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Abstract

The connectivity of vehicular ad hoc networks (VANets) can be affected by the special

distribution patterns, usually dependent and non-uniform, of vehicles in a transportation net-

work. In this study, we introduce a new framework for computing the connectivity in a VANet

for continuous distribution patterns of communication nodes on a line in a transportation net-

work. Such distribution patterns can be estimated from traffic densities obtained through loop

detectors or other detectors. When communication nodes follow homogeneous Poisson distri-

butions, we obtain a new closed-form solution to connectivity; when distribution patterns of

communication nodes are given by spatial renewal processes, we derive an approximate closed-

form solution to the connectivity; and when communication nodes follow non-homogeneous

Poisson distributions, we propose a recursive model of connectivity. For a shock-wave traffic,

we demonstrate the consistency between analytical results with those simulated with ns-2, a
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communication simulator. With the developed models, we also discuss the impacts on con-

nectivity of road-side stations and different distribution patterns of vehicles. Given continuous

traffic conditions, the connectivity model could be helpful for designing routing protocols in

VANets and implementing vehicle-infrastructure integration systems. Limitations and future

research related to this study are discussed in the conclusion section.

Keywords: Vehicular ad hoc networks; Inter-vehicle communications; Instantaneous connec-

tivity; Traffic density; Homogeneous Poisson processes; Renewal processes; Non-homogeneous

Poisson processes

1 Introduction

Rapid developments in various frontiers of telecommunications and information technologies could

enable the development of next-generation Intelligent Transportation Systems (ITS) that rely on

inter-vehicle communications (IVC) to disseminate time-critical and location-based traffic infor-

mation. In 2004, US Department of Transportation initiated efforts in developing Vehicle In-

frastructure Integration (VII) systems (USDOT, 2004; Dong et al., 2006). In a VII system or a

Vehicular Ad hoc Network (VANet) shown in Figure 1, information can be exchanged among

IVC-enabled vehicles, traffic management centers, various elements of road infrastructure includ-

ing traffic signals, message signs, bus stops, and other safety hardware. If we call both IVC-enabled

vehicles and road-side stations as nodes, only a portion of the vehicles are nodes in a transporta-

tion network. Compared with existing centralized transportation information systems, IVC-based

systems are less costly to deploy and use and more resilient to natural disasters. However, we are

also facing many challenges for developing such systems (Blum et al., 2004).

As in other mobile ad hoc networks, multihop connectivity is a fundamental performance mea-

sure of VANets. Estimating connectivity a priori is essential for determining specifications of

appropriate communication devices, routing protocols, database management schemes, and the
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range of effective applications. In the literature, there have been extensive studies on multihop

connectivity of various types of radio networks. Studied radio networks can be one-dimensional

(Cheng and Robertazzi, 1989; Piret, 1991) or two-dimensional (Philips et al., 1989; Gupta and Ku-

mar, 1998; Desai and Manjunath, 2002). Research methodologies include theoretical analysis of

asymptotic connectivity (Dousse et al., 2002) based on percolation theory (Gilbert, 1961; Meester

and Roy, 1996) as well as Monte Carlo simulations (Tang et al., 2003). Performance measures of

connectivity include expected propagation distance (Cheng and Robertazzi, 1989), the probabil-

ity for having at least one communication path between two nodes (Hartenstein et al., 2001), the

k-connectivity (Penrose, 1999; Bettstetter, 2002), or the critical transmission range for asymptotic

cases (Philips et al., 1989; Piret, 1991; Gupta and Kumar, 1998).

There have also been some studies of connectivity properties of VANets in recent years. In

(Hartenstein et al., 2001), the probability of establishing a communication path between two nodes

are studied for mobile bidirectional traffic with simulations. In (Wu et al., 2004), an analytical

model was proposed for estimating connectivity for vehicles following a Poisson distribution and

moving randomly and independently. In (Wu et al., 2005; Yang and Recker, 2005), the propagation

distance was studied also with traffic simulations. In (Jin and Recker, 2006, 2010, 2007), the in-

stantaneous success rate and connectivity of VANets were modeled by considering most-forwarded

within-range (MFR) information propagation chains when vehicles’ positions are given in a uni-

form or non-uniform traffic stream. In (Wang, 2007), instantaneous information propagation was

modeled as a Markov chain in a uniform traffic stream where vehicles’ positions follow a Poisson

distribution. In (Ukkusuri and Du, 2008), the geometric connectivity of one-dimensional VANets

is studied for positions of vehicles following independent distributions but with some disturbance.

In (Wang et al., 2009), a convolution connectivity model was developed for a general distribution

of the spacing between two consecutive vehicles. In (Jin and Recker, 2009), a connectivity model

was developed for the connectivity between two nodes, given arbitrary locations of vehicles and

probabilities for vehicles to nodes. In (Schönhof et al., 2006), connectivity of VANets for dynamic,
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uniform traffic is studied while store-and-forward information propagation is considered.

