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Abstract— A technological platform is established for scalable 
flexible hybrid electronics (FHE) based on a novel fan-out wafer 
level packaging (FOWLP) methodology. Small dielets are 
embedded in flexible substrates we call FlexTrateTM. These dielets 
can be interconnected through high-density wirings formed in 
wafer-level processing. We demonstrate homogeneous integration 
of 625 (25 by 25) 1-mm-sqaure Si dielets and heterogeneous 
integration of GaAs and Si dielets with various thicknesses in a 
biocompatible polydimethylsiloxane (PDMS). In this work, 
8-µm-pitch die-to-die interconnections are successfully 
implemented over a stress buffer layer (SBL) formed on the 
PDMS. In addition, coplanarity between the PDMS and embedded 
dielets, die shift concerned in typical die-first FOWLP, and the 
bendability of the resulting FlexTrateTM are characterized. 
Index Terms—flexible substrate, high-density interconnect, 
heterogeneous integration, Fan-Out Wafer-level Packaging (FOWLP), 
Polydimethylsiloxane (PDMS), and flexible hybrid electronics (FHE). 

I. INTRODUCTION 
 
 n the past decades, flexible device works can be mainly 

divided into three categories: the first one is the use of organic 
semiconductors that are deposited on flexible substrates in 
sheet-level processing or roll-to-roll processing [1]-[3]. The 
second strategy utilizes Thin-Film Transistor (TFT) fabrication 
on flexible substrates [4][5]. The third approaches rely on 
transfer technologies that can allow the integration of an 
extremely-thin monocrystalline inorganic semiconductor layer 
on flexible substrates such as Silicon-On-Insulator (SOI) and 
III–V semiconductors on Si [6][7]. Although the performance 
of the organic semiconductors has relatively improved recently 
[8][9], the performance of inorganic monocrystalline 
semiconductors represented by Si and III-V compounds will not 

be achieved by the organic semiconductors.  
On the other hand, Flexible hybrid electronics (FHE) 

combine the flexibility of flexible substrates with the 
performance of inorganic monocrystalline semiconductor 
devices to create a new category of electronics [10][11]. 
Traditional rigid/flex packages enable us to integrate thick Si 
dies on flexible substrates [12][13]. However, these 
technologies are not based on Wafer-Level Packaging (WLP), 
and in addition, the flexibility is limited by their rigid substrates. 
More recently, in order to enhance the flexibility of the rigid 
monocrystalline semiconductors, ultra-thin dies are mounted on 
flexible substrates [14] [15]. This is because such thinned dies 
can be more flexible and follow curved profiles. However, 
ultra-thin dies are very sensitive to applied stresses [14] by 
which both the performance degradation and property deviation 
would be induced with small bending radii. Lee et al. have 
reported that the retention time of thinned DRAM (Dynamic 
Random Access Memory) having planar capacitors is shortened 
when the die thickness is less than 50 µm [16]. 

