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Risk and Aversion in the Integrated Assessment of Climate Change

1 Introduction

There is a wide consensus that climate change takes place today and, even more so,
that it will take place in the future. The precise changes and their socio-economic
consequences remain uncertain at least for several more decades. This paper analyzes
how uncertainty affects the social cost of carbon and the optimal abatement rate in
the integrated assessment of climate change. Our main contribution is to disentangle
the effects of risk, risk aversion, and intertemporal substitutability. Employing a
replica of Nordhaus’s (2008) DICE model, we also explain how seemingly innocuous
details of the model imply that damage uncertainty can either cause a large increase
or a small decrease of the optimal carbon tax.

We implement a slightly simplified version of Nordhaus’s (2008) DICE model in
a recursive dynamic programming framework. Our model features persistent uncer-
tainty, an annual time step, and an infinite planning horizon. Optimal policies in
a truly stochastic model depend on historic realization of the random variable. We
discuss optimal expected trajectories and their robustness. We also present the op-
timal control rules as functions of the realized stock variables, capital, carbon, and
temperature. Our discussion focuses on damage uncertainty. We show that the way
in which uncertainty enters the damage function has a major effect on optimal miti-
gation policy.

We employ Epstein & Zin’s (1989) recursive utility approach to distinguish a
decision maker’s propensity to smooth consumption over time from his Arrow-Pratt
risk aversion. This step is important for several reasons. First, the approach enables
us to disentangle whether observed differences between the certain and the uncertain
setting are driven by risk, by risk aversion, or by the desire to smooth consumption
over time. Second, evidence suggests that individual’s tend to be more averse to risk
than to intertemporal substitution. Third, also from a normative point of view there
is no obvious argument that these a priori different dimensions of preference should
coincide. Finally, we show that the disentangled model implies a significantly higher
abatement rate and social cost of carbon than the standard model. For a preview of
this result see Figure 1 on page 11.

Our approach to capturing uncertainty differs significantly from the wide-spread
approach, often referred to as Monte-Carlo, which is a model of ex-ante uncertainty.
Implicitly, this approach assumes that all uncertainty is resolved before the decision
maker sets his policies. Nordhaus (2008) models the impact of ex-ante uncertainty
on the optimal carbon tax. For this purpose, he draws selected parameters randomly
from a set of distributions and runs the DICE model for each realization. He then
interprets the average over the resulting deterministic paths as addressing uncertainty.
Such a way of modeling uncertainty is an interesting first approximation. However,
it is not a consistent approach to capturing uncertainty. In the ex-ante approach,
the modeled decision maker has perfect knowledge about the true parameters by
the time that he sets the policies and the model runs are initiated. In order to
make statements about uncertainty, the approach averages over different model runs
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in which different parameters govern the deterministic system. In contrast, under
real uncertainty, the decision maker has to pick a joint policy for scenarios that
differ only in future realizations of the random variable. The latter approach is
computationally more demanding and, in an optimal control framework like used
by Nordhaus (2008), quickly becomes infeasible as the decision tree branches out. In
contrast, our recursive formulation permits us to introduce uncertainty in every period
over an infinite planning horizon without major costs. We compare the resulting
impact of uncertainty on the optimal policies to the ex-ante approach in order to
analyze the quality of the ex-ante approximation. Ackerman, Stanton & Bueno (2010)
recently complemented Nordhaus’s (2008) uncertainty evaluation in DICE. Keeping
the ex-ante uncertainty approach, they significantly increase the number of draws in
their simulations. The authors assume uncertainty over climate sensitivity and the
damage exponent. However, when comparing their results to Nordhaus (2008) they
not only increase uncertainty, but also change parameter values. Their model does
not translate the results of the simulations into changes of the optimal climate policy,
like e.g. the optimal carbon tax.

Closest to our approach are the papers by Kelly & Kolstad (1999), Leach (2007),
and Ha-Duong & Treich (2004). In their seminal paper Kelly & Kolstad (1999)
implement a recursive version of DICE to analyze the effect of learning about climate
sensitivity. An extended analysis is provided by Leach (2007). The main focus of
these papers is learning time and how the possibility of learning changes the optimal
policies. Compared to these learning oriented papers, we take a step back and focus on
the analysis of uncertainty without parametric learning.1 We take this step for three
reasons. First, learning is a process that reduces uncertainty over time. To understand
what drives the effect of learning, it is useful to have a thorough understanding
of the effects of uncertainty. Even without analyzing how a decision maker reacts
to different learning environments, we already compare over 30 different scenarios
based on differences in preferences and in the way that damage uncertainty enters
the equations. Second, in order to model parametric learning we would have to
increase the state space of our model. Due to the curse of dimensionality, this increase
would significantly limit our ability to do the type of comparisons undertaken in this
paper, in quantity and in quality. Third, as long as temperature increases, we can
justify the permanent nature of our uncertainty by the assumption that learning over
damages at lower temperatures does not contain much information about damages
at higher temperatures. For all modeled scenarios, temperatures are rising over the
next one and a half centuries, which is the time-span most relevant for current policy.
Moreover, when physical processes permit us to learn, Kelly & Kolstad (1999) and
Leach (2007) find that learning time lies in the same order of magnitude. In contrast
to Kelly & Kolstad (1999) and Leach (2007), we add the ability to disentangle the

1In every period, the decision maker learns about the realizations of the damage parameters
and the implied changes of the stock variables. However, we abstract away from a deeper learning
where the decision maker learns about the distributions of the random variables, which would cause
uncertainty to decrease over time.
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effects of risk, risk aversion, and intertemporal substitutability. Moreover, we focus
our analysis on various types of damage uncertainty, while the former papers model
uncertainty about climate sensitivity.

Ha-Duong & Treich (2004) are the first to point out possible effects of disentan-
gling risk aversion from intertemporal substitutability in relation to climate change.
They build a simple numerical four period integrated assessment model incorporating
Epstein & Zin (1989) preferences. The stochastic damage in their model is binary
and investment is a fixed fraction of production.2 The authors observe that increasing
aversion to intertemporal substitution generally increases pollution, while increasing
Arrow-Pratt risk aversion decreases pollution. They conclude that models that en-
tangle these two a priori different preference characteristics tend to underestimate
the effects of risk. In contrast, we use a full-fledged infinite horizon integrated assess-
ment model and add a richer and more realistic uncertainty structure. We derive the
actual magnitude of the effects of risk, risk aversion, and aversion to intertemporal
substitution on the social cost of carbon and the optimal abatement rate. In addition
to deriving optimal control rules, we compare results under the preference parameters
used by Nordhaus (2008) to those based on preference estimates found in the asset
pricing literature using the disentangled approach.

More remotely related to our analysis are the following papers. Keller, Bolker &
Bradford (2004) model uncertainty about climate sensitivity and a climate thresh-
old in an adapted version of DICE. They find that uncertainty decreases optimal
abatement.3 Karp & Zhang (2006) discuss learning under uncertainty about climate
sensitivity and marginal abatement cost in a stylized linear quadratic model. They
find that learning generally decreases optimal abatement at a given information set.
Richels, Manne & Wigley (2004) build ex-ante uncertainty about exogenous emis-
sions, climate sensitivity, and temperature lag into their integrated assessment model
called MERGE. They look at the effect of uncertainty under an exogenously given
policy and do not optimize the control variables. Anthoff & Tol (2010) introduce ex-
ante uncertainty about close to 1000 parameters in their integrated assessment model
FUND and analyze the effect of uncertainty on exogenously given policies. Baker &
Shittu (2007) give a survey of literature that incorporates uncertainty into the anal-
ysis of technical change in the climate change context. Weitzman (2009) argues that
the multiplicative functional form in which damages usually enter integrated assess-
ment models is somewhat arbitrary. He employs an abstract setting that captures
damages and consumption in (sort of) a joint utility function. He finds that additive
damages can significantly increase the willingness to pay for an emission reduction.
We show that, under uncertainty, a much smaller transformation of the standard
damage function can already imply significant differences in the evaluation.

Section 2 introduces the recursive utility specification and explains the disentan-

2In the model, an endogenous energy tax reduces energy input and then production, consumption,
emissions, and damage.

