica-

tion testing on quasi-maximum likelihood models.  It is a statistical test of the hy-

pothesis that the information matrix equality holds, that is, of the hypothesis

)),,(log),(log()),(log(: 000
2

0 θθθ XfXfEXfEH ∇′⋅∇=∇

where ),(log 0θ⋅f is the log-likelihood for the random variable X, 0θ  is probability

limit of the associated (quasi-) maximum likelihood estimator, and flog∇ , and

flog2∇  are the gradient (score) vector and Hessian matrix of the log-likelihood re-

spectively.

A variety of test statistics can be formed from subsets of the elements in the

equality, or all of the elements can be used in a full IM test.  This family of tests has

the flexibility to check specifications on a wide range of econometrically important

models, yet can also be used to focus on the individual aspects of specification that

are relevant within each type of model.  Perhaps one of the biggest advantages of
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the full IM test, though, is the fact that it directly or indirectly tests all of the ma-

jor assumptions built into the maximum likelihood model that has been specified.

Passing this test is an important signal that the fitted model adheres to the specifi-

cation that has been set forth.  These properties would seem to make the full IM

test an ideal tool for preliminary model specification checks.  Unfortunately, this

test is not without some serious deficiencies.

The main issue with the IM test is that, in practice, its observed rejection

rate under the null hypothesis is often far from the nominal rate.  Earlier Monte

Carlo studies such as those done by Taylor [1987], Orme [1990], Chesher and Spady

[1991], or Davidson and MacKinnon [1992] have consistently shown a dramatic up-

ward size bias in the full IM test in small samples.  In some of the worst cases, re-

jection rates near 100% have been observed where 5% is the nominal rate.  Signifi-

cant upward bias in the rejection rates has also been documented in samples with

well over one thousand observations.  This kind of performance has made the in-

formation matrix test virtually impossible to use in practice and has sparked a

search for ways to fix the problems perceived with it.  There remain, however, im-

portant aspects of the distribution of this test that still have not been well docu-

mented, and, with the possible exception of the application of the parametric boot-

strap by Horowitz [1994], most attempts to fix the test have had somewhat limited

applicability or success.

The principal problem with the full IM test statistic resides with the mis-

match between the approximate chi-square distribution given by asymptotic theory
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and the sampling distribution observed in practice. There are essentially two ways

to handle this problem.  One can either modify the statistic so that in smaller sam-

ples it behaves more like the asymptotic approximation, or one can modify the dis-

tributional approximation so that it is more in line with the observed sampling dis-

tribution.  Among those taking the first approach are Taylor [1987], Orme [1990],

and Davidson and MacKinnon [1992].  Most examples of this approach are either

limited in their applicability, or have met with limited success.  Examples of the

second approach include Taylor [1989], Chesher and Spady [1991], and the applica-

tion of the bootstrap by Horowitz [1994].   These attempts to approximate the dis-

tribution better have generally led to broader success.

Perhaps the earliest response to the size problem was Taylor’s [1987] at-

tempt to reduce the dimension of the statistic as a response to the so called "curse

of dimensionality".  Taylor used a regression-based form of the IM test on a linear

regression model, and removed elements from the score vector that normally ap-

pear in the artificial regression for the particular tests he used.  This resulted in a

statistic that is asymptotically equivalent to White's original formulation only un-

der special circumstances, and also did not have markedly improved size perform-

ance.

Orme [1990] introduced a more sophisticated approach to modifying the in-

formation matrix test statistic.  He explored the idea of plugging in expected val-

ues for some of the sample quantities appearing in the IM test statistic.  His most

successful ω3 formulation involved application of the null hypothesis to allow the
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use of the negative outer product of the score vector in place of the Hessian matrix,

and also substituted expected values for the gradient vector of the indicator vector.

The result is asymtotically equivalent to the original statistic, but involves compu-

tations that may be more stable in small samples.  The size performance of this sta-

tistic was found to be considerably improved over the original formulation with

rejection rates closer to 10% under the null versus the nominal 5%.  This size per-

formance came at the cost of power.  Horowitz’s [1994] experiments showed that

Orme’s ω3 version of the IM test has little power against certain alternative mod-

els.

Davidson and MacKinnon [1992] took a completely different approach to

modifying the computation of the IM test.  They start from Chesher’s [1984] obser-

vation that, within regression models, the IM test is equivalent to a test of parame-

ter heterogeneity. They  then constructed a direct test for parameter heterogeneity

that deviates computationally from the IM test, but maintains asymptotic equiva-

lence.  Though their version of the test is only valid for linear and nonlinear re-

gression models, the Davidson-MacKinnon formulation results in very good size

performance.  The power of their statistic, however, has not been tested.  The

drawback of this approach is its limitation to linear and non-linear regression

models, which constrains its generality.

The first attempt to improve the approximation of the sampling distribution

of the IM test statistic was also limited in its range of applicability, though for dif-

ferent reasons.  Taylor's [1989] approach involved mapping out the Monte Carlo
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distribution of the statistic, and then using this information to estimate an adjust-

ment factor for the original chi-square distribution function.  The adjustment factor

is based on the method of extended rational approximants which is applied to the

chi-square distribution function.  Taylor actually applied this technique directly to

the inverse cumulative distribution function, which results in the approximation

12
,,,

1 )( with ),,,(),,( −− =⋅= qqq unqGunqF ααα χαα ,

where G is the adjustment function consisting of a ratio of two polynomials of up to

order three in their arguments.  This function modifies the form of the original chi-

square with a non-linear (cubic) function that explicitly accounts for changes in the

nominal rejection rate, the number of elements in the test vector, and the sample

size.  In practice, the rational approximants in G need to be estimated, and to do

this a grid of Monte Carlo estimates of the rejection rates are required over a grid

of values in n, α, and q.  Taylor’s results are especially intriguing because the ad-

justment factor he estimates gives some indication of exactly how the sampling dis-

tribution deviates from the asymptotic distribution.  The main drawback of this

type of approximation technique is its reliance on the results of a large number of

Monte Carlo simulations.  It is particularly computer intensive because simula-

tions are required not only for the particular sample size and number of parame-

ters at hand, but for a whole grid of other possibilities as well.

Chesher and Spady [1991] formulated a correction factor for the chi-square

distribution based on analytical techniques, obviating the need for heavy simula-
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tion.  Their formulation starts by computing Cornish-Fisher expansions of the dis-

tribution of the IM statistic to obtain a second-order approximation of this distri-

bution.  This results in a reduction of the theoretical approximation error to O(n-1)

rather than the O(n-1/2) yielded by traditional central limit theory.  This adjust-

ment equation is a nonlinear combination of higher-order chi-squares and n-1 ap-

plied to the asymptotic 2
qχ .  The formula for their approximation can be written as:

[ ],),(1),,( ,
1

,
1 quGnunqF qq ααα ⋅+⋅= −−

where 12
,, )( −= qqu αα χ .  The Chesher-Spady adjustment function G contains powers

of two in both its arguments, so it is quite non-linear.  Though the use of a second-

order Cornish-Fisher expansion limits the order of n involved in the correction, the

benefits of this approach for the IM test are significant.  Chesher and Spady obtain

distributional approximations very close to the observed performance in a variety

of settings.  As for  Taylor's approach, a secondary benefit of this correction is that

it helps identify the magnitude of errors committed by using the standard O(1) χ2

approximation.  On the negative side, their approximation results in a non-

monotonic distribution function for small n.  In one example, the C-F modified dis-

tribution becomes non-monotonic in samples of under 173 observations.   Another

difficulty in using Cornish-Fisher expansions of the IM statistic is their cumber-

some calculation.

The parametric bootstrap explored by Horowitz [1994] offers a computation-

ally less cumbersome approach to approximating the sampling distribution of the
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IM test statistic.  Horowitz's simulation results for the tobit and probit regression

cases he studied are remarkable.  In fact, the rejection rates he observed are essen-

tially identical to the nominal rates.  This is a greater improvement than might na-

ively be expected from a second-order improvement in approximation.  The para-

metric bootstrap also has the clear advantage of simplicity over the other approxi-

mation techniques.  One need not perform an extensive Monte Carlo study or cal-

culate hundreds of cumulants in order to benefit from the parametric bootstrap.

One simply needs a fully parameterized DGP to stand in as the null model from

which a sampling distribution for the IM test statistic is generated.  It is, however,

a requirement of the parametric bootstrap that a fully parameterized DGP be

available, which is what limits its general applicability for QMLE's.

Linear and nonlinear regression models represent an example of a family of

quasi-maximum likelihood models that do not rely on specific parametric DGP as-

sumptions in order for asymptotic normality to obtain.  In this case, using the

parametric bootstrap requires simulating errors from a given parametric distribu-

tion such as the normal distribution function.  Doing this imposes structure that is

not necessary to the functioning of the model or the IM test.  From this standpoint,

it is of interest to explore alternative bootstrap approximation techniques that do

not require auxiliary conditions beyond those already needed for application of a

central limit theorem to the QMLE.  The nonparametric bootstrap is such a tech-

nique, and is a particular focus of our attention.
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In this paper we investigate the potential of various methods, including the

nonparametric bootstrap, to eliminate the size bias problem in information matrix

testing.  Further, we re-evaluate the existing Monte Carlo evidence on the finite

sample performance of various forms of the IM test.  Both the number of regressors

and the range of sample sizes are greater here than in previous studies in order to

more clearly map the performance of the various forms of the information matrix

test.   This provides a more complete picture of the problems that arise in obtain-

ing the sampling distribution of the IM test statistics.  In fact, we show that it is

possible, in a variety of ordinary situations, for the rejection rate of the IM test to

actually rise with n and fall with increases in the number of regressors - exactly

the opposite of what one might expect given previous research.

Our Monte Carlo experiments for the bootstrap demonstrate that a straight-

forward application of the nonparametric bootstrap is not necessarily as capable as

the parametric bootstrap at eliminating size bias in the IM test.  This is to be ex-

pected because of the weak structure imposed by the nonparametric bootstrap.  In

fact, the Monte Carlo experiments reported in this paper focus on situations where

the parametric bootstrap appears in its most favorable light.  We touch briefly

upon IM testing in environments where the nonparametric bootstrap is the favored

approach, and here the parametric bootstrap does less well.  The results of these

experiments suggest that this is an important area for further research.

This paper is organized as follows:  Section 2 contains a brief overview of the

IM test and, for concreteness and because of its first use in this context, how the
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nonparametric bootstrap applies.  Section 3 presents Monte Carlo results that pro-

vide a baseline for the asymptotic forms of the information matrix test.  Here we

re-evaluate the performance of the IM test statistics and reveal properties that

have not been well documented previously.  This is followed in section 4 by a com-

parison of the performance of nonparametric and parametric bootstrap methods

under the null hypothesis and under two alternatives.  These results indicate the

promise of the nonparametric bootstrap technique for correcting the size problems

of the IM test, but also some of its limitations.  The power experiments, though not

exhaustive, suggest weaknesses in all forms of the IM test in small samples.  The

paper concludes with a discussion of directions for future research.

2 The IM Test Framework and the Bootstrap

One of the appealing aspects of the IM test is the consistent specification

testing framework that it offers over a wide range of useful econometric models.

Because it uses the information matrix equality as a measure of goodness of fit, it is

as at home testing heteroskedasticity in a linear regression model as it is in testing

overdispersion in a probit equation.  Because of the documented weakness of the

asymptotic approximation for this statistic in smaller finite samples it is a natural

candidate for the application of the bootstrap which may provide a better level of

approximation.
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2.a The IM Test

The IM test exploits the fact that if a quasi-maximum likelihood estimator

(QMLE) is correctly specified, the information matrix equality will hold.  This

equality states that under correct specification, the expected value of the matrix of

second derivatives of the log-likelihood function is equivalent to the opposite of the

expected value of the outer product of the vector of first derivatives.  Deviations

from correct specification cause these two matrices to diverge, so it is possible to

use deviations from this equality as a signal of misspecification.

 Following the notation of White [1994], the following information matrix

equality holds for a QMLE under correct specification:

,**
nn BA −=

).,(log=  whereand ,]'[ and ,][ where **

1

**1*

1

*1*
nttt

n

t
ttn

n

t
tn XfsssEnBsEnA θ∇≡∇′≡ ∑∑

=

−

=

−

The function tflog  is the log-likelihood function for the random variable Xt,

and nn θθ ˆplim* = , where nθ̂ is the (quasi) maximum likelihood estimator.  For sim-

plicity, we assume the process Xt to be independent and identically distributed.

The sample quantity, 0ˆˆ =+ nn BA , accomplishes the matrix comparison that is the

basis for the test.   This comparison matrix is symmetric, which means that there

are p(p+1)/2 unique elements in this expression.  The actual test statistic is formed

by vectorizing this matrix and then picking a set of unique elements from the re-
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sulting vector.  For the linear regression normal error case, the full vector of indi-

cators contains elements that are sensitive to conditional heteroskedsticity, as well

as non-normal skewness and kurtosis.  Section 3, which introduces the Monte

Carlo experiments, presents specific examples of the terms entering the test sta-

tistic for both the linear regression and probit cases.  See also White [1994, ch. 11]

for other examples.

Since several directions are simultaneously tested, rejection of the null hy-

pothesis does not give specific information about the exact cause of the rejection.

A representative summand in the IM test statistic is

 ,)ˆˆˆ(

1

ˆ tststsvecS

q
tm ′+∇′⋅=

×

where S is a selector matrix composed of columns of zeroes and ones arranged to

pick out particular elements of the indicator vector.   Setting S to be the identity

matrix yields the full information matrix test.  Careful selection of the indicators in

the IM test vector with S can yield more precise information about the nature of

misspecification.  A familiar example of such a test is the White test for heteroske-

dasticity which selects only terms involving conditional variance.