We have been working on holistic heterogeneous system 
integration using silicon interconnect-fabric (Si-IF) that can 
eliminate the organic laminates and achieve the drastic 
reduction of interconnect length between hardened intellectual 
property (IP) dies “dielets” integrated on Si wafers at small 
inter-die spaces [17][18]. In our FHE approach, the rigid dielets 
are embedded in flexible polymeric substrates we call 
FlexTrateTM that is fabricated at the wafer level using an 
advanced die-first FOWLP (Fan-Out Wafer-Level Packaging) 
technology. Classical FOWLP is expected to reduce package 
sizes, shorten inter-chip wirings by eliminating laminates, and 
integrate dies in rigid epoxy mold compounds (EMCs) [19][20]. 
Several redistributed wiring layers (RDL)-first approaches with 
and without wafer-level processing have been reported for rigid 
[21] or flexible [22][23] device system integration. Compared 
to RDL-first FOWLP with die/flip-chip bonding processes, 
die-first FOWLP is cost effective [24]. If the die shift issues in 
die-first FOWLP are mitigated, the production yield would be 
further increased, leading to drastic cost reduction. The biggest 
advantage of the die-first FOWLP is that wire bonding, 
printable wiring, and solder bumping are not required for 
connecting the neighboring dies and there are no additional 
packaging processes due to the embedded structure [25][26]. In 
our embodiment of this approach, the high flexibility is 
achieved by the unique structure of FlexTrateTM consisting of 
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the hard and soft segments analogous to how a bicycle chain is 
flexible in spite of rigid chain components. As depicted 
schematically in Fig. 1, the dielets themselves are not expected 
to bend, whereas the polymer regions are bent in between the 
dielets which act like the joints in the bicycle chain. 
Heterogeneous dielets are embedded in a flexible substrate, and 
then electrically connected with high-density interconnects 
formed in wafer-level processing. Similar structures using rigid 
device islands interconnected with horseshoe wirings have been 
developed for stretchable electronics [13][22][23], but the 
fabrication concept of these systems is considerably different 
from FlexTrateTM based on scalable WLP using embedded Si 
dielets that are assembled in a face-down configuration. 
Landesberger et al. have presented a quite similar approach to 
our FOWLP-based FlexTrateTM although they employ ultra-thin 
Si dies having equalized die thicknesses and the dies are bonded 
in a face-up configuration [27]. Due to our advanced die-first 
FOWLP, the FlexTrateTM allows scalable integration of 
heterogeneous dielets with various thicknesses and much tighter 
interconnect formation than conventional rigid/flex packages 
fabricated in sheet-level or roll-to-roll processing. In addition, 
fine-pitch interconnects can be formed at the wafer level. 
Nowadays, inkjet printing can draw very fine wirings in parallel, 
but the wire thicknesses are limited [28]. FlexTrateTM with 
inorganic monocrystalline semiconductor dielets can realize 
highly integrated flexible device systems without using low 
performance organic semiconductors, ultra-thin devices/dies, 
and colloid/paste based wirings.  

In this study, we demonstrate fine-pitch (< 10 µm) 
interconnect formation on a biocompatible PDMS in which Si 
dielets are embedded by using the advanced die-first FOWLP 
technology. In addition, coplanarity between PDMS and dielets 
and die shift concerned in typical die-first FOWLP are 
characterized to implement the new flexible device system 
integration processes. High-density interconnect formation on 
the elastically deformable/stretchable PDMS rubber without 
cracks is very challenging compared with that on rigid EMCs. 
From a reliability point of view, the bendability of the 
FlexTrateTM is also evaluated by cyclic bending test. 
 

High-density wiringsWire bonding Printable wiring  Solder bumping

Ultra-thin die

Cross-
section

Bird-eye
view

Conventional FHE

Flexible substrate

Small/thin/rigid Si dielets

This work

Flexible substrate

Sheet-level processing Wafer-level processing  
Fig. 1. Schematic comparison of die integration for FHE: 
ultra-thin/large die bonded on flexible substrate (left) and 
small/thin/rigid dielets embedded in flexible substrate “FlexTrateTM” 
(right). 

II. EXPERIMENTAL 
A. Materials 

A biocompatible PDMS “Silastic MDX4-4210 (Dow)” was 
used in this work. The biocompatible PDMS consisting of a 
base resin and a curing agent was uniformly mixed and 
defoamed with a planetary centrifugal mixer (THINKY, 
ARE-310) prior to compression soft-molding. 

Rivalpha 3195M and 3195V (Nitto denko) were used as the 
1st and 2nd temporary adhesives, respectively. The mechanically 
peelable layer was typically laminated at room temperature on 
the 1st Si handler. The other thermally removable layer was 
attached on the PDMS and dielets.  
 
B. Measurement 

The surface profile was measured with non-contact white 
light interferometer (cyberTECHNOLOGIES, CT100) and a 
contact-type stylus (Veeco, DEKTAK 150).   The water contact 
angles were determined with the goniometer (VCA3000S, AST 
Products, Inc.). Resistances were measured with the probe 
station with probes (model: 7T-J3/20x1.25”, taper: 200-220”, 
radius: 2µm, overall length: 1.25”, American Probe & 
Technologies) and probers (Model 350, The Micromanipulator 
Co., Inc) equipped with a Count multimeter (5491B, BK 
PRECISION) and a DC power supply (E3644A, Agilent). 
 
