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RESEARCH ARTICLE
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Abstract

Metarhizium anisopliae (Metschnikoff) Sorokin and Beauveria bassiana (Balsamo) Vuille-

min are entomopathogenic fungi commonly used in microbial control of arthropods. In this

study, we evaluated the insecticidal potential of six isolates of B. bassiana (BIITAC10.3.3,

BIITAC6.2.2, and BIITAC8.1.5) and M. anisopliae (MIITAC11.3.4, MIITAC6.2.2, and MII-

TAC6.4.2) from Cameroon, against the banana aphid Pentalonia nigronervosa Coquerel,

the vector of the banana bunchy top virus (BBTV). Pathogenicity tests were initially con-

ducted using B. bassiana and M. anisopliae isolates at a concentration of 3.2 × 106 conidia/

ml on P. nigronervosa adults sourced from four agroecologies in Cameroon. Four isolates

(BIITAC6.2.2, BIITAC10.3.3, BIITAC8.1.5, and MIITAC6.2.2) were highly pathogenic, caus-

ing greater than 75% aphid mortality in all populations. A significant decrease in aphid fecun-

dity was observed with BIITAC6.2.2, MIITAC6.2.2, and BIITAC10.3.3. These three isolates

were in a test of a series of four fungal concentrations (3.2 × 101, 3.2 × 102, 3.2 × 104, and

3.2 × 106 conidia/ml). produced LC50 of 1.31 × 101 and 3.12 × 10−2 for BIITAC10.3.3 and

MIITAC6.2.2, respectively. MIITAC6.2.2 had the lowest LC90 (1.55 × 103). Our results

strongly support the continued development of biopesticides based on one or more of the

three fungal entomopathogens for the control of banana aphids as a component of an Inte-

grated Pest Management (IPM) strategy for the reduction of the prevalence and transmis-

sion of BBTV under field conditions.
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Introduction

Bananas (Musa spp.), including plantains, are key food crops that provide nourishment for

more than 500 million people worldwide [1]. It is the world’s top fruit crop and a staple food

in many tropical countries [2]. Banana productivity is lowest in sub-Saharan Africa (SSA) due

to pests and diseases, drought, soil fertility, and low adoption of improved crop management

practices [3, 4].

The banana bunchy top disease (BBTD) caused by the banana bunchy top virus (BBTV), a

member of the genus Babuvirus and family Nanoviridae is an economically important disease

for bananas in Asia, Africa, and the South Pacific regions [4–7].

BBTD can cause a 90–100% reduction in fruit yield within two consecutive seasons [7].

BBTV is spread through infected banana propagules [8] and the banana aphid Pentalonia
nigronervosa Coquerel (Hemiptera: Aphididae).Banana aphid transmits BBTV in a persistent

and non-propagative manner [9, 10].

According to Hu et al. [9], P. nigronervosa takes about 4 hours of virus acquisition access

period (AAP) and 15 minutes of inoculation access period (IAP) to transmit the virus. The

transmission efficacy of BBTV was found to be high when aphids were fed on host plants with

high virus titer, with an increased aphid population of viruliferous aphids, and with an increase

in AAP and IAP [10, 11]. The banana aphid can act as a primary source of spread by introduc-

ing viruses into a new field and also plays a major role in the secondary spread of the virus

[12]. The epidemiology of the disease is related to banana aphid ecology [13, 14]. The banana

aphid has a pantropical distribution and is known to occur in all banana growing areas globally

[14, 15]. The aphid is known to occur most commonly on members of the Musa spp., which is

considered the main host. Occasional occurrences of banana aphids have also been reported

on plants from families, Zingiberaceae, Araceae, Cannaceae, and Heliconiaceae [6].

BBTD is difficult to control due to the lack of durable resistance in landraces and improved

hybrids. Host plant resistance is considered the most effective strategy for managing plant

viral diseases [14]. Considerable variability has been observed in the abundance of banana

aphids on various Musa genotypes [16–18], but a high level of resistance to the aphid or the

virus has not been identified.

Besides the lack of host plant resistance, effective biological control with parasitoids, patho-

gens, or generalist predators has not been demonstrated for banana aphids. Numerous gener-

alist predators have been found in association with banana aphids, including earwigs

(Dermaptera), spiders (Aranea), hoverflies (Syrphidae), and predatory coccinellids (Coccinel-

lidae). However, none of these alone or together have been shown to control aphid populations

effectively [19, 20]. Several greenhouse studies have shown that two braconid wasps parasitize

banana aphids in the South Pacific [21, 22]. Still, none have been obtained in Africa or South

Asia, despite the widespread presence of the same parasitoids [22, 23]. Cecidomyid parasitoid

species, Endaphis fugitiva Gagne & Muratori (Diptera: Cecidomyiidae), described from

Hawaii, was shown to parasitize the aphids [24], but efforts to introduce it into Africa have

failed [25].

