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Predictive Metabolomic Markers in Early to
Mid-pregnancy for Gestational Diabetes Mellitus: A
Prospective Test and Validation Study
Yeyi Zhu,1,2 Dinesh K. Barupal,3,4 Amanda L. Ngo,1 Charles P. Quesenberry,1 Juanran Feng,1

Oliver Fiehn,3 and Assiamira Ferrara1

Diabetes 2022;71:1807–1817 | https://doi.org/10.2337/db21-1093

Gestational diabetes mellitus (GDM) predisposes preg-
nant individuals to perinatal complications and long-term
diabetes and cardiovascular diseases. We developed and
validated metabolomic markers for GDM in a prospective
test-validation study. In a case-control sample within the
PETALS cohort (GDM n = 91 and non-GDM n = 180; dis-
covery set), a random PETALS subsample (GDM n = 42
and non-GDM n = 372; validation set 1), and a case-control
sample within the GLOW trial (GDM n = 35 and non-GDM
n = 70; validation set 2), fasting serum untargetedmetabo-
lomics were measured by gas chromatography/time-
of-flight mass spectrometry. Multivariate enrichment
analysis examined associations between metabolites and
GDM. Ten-fold cross-validated LASSO regression identi-
fied predictivemetabolomicmarkers at gestational weeks
(GW) 10–13 and 16–19 for GDM. Purinone metabolites at
GW 10–13 and 16–19 and amino acids, amino alcohols,
hexoses, indoles, and pyrimidinemetabolites at GW 16–19
were positively associated with GDM risk (false discovery
rate <0.05). A 17-metabolite panel at GW 10–13 outper-
formed the model using conventional risk factors, includ-
ing fasting glycemia (area under the curve: discovery
0.871 vs. 0.742, validation 1 0.869 vs. 0.731, and validation
2 0.972 vs. 0.742; P < 0.01). Similar results were observed
with a 13-metabolite panel at GW 17–19. Dysmetabolism
is present early in pregnancy among individuals progress-
ing to GDM. Multimetabolite panels in early pregnancy
can predict GDM risk beyond conventional risk factors.

The global prevalence of gestational diabetes mellitus
(GDM) has increased by >35–90% over the past decades,
to 6–12% among pregnant individuals (1,2). Given the
plethora of wide-ranging adverse health sequelae, includ-
ing perinatal complications and long-term diabetes and
cardiovascular diseases, among women and their off-
spring, GDM represents a growing urgent worldwide pub-
lic health concern (3). In routine clinical practice, GDM is
screened and diagnosed in late pregnancy at 24–28 weeks
of gestation; however, metabolic perturbations may have
begun in early pregnancy (4,5). Identification of early pre-
dictive biomarkers for GDM is warranted to inform early
risk stratification, prevention, and treatment strategies.

Disturbances in metabolic programming during preg-
nancy have been implicated in the development of GDM
(6). While glucose and carbohydrate metabolism have
been extensively studied for GDM pathophysiology, other
key pathways, including amino acid and lipid metabolism,
suggested to play key roles in this process, remain under-
studied (7). Notably, the conventional single-factor epide-
miologic approach to identifying predictors has been
impeded by the difficulty in measuring the holistic meta-
bolic profile and inability to address interplays among
fuel substrates (8). In contrast, untargeted metabolomic
approaches provide a comprehensive and systematic snap-
shot of multiple metabolic pathways involving numerous
small molecules, revealing predictive biomarkers and disease
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mechanisms (9). However, metabolomic studies for GDM
remain sparse (10), with small sample sizes (mostly <50
GDM cases); skewed racial/ethnic distribution (primarily
Caucasian based); lack of standardized diagnosis of GDM;
variations in tissues (blood, urine, or amniotic fluid), fasting
status (largely nonfasting), and metabolomic techniques
(targeted vs. untargeted); and, most importantly, lack of ex-
ternal or even internal validation, which have collectively
limited the generalizability of previous findings (11–17).

To address these critical data gaps, we conducted a pro-
spective discovery and validation study to examine the as-
sociations of fasting serum untargeted metabolomics from
early to mid-pregnancy with risk of GDM among pregnant
individuals with multiracial/ethnic backgrounds in a large
integrated clinical setting, where universal screening for
and standardized diagnosis of GDM were implemented.
We developed and validated machine-learning models using
multimetabolite panels in early and mid-pregnancy for
GDM prediction.