C. Fabrication 

100-µm-thick 1-mm-sqaure Si dielets were fabricated by 
plasma dicing in GINTI, Tohoku University. Fig.2 shows the 
total process of FlexTrateTM fabrication. A temporary adhesive 
3195M was laminated on the 1st Si handler. Then, the Si dielets 
were precisely aligned in a face-down configuration on the 
adhesive formed on the 1st handler using a K&S APAMA die to 
wafer assembly tool. A biomedical grade PDMS was applied on 
the die-on-wafer structure, followed by vacuum defoaming with 
a vacuum level of < 133 Pa from the high-viscous PDMS 
sandwiched with the 2nd Si handler for 30 min or more.  The 2nd 
handler has another temporary adhesive 3195V. The subsequent 
compression mold with the 2nd handler is done with a wafer 
bonder (SUSS Micro Tec, SB6) with a compression force of 
600 N. The 1st handler was then thermally debonded at 130˚C 
for 2 min, and subsequently, the hundreds of the Si dielets were 
transferred to the 2nd handler. Prior to the following 
metallization processes, a thin stress buffer layer (SBL) of 
Parylene-C and a photosensitive planarization layer SU-8 2001 
(Microchem) were sequentially formed with a parylene coater 
(Specialty Coating Systems, PDS 2010,) and simple 
spin-coating on the PDMS/dielets, respectively. By using 
standard photolithography processes with a vacuum 
evaporation technique, fine-pitch Au wirings (10-nm-thick Ti as 
an adhesion/barier layer and 200-nm-thick Au) were deposited 
on the SU-8/Parylene-C/Si dielet array and the surrounding 
PDMS at the wafer-level. Au interconnects were formed by wet 
etching with chemicals of an iodine complex/potassium 
iodine/wafer 1/4.2/294.8 (wt%) mixture for Au and a buffered 
fluoric acid (hydrogen fluoride/ammonium fluoride 1/6 wt%) 
for Ti. On the other hand, Cu wirings were formed by PVD and 
wet etching with a mixture of acetic acid/35% hydrogen 
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peroxide/wafer 1/1/18 by weight. Finally, the FlexTrateTM was 
thermally debonded at 180 ˚C for 1 min from the 2nd handler. 
The flexible, tough, and less stretchable properties of the 
Parylene-C can prevent the wires from being elongated, 
following thermal and mechanical deformation of the PDMS. 
However, since the non-photosensitive Parylene-C is 
conformably deposited on the small steps formed at the 
interface between the PDMS and embedded dielets, the 
additional photosensitive spin-on layer SU-8 is required to 
planarize the step and electrically contact to the dielets through 
the Parylene-C. 
 

2) Multichip flip-chip assembly on 1st handler

Si wafer (1st handler)
1) Temporary adhesive layer formation

4) Wafer-level compression molding

3) PDMS supply

5) Debonding from the 1st handler

Temporary
adhesive A 

Si Si Si

Temporary
adhesive B 

Si wafer (1st handler)

Si wafer (2ndhandler)

PDMS

Si Si

Si Si

Si wafer (1sthandler)

Si wafer (2nd handler)

Si Si

Fine-pitch
interconnect

Planarization of
heterogeneous dielets

Si

Si

Si

III-V

III-V

III-V

III-V

Parylene-C
SU-8 2001

6) Stress buffer layer deposition
and metallization on Si and PDMS

Si Si
Si wafer (2nd handler)

PDMS

7) Debonding from the 2nd handler
Si wafer (2nd handler)

Si Si III-VSi

 
Fig. 2. A process flow of FlexTrateTM fabrication. 
 