Indeed, connectivity and other performance of VANets are very hard to estimate due to the high

mobility of communication nodes and signal interferences. In this study, we focus on another issue,

namely, the non-uniform distribution patterns of vehicles and nodes in transportation networks. As

we know, if vehicles’ positions are assumed to follow a homogeneous Poisson distribution, then

vehicles’ movements are independent, and the traffic density is location-independent and uniform.

However, on a line in a transportation network, e.g., the red line shown in Figure 1, on which there

can be highways, arterial roads, surface streets, and other kinds of roadways, the density of vehicles

and, therefore, the density of nodes, can vary dramatically due to driving behaviors and restrictions

of network geometry. For examples, with higher travel demands and more lanes, freeways usually

carry much higher density of vehicles than local streets; around a lane-drop or merging area, traffic

density is usually significantly higher in the upstream section with the formation of queues; when a

shock wave forms (Lighthill and Whitham, 1955), traffic density is higher in the downstream part;

vehicles tend to form clusters in sparse traffic; and traffic signals can cause gaps between vehicle

platoons. Therefore, it is important to consider the impacts of the special distribution patterns and

mobility patterns of vehicles in transportation networks when estimating the connectivity between

two nodes.

In a road network, traffic patterns can be represented by discrete vehicle positions as in car-

following models (Gazis et al., 1961), distribution patterns of the spacings between two consecu-

tive vehicles (Haight, 1963), or continuous densities as in kinematic wave models (Lighthill and

Whitham, 1955; Richards, 1956; Jin, 2003). In general, the distribution of communication nodes

on a road network is non-homogeneous and dynamic. To the best of our knowledge, there has

been no analytical model of connectivity that can incorporate general, dynamic traffic. To achieve

such a model, we believe that it is essential for us to understand stationary but general distributions

of nodes. This has been the major motivation of this study. With loop detectors, it is possible

to detect in real time continuous traffic conditions on a road network. For example, the PeMS
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project (CalTrans, 2010) can provide traffic densities, speeds, and flow-rates on most of California

freeways. Such traffic densities can be used to estimate the distribution pattern of communication

nodes, given market penetration rates.

AmbulancePolice car
Road-side station

Traffic signal

Ramp meter

Figure 1: An illustration of vehicular ad hoc networks

In this study, we present a framework for computing multihop connectivity along a commu-

nication path in a road network when the distribution patterns of communication nodes are given

by spatial Poisson processes or renewal processes (Grimmett and Stirzaker, 2001). That is, we are

interested in the probability of establishing a communication path between two nodes, given traffic

density and market penetration rate along the path. For example, we can use the developed model

to estimate the probability of establishing a communication path marked by red in Figure 1. An

efficient estimation of such connectivity is of practical importance: first, routing protocols would

be able to find better information propagation routes by taking routes with higher connectivity;

second, connectivity can be used as one metric when determining where and when to deploy sta-

tionary or mobile road-side stations. In our study, we are particularly interested in “instantaneous”

connectivity at any time instant. Roughly, instantaneous connectivity is determined by the num-

ber of communication nodes, their relative locations, and the transmission range of wireless units.

Here we denote location-dependent instantaneous traffic density by ρ(x), market penetration rate
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by µ(x), and node density by κ(x). Then we have that κ(x) = ρ(x)µ(x). In reality, it is possible

that both traffic density and market penetration rate of communication nodes are known at any

location, but the exact locations of equipped vehicles are usually unknown. Therefore, communi-

cation nodes follow random distributions with known, location-dependent densities. Note that, in

our study of instantaneous connectivity, vehicles of both directions along a communication path are

considered to have equivalent contributions. Also we do not differentiate lanes, since for an Amer-

ican standard lane of 12 feet (or 3.7 m) the lateral distances between vehicles on a bidirectional,

multilane freeway can be omitted for a Dedicated Short-Range Communication (DSRC) transmis-

sion range of up to 1000 m (FCC, 1999). That is, in our study, we consider a communication path

to be a line of communication nodes.

In this study, we will develop a model for the connectivity of VANets along a line of vehicles

in a transportation network. We omit the impacts of the mobility of nodes on the connectivity

and consider the instantaneous multihop connectivity as in (Jin and Recker, 2006, 2010, 2009).

Different from most existing studies, we do not assume either independent or uniform distributions

of nodes. Different from studies in (Jin and Recker, 2006, 2010, 2009), where the positions of

vehicles are discrete, we consider continuous distributions of vehicles, where either the distribution

function of spacings between two consecutive nodes or the location-dependent density of nodes

are given. We will first develop relationships between the end node probability, which is the

probability for a node to be the last or end node of a communication path starting from a sender,

and connectivity, which is the probability for existing a communication path between a node and

the sender. Then we can derive a simplified model for computing connectivity between two nodes.

With the model, we will be able to discuss how the distribution patterns of vehicles and traffic

dynamics can affect connectivity properties of an IVC system. Although the results are more

general since the distribution patterns of communication nodes are arbitrary, the results can also be

applied for the case when communication nodes follow Poisson distributions.