RESEARCH DESIGN AND METHODS

Study Design and Population
PETALS (Pregnancy Environment and Lifestyle Study) is a
population-based longitudinal multiracial/ethnic cohort
study. The study design has been described in detail else-
where (18). This population was drawn from the member-
ship of Kaiser Permanente Northern California (KPNC),
an integrated health care delivery system serving 4.5 mil-
lion members, who are highly representative of the entire
population living in the served geographic area (19). After
weekly searches of the electronic health records, pregnant
individuals aged 18–45 years carrying singletons were in-
vited to participate in the study before 11 weeks of gesta-
tion. Fasting blood samples were collected after an 8- to
12-h overnight fast at study clinic visits 1 (gestational
weeks [GW] 10–13; baseline) and 2 (GW 16–19). Anthro-
pometric measurements and questionnaires on health his-
tory and lifestyle were completed at visit 1. The study was
approved by the Kaiser Foundation Research Institute
Human Subjects Committee. Written informed consent
was obtained from all participants.

In this clinical setting, pregnant women were universally
screened for GDM with the 50-g 1-h glucose challenge test
at GW �24–28. If the screening test was abnormal (>7.8
mmol/L), a diagnostic 100-g 3-h oral glucose tolerance test
(OGTT) was performed in the morning after a 12-h fast.
GDM was ascertained by meeting any of the following cri-
teria used at KPNC: 1) two or more plasma glucose values
after the OGTT meeting or exceeding the Carpenter-
Coustan thresholds (1-h 10 mmol/L, 2-h 8.7 mmol/L, and
3-h 7.8 mmol/L), as recommended by the American College
of Obstetricians and Gynecologists (20), or 2) fasting glu-
cose $5.1 mmol/L measured alone or during the OGTT, as
recommended by the International Association of Diabe-
tes and Pregnancy Study Groups and American Diabetes
Association (21,22). Plasma glucose measurements were

performed using the hexokinase method at the KPNC re-
gional laboratory, which participated in the College of
American Pathologists’ accreditation and monitoring pro-
gram (23).

Of the 3,346 pregnant individuals who completed visit 1
(baseline) in the PETALS cohort, 162 (4.8%) did not have
data on screening for GDM; of these 162 women, 32 had a
pregnancy loss (1.0%), 46 (1.4%) were no longer KPNC
members after visit 1, and 84 (2.5%) were not screened.
Among participants screened for GDM, 194 met the Car-
penter-Coustan criteria and 116 met the isolated fasting
glucose threshold for the diagnosis of GDM. To improve
the homogeneity of GDM diagnosis and generalizability of
our findings, we only included women with GDM based on
the Carpenter-Coustan criteria in the PETALS discovery set
and validation set 1 as described below (20). We first de-
signed a nested case-control study within the prospective
PETALS cohort as the discovery set (Fig. 1A), including 91
GDM cases and 180 non-GDM controls who delivered be-
tween April 2015 and January 2018. GDM cases and non-
GDM controls were matched at a ratio of one to two (with
two controls missing blood samples) to cases according to
age (±5 years), race/ethnicity, calendar time for enrollment
(±3 months), and GW at baseline clinic visit (±3 weeks). To
derive the validation set 1, we randomly selected �15% of
women in the PETALS cohort who delivered between April
2014 and May 2019, were not selected in the discovery
set, and had fasting serum collected at study clinic visits 1
and 2 (i.e., GDM n = 42 and non-GDM n = 372) (Fig. 1A).

We further derived validation set 2 from the GLOW (Ges-
tational Weight Gain and Optimal Wellness) randomized
controlled trial, which aimed to reduce excess gestational
weight gain through a behavioral lifestyle intervention (24).
Women with a prepregnancy BMI between 25.0 and 40.0
kg/m2 who were aged $18 years and carrying singleton
pregnancies were recruited before GW 13 and completed a
baseline preintervention study visit at GW 8–15, during
which fasting ($8 h) blood samples were collected. We iden-
tified 35 women with GDM based on the Carpenter-Coustan
criteria and matched them at a one-to-two ratio to 70 non-
GDM women according to age (±5 years), race/ethnicity, cal-
endar time for enrollment (±3 months), and GW at baseline
visit (±3 weeks) (Fig. 1B). Of note, the intervention did not
affect the incidence of GDM compared with the control
group, and blood samples for metabolomic measurement
were collected at the baseline visit before the intervention
was conducted (24).

Untargeted Metabolomic Data Acquisition and
Processing
Fasting serum samples were stored at �80�C before analy-
sis for the discovery set and both validation sets in the
same biorepository facility. Untargeted metabolomic data
were generated by established assays at the West Coast
Metabolomics Center at University of California Davis (25).
Primary metabolites, such as sugars, hydroxyl acids, and
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amino acids, were analyzed by a Leco Pegasus IV time-of-
flight mass spectrometer using splitless injection into an
Agilent gas chromatograph. For quality control (QC) and
normalization, one blank negative control extraction was
prepared per 10 samples from empty Eppendorf tubes as
starting material to monitor carryover and chemical arti-
facts, in addition to one BioreclamationIVT plasma (cat.
no. HMPLEDTA) QC sample per 10 study samples. Raw
spectra for serum and tissue metabolites were processed
by BinBase software (26), which matches each sample
mass spectrum datum and retention index against the
MassBank.us public libraries and the licensed NIST20 li-
brary. For retention time correction, C8-C30 fatty acid
methyl esters were added as internal standards. Data
from the LECO instrument software ChromaTOF were
processed by the BinBase database (27). Missing peaks
were not imputed but were automatically replaced by local
noise values from raw data. Metabolites were retained if
the median peak intensities were at least three times
higher than local noise. Reported metabolites were quan-
tified using ion peak heights of deconvoluted unique ions
and were normalized by the sum of all annotated