3As the authors use a similar damage formulation as Nordhaus’s (2008) our discussion also relates
to their analysis.
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glement of risk aversion from intertemporal substitutability. Section 3 introduces the
climate enriched economy. Section 4 presents the results and section 5 concludes.
Appendix A contains further graphs, while Appendix B completes the set of equa-
tions. The online Appendix C gives details on the numerical implementation and
calibration of the model.

2 Welfare and Bellman equation

2.1 The Original Welfare Specification

This section introduces our welfare function and dynamic programming equation.
The main feature that distinguishes our setting from other integrated assessment
models is the ability to disentangle the effects of risk and risk attitude from effects
driven by the desire to smooth consumption over time. For this purpose we employ
a slightly modified version of the generalized isoelastic model introduced by Epstein
& Zin (1989) and Weil (1990). In the standard intertemporally additive expected
utility approach of the form U = E

∑

t exp[−δut]u(xt) the curvature of the utility
function u describes both, Arrow-Pratt risk aversion and intertemporal substitutabil-
ity. However, evidence suggests that people tend to be more averse to substituting
consumption into a risky state than into the certain future. Such behavior indi-
cates that most people’s Arrow Pratt risk aversion is higher than their aversion to
intertemporal substitution (measured by the inverse of the intertemporal elasticity
of substitution). In order to keep these two preference dimensions apart, we have to
introduce two distinct aggregators, one for aggregating over time and another one for
aggregating over risk. Time consistency then requires that uncertainty is evaluated
at the point in time where it resolves, during a recursive aggregation of welfare over
time. For more details see for example Traeger (2009). The corresponding Bellman
equation for our setting becomes

V (Kt,Mt, Tt, t) = max
Ct,µt

Lt

(

Ct

Lt

)1−η

1− η
(1)

+
exp[−δu]

1− η

(

E [(1− η)V (Kt+1,Mt+1, Tt+1, t+ 1)]
1−RRA
1−η

)
1−η

1−RRA
.

The value function V represents the maximal welfare that can be obtained given the
following state variables: Capital Kt, the stock of carbon in the atmosphere Mt, tem-
perature Tt measured as deviation from preindustrial temperature, and time t. Utility
within a period corresponds to the first term on the right hand side of the dynamic
programming equation (1). It is a population Lt weighted power function of global
per capita consumption Ct/Lt. The parameter η is the inverse of the intertemporal
elasticity of substitution and captures the desire to smooth consumption over time
(or aversion to intertemporal substitution). The second term on the right hand side
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of equation (1) represents the maximally achievable welfare over the future. The term
is discounted by the rate of pure time preference δu (also utility discount rate), which
we assume to be 1.5%, in accordance with Nordhaus (2008). At any point in time t,
the damages in the upcoming period and, thus, the capital stock Kt+1 are uncertain.
The parameter RRA characterizes the Arrow Pratt measure of relative risk aversion.
Note that the standard model would implicitly assume η = RRA, in which case both
exponents in the expression would disappear. The decision maker maximizes over
the control variables Ct and the emission control rate µt.

4 Equation (1) states that
the value of an optimal consumption path starting in period t should be the max-
imal sum of the instantaneous utility gained in that period and the welfare gained
from the continuation path. The control Ct balances the gratification of immediate
consumption against the value of the future stocks. The control µt characterizes the
abatement rate and balances consumption and capital investment against investment
into the reduction of atmospheric carbon. We model the temperature Tt as a endoge-
nous stock variable in order to capture the delay between an increase of the emission
stock and an increase in global average temperature.

For a more detailed analysis of the interpretation of the parameters η and RRA
see Epstein & Zin (1989) and Traeger (2010), who also derives the particular rep-
resentation we employ here that is additive in the time step. Our baseline (N) is a
scenario that employs Nordhaus’s (2008) preference parameters η = RRA = 2. We
compare this baseline to a scenario (D) based on disentangled preference estimates
by Vissing-Jørgensen & Attanasio (2003), Basal & Yaron (2004), and Basal, Kiku &
Yaron (2010) who build on Campbell’s (1996) approach of log-linearizing the Euler
equations in the asset pricing context. These papers suggest η = 2

3
and find risk

aversion coefficients around RRA = 9.5. For both scenarios we also run variations
featuring risk neutrality RRA = 0 and extreme risk aversion RRA = 50.

2.2 A Conveniently Modified Bellman Equation

We find that the performance of our recursive numerical model improves significantly
by expressing the relevant variables in effective labor terms and rewriting the Bell-
man equation accordingly. Exogenous technological progress is characterized by the
variable

At+1 = exp[gA,t]At with gA,t = gA,t exp[−δAt] , (2)

where gA,0 denotes the initial growth rate, which thereafter declines exponentially
over time. Similarly, population growth is captured as

Lt+1 = exp[gL,t]Lt with gL,t =
g∗L

L∞

L∞−L0
exp[g∗L t]− 1

. (3)

4In the numerical implementation of the model we generally maximize over the abatement cost
Λt, which is a strictly monotonic transformation of µt (see 11). This switch of variables makes the
constraints on the optimization problem linear.
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Here L0 denotes the initial and L∞ the asymptotic population. The parameter g∗L
characterizes the convergence from initial to asymptotic population. Figure 9 in Ap-
pendix A shows the time paths of the exogenous variables, all of which are continuous
time approximations to Nordhaus (2008). Expressing consumption and capital in ef-
fective labor terms results in the definitions ct =

Ct

AtLt
and kt =

Kt

AtLt
. Using these

definitions we transform equation (1) to

V (ktAtLt,Mt, TT , t) = max
ct,µt

c1−η
t

1− η
A1−η

t Lt +
exp[−δu]

1− η
exp[(1− η)gA,t]A

1−η
t ×

exp[gL,t]Lt



E

[

(1− η)
V (Kt+1,Mt+1, Tt+1, t+ 1)

A1−η
t+1Lt+1

]
1−RRA
1−η





1−η
1−RRA

. (4)

A further transformation maps the infinite time horizon conveniently onto the unit
interval.5 For this purpose we introduce artificial time

τ = 1− exp[−ζt] ∈ [0, 1] (5)

and define

V ∗(kτ ,Mτ , τ) =
V (Kt,Mt, t)

A1−η
t Lt

∣

∣

∣

∣

Kt=ktAtLt, t=−
ln[1−τ ]

ζ

,

where At and Lt follow the exogenous time paths solving equations (2) and (3), with
analytic solutions given in equations (17) and (18) in Appendix B. Under slight abuse
of notation, we write variables xτ to represent the variables xτ(t) at time τ(t) satisfying

equation (5). Dividing the fixed point equation (4) by A1−η
t Lt and rewriting in terms

of V ∗ yields the new dynamic programming equation

V ∗(kτ ,Mτ , Tτ , τ) = max
cτ ,µτ

c1−η
τ

1− η
+

exp[−δu + gA,τ (1− η) + gL,τ ]

1− η
×

(

E [(1− η)V ∗(kτ+∆τ ,Mτ+∆τ , Tτ+∆τ , τ +∆τ)]
1−RRA
1−η

)
1−η

1−RRA
. (6)

The time step is now in artificial time.6 Our numerical simulations approximate
V ∗ by Chebyshev polynomials and solve equation (6) for its fixed point by func-
tion iteration. Details are found in Appendix C. We recover the original value
of a program from the value function V ∗ by the transformation V (Kt,Mt, Tt, t) =
V ∗ (Kt/AtLt,Mt, Tt, t) A1−η

t Lt . The marginal value of a ton of carbon is

5This time transformation also concentrates the Chebychev nodes on the near future, where most
of the exogenously driven changes take place.