The rest of the paper is organized as follows. In Section 2, we give a detailed explanation of the
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conceptual framework and definitions for our new model and derive an analytical recursive model

of connectivity for general traffic with arbitrary distribution of nodes. In Section 3, we study con-

nectivity of VANets when the communication nodes follow homogeneous Poisson distributions.

In Section 4, when communication nodes follow a renewal process, we approximate the renewal

process by a Poisson process and obtain a closed formula for connectivity of VANets. In Section 5,

when communication nodes follow non-homogeneous Poisson processes when location-dependent

densities are given, we obtain a recursive formula for computing connectivity. In Section 6, we

compare the analytical results with those of ns-2 simulations for a shock-wave traffic scenario. In

Section 7, we make some conclusions.

2 A recursive model of connectivity for general traffic

We consider vehicles and road-side stations along a line in a transportation network and assume

that information propagates in the direction of x-axis. At a time instant, we take a snap-shot of

traffic flow on a line and analyze IVC information propagation along the line. The continuous pat-

terns of nodes in spacing distributions or densities, obtained through observations or simulations,

can be arbitrarily uniform or non-uniform. Here we assume that all nodes have the same DSRC

transmission range r and apply a simple communication model, in which two nodes can commu-

nicate with each other when they are within each other’s transmission range, and do not consider

the effect of signal interferences (Gupta and Kumar, 2000).

2.1 Model derivation

For the information propagation process starting from the sender at x = x0 to any location x ≥ x0,

we denote the farthest reach of a message through multihop relays by a random variable X . That is,

the message can only travel as far as X after multiple hops. Let p(x0,x) (x > x0) be the probability

density function of the farthest reach of a message sending from x0; i.e., p(x0,x) = Prob(X = x).
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Therefore, p(x0,x)∆x can be considered as the end node probability in [x,x+∆x) as in (Jin and

Recker, 2009). If the probability that there does not exist another node within the transmission

range of the sender is P(x0), then the probability density function on the whole road, p̄(x0,x), has

a spike (or discrete component) at x0 of height P(x0). Thus p̄(x0,x) is a mixed probability density

function (Haight, 1963)

p̄(x0,x) =

 P(x0)δ (x− x0)+ p(x0,x), x≥ x0,

0, x < x0,

where δ (x− x0) is a Dirac function. Note that p̄(x0,x) is 0 for x < x0, since we do not consider

information propagation in the opposite direction of x-axis. If P(x0,x) = Prob(X ≤ x) is the cu-

mulative distribution of the farthest reach, then

P(x0,x) =
∫ x

−∞

p̄(x0,y)dy =

 P(x0)+
∫ x

y=x0
p(x0,y)dy, x≥ x0,

0, x < x0.
(1)

Thus P(x0,x0) = P(x0), and P(x0,x) can be considered as the probability for a message to cover a

region of [x0,x]. Therefore, S(x0,x) = Prob(X > x) = 1−P(x0,x) is the success rate for a message

to travel beyond x.

Let C(x0,x) be the connectivity between two nodes at x0 and x, i.e., the probability for a mes-

sage to reach a receiver at x. Then we have that

C(x0,x) = 1−P(x0,x− r) = S(x0,x− r), (2)

since two nodes at x0 and x are connected if and only if a message can travel beyond x− r from x0.

Obviously, C(x0,x) = 1 when x ∈ [x0,x0 + r), but C(x0,x0 + r) = 1−P(x0,x0) = 1−P(x0). Thus

C(x0,x) is not continuous at x0 + r. From (2) we have for x > x0

p(x0,x) = −dC(x0,x+ r)
dx

. (3)

We denote the probability for existing at least one node in [x,x+∆x] by P1([x,x+∆x]) and the

probability for existing no node in (x+∆x,x+ r+∆x] by P0((x+∆x,x+ r+∆x]). The farthest
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reach of a message is in [x,x+∆x] if and only if (i) there exists at least one node in [x,x+∆x], (ii)

the node is connected to the sender, and (iii) there is no node in (x+∆x,x+ r+∆x]. Since all these

three events are independent, the probability for the farthest reach in [x,x+∆x] is

p̄(x0,x)∆x = P1([x,x+∆x])C(x0,x)P0((x+∆x,x+ r+∆x]). (4)

Letting ∆x→ 0, we thus have

p̄(x0,x) = C(x0,x)P0((x,x+ r]) lim
∆x→0

P1([x,x+∆x])
∆x

= C(x0,x)λ (x,r), (5)

where λ (x,r) = P0((x,x+ r]) lim∆x→0
P1([x,x+∆x])

∆x . In particular, we have

λ (x0,r) = P0((x0,x0 + r])δ (x− x0), (6)

since the sender is always equipped and P1([x0,x0 +∆x]) = 1. From (1) we have

P(x0) = P0((x0,x0 + r]). (7)

Thus we have λ (x0,r) = P(x0)δ (x− x0).