metabolite intensities. Additional data QC strategies in-
cluded 1) systematic error removal using random forest
normalization to account for batch effect and improve
normality (28), 2) removal of compounds with >50%
missing values in the preprocessing stage for the mass
spectrum data and retention index, and 3) removal of
compounds with high technical variance (coefficient of
variation >50%). A total of 157 known metabolites
were annotated meeting QC criteria, and 602 unknown
metabolites were detected. We included 144 known me-
tabolites with a coefficient of variation <20.0% (aver-
age 5.8%; range 1.2–17.8%) in our analysis. Of the 144
known metabolites, there were missing data on peak in-
tensities for three metabolites (missing rate range
0.4–1.5%), which were imputed using the minimum
peak intensity of each metabolite divided by 2.

Covariates
Potential covariates included age at childbirth (continuous),
race/ethnicity (non-Hispanic White, non-Hispanic Black,
Hispanic, Asian/Pacific Islander, or other/unknown), educa-
tion (high school or less, some college/associate degree, or

Figure 1—Study flowchart of the discovery set and validation set 1 (A) and validation set 2 (B). RCT, randomized controlled trial. *Case-
control ratio of one to two, with two GDM cases; each had only one matched control with biospecimens available.
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college degree or higher), nulliparity (yes or no), prepreg-
nancy BMI (non-Asians: underweight [BMI <18.5 kg/m2],
normal weight [18.5–24.9 kg/m2], overweight [25.0–29.9
kg/m2], or obese [$30.0 kg/m2] and Asians: underweight
[<18.5 kg/m2], normal weight [18.5–22.9 kg/m2], over-
weight [23.0–27.4 kg/m2], or obese [$27.5 kg/m2]) (29),
chronic hypertension (yes or no), family history of diabetes
(yes or no), history of GDM (yes or no), and GW at blood
collection (continuous). Information on race/ethnicity, age,
education, and family history of diabetes was collected by
structured questionnaire administered at the baseline visit.
Medical history was extracted from electronic health
records.

Statistical Methods
Differences in participant characteristics between cases and
controls in the discovery set were assessed by mixed-effect
linear regression for continuous variables and binomial/
multinomial logistic regression with generalized estimating
equations for binary/multilevel categorical variables, ac-
counting for the case-control matching.

In the univariate analysis, we conducted conditional lo-
gistic regression to examine the associations of individual
metabolites at GW 10–13 and 16–19 with risk of GDM, re-
spectively, adjusting for aforementioned covariates. We
also examined the associations between changes in metab-
olites across the two time points, as assessed by the ratio
of individual metabolite peak intensity at GW 16–19 divid-
ed by that at GW 10–13, and risk of GDM. The Benjamini-
Hochberg false discovery rate (FDR) controlling method
was used to adjust for multiple comparisons. We present
adjusted odds ratios of GDM in relation to individual me-
tabolites using volcano plots according to the effect size of
odds ratios and significance level of P values. We also pre-
sent radar plots to visualize these findings according to su-
per pathways as determined by the automated chemical
classification with a comprehensive computable taxonomy
(i.e., CalssyFire) (30).

We further conducted multivariate analysis using the
chemical similarity enrichment analysis (ChemRICH) to
map biochemical clusters and facilitate biologic interpreta-
tion (31). ChemRICH is a statistical enrichment approach
based on chemical similarity rather than sparse biochemical
knowledge annotations; it yielded greater statistical power
compared with the univariate analysis focusing on associa-
tions of individual metabolites with GDM risk. ChemRICH
identified study-specific nonoverlapping sets of metabolites
by combining chemical similarity and classification ontolo-
gies. The P values of metabolite clusters were obtained
using the Kolmogorov-Smirnov test. An FDR-adjusted P
value <0.05 indicates a statistically significantly enriched
compound cluster.