The sample statistic formed from the vector tm̂ is:

 .
1

)ˆ1(ˆ ∑
=

=
n

t
tm

n
nnMn
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Conditions ensuring the asymptotic normality of this statistic are given by White

[1994] theorem 9.2.  These include enough smoothness to guarantee that sufficient

derivatives exist and that the moments used in the computation of the covariance

matrix are bounded.   Given this, a statistic that is asymptotically distributed χ 2

under the null hypothesis can be formed as

2~ˆ1ˆˆˆ
q

A

nMnJnMn χ−′=nM . (1)

This is the information matrix test statistic.

The estimator of the covariance matrix, nĴ , can be cumbersome to compute

because it involves the gradient of tm̂  which requires computation of third deriva-

tives of the quasi log-likelihood function.  Two important forms of this test statistic

correspond to different choices for the estimator nĴ .  A form of the covariance ma-

trix corresponding to corollary 9.10 of White [1994] that is appropriate where se-

rial dependence is absent is the following:

∑
=

∇′−∇′−−= −−
n

t
sAMmsAMmnJ tnnttnntn

1
)'ˆˆˆˆ)(ˆˆˆˆ(1ˆ

θθ .

This version, which involes the third derivatives of the likelihood function just

mentioned, is the  original form specified by White [1982].

The null hypothesis can be exploited to simplify the statistic by causing the

third derivatives to vanish.  A commonly used version of the covariance matrix un-
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der these conditions obtained by Lancaster [1983] and Chesher [1983], and follow-

ing directly from corollary 9.11 in White [1994] is the following:

)
1

ˆˆ1(1]
1

ˆˆ1)[
1

ˆˆ1(
1

ˆˆ1ˆ ∑
=

′−−∑
=

′−∑
=

′−−∑
=

′−=
n

t
tmtsn

n

t
tstsn

n

t
tstmn

n

t
tmtmnnJ .

This variation of the test is often referred to as the outer product of the gradient

(OPG) version; we refer to this as the Chesher-Lancaster form.

Note that both of these forms of the covariance matrix make use of the null

hypothesis to do away with terms involving )( *
tmE  that would otherwise need to

appear in order to take account of the alternative, 0)( * ≠tmE .  We study both the

White form, and the Chesher-Lancaster forms of the statistic throughout.

A simple implementation often used for the computation of the test statistic

defines the vector tξ̂  for each of the two versions of the statistic as

tnntt sAMm ˆˆˆˆˆ −∇′−= θξ , (2a) (White)

}ˆ,ˆ{ˆ
ttt sm=ξ . (2b) (Chesher-Lancaster)

The IM test statistic can be computed as:

2ˆ Rnn ⋅=′M (3)

where R2 is the uncentered R2 from an artificial regression of a vector of ones on

the vector tξ̂ . Under conditions given by White [1994] in corollaries 9.10b and 9.11b
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00→−′ P
nn MM , so this simplified version is asymptotically distributed 2

qχ  as

well.

2.b The Bootstrap

The overriding problem with the IM test statistic is that asymptotic ap-

proximations poorly approximate the finite sampling distributions actually ob-

served.  Ideally, we would like to have full knowledge of the sampling distribution

function behind a complicated statistic like this.  Alternatively, we might want to

repeatedly sample from the population in order to map out the sampling distribu-

tion.  However, this type of population information is not available to the re-

searcher except in circumstances of Monte Carlo simulation.  The bootstrap is a

technique that mimics the process of sampling repeatedly from the population, by

instead re-sampling repeatedly from the sample data.  Introduced by Efron [1979],

with considerable refinement by Freedman [1981], Bickel and Freedman [1981],

Hall [1986a,b,1987,1992] and others, this method essentially uses sample data to

construct a numerical simulation of the sampling distribution of a statistic. Though

the bootstrap is not essentially numerical in nature, its application is generally ex-

pedited using Monte Carlo sampling techniques.  Depending on the circumstances

of application, the bootstrap yields an approximation at least as good as an asymp-

totic approximation.  The accuracy of the bootstrap approximation depends in part

on the (asymptotic) pivotalness of the statistic it is applied to.  A pivotal statistic

has a distribution that is free of estimated parameters, whereas an asymptotically

pivotal statistic has a limiting distribution that is free of estimated parameters.  In
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many leading cases, where pivotal or asymptotically pivotal statistics exist, the

bootstrap delivers faster convergence than standard asymptotic methods. The fol-

lowing discussion draws on Hall [1992].

To describe the set up, we start with a sample, X  = {X1,...,Xn}, which consists

of n repeated draws of the i.i.d. random variable X having the population distribu-

tion function F0.  F0  is unknown to the researcher, but some of its characteristics

are revealed through X which is governed by the sampling distribution function, F1.

A bootstrap resample, X * = {X1*,...,Xn*}, can, in turn, be constructed by selecting n

elements randomly with replacement from the sample X.  Each Xi*  has probability

n-1  of being selected into this new artificial sample:

.1)( 1 ni,j,   =n|=XXP -
j

*
i ≤≤X

The distribution of the resample is governed by the bootstrap distribution

function, F2, which can be estimated to an arbitrary degree of accuracy.  This can be

done by drawing repeated resamples and mapping the resulting distribution.  This

repeated resampling from F1 makes it possible to generate a family of simulated

samples that generally imitates the behavior of repeated sampling from the popu-

lation distribution.  It is this property that gives the bootstrap its appeal.

Consider a population parameter of interest, say )( 0Fθ .  Because this is

based on the population, )( 0Fθ  is unknown to the researcher.  One must therefore

construct an estimator of this parameter based on sample data; call this estimator



Bootstrapping the Information Matrix Test

 - 16 -

)( 1Fθ .  For statistical inference, knowledge of the distribution of the sample pa-

rameter estimate about the population parameter is needed, this is denoted:

} | )]()([ { 001 FFF θθ −nD .

D  contains all of the information about the distribution that we might want,

but it involves unknown quantities from the population distribution function F0.

The usual procedure at this point is to apply central limit theory to prove that D

converges asymptotically to some simple and analytically tractable distribution

such as the normal distribution.  e.g.

),0(} | )]()([ { ..
001 DNFFF sa→−θθnD ,

where D is the asymptotic covariance matrix of )( 1Fθ .

Inference can then proceed based on the similarity between D and its limit-

ing normal distribution.  In  contrast, the bootstrap proceeds by plugging in esti-

mates of the components inside D.  For the population quantities, one plugs in es-

timates based on the sample, and for the sample quantities, one plugs in estimates

based on the bootstrap resamples.  This plug-in approach is perfectly feasible as

both sample and bootstrap estimators are known quantities.  Using asymptotic

theory it is straightforward to prove under mild conditions that the bootstrap plug

in estimator converges in distribution to the sample estimator:

} | )]()([ {} | )]()([ { 001
..

112 FFFFFF sa θθθθ −→− nDnD ,
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where 2F  stands for the bootstrap distribution, and )( 2Fθ  is an estimate drawn

from  this distribution. See Bickel and Freedman [1981] Theorem 2.1 for a proof of

this for the sample mean.

Often, the researcher is only interested in particular aspects of the distribu-

tion of a statistic, which simplifies the situation.  This can be treated as the solu-

tion 0t  to the problem

} ,0] | ),([ | { 0100 TtFFFfEt t ∈= ,

where ),( 10 FFf t  is a function that appropriately embodies the aspect of the distri-

bution we care about.  For example, if we are interested in the sample bias, we

would use

tFFFFf t +−= )()(),( 0110 θθ ,

or if we are interested in a symmetric two-sided confidence interval we could use

 95.0})()()({),( 10110 −+≤≤−= tFFtFIFFf t θθθ ,

where I{⋅} is an indicator function equal to one if its argument is true, and zero oth-

erwise.  Taking the expected value of this function yields a probability estimate.

Since the population quantities involved in this formula are unknown, the boot-

strap can be applied to generate an analogous expression:

} ,0] | ),([ | { 1211 TtFFFfEt t ∈= .
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A procedure for estimating the bootstrap distribution 2F  is to repeatedly

resample from the sample data B times, creating a set of resamples F2b, b=1,...,B.

The distributional behavior of the resample statistics will yield the information

needed for inference.  For example, in the case of the confidence interval calcula-

tions, we are interested in

95.0})()()({),( 1211221 −+≤≤−= tFFtFIFFf t θθθ .

This is a neighborhood around the sample value that contains 95% of the

bootstrap values.  Numerically simulating the bootstrap distribution by resampling

the data in this manner is referred to as the Monte Carlo method.  The actual boot-

strap distribution is defined only as B → ∞ , but can usually be well approximated

with a reasonable number of simulations.  Hall [1986b] has a discussion of appro-

priate settings for B in some leading cases.

The intuition behind this procedure is that the sample data reflects our best

knowledge of the population distribution through the frequency distribution of its

values.  By repeatedly drawing at random from the sampling distribution one is

simulating a situation in which repeated samples are drawn from the population.

Infinite sampling from a well behaved population would give the observer perfect

information about the population distribution function.  In the same way, infinite

sampling from the sampling distribution function can yield perfect information

about the sampling distribution function.  The key link for needed for inference is
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that the degree of similarity between the sampling distribution and the population

distribution must be high.

Using Edgeworth expansion techniques one can prove for leading statistical

estimators that the bootstrap is at least as accurate as the central limit approxima-

tion, and in many cases better.  If the statistic in question is exactly pivotal, the

bootstrap can yield arbitrarily close estimates of population quantities for the dis-

tribution.  Typically test statistics in economics are at least asymptotically pivotal,

in which case the bootstrap approximations are accurate to terms of O(n-1).   This is

a considerably better approximation than the standard O(n-1/2) afforded by central

limit theory.  Even if an asymptotic pivot is not available, the bootstrap can still

yield an accuracy of O(n-1/2).  This result can be convenient in cases where asymp-

totic distributions are analytically intractable, and the bootstrap can be used to

simulate the distribution of the statistic as well as could be expected from asymp-

totic theory.  The limitation of Edgeworth expansions is their reliance on the exis-

tence and finiteness of high order population moments, as well as their analytical

complexity.  For an extended treatment of the bootstrap using Edgeworth expan-

sions to analyze convergence properties see Hall [1992].

2.c Bootstrapping the IM test

The relatively weak assumptions needed to use the nonparametric boot-

strap to develop confidence intervals can be advantageous in the context of

QMLEs.  With these estimators one may not need, or indeed have, the full MLE

specification that is required to perform parametric bootstrap resampling.  Gener-
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ating bootstrap data using a parameterized error density function imposes addi-

tional structure that could be unwarranted.  Not only is this structure unneccesary,

it may well cause undesirable side-effects.  The nonparametric bootstrap is appeal-

ing because it imposes no such additional structure.

One way to interpret the problem with the IM test procedure is that critical

values drawn from asymptotic chi-square distribution are much too small.  For this

problem, we want to use the bootstrap to estimate an upper percentile for the IM

test statistic's distribution.  This can be laid out in terms of population quantities

as the set E (an ellipse) such that

( ) α−=∈− 1)]()([ 01 EFMFMnP nn ,

where α is the probability of a type I error.  In other words, we want to find an el-

lipsoidal region such that %100)1( ⋅−α  of the sample statistics are are contained

within it.  Normalizing this expression with the appropriate covariance matrix, Vn,

we get the equivalent expression in terms of the sphere, S, such that

( ) α−=∈−− 1)]()([)( 01
2/1

1 SFMFMFVnP nnn .

This latter expression is our main interest because it is potentially an as-

ymptotically pivotal statistic.  Since this statistic generally converges to a 2
qχ which

is indeed free of estimated parameters, we are assured of an asymptotic pivot in

this case.  It is this property that reduces errors in the approximation introduced

by the presence of unknown parameters in the limit distribution.  This delivers ad-

ditional accuracy, to the order of  O(n-1).
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The above formulation in terms of S can be translated into the following

quadratic form where the parameter t is a measure the square of the radius of the

sphere S:

{ } )1( ))()(()())()(( ),( 01
1

10110 α−−≤−′−= − tFMFMFVFMFMnIFFf nnnnnt .

The expression inside the parenthesis is the sample IM test statistic.  Under

the null hypthesis, we would typically set )( 0FM n to zero which yields the form seen

in equation (1).  The parameter t is the sample estimate of the (1-α) percentile of

the distribution of Mn  and can be used as a critical value for hypothesis testing.

The bootstrap plug-in estimator version of this statistic is:

{ } )1( ))()(()())()(( ),( 12
1

21221 α−−≤−′−= − tFMFMFVFMFMnIFFf nnnnnt ,

which can be re-written in less cumbersome notation as:

{ } )1( )ˆˆ(ˆ)ˆˆ( ),( *1**
21 α−−≤−′−= − tMMVMMnIFFf nnnnnt .

Here, we are using the notation  *
21

*
0

ˆ)( and ,ˆ)(,)( θθθθθθ === FFF , where

asterisks indicate quantities estimated by bootstrap resampling.  Finding the non-

parametric bootstrap critical value involves solving

} ,0] | ),([ | { 121 TtFFFfEt t ∈=

to get a value for t.  Using averages to estimate expectations, we solve the following

boostrap problem:



Bootstrapping the Information Matrix Test

 - 22 -

} ,0 | ),( | {
1

121B
1 TtFFFft

B

i
ti ∈=






 ∑

=
, or

{ } }0)1( )ˆˆ(ˆ)ˆˆ(|{
1

*1**1 =







−−≤−′−∑
=

− α
B

i
nnininniB tMMJMMnIt .