Combining (1)-(2) and (5), we have the following models of connectivity and probability den-

sity function of farthest reach

C(x0,x) =

 1−
∫ x−r

y=x0
C(x0,y)λ (y,r)dy, x≥ x0 + r,

1, x < x0 + r.
(8)

p̄(x0,x) =

 (1−
∫ x−r

y=x0
p̄(x0,y)dy)λ (x,r), x≥ x0,

0, x < x0.
(9)

In particular, when x = x0 + r, we have

C(x0,x0 + r) = 1−
∫ x0

y=x0

C(x0,y)λ (y,r)dy.

From (6) and (7), we have C(x0,x0 + r) = 1−P(x0), which is consistent with (2). In this model,

λ (x,r) depends on the distribution of nodes along a line and are determined by traffic conditions
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and the market penetration of equipped vehicles. Further, both equations are recursive, in the sense

that both C(x0,x) and p(x0,x) can be computed from the corresponding quantities in [x0,x− r].

In addition, from (3) and (5), we can obtain a first-order linear delay differential equation for

x− r > x0

dC(x0,x)
dx

= −λ (x− r,r)C(x0,x− r). (10)

From (8) and (9) we can see that the connectivity between the sender at x0 and a receiver

at x only depends on the distribution of nodes in [x0,x], and p(x0,x) depends on the distribution

of nodes in [x0,x + r]. In addition, C(x0,x) is non-increasing with x, but p̄(x0,x) may not be.

The connectivity function is symmetric with respect to the information propagation direction; i.e.,

C(x0,x) = C(x,x0).

2.2 Improving connectivity with road-side stations

In VANets, as shown in Figure 1, stationary road-side stations can be installed by transportation

authorities for the purpose of collecting and disseminating traffic information or by other parties

for commercial or other purposes. In emergency situations, police cars, ambulance, and other

emergency vehicles could be deployed along a road and serve as road-side stations. Here we

assume that the road-side stations have the same communication units as vehicles and are not inter-

connected through wired or wireless communications other than inter-vehicle communications.

This assumption is particularly true when road-side stations are also deployed in an ad hoc fashion.

When road-side stations are inter-connected, the results are quite straightforward.

Theorem 2.1 If there is a road side station at x = x1 ∈ (x0,x2); i.e., if λ (x1,r) = P0((x1,x1 +

r])δ (x− x1), then

C(x0,x2) = C(x0,x1)C(x1,x2). (11)
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Proof. If x2 < x0+ r, it is obvious, since C(x0,x2) = C(x0,x1) = C(x1,x2) = 1. For x2 ≥ x0+ r, we

have from (8)

C(x0,x2) = 1−
∫ x1−r

y=x0

C(x0,y)λ (y,r)dy

−
∫ x−1

y=x1−r
C(x0,y)λ (y,r)dy

−
∫ x2−r

y=x1

C(x0,y)λ (y,r)dy.

Since we can always find a node, i.e., the road-side station, in (y,y + r], λ (y,r) = P0((y,y +

r]) lim∆x→0
P1([y,y+∆x])

∆x = 0 for y ∈ [x1− r,x1), we have

C(x0,x2) = C(x0,x1)−
∫ x2−r

y=x1

C(x0,y)λ (y,r)dy.

When x2 < x1 + r, from the equation above we have C(x0,x2) = C(x0,x1). Since C(x1,x2) = 1

for x2 < x1 + r, we have C(x0,x2) = C(x0,x1)C(x1,x2). For x2 ≥ x1 + r, assuming that C(x0,y) =

C(x0,x1)C(x1,y) for y ∈ [x1,x2− r], from the equation above we have

C(x0,x2) = C(x0,x1)−
∫ x2−r

y=x1

C(x0,x1)C(x1,y)λ (y,r)dy

= C(x0,x1)(1−
∫ x2−r

y=x1

C(x1,y)λ (y,r)dy)

= C(x0,x1)C(x1,x2).

By mathematical induction, we conclude that (11) is always true. �

For given distributions of nodes, i.e., λ (x,r) for x ∈ [x0,x2], the solution of the following opti-

mization problem

max
x∈[x0,x2]

C(x0,x)C(x,x2)

will yield the best location for deploying a road-side station along [x0,x2]. For more than one road-

side station, we can also formulate the problem similarly. Thus, the solution of the optimization

problem will determine the best locations of deploying emergency vehicles when disasters occur.
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3 Homogeneous Poisson distributions of nodes

In this section, we consider the case when communication nodes follow spatial Poisson distribu-

tions, either homogeneous or non-homogeneous. Here we assume that the sender is at x0 = 0 and

simply denote P0 =P(x0), C(x) =C(x0,x), P(x) =P(x0,x), p(x) = p(x0,x), and p̄(x) = p̄(x0,x). If

nodes follow the Poisson distribution with a constant node density κ , then the nodes are uniformly

and independently distributed on a line, and the spacing between two consecutive nodes follows a

negative exponential distribution. Note that κ = ρ(x)µ(x), where ρ(x) is the instantaneous traffic

densities, and µ(x) the instantaneous market penetration rates. Thus we can have varying traffic

densities and market penetration rates but constant node densities.