III. RESULTS AND DISCUSSION 

A. Coplanarity evaluation 
 High coplanarity between PDMS and embedded dielets after 

wafer-level compression molding is needed to integrate 
fine-pitch interconnects on FlexTrateTM. If the coplanarity is 
low, defocusing when using steppers and large proximity gaps 
when using mask aligners lower their lithographic resolution for 
patterning. As shown in Fig. 3, 625 (25 by 25) pieces of Si 
dielets are successfully transferred from the 1st handler to the 2nd 
one. The 3D surface profiles are measured with a surface 
metrology system (cyberTECHNOLOGIES, CT100) equipped 
with confocal white light. These data are analyzed and the 
average coplanarity between molded PDMS and transferred 
dielets in addition to the intra-dielets are summarized in Fig. 4. 
The PDMS is cured at room temperature. From the coplanarity 
of the intra-dielets, almost all dielets shows the die tilt with the 
height gaps of within 1 µm. Concerning coplanarity among the 
PDMS and embedded dielets, the high frequencies are obtained 
from 1 µm to 4 µm and the maximum height gap is below 6 µm. 
These height gaps including die tilt are attributed to die 
placement and PDMS curing conditions: the die placement 
force is 5 N/chip (= 5 MPa).  

Fig. 5 shows the effect of PDMS curing temperature and 
adhesive thickness (10 µm or 50 µm) on these height gaps. Here, 
die placement force of 2 N/chip is employed. The minimum die 
tilt of the intra-dielets is obtained by room-temperature PDMS 
curing and the 10-µm-thick temporary adhesive. However, the 
die tilt is not significantly affected by these conditions. On the 

other hand, the impact of these conditions on the height gap 
between the PDMS and Si dielets is high. The height gaps can 
be reduced down to 1 µm when we employ the 10-µm-thick 
temporary adhesives and room-temperature PDMS curing. 
These results indicate that elevated curing temperature of 
PDMS softens the adhesive layer, resulting in dielet sinking 
down into the layer during compression molding. We assume 
the differences given by the adhesive thickness would be 
resulted from their softening behavior at elevated temperature 
between the two adhesives: one is a thicker thermally removable 
layer and the other is a thinner mechanically peelable layer. 
Several micrometers in the height gap between the PDMS and 
dielets can be mitigated by the subsequent planarization process 
with SU-8 to be formed on a conformably deposited Parylene-C 
layer.  
 

1-mm-square Si dielet
(pitch: 1.8mm)

Si Si Si

Si wafer (2nd handler)

PDMS100µm  

+5 µm

-5 µm
0 µm

(a)

(b)

  
 

Fig. 3.  A cross-sectional schematic and the 3D surface profile of Si 
dielets embedded in molded PDMS after transfer to the 2nd handler. 
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Fig. 4. Coplanarity between intra-dielets (a) and PDMS and dielets (b). 
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Fig. 5. Impact of PDMS curing temperature and adhesive thickness on 
height gaps of intra-dielets and between PDMS/dielet.  

 
B. Die shift challenges  

  Die shift is a serious problem in current die-first FOWLP 
using rigid EMCs. In a previous paper [19], the average die shift 
is beyond 40 µm and maximum die shift is nearly 80 µm.  These 
large die shift would be given by thermal cure shrinkage, low 
adhesion strength between temporary adhesives and dies, and 
CTE mismatch between EMCs and dies. The EMCs including 
silica fillers have relatively low CTE that is one order 
magnitude lower than typical epoxies. However, the die shift 
can not be restricted, and thus, the die shift issues are solved by 
die pre-shift that makes deliberate misplacement of dies in their 
pick-and-place process to account for drift [19]. The prediction 
can compensate for the die shift, but that is not perfect. 
Nowadays, lithography tools are dedicated to FOWLP 
applications, and for instance, steppers can accurately follow 
the large die shift in a die-by-die alignment mode [29]. 
Although the allowable values for die shift depend on 
lithographic tools, large die-shift definitely reduces wafer-level 
packaging density and production yield/throughput for 
patterning. 
 