The nonparametric bootstrap resampling used to solve this equation is car-

ried out by randomly sampling from the rows, the syx tt )',( , of the data matrix, with

replacement.  The QMLE is then estimated using the resampled data.  The errors

and data elements from this step are then used to compute the bootstrap indicator

vector *ˆ
nM  and its covariance matrix, *ˆ

nJ .  From these, the centered bootstrap IM

test statistic is computed as

)ˆˆ(ˆ)ˆˆ(=ˆ *1**
nnnnn MMJMMn −′− −*

nM . (4)

Centering is critically important in the nonparametric bootstrap because of

the possibility that one is resampling from a sample generated under the alterna-

tive hypothesis.  Our goal in doing hypothesis testing using the nonparametric

bootstrap is to recreate the distribution of the statistic under the null hypothesis,

so alternatives (if present) must be purged from the bootstrap statistics. This af-

fects the covariance estimator in addition to the mean of the statistic as explicitly

established in equation 4.
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The potential for the displacement of the mean of the bootstrap distribution

is fairly obvious.  Under the null hypothesis, 0* =nM , whereas under alternative

hypotheses, 0* ≠nM , so 0ˆ * ≠→ n
as

n MM .  The nonparametric bootstrap yields

0ˆˆ * ≠→ n
as

n MM , so the center of the bootstrap distribution must be shifted back

to the origin by subtracting the sample mean of the test indicators, which explains

the appearance of nM̂  in the bootstrap statistic.

It must also be remembered that the use of nĴ  in the sample IM statistic is

predicated on the correctness of the null hypothesis.  Centering is needed in the

nonparametric bootstrap to correct for the presence of possible alternatives affect-

ing this covariance estimator.  Define the following centered boostrap indicators

for the IM statistic:

ttt mm ˆˆˆ ** −=µ ,

We have 0]|ˆ[ 1
* =FE tµ  under very general conditions, both under the null hypothe-

sis and under alternatives.  Versions of the bootstrap IM test covariance matrices

that are valid under alternatives have the following forms:

White:  ∑
=

∇′−∇′−−= −−
n

t
sAMsAMnJ nnntnnntn

1
)'ˆˆˆˆ)(ˆˆˆˆ(1ˆ *********

θθ µµ ,

CL: )
1

ˆˆ1(1]
1

ˆˆ1)[
1

ˆˆ1(
1

ˆˆ1ˆ ********* ∑
=

−−∑
=

−∑
=

′−−∑
=

−= ′′′′
n

t
sn

n

t
ssn

n

t
sn

n

t
nJ ttttttttn µµµµ .



Bootstrapping the Information Matrix Test

 - 24 -

Without the centering of *ˆ tm , terms involving squares and crossproducts of the

sample average of the indicators, 0ˆ ≠nM , would remain in *ˆ
nJ .  This would cause

the bootstrap estimate of the covariance matrix under alternatives to be inflated

relative to its estimate under the null hypothesis.  The general impact of this is a

reduction in the power of the procedure.

The mechanics of the nonparametric bootstrap IM test are straightforward.

The statistic *
niM̂  is computed B times using different resamples each time.  The

results )ˆ,...,ˆ *
nB

*
n1 MM(  are ordered, and the bootstrap statistic below which (1-

α)⋅100% of the bootstrap observations occur is selected as a critical value.  The

sample IM test statistic is then compared with the bootstrap critical value as one

would usually do with the asymptotic critical value.  An equivalent procedure

yields a bootstrap p-value by computing the quantity ∑ >
B

BP
1=i

n
*
ni

1* MMI(= )ˆˆˆ .  Here one

computes the share of bootstrap statistics exceeding the sample statistic.  Rejec-

tion at the nominal 5% level occurs whenever the bootstrap p-value is less than

α=0.05.  This approach can be made considerably more computationally efficient if

simulation is stopped, and acceptance of the null is recorded once the bootstrap

statistic has exceeded the sample statistic more than B⋅α times.
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3 Dimensions of the Size Problem -  the Asymptotic IM Test

In this section we present some results based on Monte Carlo simulation of

the original White and Chesher-Lancaster IM statistics using asymptotic critical

values.  It has long been a hallmark of simulation studies of the IM test that rejec-

tion rates climb as regressors are added to the model, and fall toward the asymp-

tote as sample sizes are increased.  Significantly, the Monte Carlo experiments

carried out here suggest that this conclusion is more accidental than real.  There

is, in general, a considerably richer variety of idiosyncracies in the distribution of

the IM test than has heretofore been realized.  Before we can delve into the re-

sults, however, some obstacles to broadening the scope of the Monte Carlo simula-

tions need to be addressed.

3.a Controlling Predictability

Keeping simulation results stable and comparable turns out to be challeng-

ing, particularly as additional regressors are added to the models in smaller sam-

ples.  This is not surprising, and it can be combatted by exercising sufficient control

over the r-squared of the underlying data generating process.  The typical Monte

Carlo simulation for linear regression or probit models involves generating a Y (or

latent Y*) sequence using an X matrix with k independent columns of random data

with a fixed variance and zero mean plus an error term.  The error is usually a

zero-mean, fixed-variance sequence as well.  With this kind of framework, simply

adding more columns to the X matrix increases the r-squared underlying the
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model.  This turns out to have important consequences, especially within the probit

model, for the feasibility and comparability of the Monte Carlo simulations.

Consider the following model as an illustration of this issue:

11111 ×××××
+⋅+=

nkknn
X εβαψ , where ),0(~ εσε iid , and ),,(~ xxiX σµ  ki ,...,1=

where ψ is a (potentially latent) independent variable, jiXXE ji ≠∀=⋅ ,0][ , and

0][ =⋅ εXE .  For simplicity, assume the X’s are distributed identically, as they

would typically be in a simulation experiment.  The probability limit of the regres-

sion r-squared for the least squares regression applied to this model when x is ob-

served has the simple form
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predR . (5)

Without loss of generality, setting 122 === xi σσβ ε , allows simplification of the

limiting r-squared equation to )1(
2

+= k
k

predR .

This is plotted in Figure 1.  Starting out at 0.50, and after initially climbing

rapidly, it asymptotes to the maximum of one.  For the linear regression model, al-

lowing the underlying r-squared to climb as regressors are added is mostly an issue

of comparability.  There are, in principle, no problems with this for information

matrix testing because of the way it is standardized.  Nevertheless, controlling r-
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squared is probably worthwhile simply to eliminate the possibility that the signal

to noise ratio in the model is affecting results.

The problems for the probit model run a little deeper.  To understand the

problems that arise in this case, consider the fact that the conditional probability

)(]|1[ βXXYP ′Φ==  (where Φ  is the standard normal cumulative distribution

function), requires a large positive argument to achieve a value close to one, and a

large negative argument to generate a zero.  This immediately causes convergence

problems in the the maximum likelihood estimation process if the predictability of

Y is high.  This is due to the fact that extremely large parameter estimates would

be called for to generate the needed conditional probabilities lying near zero or

one.  Assuming that satisfactory parameter estimates can be achieved, the entire

likelihood function is still highly volatile in these cases.  This happens because the

gradient of the likelihood equation contains a conditional variance term,

))(1()( ββ XX ′Φ−⋅′Φ , in the denominator, as does the IM statistic itself.  This term

tends to zero as Φ  tends  either to zero or one, which causes the gradient function,

and IM statistic to explode as conditional probabilities approach their limits.

The simplest solution for this problem is to eliminate iterations which fail

the necessary convergence or invertibility conditions.  In the small samples where

these problems are most apparent, this can become expensive and is fraught with

potential biases.  To give an example, with seven regressors (including the con-

stant), the uncontrolled r-squared for the underlying model is 0.857.  In this case,

simulation shows that it can take over 240 attempts to deliver 100 sequences that
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pass the convergence and invertibility criteria.  This means that nearly 60% of the

runs are being eliminated, and most of those remaining obviously belong to a select

group.

A simple alternative solution to this problem is to control the r-squared by

inverting equation (5) and using this result to scale the variances in the models ap-

propriately.  The resulting relation was used to scale the variances of the simu-

lated x’s to keep predictability constant within both the linear regression and pro-

bit models:

∑
=

−

⋅
=

k

i
i

x

R

R

1

22

22
2

)1( β

σ
σ ε . (6)

Unless otherwise noted, the r-squared was set at 0.5 throughout the experiments.

We can now turn to the models used in the Monte Carlo experiments.

3.b Linear Regression Model

The data generating process (DGP) used in the Monte Carlo experiments, is

the following:

ttt XY εβ +′= ,  (7)
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where )(1 βσ ttt xyu ′−= .  The matrix inside the brackets has (k+2)(k+1)/2 unique

elements where k is the number of regressors including the constant.  This conven-

tion  will be maintained throughout this paper.   S is chosen in this case to select

all unique elements while leaving out the element in the upper left corner which is

identically one.  The resulting vector is comprised of second, third, and fourth mo-

ments of the sample data.  The upper left block is sensitive to conditional hetero-

skedasticity since it is based on the covariance between various crossproducts of

the X matrix and the u’s.  Selecting these indicators alone would result in the

White test for heteroskedasticity.  The upper right block contains a vector of ele-

ments which test for skewness, or skewness conditional on the regressors.  Under

the null hypothesis (conditionally normal error distribution), the conditional

skewness of the distribution is equal to zero, so this vector has an expected value of

zero.  The bottom diagonal element is a measure of excess kurtosis.  Under the null

hypothesis, 3][ 4 =tuE , and since 1][ 2 =tuE , the whole term has expected value zero
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as well.  Note that for each higher moment, the complexity of the relationship be-

tween the X’s and the standardized errors is reduced.

3.c Probit Model

The probit DGP is specified as follows:

ttt XY εβ +′=
~

  (8)
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= , and φ is the standard normal density function.  The

matrix inside the brackets has (k+1)(k)/2-1 unique elements, where k is the number

of regressors including the constant.   S is the selector matrix described in the lin-

ear regression case.  The standardized residual, tu , appearing in this statistic

bears more than a passing resemblance to the standardized residual in the linear

regression version of the statistic.  The test statistic in this case is sensitive to de-

viations in either the conditional mean or variance specifications.  The dimension
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of this test is lower than in the linear regression case because the Bernoulli distri-

bution is a single parameter family where the mean and variance are indexed by a

single parameter.

For both sets of experiments, the values of the X matrix are fixed, so the er-

ror term is singled out as the key source of variability within the experiments.

This follows the approach of Orme [1990], Chesher and Spady [1991], and Horowitz

[1994].   Sample sizes were allowed to range from 50 to 10,000 to map out the small

sample as well as the medium/large sample performance of the statistics.  The di-

mension of the X matrix ranges from two to seven, which is the largest model for

which the linear regression version of the test can be computed in a sample of fifty

observations.  We employ both the White (equation 2(a)) and Chesher-Lancaster

(equation 2(b)) forms of the statistic in the experiments.  Rather than relying on the

2Rn ⋅ form for computation, the statistics here are computed directly based on

equation (1).  This allows the covariance matrix to be separately estimated, which

is important for comparison with our subsequent nonparametric bootstrap experi-

ments.  For each draw from the Monte Carlo distribution, we run both versions of

the test statistic on the same data in order to avoid errors induced by the sampling

procedure.

3.d Monte Carlo Simulation Results

Tables 1 and 2 summarize the results of Monte Carlo experiments using as-

ympototic critical values for the linear and probit regression models.  It is immedi-
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ately apparent that gross over-rejection of the null hypothesis is the general rule in

these results.  Also, as expected, adding regressors to the equations generally

causes rejection rates to climb for a given sample size.

We first turn our attention to the linear regression model where, with a

sample size of fifty and just two regressors, the Chesher-Lancaster form of the sta-

tistic incorrectly rejects the null hypothesis almost 65% of the time at the nominal

5% level.   In the worst case, the rejection rate approaches 98% using this form of

the statistic.  In general, the Chesher-Lancaster statistic yields higher rejection

rates than the White form, but the latter is a close second, with rejection rates top-

ping 92% in the n=100, and k=7 case.  The probit model fares little better with a top

rejection rate near 98% observed at n=250 and k=7 using the Chesher-Lancaster

statistic.  In the n=50 and n=100 cases, the White form of the statistic appears to

have much better size properties than the Chesher-Lancaster form, but for larger

sample sizes demonstrates behavior that is more comparable.  With either model,

boosting the sample size up to n=10,000 brings the rejection rates near the nominal

rates only for models with few regressors. Even in these large samples adding re-

gressors to the models still has a very noticeable impact on the rejection rates.

Though adding regressors to the equations does generally cause false rejec-

tion rates to climb for a given sample size, this turns out to be only part of the

story.  As Figures 2 and 3 graphically illustrate, below a certain threshold sample

size, things can work in exactly the opposite direction, which is to say that rejec-

tion rates can actually fall with increases in the number of regressors. The most



Bootstrapping the Information Matrix Test

 - 33 -

dramatic result is a near zero rejection rate when n=50, k=7 for both of the linear

regression cases, as well as the White form of the probit model case. Part of the

problem here is actually a facet of the “curse of dimensionality” discussed in previ-

ous work.  Fitting a model with six, or seven regressors using fifty observations is

not an extraordinary thing to do, but the full IM test enters into marginal territory

because of the large number of indicators appearing in the statistic.  Figure 4 illus-

trates the growth of q (the number of test indicators) for the full IM test as the

number of variables is increased.  This reveals the first potential difficulty associ-

ated with using the full IM test on even moderately complex models in small sam-

ples. In the worst case examined, (linear regression with k=7 and n=50), we are es-

timating 35 IM test elements using only fifty data observations.  A linear model

with nine regressors would generate a situation with more parameters to estimate

than there are data points to estimate them with.  It is no great surprise then, that

unpleasant things happen in the region where q is close to n.