6Keeping a unit step in real time implies a time step ∆τ = (1− exp[−ζ])(1− τ) in artificial time
and one period ahead artificial time becomes τ +∆τ = 1− [1− τ ] exp[−ζ].
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∂Mt
V (Kt,Mt, Tt, t) = ∂Mτ

V ∗(kτ ,Mτ , Tτ , τ) A
1−η
τ Lτ |τ=1−exp[−ζt] and the marginal

value of a unit of the consumption-capital good is ∂Kt
V (Kt,Mt, Tt, t) =

∂kτV
∗(kτ ,Mτ , Tτ , τ) A

1−η
τ Lτ ∂Kτ

Kτ/AτLτ |τ=1−exp[−ζt] . The ratio of these two yields
the social cost of carbon in current value units of the consumption-capital good:

SCCt =
∂Mt

V

∂Kt
V

=
∂Mτ

V ∗

∂kτV
∗

Aτ Lτ

∣

∣

∣

∣

τ=1−exp[−ζt]

. (7)

3 The Climate Economy

3.1 The model under certainty

The decision maker maximizes his value function under the constraints of the following
stylized model of a climate enriched economy. The model is largely a reproduction
of the DICE-2007 model by Nordhaus (2008). Except for our yearly (as opposed
to decadal) time step, the two main differences are as follows. We do not model
an explicit carbon cycle because state variables are computationally expensive in
the recursive dynamic programming setting. Instead, we use an exogenously falling
rate of carbon removal from the atmosphere. The exogenous decrease mimics that
other carbon reservoirs, such as the ocean, reduce their uptake as they fill up over
time. Online Appendix C provides details on how we calibrate this exogenous rate to
DICE-2007. Similarly, instead of modeling ocean temperature explicitly, we introduce
exogenous ocean cooling to mimick the endogenous cooling in DICE. Our calibrations
yield a good match to the (optimal) DICE-2007 paths of CO2 concentration and
atmospheric temperature over the next four centuries and a very good match of the
social cost of carbon and the optimal abatement rate for the next two centuries.7

In the following we focus on the most important equations and those that differ
from DICE. Parameters are characterized and quantified in table A on page 38. The
economy accumulates capital according to

kτ+∆τ = [(1− δk) kτ + yτ − cτ ] exp[−(gA,τ + gL,τ )] ,

where δK denotes the depreciation rate, yt = Yt

AtLt
denotes net production (net of

abatement costs and climate damage) per effective labor, and ct denotes aggregate
global consumption of produced commodities per effective unit of labor. The removal
rate of atmospheric CO2 is δM,t falls exogenously over time to mimick the carbon
cycle of DICE-2007 so that

δM,t = δM,∞ + (δM,0 − δM,∞) exp[−δ∗M t] and

Mτ+∆τ = Mpre + (Mτ −Mpre) (1− δM,τ ) + Eτ . (8)

7Note that our ocean cooling and decay rate are calibrated to the Nordhaus (N) preference
scenario. Thus, we introduce an inertia that slightly reduces the relatively large effects of a change
in preferences to the disentangled (D) scenario. The bias is negligible for the relatively small changes
caused by uncertainty.
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The pre-industrial emission stock Mpre is the steady state level in the absence of
(annual) anthropogenic CO2 emissions Et. Anthropogenic emissions are the sum of
industrial emissions and emissions from land use change an forestry Bτ

Eτ = (1− µτ ) στAτLτk
κ
τ + Bτ . (9)

While emissions from land use change and forestry fall exponentially over time, indus-
trial emissions are proportional to gross production AτLτk

κ
τ and reduced by abate-

ment. Moreover, the DICE model includes an exogenously falling rate of decarboniza-
tion of production σt. For details see appendix B.

Net global GDP per effective unit of labor is obtained from the gross product per
effective unit of labor as follows

yτ =
1− Λ(µτ )

1 +D(Tτ )
kκ
τ =

1−Ψτµ
a2
τ

(

1 + b1T
b2
τ

)kκ
τ (10)

where

Λ(µτ ) = Ψτµ
a2
τ (11)

characterizes abatement costs as percent of GDP depending on the emission control
rate µt ∈ [0, 1]. See appendix B for details on the coefficient Ψτ , which is assumed
to fall over time. The percentage of world GDP that is lost to climate change re-
lated damages depends on the difference Tt between the current temperature and
preindustrial temperatures and is characterized by

D(Tτ ) = b1T
b2
τ . (12)

Nordhaus (2008) estimates b1 = 0.0028 and b2 = 2, which implies a quadratic damage
function with a loss of 0.28% of global GDP at a 1◦C warming. The temperature
change is a delayed response to radiative forcing from CO2 in the atmosphere

Fτ+∆τ = ηforc
ln Mτ+∆τ

Mpreind

ln 2
+ EFτ , (13)

which is the sum of the forcing caused by atmospheric CO2 and the non-CO2 forcing
that follows the exogenous process EFτ described in appendix B. The temperature
equation is

Tτ+∆τ = (1− σforc)Tτ + σforc

Fτ+∆τ

λ
− σ̃ocean ∆Tτ . (14)

where σforc = 3.2% captures heat capaxity related warming delay and σocean = 0.7%
relates to the cooling feedback caused by the temperature difference ∆Tτ between the
atmosphere and the oceans (see Appendix B for a derivation). The values imply that
a doubling of the CO2 concentration relative to its preindustrial level will cause an
equilibrium warming of 3◦C (climate sensitivity).
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3.2 Uncertainty

We analyze uncertainty over the parameters governing the damage function in equa-
tion (12). We follow Nordhaus (2008) in considering a normal distribution over the
damage coefficient b1 with a standard deviation of 0.13% (keeping the mean at 0.28%).
For a mean warming of 3◦C, the damage corresponding to the parameter’s mean is
2.6% of world output, while a one sigma deviation around the mean corresponds
to damages of 1.4% and 3.7% of world output. In addition we consider a normal
distribution over the damage exponent b2. We chose a standard deviation of 0.35
(around the mean 2), which yields roughly the same damages as the b1 uncertainty
for plus/minus one standard deviation at a 3◦C temperature increase.8 A recent
analysis by Hanemann (2009) contains a profound collection of arguments why ac-
tual damages from warming are underestimated in the DICE damage function. For
our uncertainty analysis, we do not change the mean parameter values of the damage
function, but we take studies like that of Hanemann (2009) as an indication that
uncertainty is likely to be larger than expressed by the above standard deviations.
Thus, we refer to the above specification as the “low” uncertainty scenarios and run
our simulations as well for a set of “high” standard deviations. These high scenarios
correspond to a standard deviation of 0.25% for the damage coefficient b1 and a stan-
dard deviation of 0.5 for the damage exponent. These standard deviations translate
into output losses of 4.8% (b1) and a 4.4% (b2) for a plus one sigma deviation and to
losses of 0.3% (b1) and 1.5% (b2) for a minus one sigma deviation at a temperature
increase of 3◦C.

In scenarios with uncertainty over one damage parameter only, we calculate the
value function optimizing over 5 Gauss-Legendre quadrature nodes per time step, ap-
proximating the normal distribution.9 Figure 15 in Appendix C shows that the results
are not sensitive to using more quadrature nodes. In our scenarios with uncertainty
on both parameters, we calculate the value function optimizing over 5×5 quadrature
nodes per time step, approximating the bivariate normal distribution assuming in-
dependence between b1 and b2 uncertainty. Thus, the decision maker’s control rules
are based on a decision tree for which every subtree every year divides into 5 further
subtrees (25 with joint uncertainty). The decision maker learns about the realiza-
tions of the random variables in every period and optimally adapts her behavior. In
consequence, the most accurate way to represent the optimal policies is by means of
control rules. However, time paths of the social cost of carbon and the abatement

8We calibrate slightly closer to the upper than to the lower one-sigma-deviation for a 3◦C increase.
The damage for b2 = 2− 0.35 results in a 1.74% loss of GDP as opposed to 1.39% in the Nordhaus
(2008) based b1 uncertainty scenario and the damage for 2 + 0.35 results in a 3.75% loss of GDP as
opposed to 3.73% in the Nordhaus (2008) based b1 uncertainty scenario. Note that for temperatures
below 3◦C the impact of b2 uncertainty decreases and vanishes for T = 1◦C (as unity is unaffected
by the exponent).