For metabolomic marker discovery, we developed se-
quential predictive models for GDM risk using model 1
(conventional risk factors including aforementioned covari-
ates and fasting serum glucose concentrations), model 2

(a multimetabolite panel at GW 10–13 or 16–19, respec-
tively), and model 3 (conventional risk factors from model
1 and the multimetabolite panel from model 2). To achieve
maximum predictability, the multimetabolite panels were
selected among all metabolites using least absolute shrink-
age and selection operator (LASSO) regression to develop
more interpretable and parsimonious models (32). We plot-
ted receiver operating characteristic curves and evaluated
the incremental prediction capacity of models 2 and 3 be-
yond model 1 by comparing area under the curve (AUC)
statistics using the DeLong test (33). To derive results gen-
eralizable to the entire cohort, samples from the case-con-
trol discovery set were reweighted using sampling weights
developed via a weighted likelihood approach based on the
inverse probability of selected GDM cases or non-GDM
controls versus their counterparts in the entire PETALS co-
hort, respectively. Specifically, GDM cases had a sampling
probability of 91 over the total number of women with
GDM in the PETALS cohort (n = 310). Sampling probability
of non-GDM controls was calculated using a logistic regres-
sion model in the entire cohort excluding GDM cases, with
matching factors as predictors. Each 95% CI around an es-
timate of distribution of the reweighted sample contained
the original estimate in the PETALS cohort, confirming ef-
fective reweighting (Supplementary Table 1). To avoid
overfitting, 10-fold cross-validation was performed to de-
rive conservative estimates within the discovery set. We
further evaluated the predictive performance of multimeta-
bolite panels identified in the discovery set in validation
sets 1 and 2.

Data and Resource Availability
Extracted data are available within the publication and its
Supplementary Material. A deidentified analytic data set
used in this study can be shared with qualified researchers,
subject to approval by the Kaiser Foundation Research In-
stitute Human Subjects Committee and by the human sub-
jects committees at the institutions requesting the data
and a signed data sharing agreement. Please send all re-
quests to the corresponding author of this article.

RESULTS

Participant Characteristics
In the PETALS discovery set, women with GDM were
more likely to be overweight or obese before pregnancy
and have chronic hypertension, family history of diabetes,
and history of GDM compared with non-GDM controls
(all P < 0.05; Table 1). Similar patterns between women
with and without GDM were observed in validation sets 1
and 2 (Supplementary Table 2). Participant characteristics
in validation set 1 (a random PETALS sample) were simi-
lar to those in the entire PETALS cohort. All women in
validation set 2 were overweight or obese before pregnan-
cy per the study design and on average older than women
in the PETALS discovery set and validation set 1 ($35
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years: 33.3 vs. 28.4 and 22.7%, respectively), representing
a higher-risk group for GDM.

Univariate Prospective Associations of Individual
Metabolites With Risk of GDM
Among all 144 known metabolites, the distribution accord-
ing to metabolic super pathway was as follows: amino acids,
peptides, and analogs (26.4%); lipids and lipid-like molecules
(19.4%); organic oxygen compounds (20.8%); organohetero-
cyclic compounds (12.5%); other organic acids and deriva-
tives (13.9%); and xenobiotics (6.9%) (Supplementary Fig.
1). Univariate prospective associations of individual metabo-
lites clustered by super pathway with risk of GDM are pre-
sented in radar plots (Supplementary Fig. 2). At GW 10–13,
15 metabolites were significantly and positively associated
with GDM risk and one metabolite was inversely associated
with GDM risk (all FDR <0.05) (Fig. 2; see effect sizes in
Supplementary Fig. 3). At GW 16–19, 28 and two metabo-
lites were positively and inversely associated with GDM risk,
respectively (all FDR <0.05) (Fig. 2; see effect sizes in
Supplementary Fig. 3). Across the two gestational periods,
changes in six metabolites were positively associated with
risk of GDM and one metabolite was inversely associated

with risk of GDM (P < 0.05); however, none persisted after
FDR adjustment (Supplementary Table 3).

Multivariate Chemical Enrichment Analysis
To further facilitate biologic interpretation, we used
ChemRICH. Among all the metabolite clusters enriched
at GW 10–13 (Supplementary Fig. 4A), those significant-
ly and positively associated with GDM risk were pre-
dominantly purinones (P = 0.0005), aromatic amino
acids (P = 0.011), pyrimidines (P = 0.017), indoles
(P = 0.019), acidic amino acids (P = 0.031), and poly-
amines (P = 0.040), whereas the acyclic acid cluster
was significantly and inversely associated with risk of
GDM (P = 0.024) (Fig. 3A and Supplementary Table 4).
After FDR adjustment, only the purinone set at GW
10–13 remained significantly and positively associated
with GDM risk (FDR 0.011).