3.1 A closed-form solution

When the distributions of communication nodes are given by a homogeneous Poisson process with

a location-independent average density κ , we have that P0((x,x+r])= e−κr, and lim∆x→0
P1([x,x+∆x])

∆x =

κ . Therefore, P0 = e−κr, and λ (x,r)≡ λ (r) = κe−κr. That is λ (x,r) is location-independent with

homogeneous distributions of communication nodes. Then the recursive connectivity model (8)

can be written as

C(x) =


1, x < r,

C(r)≡ 1−P0, x = r,

C(r)−λ (r)
∫ x−r

y=0+ C(y)dy, x > r.

(12)

Theorem 3.1 We have that for a natural number n≥ 1

C(x) =

 1, x ∈ [0,r),

∑
n
m=0 C(mr) (−λ (r)(x−nr))n−m

(n−m)! , x ∈ [nr,(n+1)r],n = 1,2, · · ·
(13)

The proof of this theorem is given in Appendix A. The derivation of (13) is based on the

observation of (12) that C(x) is constant in [0,r), linear in [r,2r), quadratic in [2r,3r), and so on.
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Note that for x ∈ [0,r), we can also have C(x) = ∑
n
m=0 C(mr) (−λ (r)(x−nr))n−m

(n−m)! with n = 0, but we

have it separately to emphasize that there is a discontinuity at x = r. That is, C(x) is continuous at

any x > r.

From (13), in particular, we have C(0) = 1 and

C((n+1)r) =

 1−P0, n = 0,

∑
n
m=0 C(mr) (−λ (r)r)n−m

(n−m)! , n≥ 1.
(14)

=

 1−P0, n = 0,

∑
n
m=0 C((n−m)r) (−λ (r)r)m

m! , n≥ 1.

It is straightforward to show that (13) is equivalent to the closed-form solution in (Dousse et al.,

2002). Also it can be shown that C((n+ 1)r) ≤ C(nr) and C(x) ∈ [C((n+ 1)r),C(nr)] for x ∈

[nr,(n+1)r].

3.2 Properties

From (10) we obtain for x > r

dC(x)
dx

= −p(x− r) =−λ (r)C(x− r). (15)

According to (Dousse et al., 2002), we have for x≥ 2r

C(r)e−(x−2r)λ (r)−λ (r)≤ C(x)≤ C(r)e−(x−r)λ (r). (16)

Here we can study the behavior of connectivity by assuming the following critical transmission

range

rc = αlog(xκ)/κ, (17)

where α > 0. That is, when a transmission range r is greater than rc, then the VANet along the

traffic stream is totally connected; when r is smaller than rc, the VANet is not connected. Then
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λ (rc) = κ(xκ)−α , C(rc) = 1− (xκ)−α , and

C(rc)e−(x−2r)κ(xκ)−α

−κ(xκ)−α ≤ C(x)≤ C(rc)e−(x−r)κ(xκ)−α

.

For fixed κ and x→ ∞, we have

lim
x→∞

C(rc)e−(x−2r)κ(xκ)−α

−κ(xκ)−α =

lim
x→∞

C(rc)e−(x−r)κ(xκ)−α

=

 1, α > 1,

0, α < 1.

Therefore,

lim
x→∞

C(x) =

 1, α > 1,

0, α < 1,

which is consistent with the results in (Piret, 1991). For fixed x and κ→∞, we have similar results.

In (Gupta and Kumar, 1998), a less strict bound on rc for two-dimensional wireless networks and

κ → ∞ was presented, and it is as expected since better connectivity can be achieved in a two-

dimensional network.

From (13) and (2), we have the cumulative distribution of farthest reach as x ∈ [(n−1)r,nr]

P(x) = 1−
n

∑
m=0

C(mr)
(−λ (r)(x+ r−nr))n−m

(n−m)!
. (18)

Further from (5) and (15), we have n = 1,2, · · ·

p(x) = λ (r)C(x) =

 λ (r), x ∈ (0,r),

λ (r)∑
n
m=0 C(mr) (−λ (r)(x−nr))n−m

(n−m)! , x ∈ [nr,(n+1)r].

Then the average distance for information propagation along an infinitely long traffic stream is

E(X) =
∫

∞

x=0
p(x)xdx =−

∫
∞

x=0
xdC(x+ r)

= −xC(x+ r)|∞0 +
∫

∞

x=0
C(x+ r)dx

=
∫

∞

x=0
C(x+ r)dx =−C(x+2r)

λ (r)
|∞x=0

=
C(2r)
λ (r)

=
C(r)
λ (r)

− r, (19)
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according to (15) and (14). Therefore,

E(X) =
eκr−1

κ
− r.

Similarly, we can get the variance of the information propagation distance as

V (X) = E(X2)− [E(X)]2 =
2

λ (r)2C(3r)− [E(x)]2 =
e2κr−2κreκr−1

κ2 .

Both results are consistent with those in (Wang, 2007).

In Figure 2, we show the impact of the location of a road-side station on the connectivity

between a sender and a receiver which are 10 km away with κ = 4 nodes/km and r = 1 km. Here

the connectivity is computed with (13) and (11). From the figure we can see that the best locations

of the road-side station are just within the transmission range of either the sender or the receiver.