9Gauss-Legendre quadrature nodes make the discrete approximation to the integral over the
distribution exact for the first 2n− 1 = 9 moments. Neither our choice of a normal distribution nor
our simulation model is meant to examine potential effects of fat tails.
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rate are insightful and more suitable for the comparison of multiple scenarios. For
the purpose of path comparisons, we will depict the particular time path obtained
when the decision maker decides under uncertainty, but nature always happens to
draw the expected value of the distribution. Later, we show that this path closely re-
sembles the median path and the expected path obtained from sampling 10,000 runs
with truly random draws by nature. We compare these time paths to those obtained
from averaging deterministic paths, as done in the wide-spread ex-ante uncertainty
approach discussed in the introduction. These simulations calculate the determinis-
tic paths corresponding to each of our Gaussian quadrature nodes of the uncertain
parameter and take the weighted average. Figure 16 in Appendix C shows that these
simulations are not sensitive to the number of nodes either.

4 Results

Figure 1 presents the optimal abatement rate and the social cost of carbon (SCC)
for the parameter choice of Nordhaus (2008) (N, dark blue) as well as for the assess-
ment using disentangled preferences based on the estimates reviewed in section 2.1
(D, light green). The SCC corresponds to the optimal carbon tax.10 The solid lines
represent assessment under certainty. The dashed lines introduce uncertainty over
the damage coefficient b1, and the dotted lines represent uncertainty over the dam-
age exponent b2. For the uncertain scenarios, the figure depicts the path where the
decision maker chooses under uncertainty and nature happens to draw the expected
value of the distribution in every period. Both, the abatement rate and the optimal
carbon tax, are higher in the case of disentangled preferences. In numbers, the ad-
ditional SCC over the next decade is between $60 to $90 higher in the disentangled
D preference scenarios than in the N preference scenarios. Within the N-preference
scenario, uncertainty and type of uncertainty make a difference that increases from
$4 to $70 over the course of the century or, in relative terms, from 11% to 33%. In
the disentangled scenario, the difference increases from $11 to $80 or 11% to 16% over
the same time span. The abatement rate difference between N preferences and the
disentangled approach increases from 10 percentage points in the present to about 25
percentage points at the end of the century. With D preferences, full abatement is
optimal starting in year 130 if uncertainty over the damage exponent is considered
and starting in year 140 otherwise (numbers rounded to the decade). With N pref-
erences full abatement becomes optimal in year 180 when considering uncertainty of
the damage exponent, and in year 200 otherwise. The full-abatement times can be
observed in Figure 8 in Appendix A, where we depict the abatement rate as well as

10They differ in the case of full abatement. The usual optimal control framework calculates carbon
taxes as the marginal value of the last unit abated from equation (11). In the case of full abatement,
these correspond to the minimal necessary carbon tax that yields full abatement. In our dynamic
programming approach, we obtain the value function of the problem, so that we can calculate the
actual SCC also in the full abatement regime using equation (7).
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Figure 1 compares the optimal abatement rate and CO2 tax based on the standard model with
parameters η = RRA = 2 as in DICE-2007 (N, dark blue lines) with an assessment based on
the estimates η = 2

3 and RRA = 9.5 taken from the literature disentangling risk aversion from
intertemporal substitutability (D, light green lines). “cert” denotes assessment under certainty
(solid lines), “b1 high” introduces uncertainty over the damage coefficient(dashed lines), while “b3
high” introduces uncertainty over the damage exponent (dotted lines).

absolute emissions, temperature and damages for the different scenarios over the next
two centuries. Insights from Figure 1 are, first, that uncertainty can have a significant
impact on abatement and optimal taxes. Second, a distinction between risk attitude
and the propensity to smooth consumption over time results in a major change of
policy recommendations. And third, the type of uncertainty matters significantly and
can even change the sign of the uncertainty effect. In the following we analyze these
points in detail.

Figure 2 examines the dependence of the optimal abatement rate and the SCC on
the degrees of risk aversion. The recursive preference setting allows us to vary risk
aversion (RRA) while keeping aversion to intertemporal substitution (η) constant.
The graph on the left fixes η = 2 as in DICE-2007, while the graph on the right fixes
η = 2

3
as suggested by the disentangling literature. In both scenarios uncertainty is on

the damage exponent (high standard deviation). The graphs show the increase of the
optimal SCC over a world of certainty. All graphs, including those corresponding to
a risk neutral agent, imply a significant increase in the optimal SCC varying between
$5 and $70 over the course of the century. However, the optimal policy hardly differs
between the cases of risk neutrality, of RRA = 2 as in DICE-2007, and of RRA = 9.5
as suggested by the disentangled estimates. Only an extreme degree of risk aversion
of RRA = 50 has an observable effect on policies, at least in the DICE case of η = 2.
We conclude from Figure 2 that risk aversion itself does not induce significant effects
on the optimal policies in our setting. Thus, the risk effects must be a consequence
of other non-linearities in the underlying climate and economic system.
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Figure 2 compares the optimal carbon tax for different degrees of risk aversion (RRA). The graphs
show the increase ∆cert of the SCC over the SCC under certainty. The left graph represents scenario
N with η = 2 as in DICE-2007 (blue lines), while the right graph represents scenario D where η = 2

3
as suggested in the disentangling literature (green lines). Uncertainty corresponds to a normal on
the damage exponent (high standard deviation). In the case of scenario N extreme risk aversion is
distinguishable from the other scenarios, while in the D scenario all lines lie on top of each other.
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Figure 3 compares the optimal carbon tax for different types of uncertainty for scenario N (left)
and for the disentangled scenario D (right). Uncertainty is over the damage coefficient “b1” and
the damage exponent “b2”. The graphs depict the $ increase over the optimal tax in the certain
scenario.

Figure 3 compares the two different types of damage uncertainty for high and
low variance and for the case of joint uncertainty. The graphs depict the increase
of the SCC over the certain case for N preferences on the left and D preferences on
the right. The most striking result depicted in Figure 3 is that uncertainty on the
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damage coefficient b1 reduces abatement and the SCC in both scenarios. Note that
b1 low (solid magenta) is precisely the type of damage uncertainty that Nordhaus
(2008) adds to his ex-ante uncertainty version of the DICE model. While his normal
distribution only reduces the SCC by a few dollars in the second half of the century,
the dashed version featuring the higher standard deviation decreases the optimal car-
bon tax notably (and the optimal abatement rate by one percentage point at the
end of the century). In contrast, the normal distribution over the damage exponent
(cyan) significantly increases the SCC for both scenarios. The same is true for com-
bined uncertainty on both parameters (dark blue lines). The increase in abatement
corresponding to the depicted increase in the carbon tax by $30 to $60 at the end
of the century corresponds to 3.5 to 7 percentage points. Recall that the standard
deviations for the b2 uncertainty scenarios were chosen to resemble the damages of the
b1 uncertainty scenario at a 3◦C temperature increase and plus/minus one standard
deviation shocks. Clearly it is not the magnitude of damage uncertainty that drives
the difference between the two distinct uncertainty scenarios. The reason lies in the
precise way in which uncertainty about the damage function enters the equations.
The function that translates temperature related shocks into a loss of net production
(and thus consumption and investment) is captured by equation (10), which can be
rewritten as

Y net
t =

Y ∗

t

1 + b1T
b2
t

=: f(b1, b2) , (15)

where Y ∗

t = (1− Λ(µτ ))Y
gross
T , i.e the total production less abatement expenditure.

The uncertainty over b1 corresponds to a linear variation in the denominator of equa-
tion (15). Thus, a convex function translates the variation in b1 into variations of
net GDP. Therefore, expected GDP under uncertainty over b1 is actually higher than
GDP using the expected coefficient.11 The b2 uncertainty also enters in the denomina-
tor of equation (15), but this time in the exponent of temperature. A straightforward
calculation shows that the resulting transformation of b2 into GDP is concave, so
that expected GDP is lower than the GDP for the expected coefficient.12 For the
case in which both coefficients are uncertain, we find that the paths of abatement
and the SCC lie between those of scenarios in which only one of the parameters is
uncertain. Moreover, Figure 3 shows that the variance of the probability distribution
that captures uncertainty is clearly relevant for determining optimal policies. Be-
cause uncertainty has a stronger effect when placed on b2, the size of this particular
variance matters most. We also conclude that the way Nordhaus’s (2008) DICE-2007
model places damage uncertainty onto b1 gives rise to a somewhat special finding that

11The second order derivative of the damage fraction in equation (15) with respect to b1 is ∂2f

∂b1
2 =

2T 2b2Y ∗

(1+b1T
b2)

3 > 0.