Table 1 Properties of a biocompatible PDMS for FlexTrateTM 
and a non-biocompatible rigid epoxy used in typical FOWLP. 

Properties
Elongation at break
CTE
Young’s modulus
Tg

Curing temp.

PDMS (MDX4-4210 / Dow)
~500%
~300 ppm/K
0.5 MPa
-120˚C
25˚C - 80˚C 
Passed up to 29 days for 
implantation in the human body.

EMC [30]
< 1%
7.5 ppm/K
22 GPa
165˚C
125˚C 
NoneBiocompatibility

(screening test)
 

 
   In this work, a biocompatible PDMS elastomer is employed 

as a flexible substrate. The thermomechanical characteristics of 
the biocompatible PDMS “Silastic MDX4-4210 (Dow)” and a 
rigid EMC including silica fillers used in a typical FOWLP 
research [30] are summarized in Table 1 for comparison. The 
elongation at break of the PDMS is quite high, compared with 
the EMC. The PDMS has high CTE with respect to both Si and 
Cu, 300 vs. 3 and 17 ppm/K, respectively. The glass transition 
temperature Tg of the PDMS is much lower than room 
temperature. The huge difference from the rigid epoxy is the 0.5 
MPa of Young’s modulus that is 4 orders of magnitude lower 

than the EMC. 
The PDMS has large α1 showing a CTE at below Tg. 

However, the Tg is much lower than room temperature, which 
means thermal stress accumulated with Young’s modulus and 
CTE (α1) mismatch in the temperature regions ranging from 
room temperature to Tg is experimentally zero [31]. According 
to the Stoney equation [32] simply calculated with the following 
PDMS/EMC/Si parameters: Young’s modulus: 0.5 MPa/22 
GPa/190 GPa, CTE: 300/7.5/2.6, PDMS/EMC curing 
temperature: 80/125˚C, and 0.272 for Si Poisson ratio, the 
300-mm-diameter Si wafer warpages of the PDMS and EMC 
with a thickness of 500 µm are 1.8 µm and 2.4 mm, respectively. 
The biggest difference is due to the low Young’s modulus of the 
PDMS. Although the Stoney’s equation can well assume the 
film thickness to be less than 1/20 of the substrate thickness and 
is effective for smaller substrate [33][34], general elastomers 
represented by PDMS will be estimated to apply extremely low 
stresses so as not to drift embedded dies.  

To accurately evaluate die shift between before and after 
PDMS curing, Vernier scale patterns are formed on the 
temporary adhesive. The process flow is shown in Fig.6(a), 
where a 50-nm-thin Cu layer is deposited on the thermally 
releasable temporary adhesive (Rivalpha 3195M) laminated on 
a 500-µm-thick glass wafer by PVD, followed by wet etching to 
make the Vernier patterns. The dielets having the corresponding 
Vernier patterns were fabricated in GINTI, Tohoku University, 
by using Cu wet etch and plasma dicing processes. The 
resolution of the Vernier patterns is 0.2 µm and we can evaluate 
the die shift within 5 µm with the Verniers. These dielets are 
gently placed upside-down on the temporary adhesive with the 
flip-chip bonder (K&S, APAMA): placement force is 5 N/mm2 
at bottom stage temperature is 60˚C. The adhesion strengths of 
the temporary adhesive before and after Cu PVD and patterning 
are 0.75 and 0.60 MPa. The shear bonding strengths are 
measured with a multi-purpose bond tester (Dage Co., 
4000Plus). We evaluate the die shift before and after PDMS 
curing at 80˚C for 30 min by wafer-level compression mold with 
the 2nd Si handler. 