Here the discontinuity in the connectivity curve is caused by that in C(x) in (13) at x = r.

4 An approximate connectivity model for renewal processes of

communication nodes

When the distribution patterns of communication nodes are governed by renewal processes, we de-

note the spacing between two communication consecutive nodes by a random variable S. Let f (s)

be the probability density function of S, so that F(s) = Prob(S ≤ s) is the cumulative distribution

of the spacing. As we know, on a multilane road, s ∈ [0,∞). In this case, the distribution of nodes

is still location-independent, but may lead to non-uniform traffic density.

4.1 A convolution model

For any spacing distribution function f (s), we have for x ≥ r (Dousse et al., 2002; Wang et al.,

2009)

C(x) =
∫ x

x−r
C(y) f (x− y)dy =

∫ r

0
C(x− s) f (s)ds. (20)
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Figure 2: Impact of the location of a road-side station

This yields C(r) =
∫ r

0 f (s)ds, and

d
dx

C(x) =
∫ r

0

d
dx

C(x− s) f (s)ds =−
∫ r

0
f (s)dC(x− s)

= − f (s)C(x− s)|r0 +
∫ r

0
C(x− s) f ′(s)ds

= − f (r)C(x− r)+ f (0)C(x)+
∫ r

0
C(x− s) f ′(s)ds

If we can still apply the recursive model (8) with a location-independent λ (r), then we have

the following:

C(x) =


1, x < r,

C(r)≡ 1−P0 =
∫ r

0 f (s)ds, x = r,

C(r)−λ (r)
∫ x−r

y=0+ C(y)dy, x > r,

(21)

and d
dx

C(x) =−λ (r)C(x− r) for x > r, which leads to d
dx

C(x)|r+ =−λ (r). For f (s) = κ2e−κss,
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we have f (0) = 0, and d
dx

C(x)|r+ =− f (r)C(0)+ f (r) = 0. In addition, lim∆x→0
P1([x,x+∆x])

∆x = 0.

Therefore, f (r) = 0, and we cannot obtain a recursive formulation as in (21).

4.2 An approximate closed-form solution

We derive an approximate solution of (20) in the form of (21) and choose λ (r) such that the average

information propagation distance is the same. From (19), we have

E(x) =

∫ r
0 f (s)ds

λ (r)
− r.

The average information propagation distance for (20) is (Wang et al., 2009)

E(x) =

∫ r
0 s f (s)ds

1−
∫ r

0 f (s)ds
.

Therefore, we choose

λ (r) =

∫ r
0 f (s)ds(1−

∫ r
0 f (s)ds)

r− r
∫ r

0 f (s)ds+
∫ r

0 s f (s)ds
. (22)

Then the closed-form solution of (21) is the same as in (13) with λ (r) given in (22).

When f (s) = κ2e−κss, r = 1 km, and κ = 5.8 nodes/km, the results of the connectivity at x

obtained by the accurate model in (20) and the approximate model in (13) with (22) are shown in

Figure 3, from which we can see the approximate model is quite accurate.

5 Non-homogeneous Poisson distributions of nodes

In a continuous traffic flow theory, one can track the changes in density ρ(x, t) at location x and time

t. Further, if we assume that the probability for vehicles to be equipped as µ(x, t), then the density

of nodes is κ(x) = ρ(x)µ(x), where time t is omitted for instantaneous information propagation in

a continuous traffic stream. In this case, the distribution patterns of communication nodes follow a
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Figure 3: Accurate and approximate connectivity computed from (20) and (14), respectively

non-homogeneous Poisson process with location-dependent densities. From the definition of κ(x),

we can see that

κ(x) = lim
∆x→0

P1([x,x+∆x])
∆x

. (23)

That is, κ(x)∆x is the probability for finding at least one equipped vehicle in [x,x+∆x]. Since the

sender is at x = x0 and always equipped, we have a spike at x = x0 and

κ̄(x) = δ (x− x0)+κ(x).

5.1 A recursive model

For such a continuous traffic stream, we do not have a location-independent spacing distribution

function and thus cannot use the convolution formulation in (20). However, since the probability
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for existing no node in (x+,x+ r] is P0((x+,x+ r]) = e−
∫ x+r

x+ κ(y)dy, we obtain a recursive model

in (8) and the differential equation in (10) with

λ (x,r) = κ(x)e−
∫ x+r

x+ κ(y)dy. (24)

The correctness of the model (8) with (24) can be proved with the discrete model developed in (Jin

and Recker, 2009) as follows. We approximate κ(x) with a piece-wise constant function as

κ̄(x) =

 δ (x− x0), x = x0

κi ≡
∫ x0+i∆x

x0+(i−1)∆x κ(x)dx, x− x0 ∈ ((i−1)∆x, i∆x]

Then in cell i for x ∈ (x0 + (i− 1)∆x,x0 + i∆x], where ∆x = (x− x0)/m, we place vehicles at

xi, j = x0+(i−1)∆x+ j−1/2
n ∆x for j = 1, · · · ,n, and each vehicle has the probability of µi =

κi∆x
n to

be a node. For this discrete traffic stream, we can apply the results in (Jin and Recker, 2009) and

obtain the connectivity of Cd(x0,x;m,n). Then C(x0,x) = limm,n→∞ Cd(x0,x;m,n) satisfies (8) and

(24).