12The second order derivative of the damage fraction in equation (15) with respect to b2 is ∂2f

∂b1
2 =

− (1−2b1T
b2 )b1T

b2 (ln[T ])2Y ∗

(1+b1T
b2 )3

< 0 as long as damages do not exceed half of the GDP.
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Figure 4 depicts the change in the optimal carbon tax when damages are linearly subtracted from
gross output as in equation (16). The uncertainty scenarios are the high variance scenarios. The
graphs present the $ increase of the optimal tax within a given uncertainty scenario that results
from changing equation (15) to equation (16). Also in the certain scenario the reformulation yields
a higher optimal tax (magenta).

damage uncertainty is of little importance for optimal policies.
The non-linearities in the climate-economy interaction drive the observed effects

of uncertainty on optimal policy. Therefore, the question arises why DICE places
the GDP loss due to damages in the denominator, while the abatement expenditure
enters in the numerator. In particular, the parameter b2 is taken to be the fraction
of GDP loss for a one degree Celsius increase over preindustrial temperatures. This
interpretation relies on the approximation that 1

1+ǫ
= 1 − ǫ for ǫ small. Figure 4

examines how good this approximation is for the magnitude of actual damages along
the optimal path in DICE. All scenarios in Figure 4 correspond to the case of a high
standard deviation. The figure depicts the difference between the SCC in the original
damage formulation as in equation (15) and a formulation employing

Y net
t = (1− b1T

b2
t ) Y ∗

t , (16)

where b1 directly characterizes the percentage loss of GDP caused by a one degree
warming, not just an approximation. The SCC is notably higher for all scenarios.
Even for the certain model runs, the SCC increases up to $12 over the century,
because the approximation in equation (15) implies a relatively smaller damage for
high temperatures. Also note that the damage term is no longer convex in b1 but
simply linear. Thus, uncertainty over the coefficient b1 alone has no effect at all. The
depicted increase with respect to the earlier model formulation removes the convexity
effect caused by the approximation in equation (15).

In our simulations the decision maker picks current consumption and abatement
expenditure at the beginning of the period. Uncertainty about production then trans-
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lates into the residual investment into next period’s capital stock. This timing and
uncertainty structure is implied by the usual formulation of the Bellman equation
(1). However, such a setting allows the decision maker to use the capital stock in or-
der to smooth consumption uncertainty, in particular, in our setting with iid shocks.
While investment fluctuates significantly due to damage shocks, consumption might
not be affected much by this volatility. However, some impacts of climate change
like floods, droughts, hurricanes, or diseases also have a significant damage compo-
nent that directly induces consumption volatility. To capture these effects we have
to modify the Bellman equation. Let ȳτ denote expected production in the current
period and ∆yτ = yτ − ȳτ the random difference between actual and expected produc-
tion. The decision maker now controls expected consumption qτ . Actual consumption
cτ = qτ + α∆yτ takes up the fraction α ∈ (0, 1) of production uncertainty. The re-
maining uncertainty translates into investment, changing the capital accumulation
equation to the form

kτ+∆τ = [(1− δk) kτ + ȳτ − qτ + (1− α)∆yτ ] exp[−(gA,τ + gL,τ )] .

For α = 1 uncertainty fully translates into consumption. For α = 0 we are back to
the original setting. In order to solve this generalized problem, uncertainty aggrega-
tion in the dynamic programming equation now has to include current consumption.
Therefore, we iterate over the expected value function, which we denote V̄ , and find
the Bellman equation

V̄ (kτ ,Mτ , Tτ , τ) = max
qτ ,µτ

1

1− η

[

E
(

(qτ + α∆yτ )
1−η + (1− η)×

V̄ (kτ+∆τ ,Mτ+∆τ , Tτ+∆τ , τ +∆τ)
)

1−RRA
1−η

]
1−η

1−RRA

.

The upper graphs in Figure 5 show the difference in the SCC with respect to the
original formulation. The graph confirms that the two models coincide for α = 0. A
complete shift of uncertainty onto consumption increases the SCC slightly, by up to
$7 for N-preferences at the end of the century and less than $1 in the disentangled
approach. Splitting uncertainty between consumption and investment always yields
a slightly higher SCC for the first part of the century as compared to pure investment
uncertainty. However, in the second part of the century, a moderate shift of uncer-
tainty into consumption can even decrease the SCC. In this case, optimal abatement
is also reduced (lower left). This observation is explained by a combination of two
effects. First, under consumption uncertainty, the decision maker is more responsive
to risk because he is no longer in a position to fully smooth the consumption shocks.
By reducing emissions he can reduce future risk. However, second, the decision maker
also has an incentive to reduce his spending on abatement in order to increase his
baseline consumption, cushioning the consumption shocks. In the near future, tem-
perature increase and immediate damages are low and the decision maker abates more
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Figure 5analyzes how the controls change in response to shifting uncertainty from investment (α = 0)
over to consumption (α = 1). Uncertainty affects the damage exponent b2 with high variance. The
graphs present the increase over the original formulation where only residual investment is volatile.
The parameter αunc characterizes the fraction of consumption that covaries with the uncertain net
production Y net. The remaining uncertainty is swallowed by investment.

in order to reduce future risk. When temperature related shocks become large, an
increasing amount of output is used to increase expected consumption. The graph
in the lower left of Figure 5 shows that, far enough into the future for high enough
damages, all scenarios exhibit a decrease in the additional abatement rate implied by
consumption volatility (and for some of them the additional abatement is negative).
Finally, the graph in the lower right of Figure 5 shows that investment continuously
decreases in the shift from investment to consumption uncertainty. While this finding
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might look surprising at first sight, it simply confirms that more expenditure goes into
either abatement (long-term risk reduction) or consumption (immediate uncertainty
cushion). The graphs depicted in Figure 5 change only marginally for the case of
higher coefficients of relative risk aversion. Overall, we conclude that the comparison
between a consumption and investment impact of uncertainty shows some interesting
differences in the optimal policy, but the magnitude of the difference is small.

So far, our analysis compared optimal policy paths that were generated under
the assumption that the decision maker optimizes under uncertainty, while nature
happens to draw expected outcomes in all periods. In the following we discuss how
our chosen path representation (expected draws) relates to other time path repre-
sentations under uncertainty. For this purpose, we randomly draw the parameter
realizations in every period for 10,000 time paths in the N and the D scenarios with
damage exponent uncertainty (high variance). Note that the decision maker reacts
optimally to each draw. Figure 6 depicts the resulting mean and median paths as
well as the boundaries of the interval containing 95% of the individual paths at every
point in time. In all of the graphs, the mean and the median of the simulations are
virtually indistinguishable from the path generated by expected draws. The simu-
lated 95% confidence interval is small for all observed quantities, except for damgages
themselves. Here, variations are sizeable and e.g. in the year 2100 the boundaries cor-
respond to a damage of 0.7% of GDP for low years and of 4.1% of GDP for high years.
The large effect of damage realizations in individual years on net world output also
reflects in the investment paths, but is smoothed out in aggregate consumption (not
shown). The grey lines depict 100 randomly selected paths.13

Figure 6 also compares our stochastic dynamic programming results to the ex-ante
uncertainty approach discussed in the introduction. This wide-spread uncertainty
simulation, or uncertainty proxy, simply averages deterministic paths. For our ex-
ante simulation we use the same Gauss-Legendre quadrature nodes on the damage
exponent as before. However, we ‘draw’ the parameter only once and the decision
maker optimizes a deterministic program given the particular damage function re-
alization. After doing so for each quadrature node, we take the weighted average
resulting in the blue line. Figure 6 in Appendix C shows that the path is not sen-
sitive to the number of quadrature nodes we use. For N-preferences, the ex-ante
approach gives a good approximation to the stochastic simulations for the economic
and climate variables in the near future. During the second half of the century, when
temperatures have risen more significantly, the ex-ante approach underestimates the
optimal cost of carbon and abatement rate more notably, by about $30 and 6 per-
centage points at the end of the century. In contrast, the ex-ante approach yields an
almost perfect match in terms of the expected damage simulation. The most crucial
divergence of the ex-ante simulations happens for the carbon concentrations. For