Among all the metabolite clusters enriched at GW
16–19 (Supplementary Fig. 4B), in addition to the signifi-
cant clusters at GW 10–13 (all except polyamines), the amino
alcohol, hexose, sugar acid, guanidine, carbocyclic acid, unsatu-
rated fatty acid, and glucuronate clusters were positively asso-
ciated with GDM risk (all P < 0.05), whereas only the amino

Table 1—Characteristics of all participants and by GDM status in the discovery set
All

(n = 271)
GDM

(n = 91)
Non-GDM*
(n = 180) P†

Age at delivery, years 0.09
<25 21 (7.7) 7 (7.7) 14 (7.8)
25–29 51 (18.8) 13 (14.3) 38 (21.1)
30–34 122 (45.0) 42 (46.2) 80 (44.4)
$35 77 (28.4) 29 (31.9) 48 (26.7)

Race/ethnicity 0.48
White 59 (21.8) 19 (20.9) 40 (22.2)
Hispanic 89 (32.8) 30 (33.0) 59 (32.8)
Black 25 (9.2) 5 (5.5) 20 (11.1)
Asian/Pacific Islander 82 (30.3) 34 (37.4) 48 (26.7)
Other/unknown 16 (5.9) 3 (3.3) 13 (7.2)

Education 0.89
High school or less 31 (11.4) 10 (11.0) 21 (11.7)
Some college 109 (40.2) 37 (40.7) 72 (40.0)
College graduate or above 131 (48.3) 44 (48.4) 87 (48.3)

Nulliparity 121 (44.6) 38 (41.8) 83 (46.1) 0.50

Prepregnancy BMI, kg/m2‡ 0.01
Underweight/normal weight 18 (19.8) 64 (35.6) 82 (30.3)
Overweight 35 (38.5) 54 (30.0) 89 (32.8)
Obese 38 (41.8) 62 (34.4) 100 (36.9)

Chronic hypertension 16 (5.9) 9 (9.9) 7 (3.9) 0.04

Family history of diabetes 66 (24.4) 34 (37.4) 32 (17.8) 0.001

History of GDM 18 (6.6) 17 (18.7) 1 (0.6) <0.0001

Data are given as n (%). *Case-control ratio of one to two, with two GDM cases; each had only one matched control with biospe-
cimens available. †P values for differences between case and control participants were obtained by mixed-effect linear regression
models for continuous variables and binomial/multinomial logistic regression with generalized estimating equations for binary/multi-
level categorical variables, accounting for matched case-control pairs. ‡Non-Asians were categorized as underweight (BMI <18.5
kg/m2), normal weight (18.5–24.9 kg/m2), overweight (25.0–29.9 kg/m2), or obese ($30.0 kg/m2). Asians were categorized as un-
derweight (<18.5 kg/m2), normal weight (18.5–22.9 kg/m2), overweight (23.0–27.4 kg/m2), or obese ($27.5 kg/m2).
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Figure 2—Volcano plots showing the associations of individual metabolites at GW 10–13 (A) and 16–19 (B) with risk of GDM in the PET-
ALS nested case-control discovery set. Odds ratios (OR) were adjusted for maternal age at delivery, race/ethnicity, family history of diabe-
tes, chronic hypertension, history of GDM, prepregnancy BMI, and gestational age at blood collection. Horizontal dashed line indicates
the value of FDR-corrected level of significance.
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acid (basic and other), amino alcohol, hexose, indole, puri-
none, and pyrimidine clusters remained significant after FDR
adjustment (all FDR 0.041) (Fig. 3B and Supplementary Table
4). On the other hand, the amide cluster with allantoic acid
as the key metabolite was significantly and inversely

associated with GDM risk (P = 0.008; FDR 0.041).
Across the two gestational periods, increased concen-
trations of the hexose cluster with fructose as the key
metabolite were positively associated with risk of GDM
(P = 0.022; data not shown).

Figure 3—Multivariate ChemRICH enrichment plots depicting the pathways and metabolite hits within each pathway at 10–13 (A) and 16–19
(B) weeks of gestation significantly associated with risk of GDM in the PETALS nested case-control discovery set. OR, odds ratio. *P value
for pathway<0.05 after FDR adjustment. †Pathways significantly associated with risk of GDM at both gestational periods (P< 0.05).
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Multimetabolite Panels for GDM Prediction Using
Machine Learning
To evaluate the incremental predictability of metabolites be-
yond conventional risk factors, including fasting serum glu-
cose (model 1 as reference), we developed multimetabolite
panels at GW 10–13 and 16–19 using 10-fold cross-valida-
tion (model 2 specific to each gestational window) and an
additive model including predictors in models 1 and 2 as
model 3 at each gestational window, respectively. At GW
10–13, LASSO regression identified a 17-metabolite panel
(three amino acids, four lipid metabolites, two purine and
pyrimidine metabolites, and eight carbohydrate metabolites;
model 2), which demonstrated superior predictive perfor-
mance compared with model 1 (10-fold cross-validation
AUC [95% CI] 0.832 [0.777–0.887] vs. 0.742 [0.677–0.807];
Pmodel 2 vs. 1 = 0.021) (Fig. 4A; see predictive performance
statistics in Supplementary Table 5 and model optimization
in Supplementary Fig. 5A). The addition of the 17-metabolite
panel to conventional risk factors (model 3) demonstrated
further incremental predictability beyond model 1 (0.871
[0.824–0.918] vs. 0.742 [0.677–0.807]; Pmodel 3 vs. 1 <0.001).
This multimetabolite panel illustrated robust predictive per-
formance in both validation sets 1 (AUC in models 1–3
0.731, 0.771, and 0.869, respectively; Pmodel 2 vs. 1 = 0.062;
Pmodel 3 vs. 1 = 0.001) and 2 (0.742, 0.907, and 0.972, respec-
tively; Pmodel 2 vs. 1 = 0.002; Pmodel 3 vs. 1 <0.001) (Table 2).
Similarly, at GW 16–19, LASSO regression identified a
13-metabolite panel (three amino acids, three lipid metabo-
lites, two purine and pyrimidine metabolites, and five carbo-
hydrate metabolites; model 2), which demonstrated superior
predictive performance compared with model 1 (10-fold
cross-validation AUC [95% CI] of models 1–3 0.732 [0.660–