We can compute C(x0,x) numerically as follows. We divide [x0,x] into cells with a length of

∆x = r/n and denote Ci ≡ C(x0,xi) with xi = x0 + i∆x. We compute λ (xi,r) in (24) as

λ (xi,r) = κ(xi)e
−∑

i+n
j=i+1 κ(x j)∆x.

In particular, λ (x0,r) = e−∑
n
j=1 κ(x j)∆x. Further we can compute Ci from (8) for i≥ n

Ci =


1, i < n,

1−λ (x0,r), i = n,

Ci−1−Ci−nλ (xi−n,r)∆x, i > n.

5.2 Impacts of node distributions on connectivity

In this subsection, we consider a road section with a length of 10 km, on which a sender and

a receiver are at the boundaries. The average density of the road section is ρ , and vehicles are
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uniformly distributed with density ρ1 and ρ2 on the first and second halves of the road, respectively.

Thus, ρ1+ρ2 = 2ρ . When the probability for all vehicles inside the road section to be equipped is

the same as µ = 0.1, and the transmission range for all nodes is the same as r = 1 km, we have

κ(x) =

 ρ1µ, x ∈ [0,5],

ρ2µ, x ∈ (5,10].

When we divide a transmission range into n = 100 cells, the connectivity between the sender

and the receiver is shown in Figure 4, where the average densities, ρ , vary from 40 veh/km to 60

veh/km, and the densities in the first half, ρ1, vary from ρ

2 +1 to 3ρ

2 −1. From the figure, we can see

that, when the total number of nodes inside the road section is the same, the distribution patterns of

vehicles can significantly affect the connectivity, and the connectivity reaches its maximum when

ρ1 = ρ; i.e., when vehicles are uniformly distributed on the whole road section. In addition, we

can see that the connectivity is symmetric in ρ1. Here, we make the following conjecture: For the

same number of nodes between a sender and a receiver, when all nodes have the same transmission

range, then the connectivity between the sender and the receiver reaches its maximum when these

nodes are uniformly distributed between the sender and the receiver.

6 Instantaneous success rate in a shock-wave traffic

In this section, we apply the new modeling framework to estimate success rates of instantaneous

information propagation through a shock-wave traffic. Traffic dynamics are governed by the

Lighthill-Whitham-Richards (LWR) model(Lighthill and Whitham, 1955; Richards, 1956) and a

triangular fundamental diagram (Munjal et al., 1971; Haberman, 1977; Newell, 1993):

Q(ρ) = min{v f ρ,
1
4

v f (ρ j−ρ)},

where the free flow speed v f = 104 km/h, and jam density ρ j = 150 veh/km/lane. The speed-

density relation can be written as V (ρ) = Q(ρ)/ρ .
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Figure 4: Impacts of node distribution patterns on connectivity

Here we consider unidirectional traffic on a two-lane road, on which, the initial traffic density

on the road is (unit: veh/km)

ρ(x, t = 0) =

 60, x < 0;

80, x > 0.

Thus the initial speeds are (unit: km/h)

v(x, t = 0) =

 104, x < 0;

71.5, x > 0.

From the LWR model, we can see that a shock wave emanates from x = 0 and travels upstream at

a speed of vs =−26 km/h. Solution of traffic density is given by (unit: veh/km)

ρ(x, t) =

 60, x <−26t;

80, x >−26t.
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In this example, we assume that an information source travels with a vehicle initially at x0 =

−10 km. We can see that the information source meets the shock wave at tc = |x0|/(104+26) = 1
13

hr≈ 4.6 min. Then the trajectory of the information source is

x(t) =

 −10+104t, t < 1
13 hr,

−2+71.5(t− 1
13), t ≥ 1

13 hr.

If we denote s(t) as the distance between the shock wave interface and the information source, then

s(t) = −26t− x(t) =

 −130(t− 1
13), t < 1

13 hr,

−97.5(t− 1
13), t ≥ 1

13 hr.

Then at any time t, traffic density at the downstream direction of the information source is

ρ+(d(t)) =

 60, d(t)< s(t);

80, d(t)≥ s(t),

where d(t)≥ 0 is the absolute distance from a downstream point to the information source. Simi-

larly, traffic density at the upstream direction is

ρ−(d(t)) =

 80, d(t)<−s(t);

60, d(t)≥−s(t),

where d(t)≥ 0 is the absolute distance from an upstream point to the information source.