13The highest spikes in the damage graph are truncated in order to have a better resolution. The
highest spike in the 100 path sub-sample happens in the second half of the next century and takes
away 37% of the production.
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Figure 6 compares different representations of the expected time development under uncertainty over
the damage exponent (high variance). The figure also compares our stochastic programming results
to an ex-ante uncertainty approach averaging deterministic paths (blue). The grey lines represent
100 randomly selected paths out of the 10,000 random paths underlying the mean, median, and
simulated 95% confidence interval.
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N-preferences, the optimal peak level of carbon is about 100 ppm higher than in the
stochastic programming simulation. The two lower graphs in Figure 6 present the op-
timal abatement rate and the CO2 concentrations for disentangled preferences. Here,
already the current policy recommendation that derives from the ex-ante approach
underestimates the optimal abatement rate by over 2 percentage points (almost 10%).
The optimal peak level of carbon would be overestimated by about 50 ppm. In both
ex-ante simulations, N and D, the reduction of athmospheric CO2 concentrations is
also pushed further into the future. Overall, we conclude that the ex-ante simulation
yields a decent approximation to optimal control rules in the near future. However,
in the longer term, the ex-ante results differ more notably from the stochastic model
with persistent uncertainty. In particular, when the policy parameter of interest is
the optimal peak CO2 level, the results of ex-ante simulations should be taken with
care.

Any individual path under uncertainty is of Lebesgue measure zero. Therefore,
the most accurate representation of optimal policies is by representing the control
rules. The control rules characterize the optimal policy conditional on the current
levels of the stock variables, which are determined by historic shocks as well as historic
policy. Figure 7 depicts some of the optimal control rules for the year 2020. The blue
dots mark the 2020 value along the expected path. The two upper graphs present
the optimal abatement rate under certainty for the N preference structure used by
Nordhaus (2008). The graph to the left presents the abatement rate in response to
changes in the CO2 concentration and in temperature. Capital is held fixed at the
expected 2020 level. We observe that a higher global temperature leads to an almost
linear increase in the optimal abatement rate. An increase in the concentration of
CO2 from pre-industrial levels to the level predicted under the optimal policy leads to
a notable increase in the the optimal abatement rate. However, between 400-500ppm
the increase of abatement in response to higher CO2 concentrations starts flattening
out. This flattening is a response to the logarithmic relation between CO2 concen-
tration and radiative forcing (see equation 13). The graph in the upper right depicts
the optimal abatement rate in response to changes in the capital stock and in time,
which is a proxy for the exogenous processes in DICE. The graph fixes temperature
and CO2 levels at the expected 2020 values. The abatement rate increases in both,
capital stock and time. Keeping in mind that temperature and CO2 levels are fixed,
the interpretation of the abatement increase over time is mostly a response to the
exogenously decreasing abatement cost (see Figure 9 in Appendix A for an overview
of the exogenous processes in DICE). The graph in the middle left of Figure 7 shows
the SCC, or optimal carbon tax, corresponding to the abatement rate shown in the
first graph on the upper left. It displays the same pattern, including the decreasing
responsiveness to increases in the CO2 concentration. For very high temperatures, the
marginal value of avoided emissions even decreases in the carbon concentration, be-
cause the temperature response to emission changes decreases for high carbon stocks.
Currently, global policy is not following the optimal path and, most likely, it will
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Figure 7 presents a selection of optimal control rules for the year 2020. The first three graphs show
optimal abatement and the SCC based on a deterministic run employing the original DICE-2007
preferences (N). The graph in the middle right shows the optimal increment of the carbon tax for
disentangled preferences. The graphs in the lower line show the increase in the social cost of carbon
over the deterministic N model caused by introducing uncertainty over the damage exponent. The
left graph depicts this increase for uncertainty and entangled preferences (N), and the right graph
for uncertainty and disentangled preferences (D). The markers (blue dots) show the optimal policies
along the deterministic path with DICE-2007 preferences. These values are also used to fix the
states that are not shown.

20



Risk and Aversion in the Integrated Assessment of Climate Change

not do so in the near future either. Hence, the actually optimal carbon tax in the
year 2020 in a deterministic world will lie at a higher point corresponding to a higher
carbon level to the right of the blue marker.

The graph in the middle right of Figure 7 depicts the differences in the optimal
carbon tax between the D and the N scenarios under certainty. The interpretation
of this difference is the optimal increase in the carbon tax when taking account of
disentangling the propensity to smooth consumption from risk aversion. The blue dot
at about $80 marks the expected values when policy historically followed the optimal
deterministic path with N-preferences. In case we follow the D-optimal path, carbon
concentrations and the difference in the optimal carbon tax would be slightly lower.
Most likely, the actual carbon stock in 2020 will be higher, and the optimal increment
of the SCC will exceed $80. The graphs in the lower line of Figure 7 show the change
in the SCC under uncertainty. The graph on the left shows the effect of uncertainty
over the damage coefficient under N preferences. The graph on the right evaluates
the same uncertainty for D preferences. Both graphs show the optimal increment
of the carbon tax over the values under certainty and N-preferences (i.e. over the
values in the graph on the middle left). The dent surrounding a 1◦C temperature
increase, better observable in the left graph, is due to damage coefficient insensitivity
at a unit temperature increase. The markers once more refer to the expected values
under N preferences and certainty. The carbon tax should increase about $ 8 if
the policy maker decides to take account of damage coefficient uncertainty in year
2020. It should increase more if the preceding policy has not followed the optimal
path. The optimal tax should increase about $ 95 over the deterministic N-preference
case, if the policy maker additionally realizes that he should disentangle risk attitude
from the willingness to substitute consumption over time. Given current policy will
yield higher than optimal carbon stocks in 2020, the optimal increment will most
likely exceed $ 100. These increments approximately triple the SCC in the year 2020
as compared to the deterministic standard model. Finally, note that the uncertainty
increment does not flatten out as much in the CO2 concentrations as the deterministic
control rules.

5 Conclusions

The paper incorporates damage uncertainty into a truly stochastic integrated assess-
ment model. Our recursive model allows us to disentangle the effects of risk, risk
aversion, and aversion to intertemporal substitution. We find that risk has a notable
impact on optimal policies. However, it is not the decision maker’s risk aversion
that causes the policy impact of risk. It is a consequence of the nonlinearity of the
equations translating climate change into production losses. We have quantified how
different functional formulations of damage uncertainty affect the social cost of carbon
and the optimal abatement rate. Uncertainty about the damage coefficient results
in a small decrease of the optimal abatement rate, an effect that we traced to back
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to an approximation used in DICE. In contrast, uncertainty about the damage expo-
nent results in a sizeable increase in abatement. We also quantified how the optimal
policy differs between situations where uncertainty directly affects consumption and
situations in which capital can be used to smooth consumption volatility. In general,
these uncertainty effects imply a moderate increase of the optimal mitigation level
and the social cost of carbon in the near future. As CO2 concentrations and temper-
atures rise, the effect of uncertainty on optimal policy increases. Optimal policies are
sensitive to the precise way uncertainty is incorporated into the model. This sensitiv-
ity emphasizes the importance of estimating precise functional forms of the damage
function, including a careful functional identification of the remaining uncertainty.

A larger correction to optimal policy stems from disentangling risk aversion from
the propensity to smooth over time. Recursive preference estimates find that risk
aversion is higher and the propensity to smooth consumption over time is lower than
the parameter describing both characteristics jointly in the standard model and in
DICE. While the increase in risk aversion only has a very minor effect, the decrease
in aversion to intertemporal substitution has a major effect on optimal policies. This
latter parameter change more than doubles the current social cost of carbon and sig-
nificantly increases optimal abatement, by increasing the willingness to invest into the
future. Within the standard model, parameter changes that increase the willingness
to invest into the future have generally been rejected from a positive perspective,
arguing that such a model would not match observed interest rates. The current pa-
rameter change, in contrast, is a result of using a model that is successfully employed
to better explain observed interest rates, including the risk free rate puzzle and the
equity premium puzzle.