What may also be surprising is the near complete breakdown of the IM sta-

tistic in the cases where we estimate models with seven regressors on a sample of

fifty observations.   It turns out that this is due to numerical bounds on the statistic

that are incompatible with the asymptotic distribution.  As discussed earlier, the

IM statistic is closely approximated by 2Rn ⋅  resulting from an artificial regres-

sion.  Because the 2R  statistic is bounded on the interval [0,1], the resulting IM

test statistic is bounded on [0,n].  For large n, this upper bound presents no real

constraint on the distribution of the statistic.  However, where n is small and k is
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large, the statistic can be bounded above by a number that is near or even below

the asymptotic critical value.  This clearly makes it difficult to reject the null hy-

pothesis.

Figure 4 plots the critcal values associated with the asymptotic IM test.

Consider the linear model case where k=7, and n=50.  The 95% asymptotic critical

value in this case is 49.8, yet the statistic is bounded above by 50.  This means that

in order for the sampling distribution of the IM test to have the proper rejection

properties, 5% of the realizations from it would have to fall within 0.02 of its upper

bound at 50.  This is very unlikely, and explains why the test is breaking down in

this case. The asymptotic distribution is distinctly inappropriate for these very

small sample cases.

Nevertheless there appears to be another factor abetting under-rejection in

both models.  This is most evident in the results for the White version of the statis-

tic, though there is some indication that both forms of the statistic suffer in a simi-

lar manner.  Rejection rates for the White version of the IM test actually fall as at-

tributes are added to the probit model with n=50.  With 100 observations, the rejec-

tion rates peak at .419 with five regressors, then begin to fall again.  Rejection

rates for the linear regression IM test (White version) with n=50 also peak at k=5

before falling rapidly.  This happens well before numerical bounds should become

an issue for these statistics.  Associated with this anomaly are rejection rates that

actually rise with n before beginning their descent toward asymptotic levels.  A

close look at the results in Horowitz [1994 p. 406] reveals a hint of similar complex-
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ity.  Some of those probit model results also exhibit rejection rates that increase

slightly with n.  The results found here suggest that this was not an accident of

sampling.

A closer look at selections from the sampling distribution of the IM test sta-

tistic helps to illuminate what is going on.  Though it appears that the White form

of the statistic is uniquely beset with rejection rates that rise with n, both forms of

the statistic actually reveal very similar distributional behavior.  Taking a slice

from Table 1, Figures 5 and 6 plot histograms of the full IM statistic in models with

seven regressors.  The vertical lines in the plots indicate where the asymptotic

critical value is located, and for reference, the asymptotic chi-square distribution

has also been superimposed.  In the upper left panels for the linear model, we see a

clear illustration of the distribution bumping up against the numerical boundary at

n=50.  Some observations exceed 50 due to the fact that the form of test statistic

employed here is only asymptotically bounded.  It appears that the White form of

the statistic is more sensitive to this boundary than the Chesher-Lancaster form.

The probit model results, on the other hand, appear less affected by the numerical

boundary problem in this example, presumably because fewer indicators are in-

volved.

In all cases, as sample size is allowed to grow, the sampling distribution of

the IM statistic spreads out and shifts right dramatically.  Comparison of the pan-

els for n=50 and n=100 gives clear indication that, even in the probit model cases,

numerical bounds are probably playing an important role in shortening the right



Bootstrapping the Information Matrix Test

 - 36 -

tail of the distribution.  The spreading and shifting of the sample distribution con-

tinues in some cases well beyond where numerical bounds would appear to have

any impact.  In the probit examples, the distribution actually persists in spreading

out to the right in samples well beyond 500 observations.  It is the large rightward

shift of mass observed in these histograms that is responsible for causing some of

the rejection rates to climb with n.  The spreading of the distribution, though, is

causing an off-setting effect that puts more mass in the left tail of the distribution.

The balance between spread and shift varies across the different cases leading to

different apparent behavior in the rejection rates, but the underlying phenomenon

appears to be similar in all of the IM test examples shown here.

To quantify spread and shift, Figures 7 and 8 portray the median and stan-

dard deviation of the sampling distribution of the IM test, focusing on cases with

less than 1,000 observations.  Superimposed on these charts for reference are the

50th and 95th percentiles from the asymptotic chi-square distribution.  The White

version of the statistic demonstrates universally lower median values than the

Chesher-Lancaster version, but this is only pronounced within the probit model.

In virtually every case, the 50th percentile of the sample statistic actually exceeds

the 95th percentile of the asymptotic distribution at some sample size. Only the

models with two or three regressors demonstrate median IM statistics approach-

ing the asymptotic level within this range of sample sizes.  Models with more re-

gressors all exhibit medians that increase over some range of sample sizes.  This
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gives clear evidence that a rightward shift of mass with increases in n is universal

to these experiments given a sufficient number of regressors.

While the median values from the sampling distribution of the IM test gen-

erally begin to drift downward with more than 300-400 observations, the standard

deviations of these distributions appear to grow more persistently.  Figure 8 dem-

onstrates that this is particularly true for the probit model examples where stan-

dard deviations appear to be growing even at the top end of the range of sample

sizes.  The disparity between the two forms of the statistic is also more dramatic in

this example.  The distribution of the Chesher-Lancaster form of the probit model

IM statistic exhibits considerably larger increases in spread than the White form.

These increases in spread put enough extra mass in the left tail to counteract an

overall shift to the right with the result that rejection rates are relatively unaf-

fected.  The White form of the statistic spreads less, so the rightward shift, which

is smaller, but also more sustained in larger samples, has an observable upward

impact on rejection rates over a wider range of n.  The differences between these

two forms of the IM test appear to be a matter of the degree to which they are af-

fected by factors causing the sampling distribution to move around.  The evidence

presented here suggests that the underlying factors are nevertheless similar.

The distinction between the CL and White forms of the IM test lies solely in

the covariance matrix estimators being employed.  These covariance matrices are

based on asymptotic formulas that obviously do not account for the full variability

of the IM test vector in finite samples.  To generate the observed over-rejection,
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they must be generally too small in magnitude.  However, the fact that the overall

IM test distribution is both closer to the origin, and more compact in very small

samples suggests covariance matrix estimates that may actually tend to be larger

(though not as large as they need to be) in these cases.  It is possible that the cause

of this is inefficient estimation of the covariance matrix, which would cause the es-

timates to be inflated.  As sample sizes increase, the estimates would become more

efficient (and therefore compact) which offers an explanation for the increasing

medians and spreads.  Beyond this point, it is probably the properties of the test

statistic vector itself that drive the patterns that we observe.  The relative per-

formance of the two forms of the IM test in the probit model also supports this hy-

pothesis.  While the Chesher-Lancaster form of the covariance matrix eliminates

complex terms that may be harder to estimate with precision in small samples, the

tradeoff is that it offers less good overall approximation.  This could explain why

this form of the test plateaus earlier in the median and spread statistics, but at a

higher level than the White form that takes considerably longer to level off.

In either case, the ideal covariance matrix estimator would reflect the true

variability of the test vector in all cases of sample size and model dimensionality.

But asymptotic formulations should not be expected to ever meet this goal since, by

construction, they do not involve any dependence on sample size.  As we have seen,

there appears to be substantial evidence of this type of dependence in the sampling

distribution of the IM statistic.  Potential alternative candidate covariance estima-

tors would involve dependence on sample size to account for the patterns of small
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sample performance observed here.  They would also need to take account of the

exaggerated increases in the spread of the distribution that occurs with increases

in the number of regressors.  Finding such an estimator is an interesting challenge

for subsequent research.  For now we maintain our focus on the ability of bootstrap

methods to handle this situation.

4 Bootstrap Monte Carlo Results

Rather than attempt to fix the problematic covariance matrix estimators di-

rectly, the bootstrap approach, whether parametric or nonparametric, takes the

estimators as they stand, and builds potentially better approximations of the re-

sulting IM test statistic distributions.  As we shall see, the estimation problems

that presumably underlie the anomalies of the IM test in small samples also appear

to have a role in how well the bootstrap performs.  The nonparametric bootstrap

procedure turns out to offer dramatic size improvements over the asymptotic for-

mulations, but is still not reliable in small samples. Even the parametric bootstrap

reveals weak performance in the smallest samples.  We now examine the Monte

Carlo evidence on the bootstrap IM test in detail.

4.a Size Performance of the Bootstrap IM Test

Our simulations are based on precisely the same simulated sample data and

models as the tests involving asymptotic critical values presented in the previous

section. For each iteration, a sample is drawn from the null distribution, and a

sample statistic is computed.  Within each Monte Carlo iteration, the non-
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parametric bootstrap was used to compute a p-value for the sample statistic.  The

number of bootstrap iterations was set at B=100, which we found to be a robust,

and efficient number of iterations.  Levels for B ranging up to 5000 were tested

with no appreciable impact on the results.  Similarly we report rejection rates for

the parametric bootstrap version of the IM test for each Monte Carlo iteration.

Tables 3 and 4 summarize the results of the bootstrap IM tests under the

null hypothesis. Overall, the nonparametric bootstrap betters the performance of

the asymptotic test procedure considerably by approaching the nominal rejection

rate far more quickly.  This is one of the key predictions of bootstrap approxima-

tion theory.  Rejection rates are close to the nominal rate once sample size ap-

proaches between 500 and 1,000 observations for the linear model, and between

1,000 and 2,500 observations for the probit model.  In contrast, using standard as-

ymptotic critical values, even with 10,000 observations is not enough to guarantee

proper size performance in all cases.  Another feature of these results is that, un-

like the IM test using asymptotic critical values, the rejection rates using the non-

parametric bootstrap never deviate far from the nominal rate.  Even though over-

rejection is common, it is usually slight.  The largest deviation from the nominal

rejection rate appears in the probit model results where the Chesher-Lancaster

form the test rejected the null hypothesis 18.6% of the time.  This is well below

peak rejection rates for the asymptotic test procedure.

This may not be as positive as it appears, however, since the majority of the

size bias for the nonparametric bootstrap is downward.  The downward size bias in
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these small sample bootstrap IM tests also grows as regressors are added.  The

probit model results appear to be most affected by this.  In a sample of fifty obser-

vations, the rejection rate for the White form of the IM test starts at 0.103, which

then falls to 0.005 with three regressors, and zero for the remainder of the probit

models at this sample size.  Significant under-rejection remains observable, though

slight, in samples of up to 500 observations.  The Chesher-Lancaster version of the

test appears a little less affected by this problem, but still exhibits significant un-

der rejection in samples of up to 250 observations.

By comparison, the performance of the parametric bootstrap in this base

case appears extremely good, with rejection rates hovering near the nominal rate

across the board.  Only with the Chesher-Lancaster form of the IM test in the pro-

bit model case do we observe any significant under-rejection problems.  Overall,

our simulations confirm the results of Horowitz, but over a wider range of models

and samples.  The essentially perfect nominal coverage of this procedure stands

out because it is not a general result of bootstrap theory for non-pivotal statistics.

These results, therefore, probably owe much to the correspondence of the model

estimated (the error density function in particular) with the underlying DGP for

the Monte Carlo simulations.  In this situation, the parametric bootstrap happens

to be generating resampled data from almost exactly the same distribution as that

which originally generated the data.  Deviations from the original DGP are solely

due to errors in estimated parameters, which are not generally large.  As we will
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see later, we cannot always guarantee pleasant situations like this, and this does

have an impact on the quality of the results.

One of the important features for samples of less than 1,000 observations is

that rejection rates for the nonparametric bootstrap IM test exhibit a mirror image

of the problems encontered when using asymptotic critical values.  Figure 9 illus-

trates the patterns in rejection rates that are observed in the nonparametric boot-

strap IM test as sample sizes are increased.  One striking difference between these

results and those employing asymptotic critical values is that the the largest

humps and deviations from the nominal rate appear for models with the fewest re-

gressors.  In fact, models with greater numbers of regressors never appear to ex-

hibit meaningful over-rejection.

This result is linked to the fact that the same phenomena that plague the

asymptotic test results are also causing difficulties for the nonparametric boot-

strap.  When using asymptotic critical values, the problem was mainly over-

rejection (other than in a few exceptional cases) caused by a sample statistic that is

much too large and variable, compared to the predictions given by asymptotics.  By

the same token, the under-rejections here are caused by nonparametric bootstrap

statistics that are too large and variable compared to the sampling distribution we

observe.  The bootstrap replicates the tendency of the IM test statistic to be over-

blown in small samples, especially with a larger number of regressors.  The result-

ing distribution is spread out, and in small samples, shifted relative to the sam-
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pling distribution.  This results in under-rejection when this spread and shifted

distribution is used for inference.

Figures 10, 11, 12, and 13 provide Q-Q plots comparing the observed sam-

pling distribution of the IM test with the two alternative bootstrap (approximating)

distributions for a selection of the simulated models.  In these plots the bottom axis

represents the cumulative probability of the sampling distribution, and the left-

hand axis represents the cumulative probability of the approximating distribution.

A perfect fit between sampling distribution and approximation is represented by

the 45 degree line. Though complete correspondence is optimal, it is the fit be-

tween the distributions in the upper tail that matters most for hypothesis testing.

The data for these charts is based on 1,000 Monte Carlo IM test iterations per

simulation with a single draw from each bootstrap distribution per iteration.  This

yields 1,000 simulated data points for each distribution displayed in these charts.

For reference, figures 14, 15, 16, and 17  feature histogram plots of the same data.