For this traffic scenario, we set ∆x= 0.01 km, market penetration rate µ = 0.1, and transmission

range r = 1 km. We then compute the success rate of instantaneous information propagation at any

time instant t with the formulas in Section 5.1 and (2). In Figure 5, we show the success rate

for the information to travel beyond a point in both upstream and downstream directions for t=0,

2.3, 4.6, and 9.9 min. In the figure, we also show the corresponding results simulated in ns-2 with

a flooding scheme. Details for the ns-2 simulations are discussed in (Jung et al., 2010). From

the figure, we can clearly see the impacts of the shock wave on information propagation: we can

achieve relatively higher success rates when information propagates in the downstream part of a
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Figure 5: Instantaneous success rate in a shock wave traffic: marked curves are obtained from ns-2

simulations in (Jung et al., 2010)

shock wave, where the traffic density is higher. Furthermore, from the figure, we can see that

theoretical results of connectivity can match the simulation results quite well, even though traffic

dynamics and signal interference are considered in ns-2 simulations. It is also as expected that, for

a longer distance of information propagation, the differences between theoretical and simulation

results get larger.

7 Conclusion

In this paper we presented a recursive model for the connectivity in a VANet with continuous

node distributions governed by Poisson or renewal processes and considered the improvement
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of connectivity by road-side stations. Given homogeneous Poisson distributions of nodes, we

discussed the asymptotic properties of the connectivity and obtained a closed-form formulation of

the connectivity. Given non-homogeneous Poisson distributions of nodes, we applied the recursive

model to study the impact of variations in node densities. Given renewal processes of nodes, we

showed that there does not exist an exact recursive model but presented an approximate solution.

With the developed models, we also discussed the impacts on connectivity of road-side stations

and different distribution patterns of vehicles. Results in Section 6 demonstrate that the developed

theoretical models can serve as a first-order estimation of connectivity in a realistic VANet, where

vehicles are mobile and signal transmissions interfere with each other. From this study, we can

clearly see that the instantaneous distribution patterns of vehicles on the road can have significant

impacts on connectivity and other performance of VANets. By incorporating the impacts of vehicle

distribution patterns, more efficient broadcasting schemes can be developed (Chen et al., 2010a,b).

In a traffic stream, the evolution of traffic density on a homogeneous road-link can be described

by the following LWR theory (Lighthill and Whitham, 1955; Richards, 1956)

∂ρ(x, t)
∂ t

+
∂Q(ρ(x, t))

∂x
= 0,

where Q(ρ(x, t)) is a unimodal flux-density relation, or a fundamental diagram. Thus we can also

study the dynamics of the instantaneous connectivity when we know the probability for vehicles

to be equipped, µ(x, t), such that the density of nodes κ(x, t) = ρ(x, t)µ(x, t). In addition, mobility

of vehicles can improve the connectivity of VANets (Grossglauser and Tse, 2002), and we will

be interested in studying the impact of traffic dynamics on the connectivity during a time interval.

The model could be used to develop more efficient communication routing protocols based on

connectivity estimations Yang et al. (2008) and design vehicle-infrastructure integration systems

Dong et al. (2006).

In the developed model, we assume that a traveler or system operator can have full information

on ρ(x), the traffic density, and µ(x), the probability that vehicles are equipped with wireless
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communication units, at x along a communication path. Such an assumption can be too strict in

reality. In the future, we will investigate how the accuracy in estimating traffic densities can impact

the estimation of connectivity.

The developed modeling framework also bears certain limitations. First, in this model, all

nodes are assumed to have the same transmission range; it will be interesting to check how hetero-

geneous transmission ranges would impact connectivity. Second, we omit the impacts of lateral

distances between vehicles on bidirectional, multilane roadways; this assumption may not be ac-

ceptable when transmission ranges are much smaller than 1000 m. Third, a very simple underlying

communication model is assumed for this study; i.e., two nodes are connected when they are within

the transmission range. But at the physical level the connectivity between two nodes is a random

process determined by transmission power, and at the MAC level communications between two

nodes may not be established due to signal contention and other interferences. In the future, we

will also be interested in studying how transportation network topology and vehicle mobility would

impact connectivity. In particular, in dynamic traffic flow, road-side stations, which can also store

and forward messages, could significantly improve VANet connectivity.
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Appendix A: Proof of Theorem 3.1

Proof. In the following we show that (13) satisfies (15). First, when x = nr for n = 1,2, · · ·, we

have

C(nr) =
n

∑
m=0

C(mr)
(−λ (r)(nr−nr))n−m

(n−m)!
= C(nr).

Thus the function C(x) is well-defined.

Second, when x > r, from (13) we have n = 1,2, · · ·

dC(x)
dx

= −λ (r)
n−1

∑
m=0

C(mr)
(−λ (r)(x−nr))n−m−1

(n−m−1)!
.

When n = 1, we have x ∈ (r,2r) and

dC(x)
dx

= −λ (r)C(0) =−λ (r)C(x− r).

When n = 2,3, · · ·, we have x≥ 2r and

dC(x)
dx

= −λ (r)
n−1

∑
m=0

C(mr)
(−λ (r)[(x− r)− (n−1)r])n−m−1

(n−m−1)!

= −λ (r)
n′

∑
m=0

C(mr)
(−λ (r)[(x− r)−n′r])n′−m

(n′−m)!
,

where n′ = 1,2, · · ·. Thus we have

dC(x)
dx

= −λ (r)C(x− r).

This is consistent with (15). �
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