The typical images before and after PDMS curing is shown in 
Fig.6(b). As compared with these images, the die shift is hardly 
observed after PDMS curing. The initial die placement errors 
are nearly 5 µm or more because the alignment marks formed at 
the center of the die placement position on the temporary 
adhesive is unclear due to the roughened surfaces of black 
particles as a thermal bubbling component in the thermally 
removable layer. Surprisingly, the die shift can be compensated 
by using the PDMS even though the shear bonding strength 
between the Rivalpha surface and dielets is not high. The reason 
why the extremely low die shift is obtained is probably due to 
the excellent thermomechanical properties of the PDMS such as 
very low Young’s modulus, low curing temperature, and low Tg 
much lower than room temperature. Also, we cannot ignore the 
use of middle-sized wafers with a diameter of 100 mm in this 
work. The images are captured in the position 30 mm away from 
the center of the wafers with a high-resolution digital 
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microscope (Keyence, VHX-6000). The die shift works are still 
going to well know the mechanism and further investigate the 
die shift in the subsequent PDMS transfer and metallization 
processes.   
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Fig. 6.  Die shift evaluation: a flow of sample fabrication and Vernier 
patterns formed on dielets and adhesives (a), and photographs of the 
Vernier patterns (b) and die shift values (c) obtained before and after 
PDMS curing at 80˚C for 30 min. 
 
C. Process integration with high-density interconnect  

As shown in Fig. 7, 625 square 1mmx1mm dielets were 
assembled on the 1st Si handler, and were successfully 
transferred to the 2nd handler at 130˚C. Then, the metallization 
with evaporated Ti/Au is performed on the PDMS and 
embedded Si dielets covered with a 1-µm-thick oxide layer on 
the top. However, adhesion between the metals and the PDMS 
is quite low. Therefore, a surface modification step was inserted 
into the process to enhance the adhesion between the metal and 
PDMS. By using a UV/O3 treatment, the water contact angle is 
dramatically decreased, and consequently, the PDMS surface is 
rendered highly hydrophilic as shown in Fig. 8. These 
hydrophilic surfaces can increase the adhesion strength between 
the metal and PDMS as seen from pictures insets in Fig. 8. The 
Scotch tape adhesion test was based on ASTM D 3359-87 
Method B. Another surface modification with oxygen plasma 
(power: 65 W, O2 flow: 100 sccm, and etching time: 30 s) can 
further reduce process time. 

In the metallization process, photoresists are used for the 
metal patterning as a mask material for photolithography 
processes. However, cracks were generated in the use of a 
standard positive photoresists (Microchemicals, AZ5214E) in 
the cooling step after spin-coating and the subsequent 
pre-baking. Thus, we propose the use of a SBL between the 
metals and PDMS. Parylene-C was employed as a SBL. In 

addition, the surface of the PDMS after transferring it on the 2nd 
handler is not perfectly smooth because of the small steps at the 
interface between the PDMS and Si dielets. SU-8 is employed 
as a planarization layer by spin coating. The spin-on 
photosensitive material also help to open contact holes down to 
dielets through their top passivation in future works. Generally, 
Parylene-C have low adhesion to various polymeric materials 
and Si/glass substrates etc. [35]. Although several surface 
modification techniques have been reported [36][37], the 
adhesion enhancement between the PDMS and parylenes is still 
a big concern. To enhance the Parylene-C/PDMS adhesion, we 
newly utilize vinyl triacetoxy silane (AP3000, Dow) that is well 
known to be an adhesion promotor for BCB (benzo cyclobutene 
resin) to Si substrates [38]. After PDMS surface modification 
with oxygen plasma, AP3000 was spin-coated on the treated 
PDMS. The vinyl functional groups would react with free 
radicals generated in CH2=C< double bonds of di-para-xylylene 
resulted from the pyrolysis of the parylene monomers in the next 
step. Then, the Parylene-C surface is treated with the oxygen 
plasma in the same conditions again, SU-8 2001 was coated and 
cured, followed by Ti/Au deposition with an EB evaporator 
(CHA, Solution). After deposition of the metals, the adhesion 
strength is evaluated by the Scotch tape test. As seen in the 
image inserted into the bottom left in Fig.8, the adhesion at the 
interfaces of Au/Ti, Ti/SU-8, SU-8/modified Parylene-C, and 
Parylene-C/modified PDMS is very high.  