In smaller samples, the lack of correspondence between the nonparametric

bootstrap distribution and the sampling distribution is obvious.  For example, in

the upper left panel of Figure 10, (the Chesher-Lancaster form of the IM statistic in

the linear model), the nonparametric bootstrap distribution crosses the 45 degree

line at the 70th percentile from above and left, and then stays well below this line to

the upper right corner.  Since it is above the 45 degree line to the left of this point,

it has excessive mass in that region of the distribution.  Conversely, in the upper

ranges of the sampling distribution, the nonparametric bootstrap distribution has
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accumulated too little mass because of its longer tail.  The deviation in the upper

right corner turns out to be relatively small, which leads to rejection rates that are

not too far from nominal.  However, boosting the number of regressors changes the

situation radically in this case. Setting k=4 leads to a nonparametric bootstrap dis-

tribution whose mass lies well to the right of the sampling distribution.  This is

clearly seen in the upper middle panel of Figure 14.  This is responsible for the

zero rate of rejection that is observed in Table 3.  Raising k to 6 simply exacerbates

this problem, and rejection of the null hypothesis is essentially precluded at this

point.  It should be noted that the nonparametric bootstrap very frequently gener-

ated unstable estimates of the IM statistic in all of the n=50 cases when k exceeded

5. The resulting distributions are very adversely affected by this, despite elimina-

tion of the offending cases.

As sample sizes increase, the nonparametric bootstrap distributions tend to

adhere more closely to the corresponding sampling distributions, as expected.

Convergence appears to happen quickest in the crucial right-tail area, which aids

the good size performance of the procedure.  In both the linear and probit model

cases, the White version of the statistic exhibited a more distorted bootstrap dis-

tribution than the Chesher-Lancaster version.  Comparing the top panels (n=50) of

Figures 10 and 11, or Figures 12 and 13 shows the White form to be somewhat less

biased, but as sample sizes increase to 250 or more, this form then clearly exhibits

a greater bias.  This does not translate into worse performance in the rejection rate

statistics because the White form nevertheless has reasonably good fit with the
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upper tail of the sampling distribution.  This is actually a general tendency for both

forms of the statistic; even in the n=1,000 case.   The histograms show a modal

point in the bootstrap distribution that is slightly to the left of the where the sam-

pling distribution puts it, combined with a right tail that fits the shape of the sam-

pling distribution quite well.  This combination yields reasonably good inference in

this case, but also leaves room for improvement.  This would be particularly true if

these bootstrap distributions were used for purposes that employed more than just

their upper tails.  It is of relatively little consequence in our hypothesis testing en-

vironment when the nonparametric bootstrap renders a poor approximation of the

lower 95% of the sampling distribution.  Such deviations would be considerably

more critical if we were interested in simulating sample moments with the non-

parametric bootstrap.

The excellent size performance of the parametric bootstrap is reflected in

the very close correspondence between the bootstrap distribution and the sampling

distribution along the 45 degree line virtually everywhere.  This is to be expected,

since there is such a high level of correspondence between the model that is used

to generate the bootstrap data, and the underlying Monte Carlo DGP.  There are,

nevertheless, a few noticeable deviations in the parametric bootstrap distribution

for the probit model IM tests.  In the Chesher-Lancaster version of the test, with

n=100 for the larger models, the parametric bootstrap distribution has a slight ten-

dency to put too much mass in the right tail.  This causes quite noticeable under-

rejection, which is as low as 0.006 when k=6.  Conversely, the parametric bootstrap



Bootstrapping the Information Matrix Test

 - 46 -

distribution of the White version of the statistic has a slight tendency to put too

much mass in the left tail when n=50.  This leads to significant over rejection, but

the magnitude of this deviation is relatively small.

Putting the key features of the bootstrap distributions into sharper focus,

Figures 18 and 19 summarize their medians, while figures 20 and 21 summarize

their standard deviations.  The medians of the nonparametric bootstrap follow

those of the sampling distribution reasonably well in many cases, but as the model

becomes more complex, a larger sample is required for this to occur.  The tendency

of the bootstrap distribution to be shifted a little to the left of the sample distribu-

tion is most evident in the White version of the test applied to the linear model

and the Chesher-Lancaster version of the statistic applied to the probit model.  In

these cases, the bootstrap medians are consistently below the sample medians ex-

cept in some small samples.  This obvious leftward shift in the center of the distri-

bution is capturing the bulges in the Q-Q plots of the bootstrap distribution and

does not necessarily affect rejection rates adversely.

The standard deviation plots of the IM test statistics offer a good illustra-

tion of the fact that these nonparametric bootstrap distributions can yield seriously

biased moment estimates while still delivering reasonable size performance for

hypothesis testing. The standard deviation of the nonparametric bootstrap IM sta-

tistic is greater than that of the sample statistic in almost all cases, except for

those with few regressors and close to 1,000 observations.  In some cases, the

spread is more than double that of the sample statistic, and in many cases, a very
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sizeable amount of excess variation is still evident when n=1,000.  The plots also

display a characteristic hump that reaches its maximum with a few hundred obser-

vations before vanishing.   This appears to be an exaggeration of a similar tendency

in the sample statistic.  All of the plots also reveal the tendency of the non-

parametric bootstrap distribution to blow up in the n=50 case when there were a

relatively large number of regressors.

Despite the problems encountered, these findings demonstrate that the

nonparametric bootstrap does indeed offer substantial improvement over the use

of asymptotic critical values for the IM test. This technique delivers nominal rejec-

tion performance for the IM test far quicker than standard asymptotic procedures.

The rate of improvement is of the order that should be expected from the asymp-

totic refinements that the nonparametric bootstrap offers.  The relatively poor per-

formance of this technique in the smallest samples is not generally surprising,

given how far the distribution of the sample statistic wanders from its asymptote

in these cases.  Here, the better asymptotic properties of the nonparametric boot-

strap have little applicability.

The clear success of the parametric bootstrap relative to the nonparametric

bootstrap in these cases owes considerably to the design of the experiments.  By

specifying the correct functional error distribution from the start, the range of out-

comes for the parametric bootstrap is automatically limited to regions that include

the proper null hypothesis.  This is not true for the nonparametric bootstrap,
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which is not limited in its outcomes in this manner, and must, therefore,  rely more

heavily on asymptotics to achieve proper coverage.

The excessive variation of the nonparametric bootstrap IM statistics also

suggests that there might be a robustness problem.  Because the nonparametric

bootstrap directly incorporates outlier data points into the resulting distribution,

they could well be leveraging the results.  Moreover, outliers may have particular

importance in the case of the IM statistic where estimation of high sample mo-

ments can magnify their effects.  The long tailed distributions found in the smaller

samples could well be due to this type of problem.  It is likely that alternative non-

parametric or semi-parametric techniques that incorporate some smoothing of the

bootstrap distribution would have potential benefits, if this is indeed the case.

4.b Power Against a Heteroskedastic Alternative

Size performance is only half of the story of any test statistic.  We wish not

only to know that a test will not generate too many or too few false positives, but

that it will also properly flag the alternative hypothesis that it is set up to detect.

In the search for improvements in size performance, this aspect of IM testing has

frequently been overlooked in previous research.  Here, by testing for a common

alternative model, we explore the ability of the parametric and nonparametric

bootstraps to match their size improvements over the asymptotic procedure with

improvements in power.  In general, we find that greater sample sizes are required

to achieve reasonable sensitivity to the heteroskedastic alternatives we specified.

This turns out not to be a defect of the procedure, but a limitation of the underlying
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IM statistic.  Using Monte Carlo critical value estimates we can assess the practi-

cal limits to the power of the IM test using any of these procedures in small sam-

ples.

In our power experiments, the full IM test is run against a data generating

process (DGP) with a heteroskedastic specification.  The terms involving condi-

tional skewness and kurtosis in the linear regression version of the statistic are

not strictly needed for testing heteroskedasticity, but they are included in the test

statistic to maintain its omnibus testing nature. This slightly handicaps the statis-

tic's power against a heteroskedastic alternative.  All parameters for these Monte

Carlo experiments are identical to those laid out in the previous section, with

modifications only to incorporate heteroskedasticity.

The heteroskedastic linear regression data generating process is of the

form:
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weight to each of the regressors.  It has an expected value of one regardless of the

number of regressors because the variance of X is determined by equation (6).  This

formulation retains the constant signal to noise property of the original null-
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hypothesis models.  In the Monte Carlo simulations, we fit linear regression mod-

els that ignore the heteroskedasticity in the DGP and are thus misspecified.

The probit DGP is of the form:
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,...,β .  This DGP also retains the constant signal-noise

property of the null hypothesis model.  In the Monte Carlo simulations we fit pro-

bit models that ignore the heteroskedasticity in the DGP and are thus misspecified

in a manner analogous to the linear models above.

Additional time is required for running the Monte Carlo simulations under

the alternative because nearly all B bootstrap iterations must be run to establish

rejection.  This can take up to almost twenty times longer than the experiments

run under the null hypothesis.  Because of this limitation, n=2,500 is the largest

sample size explored here.  This cutoff incorporates settings at which the non-

parametric bootstrap appeared to have near nominal size performance in most

cases.
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4.c Size Adjusted Power of the Sample Statistic

One way to eliminate the size bias of the IM test is to calibrate critical val-

ues using Monte Carlo estimates of the sampling distribution under the null hy-

pothesis. These estimates are obviously not available to a researcher under normal

conditions, but they enable some benchmarking of the test's sensitivity.  By doing

this we can observe the degree to which the sampling distribution of the IM statis-

tic is shifted under alternatives.  This tells us, first of all, whether there is any pos-

sibility of detecting the alternative with the IM test given proper critical values.  It

also provides a solid benchmark against which to compare the various testing pro-

cedures.   Since the Monte Carlo critical values make use of population information

not available in the sample, they represent a type of "gold standard".  Any proce-

dure whose performance approaches the performance of the test using Monte

Carlo critical values is about as good as can be expected.

The Monte Carlo critical value estimates themselves also give us another

window on the sampling distribution of the IM statistic.  Figures 22 and 23 plot

these estimates of the IM test critical values in comparison with the asymptotic

critical values.  These plots neatly illustrate the inadequacy of the asymptotic criti-

cal values for the IM test.  They also clearly mirror, in exaggerated form, the pat-

tern of the medians observed in figures 18 and 19.  The steep upward kink near the

left axis of these charts illustrates the impact of the IM statistic's numerical

boundaries on the upper tail of the distribution.



Bootstrapping the Information Matrix Test

 - 52 -

We turn now, in Table 5, to the power of the IM test against our heteroske-

dastic alternative using Monte Carlo critical values.  The main feature of these re-

sults is that the deviation in the IM statistic generated by our choice of alterna-

tives is not enough to be detected reliably in small samples.  In the linear regres-

sion model, a sample of at least 250 observations may be needed to guarantee good

power against this particular alternative.  The best rate of rejection for any of the

cases with 50 observations, for example, is around 30%, and in three cases is below

10%.  These rates of rejection improve quickly as sample size increases, reaching

essentially unit power with a sample of 500 observations.  The Chesher-Lancaster

form of the IM statistic appears to be generally more sensitive than the White form

in this model.  This is probably attributable to the impact of elements that are

eliminated from the CL form of the covariance matrix that do not vanish under al-

ternatives.

In the probit model, on the other hand, it is the White form of the IM statis-

tic that appears to have greater sensitivity.  This is also most likely explained by

the effect of the alternative on the Chesher-Lancaster form of the covariance ma-

trix.  In this model larger samples are required than in the linear regression case

before reasonable sensitivity to the alternative is observed.  Only with 2,500 sam-

ple observations is a rejection rate of over 90% observed across all experiments.  In

some cases, the power of the IM test in the probit model also appears to deterio-

rate rapidly with increases in the number of regressors.  For example, with n=1000

the Chesher-Lancaster form of the statistic rejected the null hypothesis 94% of the
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time with two regressors, yet it rejected only 30% of the time with seven regres-

sors.   The White form of the statistic is considerably less susceptible to this type of

degradation.

An important observation here is that there is no form of the full IM test

that is particularly powerful for this heteroskedastic alternative in samples with

less than 250 observations (closer to 1,000 observations for the probit model).  Be-

cause we are employing Monte Carlo critical values in these experiments, we

should not expect to be able to improve on this performance with any bootstrap-

based procedure.  This illustrates the limitations of simply revising critical value

estimates.  While this approach can, under the correct conditions, handle size prob-

lems, it does not directly address the underlying sensitivity of the test statistic.

The bootstrap procedures will have little power if the sampling distribution of the

IM test statistic itself is not changed by a particular alternative.

4.d Power of the Bootstrap procedure

Evidence of this appears in Tables 6 and 7, which compare the power with-

out size adjustment of the asymptotic, nonparametric bootstrap, and parametric

bootstrap IM test procedures.  As suggested by the results obtained when using

Monte Carlo estimates of the IM test critical values, none of these procedures ex-

hibits large power in samples smaller than 250 observations.  The unadjusted

power of the asymptotic procedure looks impressive, until compared to its size un-

der the null.  Tables 8 and 9 directly compare the unadjusted power of these tests

with the size performance seen in Tables 1 through 4.  Based on this measure, the
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asymptotic procedure actually generates a fairly large margin of additional rejec-

tions under the alternative when the models are less complex. The difficulty is to

make use of this fact.  The instances where the asymptotic critical values might

appear usable are obvious here in Monte Carlo simulations, but are essentially un-

known in real applications.  This severely limits the usefulness of the asymptotic

procedure despite its potential for power in certain circumstances.  Only as sample

sizes approach 2,500 does the power of the asymptotic IM test procedure begin to

appear reliable (given these experimental conditions).

The relatively good size properties of the nonparametric bootstrap IM test,

on the other hand, belie troubles with the power of this procedure. This version of

the IM test often exhibits rejection rates that are actually lower under the alterna-

tive hypothesis than under the null hypothesis.  This type of performance occurs in

samples with up to 500 observations in the linear regression case, and with up to

1,000 observations in the probit model case.  The performance of the nonparametric

bootstrap IM test procedure also quickly deteriorates as regressors are added.  In

the probit model case with n=1,000, and k=2, both White and Chesher-Lancaster

versions of the statistic reject the null hypothesis 68% of the time.  This rejection

rate falls precipitously to 7.6% at k=5, and then continues to drop to 0.9% at k=7.