0.803], 0.797 [0.728–0.865], and 0.838 (0.775–0.900), re-
spectively; Pmodel 2 vs. 1 = 0.012; Pmodel 3 vs. 1 = 0.004) (Fig.
4B; see predictive performance statistics in Supplementary
Table 5 and model optimization in Supplementary Fig. 5B).
Similar and robust predictive performance of this 13-metab-
olite panel was observed in validation set 1 (AUC in models
1–3 0.719, 0.774, and 0.830, respectively; Pmodel 2 vs. 1 =
0.017; Pmodel 3 vs. 1 = 0.007) (Table 2), with no correspond-
ing data in validation set 2.

DISCUSSION

In this well-characterized prospective test and validation
study including women with diverse racial/ethnic back-
grounds, comparing women with GDM diagnosed by ob-
jective glucose thresholds in late pregnancy with their
counterparts with euglycemia, we observed distinct meta-
bolic profiles as early as GW 10–13. We report novel find-
ings on the prospective positive associations of fasting
serum indoles, pyrimidines, and amino alcohols and in-
verse associations of allantoic acid in early and mid-preg-
nancy with risk of GDM, together with other known
pathways, including amino acids, purinones, and hexoses.
By using machine-learning algorithms, we developed and
validated predictive multimetabolite panels at GW 10–13
and 16–19 for GDM risk, with incremental predictability
beyond conventional risk factors, including fasting serum
glucose levels. Our findings suggest the potential value of
metabolomic profiling for early prediction of GDM risk.

Our findings illustrate that previously unreported met-
abolic pathways may be implicated in the development of
GDM. Our novel finding of a positive association of indole

Figure 4—Incremental prediction value of multimetabolite panels at GW 10–13 (A) and 16–19 (B) beyond conventional risk factors for
GDM in the PETALS nested case-control discovery set. Receiver operating characteristic curves and AUC statistics were estimated by
10-fold cross-validation for GDM risk prediction using conventional risk factors (age at delivery, family history of diabetes, chronic hyper-
tension, history of gestational diabetes, prepregnancy BMI, and fasting serum glucose values; model 1, red curves); a multimetabolite
panel (model 2, green curves) selected by LASSO regression at 10–13 weeks (1,5-anhydroglucitol, 1-monoolein, 2,3-dihydroxybutanoic
acid, 2-hydroxyglutaric acid, 5,6-dihydrouracil, alanine, a-aminoadipic acid, b-alanine, b-sitosterol, cellobiose, citramalic acid, citric acid,
lactic acid, N-acetylputrescine, b-tocopherol, uric acid, and urea) (A) and 16–19 weeks of gestation (1,5-anhydroglucitol, 2,3-dihydroxybu-
tanoic acid, 2-aminobutyric acid, a-aminoadipic acid, arachidic acid, aspartic acid, citric acid, hydrocinnamic acid, lauric acid, oleic acid,
quinic acid, uracil, and uridine) (B); and the selected multimetabolite panel in addition to conventional risk factors (model 3, blue curves).
P values for differences in AUC statistics between models were derived by DeLong test.
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(the main metabolite produced from dietary tryptophan
by gut microbiota) metabolism with risk of GDM was con-
sistent with a previous cross-sectional study that reported
higher fecal indole concentrations among women with
GDM versus non-GDM women in late pregnancy (34).
Data in animal models also suggest that prolonged expo-
sure to indoles inhibits glucagon-like peptide-1 secretion,
which further impairs insulin secretion (35). Interestingly,
we also observed for the first time a suggestive trend of
elevated levels of the polyamine cluster, especially the mi-
crobiota-derived N-acetylputrescine, at GW 10–13 among
women with GDM (P = 0.04; FDR 0.14), which is consis-
tent with previous observations of its positive associations
with obesity and diabetes among nonpregnant individuals
(36). Collectively, our data suggest that microbiota-derived
indole and polyamine metabolites could affect host glucose
homeostasis, and the role of interactions among the micro-
biome, metabolome, and host in the development of GDM
warrants further investigation.