Photoresists can be coated on the metal deposited on the SBL 
without cracks and dewetting. In addition, the SBL formation 
can allow the metal deposition without microcracks reported in 
the previous paper [39] by mitigating the CTE/elongation/ 
modulus mismatches between the PDMS and metals. As a 
result, Ti/Au wirings with the SBL are electrically connected 
between the adjacent dielets. 8-µm-pitch Au wirings 
(Line/Space 3.4/4.6 µm) are successfully formed on the array of 
Si dielets and the surrounding PDMS as shown in Fig. 9. Fig. 10 
shows that excellent linear relationships are obtained by I-V 
measurement of the fine Au wirings with the minimum wire 
width of 3 µm.  

 

1mm(b)

(c)

Si wafer (2nd handler)

SiSi SiSi

1mm 1.8mm

(a)
Multichip flip-chip assembly 
on the 1st handler

Si SiSi Si

Si wafer (1st handler)

1mm 1.8mm

Multichip transfer 
on the 2nd handler

(a)

 
Fig. 7. Photomicrographs of 1-mm-square multi-dielets placed on the 
1st Si handler (die pitch: 1.8 mm): bird-eye view (a). 
Photomicrographs of 1-mm-square multi-dielets transferred to the 2nd 
Si handler: top view (b) and magnified top view (c). 
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Fig. 8.  Water contact angle shift as a function of PDMS surface 
modification time with UV/O3 (black) or O2 plasma (red) and images 
after Scotch tape test for adhesion strength evaluation. 
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Fig. 9. Optical images of intra-dielet/fine-pitch wirings formed on 
Si/PDMS in wafer-level processing. 
 

In the present paper, since wafer-level processing is 
employed, metal layers can be readily thickened by using 
wafer-level electroplating. Au electroplating was supported by 
Electroplating Engineers of Japan Ltd. (EEJA). As shown in 
Fig.11, the 200-nm-thick Au wire resistances are significantly 
decreased down to nearly 1/30 when thick Au wires with a 
thickness of approximately 5 µm are used. The low resistances 
are kept even after final PDMS removal from the 2nd handler as 
shown in Fig.11.  

The FlexTrateTM embedding large numbers of the 
1-mm-sqaure Si dielets in the PDMS can be attached on the 
curved profiles such as the human arm, Fig. 12 (a), and a pen, 
Fig. 12 (b). Fig. 12 (c) shows the cross-section of a FlexTrateTM 
embedding heterogeneous dielets composed of a 440-µm-thick 
GaAs dielets and three 1-mm-sqaure Si dielets with various 
thicknesses of 50 and 100 µm. As seen from these pictures, rigid 
dielets can be bent in any chosen direction by the flexible 
PDMS between the dielets. These FlexTrateTM with the 
heterogeneous dielets embedded in the biocompatible PDMS 
can be implanted into the human body including the brain. 
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Fig. 10. The relationship between the resistances and wire lengths 
formed on a PDMS before removal from the 2nd handler. 
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Fig. 11. Resistances formed on FlexTrateTM: 200-nm-thick Au wires 
and 5-µm-thick Au wires before/after debonding. 

 

 
Fig. 12.  Pictures of FlexTrateTM demonstrators: wearable (a) and 
rollable (b) 100-µm-thick / 1-mm-sqaure 625 Si dielets embedded in 
PDMS, and a cross-sectional image of PDMS embedding 
heterogeneous dielets composed of GaAs and Si with various 
thicknesses (c). 
 