As with the asymptotic procedure, it is only at a sample size of 2,500 observations

that the power of the nonparametric bootstrap IM test greatly exceeds its size over

most settings of k.  Even at this sample size, though, rejection rates fall by over 50%

in the probit model examples when k increases from 6 to 7.  The linear model boot-
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strap IM tests appear to be somewhat less dramatically affected by additional re-

gressors, but still only achieve relatively reliable power against this alternative

with a sample of 2,500 observations.

The parametric bootstrap IM test offers an example where even excellent

size performance is not a guarantee of univerally good power.  However, this pro-

cedure performs about as well as can be expected given the results obtained using

Monte Carlo critical values.  For example, in the probit case with n=50, it yields

rejection rates of under 15% for the Chesher-Lancaster form of the statistic in all

cases.  This is in line with the results in Table 5.  Also in line with those results,

this procedure generally demonstrates good power with rejection rates that climb

toward 100%.   This happens with between 250 and 500 observations in the linear

model cases, and closer to 1,000 observations in the probit model cases.  The White

form of the IM test has generally more power against the probit model alternative,

and appears more sensitive to the addition of regressors in the linear model cases.

In this example, it is clear that sampling directly from the parametric error distri-

bution of the null model is a performance enhancing proposition when this is a de-

sirable thing to do.

Despite efforts to center and rescale the nonparametrically bootstrapped IM

test statistic to account for the effects of the alternative, it is apparent that the dis-

tribution of this statistic still lies far from that of the null hypothesis.   This may be

related to the problems that hamper the size of the test in small samples, but the

power of the test using either form of the covariance matrix is remarkably similar.
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This indicates that the estimation benefits of using the Chesher-Lancaster form of

the covariance matrix over the White form appear relatively unimportant for the

nonparametric bootstrap.  The poor power performance observed here is also con-

siderably more prevalent in moderately large samples.  This suggests that these

problems are not just a matter of estimation precision, but are also due to effects of

the alternative hypothesis on the bootstrap distribution.  Evidently, this is not con-

trolled by the centering and rescaling that has been done.

These results illustrate the importance of directly testing the power of a

statistical procedure.  In contrast to its good size perfromance, the nonparametric

bootstrap offers only minor improvements over the asymptotic procedure under

the alternative. The performance of the nonparametric bootstrap in this situation

hints at the difficulties that i.i.d. resampling from a distribution containing the al-

ternative hypothesis can yield regardless of the precautions taken.  The experi-

ments involving Monte Carlo critical value estimates also demonstrate that, even

in the best of circumstances, the IM test is hard pressed in smaller samples to de-

tect deviations from the null hypothesis.  Bootstrap procedures for correcting criti-

cal values work well at times, but are nevertheless limited by the sensitivity of the

underlying statistic.  To improve the power of the test beyond this point, one must

turn attention toward refining the sensitivity of the statistic itself.

4.e Spurious Sensitivity to a Non-Normal Alternative

So far, we have focused on situations that are most favorable to the para-

metric bootstrap.  These are cases where there is no ignored misspecification that
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is not also part of the IM test.  The real strength of the nonparametric bootstrap is

that it is applicable even in cases where ignored misspecification is acceptable.

The parametric bootstrap is not well suited to this environment because it requires

full parametric specification of the null hypothesis model - something that may not

be needed, or even exist.  In this section we will explore a straightforward example

of ignored misspecification in the linear regression model that favors the use of the

nonparametric bootstrap for IM testing.

The full IM statistic that has been the focus of our experiments contains

skewness and kurtosis terms that directly test the normality of the error distribu-

tion of the linear regression model when applied in that case.  Such normality is

not needed for the consistency of the linear regression parameter estimates or for

valid inference.  In fact, the White test for heteroskedasticity, which is a subset of

the full IM test, makes no use of normality assumptions whatsoever.  In this envi-

ronment, one of the potential issues raised by the use of the parametric bootstrap

in IM testing is the unnecessary additional structure imposed by using a paramet-

ric error density function.  To the extent that the structure of this parametric

model deviates from the true structure of the underlying DGP, a bias could be in-

duced.  In larger samples, as central limit theory would suggest, this problem

should eventually vanish, but perhaps not quickly enough to eliminate it as a

source of substantial problems in finite samples.  Such effects would detract from

the seemingly ideal performance of the parametric bootstrap technique for IM test-
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ing.  The nonparametric bootstrap, on the other hand, imposes no parametric

model on the error distribution, and should thus be immune from such issues.

To illustrate these assertions in a conservative example, a homoskedastic

linear regression DGP with non-normal errors was implemented.  The White test,

a constrained IM test involving only elements that test heteroskedasticity, is then

run on this data.  The homoskedastic model should pass the White test despite the

errors being non-normal.  The DGP is of the following form:

ttt XY εβ +′= ,  (11)
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×
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and β = (1,…,1)'.  The indicator vector for the White test employs a selector matrix,

S, that picks off only the elements of the full IM test that are directly sensitive to

heteroskedasticity:
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The error distribution is uniform with a zero mean and unit variance.  The

needed half-interval to guarantee unit variance for the uniform is 125.0 .  The de-

vice for controlling the variance of the X matrix previously described was also used

here so as to keep the signal-noise ratio constant in all experiments.  As with the

power experiments, the sample sizes were restricted to n=2,500 or less to reduce
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computational loads.  The parametric bootstrap uses an incorrect normal error

model in place of the true uniform.

Table 10 summarizes the result of these experiments.  The heteroskedastic-

ity test using asymptotic critical values exhibits dramatically lower rejection rates

than found for the full IM test in the normal linear regression model.  The

Chesher-Lancaster and White forms of the test exhibit opposite tendencies in the

smallest samples.  Whereas the Chesher-Lancaster form tends to over-reject sig-

nificantly, the White form tends to under-reject signifcantly.  Also, while the

Chesher-Lancaster form tends toward the nominal rate in moderate-sized samples,

the White form still exhibits a tendency toward under-rejection even in samples

with 2,500 observations.   Differences observed here are probably explained by the

impact that the non-normality has on the parts of the covariance matrix that have

been eliminated (using the null hypothesis) in the Chesher-Lancaster form of the

statistic.  The fact that these two forms behave very differently serves to under-

score the importance of keeping the null-hypothesis assumptions used to construct

the covariance estimators in line with the model being tested.

The nonparametric bootstrap results are largely similar to those obtained

for the full IM test, though there are no instances here where it significantly over-

rejects.  There is also a more prolonged tendency to under-reject the null-

hypothesis; with slightly sub-nominal rejection rates observable even in samples of

2,500.  Overall, there appears to be some sensitivity in these results to the error

model being employed in the simulations.  Nonetheless because of the limitations
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of the nonparametric bootstrap distribution in general, it is somewhat difficult to

draw firm conclusions from these results.

The parametric bootstrap, on the other hand, performs radically differently

in this example.  Both forms of this test reveal problems arising from the normality

assumption that has been imposed.  In this case, it appears to cause gross under-

rejection in a large array of cases.  As expected, this problem begins to vanish as

sample size increases, but the dimensionality of the model still has a noticeable

impact on the results in larger samples.  Even in a sample with 2,500 observations,

the White version of the statistic yields a rejection rate of only 0.2% when k=7.  The

dramatic under-rejection is attributable to the longer tails generated by the incor-

rectly applied normal errors in the parametric bootstrap procedure.  This would

also impact the power of the parametric bootstrap test procedure in this instance.

The results of this section demonstrate that there are few places in hy-

pothesis testing where auxiliary hypotheses are completely benign.  It is crucial

that the assumptions underlying the testing framework are in agreement with

those of the model itself.  This is particularly true of specification tests.  In a com-

plex test, like the IM test, the impact of various assumptions is not always obvious.

The safe choice almost always relies on the smallest number assumptions, which is

a primary motivation for using the nonparametric bootstrap on the IM test.  As the

results for that technique illustrate, however, this is not without its costs in terms

of both precision and sample requirements.  On the other hand, the parametric

bootstrap, which works well when its auxiliary assumptions fit the underlying
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DGP, can deviate from nominal performance dramatically when these assumptions

do not fit.  Though this problem vanishes as samples grow larger, this is not where

the bootstrap is of greatest use since the asymptotic critical values also begin to

work reasonably well in these regions.  The problems for the parametric bootstrap

highlighted here are of greatest concern in precisely the small sample instances

where the bootstrap is most likely to be used.
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5 Summary and Concluding Remarks

The key property of an omnibus specification test is its general applicability.

Such a test needs to be appropriate in a wide range of circumstances without modi-

fication if it is to have wide acceptance.  There are two facets of the applicability

problem.  One is theoretical, and the other is empirical.  On one hand, the test

needs to be theoretically appropriate for a wide variety of models while requiring

only weak assumptions.  On the other hand, the test needs to demonstrate that it

performs well in practice under a wide variety of realistic conditions involving lim-

ited samples.  We have explored some aspects of both facets of the information ma-

trix test in this paper.

First, we have provided considerable Monte Carlo evidence on the finite

sample performance of a variety of forms of the IM test.  By carefully controlling

the signal to noise ratio of the models, we have extended the range of analysis in a

way that has revealed new patterns in the behavior of the IM test using asymptotic

critical values.  We have also explored the behavior of the parametric and non-

parametric bootstrap methods for providing valid inference for the IM test.  The

results of our Monte Carlo experiments suggest that the nonparametric bootstrap

has merit, but is not without limitations.  The parametric bootstrap demonstrates

good size and power performance in reasonably small samples, but also exhibits

sensitivity to spurious alternatives.  None of the procedures, demonstrates great

power in the smallest samples we examined.  Based on our results using Monte
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Carlo estimates of critical values, this is due to fundamental limitations in the sen-

sitivity of the full IM statistic in these examples.

From a practical standpoint, our results suggest that in smaller samples it is

prudent to focus specification testing tightly on a small number of misspecification

indicators rather than mechanically performing the full IM test.  This deviates

from the omnibus testing framework, but may yield far better inference.  The ideal

form of the full IM test that demonstrates good size performance, is sensitive in all

of the proper directions in small samples, and does not add spurious structure to

the modeling framework has yet to be found.

There may well be ways to modify the nonparametric bootstrap IM test to

enhance its performance in small samples.  Attacking the robustness problem di-

rectly by trimming the bootstrap distribution would have the desired effect of re-

ducing the spread of the bootstrap distribution without affecting its location.  The

downside of using a trimmed sample is that the level of trimming arbitrarily de-

termines the spread of the resulting bootstrap distribution.  Finding the correct

level of trimming required to achieve the proper spread introduces another un-

known into the estimation process.  Applying smoothers to the nonparametric

bootstrap distribution is another approach that could potentially downweight the

impact of outliers.  Though common smoothers, like the kernel estimator, are often

not well estimated in very small samples, they could offer improvements in me-

dium sized samples.  Semi-parametric techniques like this could bridge the gap be-
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tween the excessive structure of the parametric bootstrap, and the minimalist ap-

proach of the nonparametric bootstrap.

A continuing theme throughout this paper is that, particularly in very small

samples, it is extremely difficult to get proper inference for the IM test no matter

which technique is being used.  There are no clear winners in terms of small sam-

ple performance.  This appears to be a fundamental property of the IM test statis-

tic itself. The combination of high sample moments and large numbers of elements

appearing in the statistic are the main contributors to this problem.  The impact

these two factors have on the covariance matrix estimator in particular, and the

effect this estimator has on the sampling distribution of the IM statistic is signifi-

cant.  This is perhaps one direction where future efforts should be concentrated.

Finding a more stable covariance matrix estimator, as well as one which better re-

flects the small sample variability of the statistic, would enhance the performance

of all aspects of IM testing.

Throughout this paper we have maintained an assumption of independence

in the data. No studies to date have explored the complexities that dependence

adds to the IM test.  Bootstrap techniques for dependent data create opportunities

to relax the i.i.d. assumption, and it is a modification that must be explored before

the bootstrap IM test will have applicability to the true breadth of economic data.

The bootstrap applied in the case of dependence, however, is more complicated be-

cause the resampled distributions need to remain faithful to the dependence struc-

ture in the data.  Several potential nonparametric bootstrap techniques are avail-
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able for doing this including the moving blocks bootstrap of Kunsch [1989], and the

stationary bootstrap of Politis and Romano [1994].  A variety of dependent data

parametric bootstrap techniques are also available, but the spurious structure

problem is considerably greater in the dependent case than we have seen here, as

there is substantial potential for errors in the specification of the dependence

structure to contaminate a parametrically bootstrapped IM test statistic.

There are other areas of information matrix testing which have yet been lit-

tle explored, but which may yield interesting results, and useful statistics for prac-

titioners in a variety of areas.  One example is the dynamic information matrix test

outlined by White [1987,1994].  This is a test of correct dynamic specification based

on testing the first order martingale difference sequence properties of the model.