Pyrimidines, as building blocks of DNA and RNA, are vi-
tal elements involved in a wide range of biologic functions,

including carbohydrate metabolism, and have been linked
to risk of diabetes and diabetic complications among non-
pregnant individuals (37). We detected elevated levels of
the pyrimidine nucleotide pathway (5,6-dihydrouracil, thy-
mine, uracil, and uridine) with uracil as the key metabolite
at both GW 10–13 and 16–19, although the significant
chemical enrichment persisted only at GW 16–19 after
FDR adjustment. Uracil is phosphorylated from uridine,
with thymidine and thymine as downstream products, the
dysregulation of which has been implicated in hyperglyce-
mia and diabetic endothelial dysfunction (38).

Levels of D-erythro-sphingosine, a derivative of ceram-
ides, in the amino alcohol pathway were also higher at GW
16–19 among women who later developed GDM. Despite
the lack of previous data among pregnant women, animal
data have demonstrated that high-fat diet–induced ceram-
ides and sphingosine are implicated in insulin resistance via
stimulation of plasminogen activator inhibitor-1 (39), pro-
viding insights into the biologic plausibility of D-erythro-
sphingosine upregulation in GDM development.

We also observed inverse associations of the amide path-
way with allantoic acid as the key metabolite at GW 10–16
with GDM. Allantoic acid is hydrolyzed from allantoin,
which is the more soluble final product of purine catabolism
in nonprimates (vs. uric acid in humans). Notably, allantoic
acid has been suggested as a potential biomarker for dietary
intake of soybean plants, which in turn has been linked to a
lower risk of GDM among Japanese women (40). Further in-
vestigation of metabolomic markers of dietary intake and
their roles in the pathophysiology of GDM is warranted.

Consistent with previous findings, among both pregnant
and nonpregnant individuals, our findings extended the lit-
erature by confirming several identified metabolic pathways
and specific metabolites in association with GDM risk. Puri-
none metabolism was the only pathway (hypoxanthine, uric
acid, and xanthine) at both GW 10–13 and 16–19 positively
associated with GDM after FDR adjustment. As the end
product of purinone metabolism, uric acid is synthesized by
oxidation of hypoxanthine and xanthine via xanthine oxido-
reductase, which can be a source of reactive oxygen species.
Our observation is consistent with previous data linking
hyperuricemia in early pregnancy to increased risk of
GDM (41). Hexoses, a group of 6-carbon monosaccharides,
including glucose, fructose, fucose, and levoglucosan, were
elevated at GW 16–19 prior to GDM diagnosis. Because
glucose is the preferred metabolic substrate during
embryonic development, carbohydrate metabolism
precedes amino acid and lipid metabolism in most cir-
cumstances. The elevated levels of hexoses in mid-
pregnancy may indicate perturbations in carbohydrate
metabolism but may also suggest dysregulation in ami-
no acid or lipid metabolism. Indeed, we observed upre-
gulation of a broad spectrum of amino acids, especially
in mid-pregnancy, among women with GDM, suggesting
that glucagon-regulated amino acid catabolism may be at-
tenuated. In particular, we observed positive associations of

Table 2—External validation of predictive multimetabolite
panels at GW 10–13 and 16–19 beyond conventional risk
factors for GDM using LASSO regression algorithms

Validation set 1* Validation set 2†

GW 10–13
Model 1‡ 0.731 (0.634–0.827) 0.742 (0.639–0.846)
Model 2§ 0.771 (0.693–0.850) 0.907 (0.850–0.965)
Model 3jj 0.869 (0.800–0.937) 0.972 (0.940–0.999)
Pmodel 2 vs. 1¶ 0.062 0.002
Pmodel 3 vs. 1¶ 0.001 <0.001

GW 16–19
Model 1‡ 0.719 (0.649–0.789) NA
Model 2# 0.774 (0.682–0.867) NA
Model 3jj 0.830 (0.743–0.917) NA
Pmodel 2 vs. 1¶ 0.017 NA
Pmodel 3 vs. 1¶ 0.007 NA