We compare our result from a truly stochastic integrated assessment model to a
wide-spread method of averaging deterministic paths (ex-ante approach). We find
that current policies are predicted quite well by the simplified ex-ante approach, in
particular for the preference specification used in the original DICE model. The ex-
ante approach is less convincing when it comes to future optimal policies and state
variables. In general, the ex-ante approach underestimates the social cost of carbon
and optimal abatement rate in our simulations. The approximation is worse in a
model that corrects the intertemporal elasticity of substitution for the findings from
the disentangling literature. The ex-ante approach was most notably off for optimal
carbon peak concentrations. Here, an ex-ante simulation with standard preference
parameters and uncertainty over the damage coefficient overestimates the optimal
CO2 peak level by about 100ppm. Again, the error of the ex-ante method will depend
on the particular functional form in which uncertainty enters the equation. A clear
message is that ex-ante Monte Carlo simulations should be taken with care when
discussing long term objectives like the peak levels of CO2 or temperature, which are
extremely prominent in the policy debate.

A further advantage of our dynamic programming structure is that we derive the
optimal control rules rather than just expected policy or temperature paths. These
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control rules show how a policy maker reacts optimally to given states, which most
importantly include the CO2 concentration, but also temperature and capital stock.
For example, we show how the optimal policy in the year 2020 varies depending on the
actual carbon level at the beginning of year 2020. Solving large integrated assessment
models by dynamic programming is difficult and the cost of additional state variables
is high. Therefore, our solution method will not replace deterministic or ex-ante
reasoning in general. However, our approach shows that risk aversion has a negligible
impact on optimal policy, while aversion to intertemporal substitution has a major
impact. The standard model cannot disentangle the two parameters and has to choose
a single value that captures both. Our findings suggest that integrated assessment
modelers using the standard model should set the parameter to match aversion to
intertemporal substitution. Aversion to intertemporal substitution is lower than the
value of the parameter jointly used in most integrated assessment models. Adjusting
the parameter increases the weight given to the long-run consequences of climate
change, increasing abatement. Opposed to the intuition derived from the standard
model, this parameter change should not be accompanied by an increase in pure
time preference. In explaining observed interest rates, including the equity premium
puzzle, the disentangled model finds a rate of pure time preference that is generally
even lower than the 1.5% that we adopted from DICE-2007.

Appendix

A Additional Graphs

Figure 8 shows a comparison of different scenarios for a 200 year time horizon. The
scenarios are the same as in Figure 1, distinguishing the original DICE-2007 prefer-
ence structure (blue) from the disentangled approach (green). Once more solid lines
represent certainty, dashed lines high variance on the damage coefficient, and dotted
lines high variance on the damage exponent. In addition to the policy parameters
we also compare expected damages, CO2 concentration, and temperature. Figure 9
shows the exogenous processes underlying the DICE-2007 model.

B Additional Equations Characterizing Climate and

Economy

Where possible, we replace the difference equations of the DICE-2007 model by their
solutions in continuous time. Table A presents the parameter values. The exoge-
nous equations of motions for labor productivity At and polulation Lt summarized in
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Figure 8 shows the time paths of the abatement rate, emissions, temperature, and damages for the
N scenario with parameters η = RRA = 2 as in DICE-2007 (dark blue lines) and the disentangled
D scenario with η = 2

3 and RRA = 9.5. “cert” denotes assessment under certainty (solid lines), “b1
high” introduces uncertainty over the damage coefficient(dashed lines), while “b3 high” introduces
uncertainty over the damage exponent (dotted lines).
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Figure 9 shows the time paths of the model’s exogenous parameters: labor productivity (A),
population (L), rate of decarbonization (σ), abatement cost coefficient (Ψ), emissions from land-use
change and forestry (B), and exogenous forcing (EF).

equations (2) and (3) have the analytic solutions

At = A0 exp

[

gA,0
1− exp[−δA t]

δA

]

and (17)

Lt = L0 + (L∞−L0)(1− exp[−δ∗L t]) . (18)

Emissions in equation (9) are subject to an exogenous baseline decarbonization of
production

σt = σt−1 exp[gσ,t] with gσ,t = gσ,0 exp[−δσ t] ,

adopting the DICE assumption of an exponentially declining rate of decarbonization
gσ,t. we also follow DICE in assuming an exponential decline of emissions from land
use change an forestry,

Bt = B0 exp[gB t] .

Making use of these equations we can rewrite the emissions equation (9) as

Eτ = (1− µτ )
[

L0 + (L∞−L0)
(

1− [1− τ ]−
g∗L
ζ

)]

σ0A0k
κ
τ

exp
[

gA
1− (1− τ)

δA
ζ

δA
+ gσ

1− (1− τ)
δσ
ζ

δσ

]

+ B0[1− τ ]−
gB
ζ .
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The coefficient of the abatement cost function Ψτ in equation (11) is assumed to
follow

Ψt =
σt

a2
a0

(

1−
(1− exp[gΨ t])

a1

)

, (19)

with a0 denoting the initial cost of the backstop (i.e. in 2005), a1 denoting the ratio of
initial over final backstop,14 and a2 denoting the cost exponent. The rate gΨ describes
the convergence from the initial to the final cost of the backstop. In artificial time
equation (19) translates into

Ψτ =
σ0a0
a2

exp
[

gσ
1− (1− τ)

δγ
ζ

δγ

] (

1− a1

(

1− [1− τ ]−
gΨ
ζ

))

. (20)

Exogenous forcing in equation (13) from non-CO2 greenhouse gases, aerosols and
other processes is assumed to follow the process

EFt = EF0 + 0.01(EF100 − EF0)×min{t, 100} .

Note that it starts out slightly negatively.
In the following we explain our approximations that mimic the temperature delay

equations of the original DICE model. In DICE-2007 a system of equations that can
be transformed to

Tt+10 = Tt + C1
[

Ft+10 − λTt + C3(TOcean
t − Tt)

]

TOcean
t+10 = TOcean

t + C4(Tt − TOcean
t ) = (1− C4)TOcean

t + C4Tt

governs atmospheric and oceanic temperatures. The parameter λ =
ηforc
s

relates
equilibrium forcing of a CO2 doubling to the corresponding equilibrium temperature
increase s (climate sensitivity). We can transform the equation into

Tt+10 = (1−σdec
forc−σdec

ocean)Tt + σdec
forc

Ft+1

λ
+ σdec

ocean TOcean
t

= (1−σdec
forc−σdec

ocean)Tt + σdec
forc

Ft+1

λ
+ σdec

ocean[(1−C4)(TOcean
t−10 − Tt−10) +Tt−10],

where σdec
forc = C1∗λ ≈ 0.28 and σdec

ocean = C1∗C3 ≈ 0.073 are decadal lag parameters
governing how atmospheric temperatures adjust to radiative forcing and to oceanic
temperature. We approximate temperatures in t−10 in the square bracket by temper-
atures in t, neglecting terms of second order in the σ’s. We define ∆Tt = Tt − TOcean

t

14The general interpretation is more precisely that a1 is the ratio
initial cost of backstop

initial cost of backstop− final cost of backstop
. However, for the employed value of 2 both ratios are

the same to we stick with Nordhaus’s interpretation.
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and find

Tt+10 = (1− σdec
forc)Tt + σdec

forc

Ft+1

λ
− σ̃dec

ocean ∆Tt

where σ̃10 years
ocean = σ10 years

ocean (1 − C4) ≈ 0.073 × 0.95 ≈ 0.069. In order to obtain equa-
tion (14) stated in the main text, we have to downscale the equation to a one year
time step. Assuming constant forcing and temperature feedback would result in an
equation of the form Tt+10 = (1−σdec

forc)Tt+Γ and a downscaling of the decadal delay

parameters to the one year time step as σforc = 1 −
(

1− σdec
forc

) 1
10 ≈ 0.032. Linearly

downscaling of σ̃ocean to the one year time step yields σ̃ocean ≈ 0.007. However, along
the modeled paths we neither experience constant radiative forcing nor constant ocean
cooling. Thus, a one to one mapping to our finer time resolution is not possible. We
calibrate σforc and σocean to obtain the best fit to the deterministic DICE model (Fig-
ure 14), but it turns out that the above approximations coincide with the calibrated
values. Moreover, we extract the actual atmosphere ocean temperature difference
∆Tt from DICE-2007 and find that we can approximate and interpolate ∆Tt fairly
well by the analytic function

∆Tt = max{0.7 + 0.02t− 0.00007t2, 0} . (21)
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Additional Appendix:

C Numerical Implementation and Calibration

We solve the Bellman equation (6) by function iteration. For this purpose, we approx-
imate the value function V ∗ by Chebyshev polynomials. We update the coefficients
by collocation at the Chebychef nodes spelled out in table 2 (rectangular grid).15 To
arrive at this final node grid, we sequentially increased the number of nodes in each
dimension. Figure 10 shows that a further increase of the node number beyond our
18× 6× 10× 6 = 6480 nodes has no observable effect on increasing the accuracy of
our simulation. Our convergence criterion was a coefficient change of less than 10−4.
The corresponding maximal relative change in the value function was less than 10−10.
Figure 11 shows that a further reduction of the convergence tolerance by an order of
magnitude had no effect on the optimal time paths of the variables of interest.