It applies to standard time series models as well as models of second moments

such as ARCH and GARCH.  To date no simulation studies have been done on the

finite sample properties of this test, and it is uncertain whether these tests suffer

the same difficulties explored here.  Investigating the dynamic information matrix

test is a promising direction for further research.
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Table 1

Empirical rejection rates under the null hypothesis

Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                0.648 0.816 0.876 0.948 0.888 0.043

100              0.516 0.683 0.841 0.917 0.959 0.978
250              0.334 0.481 0.618 0.791 0.887 0.955
500              0.229 0.349 0.434 0.625 0.734 0.838

1,000           0.155 0.209 0.297 0.415 0.515 0.679
2,500           0.102 0.112 0.178 0.230 0.281 0.371
5,000           0.076 0.101 0.148 0.138 0.187 0.247

10,000         0.065 0.074 0.086 0.082 0.134 0.137

Number of Regressors
White 2 3 4 5 6 7
n 50                0.546 0.688 0.708 0.798 0.454 0.000

100              0.448 0.579 0.712 0.820 0.880 0.921
250              0.306 0.415 0.528 0.698 0.811 0.889
500              0.214 0.325 0.393 0.554 0.664 0.766

1,000           0.151 0.195 0.271 0.386 0.482 0.630
2,500           0.099 0.109 0.172 0.217 0.271 0.345
5,000           0.075 0.099 0.145 0.134 0.186 0.238

10,000         0.065 0.073 0.085 0.081 0.134 0.131

(1,000 Monte Carlo simulations using α =0.05 asymptotic critical value.  Values outside the range [.038,.066]

are significant beyond the 95% level based on individual comparison with the .05 nominal rejection rate.)

Size of the Asymptotic IM Test - Linear Regression Model
Monte Carlo results with full vector of indicators
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Table 2

Empirical rejection rates under the null hypothesis

Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                0.552 0.746 0.698 0.756 0.753 0.620

100              0.474 0.607 0.872 0.886 0.805 0.922
250              0.249 0.513 0.597 0.710 0.944 0.976
500              0.240 0.330 0.423 0.591 0.770 0.878

1,000           0.145 0.193 0.345 0.463 0.581 0.766
2,500           0.091 0.151 0.206 0.275 0.337 0.465
5,000           0.079 0.116 0.143 0.162 0.209 0.299

10,000         0.075 0.097 0.114 0.131 0.135 0.189

Number of Regressors
White 2 3 4 5 6 7
n 50                0.233 0.205 0.199 0.158 0.095 0.011

100              0.218 0.336 0.323 0.419 0.359 0.470
250              0.184 0.322 0.398 0.507 0.609 0.694
500              0.181 0.275 0.340 0.470 0.591 0.704

1,000           0.130 0.161 0.290 0.366 0.451 0.609
2,500           0.081 0.132 0.179 0.243 0.286 0.400
5,000           0.079 0.112 0.124 0.144 0.191 0.254

10,000         0.071 0.095 0.110 0.124 0.126 0.169

(1,000 Monte Carlo simulations using α =0.05 asymptotic critical value.  Values outside the range [.038,.066]

are significant beyond the 95% level based on individual comparison with the .05 nominal rejection rate.)

Size of the Asymptotic IM Test - Probit Model
Monte Carlo results with full vector of indicators
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Table 3

Empirical rejection rates under the null hypothesis
Non-Parametric Bootstrap

Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                0.082 0.042 0.000 0.000 0.000 0.000

100              0.108 0.054 0.033 0.011 0.004 0.001
250              0.094 0.078 0.056 0.064 0.041 0.030
500              0.074 0.082 0.058 0.052 0.056 0.042

1,000           0.059 0.065 0.061 0.078 0.065 0.061
2,500           0.058 0.043 0.060 0.060 0.053 0.048
5,000           0.058 0.050 0.071 0.044 0.066 0.062

10,000         0.044 0.046 0.055 0.045 0.058 0.046

Number of Regressors
White 2 3 4 5 6 7
n 50                0.150 0.115 0.026 0.001 0.000 0.000

100              0.142 0.103 0.075 0.039 0.024 0.001
250              0.115 0.095 0.086 0.092 0.073 0.052
500              0.081 0.092 0.072 0.077 0.079 0.062

1,000           0.068 0.075 0.070 0.085 0.087 0.068
2,500           0.060 0.045 0.061 0.064 0.062 0.058
5,000           0.059 0.052 0.073 0.044 0.069 0.066

10,000         0.045 0.047 0.056 0.045 0.059 0.047

Parametric Bootstrap
Number of Regressors

Chesher-Lancaster 2 3 4 5 6 7
n 50                0.045 0.055 0.041 0.046 0.042 0.052

100              0.050 0.045 0.040 0.046 0.037 0.056
250              0.050 0.049 0.045 0.059 0.059 0.053
500              0.046 0.058 0.049 0.045 0.047 0.050

1,000           0.048 0.040 0.050 0.067 0.054 0.045
2,500           0.040 0.040 0.049 0.052 0.046 0.046
5,000           0.045 0.051 0.061 0.041 0.063 0.058

10,000         0.040 0.052 0.057 0.047 0.064 0.047

Number of Regressors
White 2 3 4 5 6 7
n 50                0.042 0.057 0.036 0.052 0.050 0.055

100              0.053 0.045 0.037 0.052 0.043 0.051
250              0.050 0.048 0.049 0.064 0.052 0.054
500              0.045 0.059 0.050 0.046 0.050 0.050

1,000           0.048 0.042 0.050 0.064 0.055 0.047
2,500           0.040 0.040 0.048 0.052 0.048 0.048
5,000           0.045 0.050 0.061 0.041 0.063 0.059

10,000         0.040 0.050 0.057 0.047 0.064 0.047

(1,000 Monte Carlo simulations with 100 bootstrap iterations per simulation using α =0.05 critical value.)

Size of the Bootstrap IM Test - Linear Regression Model
Monte Carlo results with full vector of indicators
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Table 4

Empirical rejection rates under the null hypothesis
Non-Parametric Bootstrap

Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                0.043 0.001 0.000 0.000 0.000 0.000

100              0.186 0.092 0.006 0.001 0.000 0.000
250              0.112 0.141 0.087 0.035 0.033 0.018
500              0.123 0.106 0.081 0.073 0.048 0.058

1,000           0.087 0.065 0.092 0.072 0.076 0.072
2,500           0.055 0.064 0.071 0.069 0.061 0.060
5,000           0.051 0.066 0.058 0.046 0.052 0.062

10,000         0.055 0.064 0.068 0.058 0.046 0.057

Number of Regressors
White 2 3 4 5 6 7
n 50                0.103 0.005 0.000 0.000 0.000 0.000

100              0.132 0.071 0.003 0.002 0.000 0.000
250              0.125 0.090 0.064 0.028 0.008 0.002
500              0.131 0.116 0.082 0.051 0.032 0.030

1,000           0.090 0.063 0.094 0.062 0.062 0.053
2,500           0.060 0.067 0.076 0.069 0.061 0.060
5,000           0.053 0.067 0.058 0.046 0.054 0.060

10,000         0.055 0.065 0.068 0.060 0.047 0.061

Parametric Bootstrap
Number of Regressors

Chesher-Lancaster 2 3 4 5 6 7
n 50                0.029 0.028 0.018 0.023 0.040 0.039

100              0.048 0.045 0.028 0.016 0.006 0.008
250              0.049 0.051 0.033 0.027 0.032 0.025
500              0.039 0.059 0.035 0.047 0.031 0.038

1,000           0.051 0.033 0.051 0.056 0.056 0.054
2,500           0.040 0.043 0.045 0.054 0.047 0.055
5,000           0.053 0.057 0.048 0.036 0.044 0.048

10,000         0.052 0.062 0.059 0.056 0.055 0.054

Number of Regressors
White 2 3 4 5 6 7
n 50                0.059 0.061 0.052 0.071 0.088 0.094

100              0.045 0.058 0.066 0.052 0.051 0.048
250              0.052 0.049 0.042 0.044 0.051 0.051
500              0.047 0.065 0.039 0.050 0.038 0.050

1,000           0.048 0.036 0.059 0.052 0.065 0.058
2,500           0.040 0.042 0.043 0.056 0.047 0.058
5,000           0.053 0.056 0.052 0.035 0.045 0.051

10,000         0.052 0.062 0.056 0.054 0.052 0.051

(1,000 Monte Carlo simulations with 100 bootstrap iterations per simulation using α =0.05 critical value.)

Size of the Bootstrap IM Test - Probit Model
Monte Carlo results with full vector of indicators
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Table 5

Empirical rejection rates under heteroskedastic alternative

Linear Regression Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                 0.290 0.124 0.262 0.183 0.307 0.054

100               0.657 0.496 0.582 0.409 0.424 0.196
250               0.999 0.989 0.978 0.882 0.890 0.735
500               1.000 1.000 1.000 1.000 0.999 0.999

1,000            1.000 1.000 1.000 1.000 1.000 1.000
2,500            1.000 1.000 1.000 1.000 1.000 1.000

Number of Regressors

White 2 3 4 5 6 7
n 50                 0.147 0.088 0.157 0.099 0.198 0.023

100               0.349 0.270 0.307 0.176 0.190 0.088
250               0.969 0.912 0.819 0.627 0.673 0.451
500               1.000 1.000 1.000 1.000 0.994 0.982

1,000            1.000 1.000 1.000 1.000 1.000 1.000
2,500            1.000 1.000 1.000 1.000 1.000 1.000

Probit Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                 0.075 0.124 0.170 0.181 0.110 0.093

100               0.066 0.061 0.028 0.162 0.292 0.161
250               0.084 0.054 0.105 0.131 0.083 0.107
500               0.625 0.230 0.266 0.181 0.208 0.202

1,000            0.935 0.941 0.866 0.527 0.473 0.298
2,500            1.000 1.000 1.000 1.000 0.999 0.988

Number of Regressors
White 2 3 4 5 6 7
n 50                 0.153 0.232 0.215 0.186 0.171 0.130

100               0.267 0.235 0.226 0.331 0.359 0.303
250               0.355 0.262 0.314 0.337 0.455 0.527
500               0.849 0.473 0.454 0.404 0.549 0.541

1,000            0.942 0.957 0.913 0.722 0.697 0.707
2,500            1.000 1.000 1.000 1.000 1.000 0.993

(1,000 Monte Carlo simulations using Monte Carlo simulated α =0.05  critical value.) 

Size Adjusted Power of the IM Test Against Heteroskedasticity
Monte Carlo results with full vector of indicators
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Table 6

Empirical rejection rates under heteroskedastic alternative

Asymptotic (unadjusted) Number of Regressors

Chesher-Lancaster 2 3 4 5 6 7
n 50                 0.980 0.981 0.986 0.991 0.972 0.046

100               0.999 0.996 0.999 1.000 1.000 1.000
250               1.000 1.000 1.000 1.000 1.000 1.000
500               1.000 1.000 1.000 1.000 1.000 1.000

1,000            1.000 1.000 1.000 1.000 1.000 1.000
2,500            1.000 1.000 1.000 1.000 1.000 1.000

White 2 3 4 5 6 7
n 50                 0.850 0.878 0.883 0.880 0.635 0.000

100               0.981 0.928 0.976 0.982 0.987 0.988
250               1.000 1.000 1.000 1.000 1.000 0.999
500               1.000 1.000 1.000 1.000 1.000 1.000

1,000            1.000 1.000 1.000 1.000 1.000 1.000
2,500            1.000 1.000 1.000 1.000 1.000 1.000

Non-Parametric Bootstrap Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                 0.001 0.000 0.000 0.000 0.000 0.000

100               0.009 0.000 0.000 0.000 0.000 0.000
250               0.143 0.031 0.000 0.000 0.000 0.000
500               0.589 0.355 0.061 0.027 0.005 0.000

1,000            0.838 0.642 0.349 0.434 0.227 0.115
2,500            0.971 0.977 0.848 0.859 0.888 0.853

White 2 3 4 5 6 7
n 50                 0.003 0.003 0.000 0.000 0.000 0.000

100               0.030 0.000 0.000 0.000 0.000 0.000
250               0.210 0.040 0.001 0.001 0.000 0.000
500               0.748 0.419 0.061 0.022 0.004 0.000

1,000            0.911 0.765 0.452 0.511 0.213 0.082
2,500            0.983 0.989 0.917 0.925 0.944 0.902

Parametric Bootstrap Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                 0.262 0.141 0.235 0.165 0.255 0.052

100               0.629 0.458 0.499 0.378 0.362 0.206
250               0.995 0.979 0.950 0.881 0.879 0.741
500               1.000 1.000 1.000 1.000 0.999 0.999

1,000            1.000 1.000 1.000 1.000 1.000 1.000
2,500            1.000 1.000 1.000 1.000 1.000 1.000

White 2 3 4 5 6 7
n 50                 0.139 0.090 0.137 0.102 0.187 0.031

100               0.346 0.255 0.243 0.173 0.160 0.093
250               0.943 0.871 0.775 0.639 0.671 0.465
500               1.000 1.000 0.999 0.997 0.991 0.969

1,000            1.000 1.000 1.000 1.000 1.000 1.000
2,500            1.000 1.000 1.000 1.000 1.000 1.000

(1,000 Monte Carlo simulations with 100 bootstrap iterations per simulation using a=0.05 critical value.) 