Data are given as AUC (95% CI) unless otherwise indicated.
NA, not applicable. *Validation set 1 was a random sample of
42 GDM and 372 non-GDM women in the PETALS cohort.
†Validation set 2 was a case-control study of 30 GDM cases
and 60 non-GDM controls in the GLOW randomized con-
trolled trial. ‡Model 1 included conventional risk factors: age,
race/ethnicity, family history of diabetes, chronic hyperten-
sion, history of gestational diabetes, prepregnancy BMI, ges-
tational age at blood collection, and serum glucose levels.
§Model 2 included a 17-metabolite panel selected by LASSO
regression at GW 10–13 (1,5-anhydroglucitol, 1-monoolein,
2,3-dihydroxybutanoic acid, 2-hydroxyglutaric acid, 5,6-dihy-
drouracil, alanine, a-aminoadipic acid, b-alanine, b-sitosterol,
cellobiose, citramalic acid, citric acid, lactic acid, N-acetylpu-
trescine, b-tocopherol, uric acid, and urea). jjModel 3 includ-
ed conventional risk factors in model 1 and metabolites in
model 2. ¶P value was obtained by DeLong test. #Model 2 in-
cluded a 13-metabolite panel selected by LASSO regression
at GW 16–19 (1,5-anhydroglucitol, 2,3-dihydroxybutanoic acid,
2-aminobutyric acid, a-aminoadipic acid, arachidic acid, aspartic
acid, citric acid, hydrocinnamic acid, lauric acid, oleic acid,
quinic acid, uracil, and uridine).
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glutamine (the preeminent gluconeogenic amino acid) and
citrulline (80% derived in the intestine from glutamine) at
GW 16–19 with GDM risk. Consistently, data among pa-
tients with type 2 diabetes have illustrated reduction in glu-
tamine oxidation, likely resulting from competition with
glucose and fatty acids as fuels, increased gluconeogenesis,
and release of amino acids from tissues other than skeletal
muscle (42).

While the univariate and multivariate analyses focused
on associations of individual or clusters of metabolites with
GDM risk to elucidate the underlying pathophysiology, ma-
chine learning–based prediction was aiming to identify sig-
nificant markers from among all known metabolites to
achieve maximum predictability. The multimetabolite panels
at GW 10–13 and 16–19 had similar predictability for GDM
risk, offering flexibility in the examination window to reduce
potential clinic and participant burden. A few metabolites
were commonly selected at the two gestational periods, in-
cluding 1,5-anhydroglucitol, 2,3-dihydroxybutanoic acid,
a-aminoadipic acid, and nucleotides and catabolism deriva-
tives (i.e., uric acid, uracil, uridine, and urea). Consistently,
previous studies among nonpregnant populations have
shown that 1,5-anhydroglucitol is a validated marker of
short-term glycemic control (43) and a-aminoadipic acid is
a marker for diabetes up to 12 years before disease onset
(44). Whether these biomarkers even in the preconception
period could predict risk of GDM warrants further investi-
gation. Notably, across the various methods, nucleotide me-
tabolites were significantly associated with GDM risk but
also selected as predictive markers, highlighting their essen-
tial pathophysiologic role in glucose metabolism and predic-
tive value in GDM risk (45).

Strengths of our study include its methodologic rigor.
In a clinical setting with universal GDM screening, we
used a standardized clinical diagnosis of GDM based on
the Carpenter-Coustan criteria in both the discovery and
validation sets to minimize case-control misclassification
and clinical heterogeneity and improve generalizability of
our findings. We profiled untargeted metabolomics in ear-
ly to mid-pregnancy, ensuring temporal precedence of me-
tabolomic profiling to GDM diagnosis in late pregnancy.
Furthermore, fasting serum samples guaranteed little var-
iability in metabolomic measurement because of the fast-
ing status. Importantly, we performed rigorous internal
cross-validation and external validation in two different
sets to minimize the impact of data overfitting and selec-
tion bias on predictive multimetabolite panels, which was
lacking in most previous studies. Some potential limita-
tions of our study merit discussion. Despite the signifi-
cant prospective associations observed between metabolic
pathways and specific metabolites and risk of GDM, we
cannot determine whether these metabolites were causal
factors for GDM or markers of a prediagnostic pathophys-
iologic state. Functional studies focusing on targeted path-
ways and metabolites are warranted to shed further light on
the mechanisms underlying the development of GDM. Our

sample size was relatively modest compared with metabolo-
mic studies among nonpregnant populations. However, giv-
en the unique challenges in recruitment, retention, and
participant burden (especially for fasting blood collection)
within a relatively short, intense, and stressful time period
of pregnancy, our study is among the largest prospective
and longitudinal studies of fasting serum untargeted metab-
olomics from early to mid-pregnancy in relation to risk of
GDM. Confirmation of our findings in other pregnant popu-
lations is warranted.

In conclusion, in this prospective test and validation
study, we observed in early pregnancy a subclinical dys-
metabolism among women who subsequently progressed
to GDM in late pregnancy, compared with their euglyce-
mic counterparts. At GW 10–13 and 16–19, we detected
elevated levels of microbiota-derived indole metabolites,
purinone and pyrimidine nucleotides, sphingosines, hexo-
ses, and a broad range of amino acid pathways, in addi-
tion to lower levels of allantoic acid with the primarily
exogenous source from soybean products, in association
with risk of GDM. The developed and validated multime-
tabolite panels may inform early risk assessment of GDM
and facilitate early prevention and treatment of GDM and
its complications. Additional studies are warranted to in-
vestigate whether these metabolites may serve as early
preventive or intervention targets. Future work focusing
on identifying potentially modifiable upstream risk factors
(e.g., dietary factors related to interactions among micro-
biome, metabolome, and host; physical activity; and other
behavioral factors) for these key metabolomic markers for
GDM is warranted.
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