Rather than modeling the carbon cycle explicitly, we assume an exogenously de-
creasing rate at which carbon leaves the atmosphere (reflecting that carbon sinks
reduce their uptake capacity over time). We calibrate our ‘carbon model’ so that the
optimal time paths of four variables are similar to those predicted by the DICE-2007
model: CO2 concentration, temperature, abatement rate, and social cost of carbon.16

Figures 12 and 13 shows the results of calibrating the functional form stated in equa-
tion (8) to fit the depicted DICE-2007 paths. The rate decreases from the initial
value δM,0 to the asymptotic value δM,∞ and the rate of decline is characterized by
δ∗M . Moreover, we use an approximate interpolation and simplification in modeling
the delay of atmospheric warming as described at the end of Appendix B. Figure 14
shows that the approximated values for the heat capacity delay parameter σforc and
for the parameter σ̃ocean related to ocean feedback are indeed also the best fit in order
to match the depicted DICE-2007 paths. Overall, these figures show that our chosen
model fits the predicted paths of DICE-2007 reasonably well. Any individual param-
eter change that would improve the fit in one dimension, would imply a worse fit in
at least one of the other variables.

For the numerical analysis under uncertainty we optimized over 5 Gaussian quadra-
ture nodes per time step approximating the normal distribution. Figures 15 shows
that increasing the number of nodes has virtually no effect on the resulting time
paths. Figure 16 confirms the same finding for the ex-ante uncertainty paths for
the next one and a half centuries. Beyond this point, the abatement path reflects

15For the models with joint uncertainty on damage coefficient and damage exponent we used a
lower upper bound for the carbon stock and temperature intervals with the same number of nodes.

16We used the EXCEL version of the model that can be downloaded from
http://nordhaus.econ.yale.edu/DICE2007.htm to generate the optimal time paths of DICE-
2007. It generates a longer time series than depicted for example in Nordhaus (2008). Note that
the EXCEL model assumes a constant savings rate. We did find an almost constant savings rate in
our model as well, and the match of EXCEL DICE to the full DICE seems a close fit for the time
span for which we have the comparison.
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that a discrete number of paths is hitting full abatement. At these points in time
the average paths exhibit kinks that vary depending on the total number of paths
determining the position of the quadrature nodes. Note, however, that the social cost
of carbon remains fairly insensitive to the number of quadrature nodes even beyond
year 2150. Finally, Figure 17 depicts the difference between oceanic and atmospheric
temperatures in DICE-2007 for a deterministic N preference run and compares it to
our simple quadratic approximation stated in equation (21).
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Figure 10 shows robustness of the results to variations of the number of collocation nodes.
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Figure 11 shows robustness of the results to a decrease in the convergence tolerance.
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Figure 12 shows the calibration of the rate governing CO2 removal from the atmosphere. We
calibrate the initial rate δM,0 and asymptotic rate δM,inf . The first line in the legend displays the
parameter values chosen in our calibration. The other lines show the value of the parameter that
was changed with respect to our chosen calibration.
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Figure 13 shows the calibration of the rate governing CO2 removal from the atmosphere. We
calibrate the parameter δ∗M governing the speed of convergence from the initial to the asymptotic
rate of CO2 removal.
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Figure 14 shows the calibration of warming delay parameter σforc and the parameter σ̃ocean con-
necting atmospheric and oceanic temperatures. The first line in the legend displays the parameter
values chosen in our calibration. The other lines show the value of the parameter that was changed
with respect to our chosen calibration.
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Figure 15 shows the robustness of our stochastic dynamic programming results to variations in the
number of Gauss-Legendre quadrature nodes.
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Figure 16 shows the effect of increasing the number of quadrature nodes on the results of our ex
ante uncertainty simulation.
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Figure 17 compares our simple quadratic approximation of the temperature difference between
oceans and atmosphere to the actual difference resulting from the DICE-2007 model.
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Table 1 Parameters of the model

Economic Parameters
η 2

3
, 2 intertemporal consumption smoothing preference

RRA 0, 2, 9.5, 50 coefficient of relative Arrow-Pratt risk aversion
b1 0.00284 damage coefficient; for uncertain scenario normally distributed with

standard deviation 0.0013 (low) and 0.0025 (high)
b2 2 damage exponent; for uncertain scenario normally distributed with

standard deviation 0.35 (low) and 0.5 (high)
δu 1.5% pure rate of time preference
L0 6514 in millions, population in 2005
L∞ 8600 in millions, asymptotic population
g∗L 0.035 rate of convergence to asymptotic population
K0 137 in trillion 2005-USD, initial global capital stock
δK 10% depreciation rate of capital
κ 0.3 capital elasticity in production
A0 0.0058 initial labor productivity; corresponds to total factor productivity

of 0.02722 used in DICE
gA,0 1.31% initial growth rate of labor productivity; corresponds to total factor

productivity of 0.9% used in DICE
δA 0.1% rate of decline of productivity growth rate
σ0 0.1342 CO2 emission per unit of GDP in 2005
gσ,0 −0.73% initial rate of decarbonization
δσ 0.3% rate of decline of the rate of decarbonization
a0 1.17 cost of backstop 2005
a1 2 ratio of initial over final backstop cost
a2 2.8 cost exponent
gΨ −0.5% rate of convergence from initial to final backstop cost

Climatic Parameters
T0 0.76 in ◦C, temperature increase of preindustrial in 2005
Mpreind 596 in GtC, preindustiral stock of CO2 in the atmosphere
M0 808.9 in GtC, stock of atmospheric CO2 in 2005
δM,0 1.4% initial rate of decay of CO2 in atmosphere
δM,∞ 0.4% asymptotic rate of decay of CO2 in atmosphere
δ∗M 1% rate of convergence to asymptotic decay rate of CO2
B0 1.1 in GtC, initial CO2 emissions from LUCF
gB −1% growth rate of CO2 emisison from LUCF
s 3.08 climate sensitivity (equilibrium temperature response to doubling

of atmospheric CO2 concentration w.r.t. preindustrial)
ηforc 3.8 forcing of CO2-doubling
λ ηforc/s ≈ 1.23 ratio of forcing to temperature increase under CO2-doubling
EF0 −0.06 external forcing in year 2000
EF100 0.3 external forcing in year 2100 and beyond
σforc 3.2% warming delay, heat capacity atmosphere
σ̃ocean 0.7% parameter governing oceanic temperature feedback
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Table 2 Location of Collocation Nodes

Node Effective Capital (k) Carbon Stock (M) Transformed Time (τ) Temperature (T)
1 0.53 575 0.006 0.07
2 0.75 762 0.054 0.59
3 1.18 1087 0.146 1.48
4 1.81 1463 0.273 2.52
5 2.62 1788 0.422 3.41
6 3.59 1975 0.578 3.93
7 4.69 0.727
8 5.87 0.854
9 7.12 0.946
10 8.38 0.994
11 9.63
12 10.81
13 11.91
14 12.88
15 13.69
16 14.32
17 14.75
18 14.97
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