D. Bendability 

The bendability of the FlexTrateTM having embedded dielets 
is evaluated with an endurance testing system: tension-free 
U-shape folding tester (DLDMLH-FS/Yuasa). Fig.13 shows the 
resistances of FlexTrateTM test vehicles having 600-nm- and 
5-µm-thick Cu wirings formed on the PDMS embedding 
1-mm-square Si dielets with a thickness of 100 µm. Cu wirings 
are required for FHE desiring low-resistance applications such 
as wearable sensors, whereas Au/Ti wirings are desirable for 
implantable use due to their high biocompatibility. 4-point 
probe patterns are used for the resistance evaluation. The Cu 
interconnections are 15 mm long and 100, 40, 20, and 10 µm in 
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width. The resistances are compared before and after 
1,000-bending with a curvature radius of 10 mm and the 
subsequent additional 1,000-bending with the radius of 5 mm. 
As a result, both the Cu interconnects between the neighboring 
dielets embedded in the PDMS are still connected without 
delamination. The resistance changes are within 2% on average 
after the sequential bending. In contrast, 200-nm-thick Cu 
wirings hardly survive the thermal debonding process. From 
these results, the wide ranges of Cu thicknesses are turned out to 
be applicable for the FlexTrateTM.  

Comparison of some of state-of-the-art FHE under stress is 
summarized in Ref. [40]. 20-µm-thick Si fabricated by dicing 
before grinding and 15-µm-thick Si fabricated by controlled 
spalling techniques exhibit the reliable curvature radii of 20 mm 
[40] and 6.3 mm [41]. These studies show good CMOS 
characteristics under the bending conditions, however, repeated 
bending is not evaluated. Our new FHE “FlexTrateTM” achieves 
high durability of 2,000-cycle bending in total with curvature 
radii of 10 mm and 5 mm as mentioned above. 

Fig. 14 (a) and (b) shows the SEM images and 
photomicrographs of the test vehicles before and after bending 
with the radius of 10 mm. The left image is captured just after 
debonding from the 2nd handler at 180˚C. Several wrinkles are 
observed between the dielets even before bending when the 
600-nm-thick Cu wirings are employed. The cracks resulted 
from the wrinkles are probably formed in the brittle SU-8 on the 
SBL Parylene-C that is plastically deformed. However, the two 
polymers SU-8/ Parylene-C formed on the PDMS mitigate the 
stresses applied when thermal debonding and mechanical 
repeated bending. On the other hand, compared to 600-nm-thick 
Cu wirings, half of the 10- and 20-µm-wide Cu wirings with the 
thickness of 5 µm are working after additional bending of the 
curvature radius of 2.5 mm. In addition, the 40- and 
100-µm-wide Cu wirings exhibit almost the same resistances as 
the initial values when the wire is thickened. It should be 
stressed that FlexTrateTM fabrication process has a wide margin 
for wire thickness. 

From simulation results using ANSYS, it is found that larger 
inter-dielet spaces and thicker dielets give smaller stresses to the 
PDMS underneath metal wires without SBL. We are still on 
going the stress mapping research of FlexTrateTM and working 
on the stress simulation analyses of the embedded dielets and 
wirings formed on SBL.   

IV. CONCLUSION 
We have integrated FlexTrateTM using the new technology 

platform based on advanced die-first FOWLP for 
next-generation FHE. 3-µm-feature Au wirings are successfully 
formed on the PDMS in which Si dielets are embedded and 
planarized. High coplanarity, low die shift, and high repeated 
bendability are achieved by FlexTrateTM. The fabrication 
process of FlexTrateTM with 10-µm-feature Cu interconnects 
exhibits a wide margin for wire thickness in 1,000-cycle 
repeated bending with a curvature radius of 5 mm or less. This 
heterogeneous integration using monocrystalline Si dielets 

embedded in flexible substrates enables high-performance and 
scalable flexible device systems with high-density interconnects 
to create highly-integrated wearable and implantable 
electronics. 
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Fig. 13. Resistance comparison between before and after 1,000-cycle 
bending with curvature radius of 10 and 5 mm for 100-, 40-, 20-, and 
10-µm-width Cu wirings formed on Si dielets embedded in PDMS: Cu 
thicknesses are 600 nm (a) and 5 µm (b). 
 

Before bending after debonding
from the 2nd handler

After 1,000 cycle bending with 
a curvature radius of 10 mm
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(b)
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Fig. 14. SEM images (a) and the enlarged photomicrographs (b) of 
600-nm-thick Cu wirings formed on FlexTrateTM with dielets 
embedded in PDMS before and after bending. 
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