Power of the IM Test Against Heteroskedasticity - Linear Regression Model
Monte Carlo results with full vector of indicators
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Table 7

Empirical rejection rates under heteroskedastic alternative

Asymptotic (unadjusted) Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                 0.501 0.685 0.810 0.850 0.833 0.632

100               0.633 0.718 0.785 0.913 0.934 0.962
250               0.880 0.832 0.858 0.886 0.976 0.993
500               0.996 0.961 0.905 0.956 0.987 0.990

1,000            0.999 0.999 0.999 0.989 0.998 0.999
2,500            1.000 1.000 1.000 1.000 1.000 1.000

White 2 3 4 5 6 7
n 50                 0.340 0.435 0.415 0.375 0.261 0.042

100               0.555 0.609 0.603 0.730 0.713 0.735
250               0.855 0.808 0.799 0.820 0.927 0.967
500               0.996 0.950 0.890 0.941 0.977 0.980

1,000            0.994 0.998 0.999 0.987 0.998 0.997
2,500            1.000 1.000 1.000 1.000 1.000 1.000

Non-Parametric Bootstrap Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                 0.008 0.001 0.000 0.000 0.000 0.000

100               0.020 0.006 0.000 0.000 0.000 0.000
250               0.131 0.003 0.003 0.002 0.000 0.000
500               0.517 0.154 0.030 0.009 0.002 0.000

1,000            0.684 0.512 0.552 0.051 0.024 0.006
2,500            0.999 0.856 0.960 0.955 0.954 0.410

White 2 3 4 5 6 7
n 50                 0.021 0.004 0.001 0.000 0.000 0.000

100               0.038 0.010 0.000 0.000 0.000 0.000
250               0.187 0.005 0.004 0.005 0.000 0.000
500               0.573 0.189 0.051 0.015 0.005 0.001

1,000            0.678 0.523 0.600 0.076 0.040 0.009
2,500            0.999 0.844 0.954 0.954 0.953 0.439

Parametric Bootstrap Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                 0.068 0.124 0.112 0.122 0.077 0.080

100               0.094 0.101 0.055 0.116 0.127 0.112
250               0.186 0.098 0.132 0.148 0.202 0.218
500               0.618 0.421 0.292 0.269 0.280 0.336

1,000            0.913 0.861 0.898 0.587 0.599 0.518
2,500            1.000 1.000 1.000 1.000 1.000 0.988

White 2 3 4 5 6 7
n 50                 0.164 0.258 0.219 0.233 0.204 0.179

100               0.226 0.250 0.212 0.316 0.346 0.286
250               0.354 0.246 0.279 0.311 0.437 0.490
500               0.827 0.561 0.415 0.403 0.491 0.545

1,000            0.912 0.894 0.934 0.723 0.751 0.739
2,500            1.000 1.000 1.000 1.000 1.000 0.992

(1,000 Monte Carlo simulations with 100 bootstrap iterations per simulation using α =0.05 critical value.)

Power of the IM Test Against Heteroskedasticity - Probit Model
Monte Carlo results with full vector of indicators
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Table 8

Difference between empirical rejection rates under heteroskedastic alternative and null hypotheses

Asymptotic (unadjusted) Number of Regressors

Chesher-Lancaster 2 3 4 5 6 7
n 50                           0.332 0.165 0.110 0.043 0.084 0.003

100                         0.483 0.313 0.158 0.083 0.041 0.022
250                         0.666 0.519 0.382 0.209 0.113 0.045
500                         0.771 0.651 0.566 0.375 0.266 0.162

1,000                      0.845 0.791 0.703 0.585 0.485 0.321
2,500                      0.898 0.888 0.822 0.770 0.719 0.629

White 2 3 4 5 6 7
n 50                           0.304 0.190 0.175 0.082 0.181 0.000

100                         0.533 0.349 0.264 0.162 0.107 0.067
250                         0.694 0.585 0.472 0.302 0.189 0.110
500                         0.786 0.675 0.607 0.446 0.336 0.234

1,000                      0.849 0.805 0.729 0.614 0.518 0.370
2,500                      0.901 0.891 0.828 0.783 0.729 0.655

Non-Parametric Bootstrap Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                           -0.081 -0.042 0.000 0.000 0.000 0.000

100                         -0.099 -0.054 -0.033 -0.011 -0.004 -0.001
250                         0.049 -0.047 -0.056 -0.064 -0.041 -0.030
500                         0.515 0.273 0.003 -0.025 -0.051 -0.042

1,000                      0.779 0.577 0.288 0.356 0.162 0.054
2,500                      0.913 0.934 0.788 0.799 0.835 0.805

White 2 3 4 5 6 7
n 50                           -0.147 -0.112 -0.026 -0.001 0.000 0.000

100                         -0.112 -0.103 -0.075 -0.039 -0.024 -0.001
250                         0.095 -0.055 -0.085 -0.091 -0.073 -0.052
500                         0.667 0.327 -0.011 -0.055 -0.075 -0.062

1,000                      0.843 0.690 0.382 0.426 0.126 0.014
2,500                      0.923 0.944 0.856 0.861 0.882 0.844

Parametric Bootstrap Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                           0.217 0.086 0.194 0.119 0.213 0.000

100                         0.579 0.413 0.459 0.332 0.325 0.150
250                         0.945 0.930 0.905 0.822 0.820 0.688
500                         0.954 0.942 0.951 0.955 0.952 0.949

1,000                      0.952 0.960 0.950 0.933 0.946 0.955
2,500                      0.960 0.960 0.951 0.948 0.954 0.954

White 2 3 4 5 6 7
n 50                           0.097 0.033 0.101 0.050 0.137 -0.024

100                         0.293 0.210 0.206 0.121 0.117 0.042
250                         0.893 0.823 0.726 0.575 0.619 0.411
500                         0.955 0.941 0.949 0.951 0.941 0.919

1,000                      0.952 0.958 0.950 0.936 0.945 0.953
2,500                      0.960 0.960 0.952 0.948 0.952 0.952

(1,000 Monte Carlo simulations with 100 bootstrap iterations per simulation using α =0.05 critical value.)

Relative Power of the IM Test - Linear Regression Model
Monte Carlo results with full vector of indicators
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Table 9

Difference between empirical rejection rates under heteroskedastic alternative and null hypotheses

Asymptotic (unadjusted) Number of Regressors

Chesher-Lancaster 2 3 4 5 6 7
n 50                           -0.051 -0.061 0.112 0.094 0.080 0.012

100                         0.159 0.111 -0.087 0.027 0.129 0.040
250                         0.631 0.319 0.261 0.176 0.032 0.017
500                         0.756 0.631 0.482 0.365 0.217 0.112

1,000                      0.854 0.806 0.654 0.526 0.417 0.233
2,500                      0.909 0.849 0.794 0.725 0.663 0.535

White 2 3 4 5 6 7
n 50                           0.107 0.230 0.216 0.217 0.166 0.031

100                         0.337 0.273 0.280 0.311 0.354 0.265
250                         0.671 0.486 0.401 0.313 0.318 0.273
500                         0.815 0.675 0.550 0.471 0.386 0.276

1,000                      0.864 0.837 0.709 0.621 0.547 0.388
2,500                      0.919 0.868 0.821 0.757 0.714 0.600

Non-Parametric Bootstrap Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                           -0.035 0.000 0.000 0.000 0.000 0.000

100                         -0.166 -0.086 -0.006 -0.001 0.000 0.000
250                         0.019 -0.138 -0.084 -0.033 -0.033 -0.018
500                         0.394 0.048 -0.051 -0.064 -0.046 -0.058

1,000                      0.597 0.447 0.460 -0.021 -0.052 -0.066
2,500                      0.944 0.792 0.889 0.886 0.893 0.350

White 2 3 4 5 6 7
n 50                           -0.082 -0.001 0.001 0.000 0.000 0.000

100                         -0.094 -0.061 -0.003 -0.002 0.000 0.000
250                         0.062 -0.085 -0.060 -0.023 -0.008 -0.002
500                         0.442 0.073 -0.031 -0.036 -0.027 -0.029

1,000                      0.588 0.460 0.506 0.014 -0.022 -0.044
2,500                      0.939 0.777 0.878 0.885 0.892 0.379

Parametric Bootstrap Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                           0.039 0.096 0.094 0.099 0.037 0.041

100                         0.046 0.056 0.027 0.100 0.121 0.104
250                         0.137 0.047 0.099 0.121 0.170 0.193
500                         0.579 0.362 0.257 0.222 0.249 0.298

1,000                      0.862 0.828 0.847 0.531 0.543 0.464
2,500                      0.960 0.957 0.955 0.946 0.953 0.933

White 2 3 4 5 6 7
n 50                           0.105 0.197 0.167 0.162 0.116 0.085

100                         0.181 0.192 0.146 0.264 0.295 0.238
250                         0.302 0.197 0.237 0.267 0.386 0.439
500                         0.780 0.496 0.376 0.353 0.453 0.495

1,000                      0.864 0.858 0.875 0.671 0.686 0.681
2,500                      0.960 0.958 0.957 0.944 0.953 0.934

(1,000 Monte Carlo simulations with 100 bootstrap iterations per simulation using α =0.05 critical value.)

Relative Power of the IM Test - Probit Model
Monte Carlo results with full vector of indicators
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Table 10

Empirical rejection rates under non-normal alternative

Asymptotic Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                           0.107 0.124 0.127 0.157 0.111 0.089

100                         0.091 0.098 0.087 0.144 0.139 0.128
250                         0.061 0.071 0.076 0.089 0.082 0.113
500                         0.057 0.051 0.064 0.059 0.089 0.089

1,000                      0.058 0.051 0.056 0.077 0.067 0.075
2,500                      0.063 0.063 0.062 0.057 0.051 0.052

White 2 3 4 5 6 7
n 50                           0.024 0.002 0.000 0.000 0.000 0.000

100                         0.064 0.016 0.003 0.001 0.000 0.000
250                         0.046 0.044 0.032 0.021 0.007 0.003
500                         0.049 0.043 0.036 0.025 0.025 0.023

1,000                      0.054 0.046 0.045 0.057 0.033 0.033
2,500                      0.063 0.061 0.055 0.048 0.040 0.035

Non-Parametric Bootstrap Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                           0.010 0.001 0.000 0.000 0.000 0.000

100                         0.041 0.007 0.001 0.000 0.000 0.000
250                         0.044 0.026 0.016 0.012 0.002 0.000
500                         0.047 0.035 0.037 0.020 0.017 0.014

1,000                      0.049 0.045 0.037 0.046 0.028 0.024
2,500                      0.060 0.059 0.057 0.046 0.041 0.032

White 2 3 4 5 6 7
n 50                           0.028 0.002 0.000 0.000 0.000 0.000

100                         0.065 0.011 0.002 0.000 0.000 0.000
250                         0.053 0.033 0.025 0.017 0.003 0.000
500                         0.054 0.046 0.040 0.024 0.021 0.016

1,000                      0.049 0.046 0.040 0.048 0.035 0.024
2,500                      0.061 0.065 0.060 0.053 0.045 0.042

Parametric Bootstrap Number of Regressors
Chesher-Lancaster 2 3 4 5 6 7
n 50                           0.019 0.013 0.014 0.021 0.032 0.043

100                         0.017 0.012 0.006 0.011 0.009 0.004
250                         0.020 0.015 0.012 0.009 0.003 0.002
500                         0.028 0.012 0.011 0.006 0.002 0.002

1,000                      0.037 0.017 0.013 0.017 0.006 0.003
2,500                      0.046 0.048 0.033 0.012 0.014 0.005

White 2 3 4 5 6 7
n 50                           0.013 0.006 0.014 0.015 0.017 0.033

100                         0.016 0.002 0.002 0.003 0.003 0.001
250                         0.017 0.009 0.011 0.001 0.001 0.001
500                         0.028 0.009 0.007 0.003 0.000 0.000

1,000                      0.035 0.016 0.010 0.016 0.002 0.003
2,500                      0.046 0.046 0.032 0.010 0.014 0.002

(1,000 Monte Carlo simulations with 100 bootstrap iterations per simulation using α =0.05 critical value.)

Size of the White Test Under Non-Normality - Linear Regression Model
Monte Carlo results with partial vector of indicators
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Figure 1
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Figure 2

Chesher-Lancaster Version

Linear Regression Model

White Version

Surface Plots of Monte Carlo Rejection Rates for Full IM Test
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Figure 3

Chesher-Lancaster Version

Probit Model

White Version

Surface Plots of Monte Carlo Rejection Rates Full IM Test
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Figure 4
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Figure 5
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Full IM Test - Linear Regression With k=7
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Figure 6
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Full IM Test - Probit Model With k=7
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Figure 7
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Figure 8
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Figure 9
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Figure 10

QQ Plot Comparing Bootstrap Distributions with Sampling Distribution

Full Chesher-Lancaster Version of Linear Regression IM Test
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 Figure 11

QQ Plot Comparing Bootstrap Distributions with Sampling Distribution

Full White Version of Linear Regression IM Test
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Figure 12

QQ Plot Comparing Bootstrap Distributions with Sampling Distribution

Full Chesher-LancasterVersion of Probit IM Test
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Figure 13

QQ Plot Comparing Bootstrap Distributions with Sampling Distribution

Full White Version of Probit IM Test
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Figure 14

Plot Comparing Histogram of Bootstrap Distributions with Sampling Distribution

Full Chesher-Lancaster Version of Linear Regression IM Test
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Figure 15

Plot Comparing Histogram of Bootstrap Distributions with Sampling Distribution

Full White Version of Linear Regression IM Test



- 93 -
(2000-04_figs.rev6.doc)

Figure 16

Plot Comparing Histogram of Bootstrap Distributions with Sampling Distribution

Full Chesher-Lancaster Version of Probit IM Test
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Figure 17

Plot Comparing Histogram of Bootstrap Distributions with Sampling Distribution

Full Chesher-Lancaster Version of Probit IM Test
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Figure 18

Median Realizations from Bootstrap distributions

Full Chesher-Lancaster Version of Linear Regression IM Test

Full White Version of Linear Regression IM Test
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Figure 19

Median Realizations from Bootstrap distributions

Full Chesher-Lancaster Version of Probit IM Test

Full White Version of Probit IM Test



- 97 -
(2000-04_figs.rev6.doc)

Figure 20

Standard Deviation of Realizations from Bootstrap distributions

Full Chesher-Lancaster Version of Linear Regression IM Test

Full White Version of Linear Regression IM Test
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Figure 21

Standard Deviation of Realizations from Bootstrap distributions

Full Chesher-Lancaster Version of Probit IM Test

Full White Version of Probit IM Test
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Figure 22
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Figure 23