Banana aphid management using chemical control methods involving the application of

organophosphate insecticides like diazinon, imidacloprid, and paraffinic oil is impractical for

smallholder farmers in SSA for economic reasons [26]. Both the virus and aphid are managed

by destroying virus-infected plants via injection using herbicides and insecticides and replac-

ing them with virus-free plants [27]. Omondi et al. [28] showed that uprooting BBTV-infected

plants in managed farms decreased the prevalence of BBTD only by 2%. This was due to the

migration of viruliferous banana aphids from diseased plants to infect nearby healthy banana
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plants. This emphasized the need for banana aphid control to minimize the secondary spread

in the managed farms.

Entomopathogenic microorganisms have been promoted, to control the aphid populations,

particularly when invertebrate natural enemies are absent or inefficient [29]. Beauveria bassiana
(Balsamo) Vuillemin (Hypocreales: Cordycipitaceae) and Metarhizium anisopliae (Metschnik-

off) Sorokin (Hypocreales: Clavicipitaceae) are ubiquitous, anamorphic entomopathogenic

fungi that act as natural enemies of aphids and other insects since both fungi have a global dis-

tribution [30, 31]. However, the effectiveness of these fungi on banana aphids is relatively scarce.

To develop a biopesticide program for several important crop pests in Central Africa, the Inter-

national Institute of Tropical Agriculture (IITA) station in Yaounde Cameroon collected over

40 B. bassiana and M. anisopliae isolates from Central and Southern Cameroon [31].

Three of the isolates of each species in recent evaluation were shown to be highly virulent

against cocoa mirid Sahlbergella singularis Haglund (Hemiptera: Miridae) [32], Cosmopolites
sordidus Germar (Coleoptera: Curculionidae) [33]and flea beetle, Nisotra uniformis Jacoby

(Coleoptera: Chrysomelidae) [34].

This study aimed to assess the effectiveness of three selected isolates each of B. bassiana (BII-

TAC10.3.3, BIITAC6.2.2, BIITAC8.1.5) and M. anisopliae (MIITAC11.3.4, MIITAC6.2.2, MII-

TAC6.4.2), in controlling banana aphids as part of an integrated strategy to manage the spread

of BBTV. Specifically, we sought to determine how the pathogenicity and virulence of the six

isolates vary across pathogen species/isolates, and geographic populations of banana aphids

selected from several agroecological zones (AEZ) in Cameroon and to rule out that aphids lack

resistance to entomopathogenic fungi (EPF) offered by facultative endosymbionts [35, 36].

Materials and methods

Aphid collection, rearing, and identification

Pentalonia nigronervosa individuals of all life stages were collected from multiple banana

plants in each of 12 locations in four agroecological zones in Cameroon where banana cultiva-

tion is common (Fig 1 and S1 Table. Location of aphid collection sites with farm details.). The

sampled localities including Sanguere and Mayo Dadi in the Sudano-Sahelian zone (Zone I),

Bafou, Bamougoum, Dschang, and Santchou in the Western Highlands (Zone III), Melong,

Njombe, and Buea in the Humid Forest with monomodal rainfall (Zone IV), and Bafia, Make-

nene, and Nkolbisson in the Humid Forest with bimodal rainfall (Zone V).

The main characteristics of the various AEZ were given in S2 Table [37] (S2 Table. Agro-

ecological zones (AEZ) and characteristics in Cameroon). The geographic coordinates and

altitude of each site were obtained using a GPS recorder (eTrex 30, Garmin International Inc.

USA) and the data was used to generate the geographic map using the ArcGIS 10.1.3 software

(Fig 1).

In each location, aphids were collected using a fine camel hairbrush from banana plants

free of BBTV symptoms [38], The collected aphids were divided into two batches. One batch

was placed in 1.5 ml vials containing 90% (v/v) ethanol for species identification using DNA

barcoding. The second batch was collected in plastic bowls containing fresh and healthy

banana leaf pieces to establish non-viruliferous aphid colonies.

The bowls were sealed with aerated lids and then transported to the laboratory at the IITA

in Yaoundé, Cameroon (N03˚5108400, E11˚2707600). The aphids were then kept in an insectary

at 25 ± 1˚C and relative humidity of 70–80% for further maintenance.

Aphids collected from each location were transferred onto healthy, potted tissue-cultured

banana plantlets of the plantain variety Essong to maintain the aphid colony. These plantlets

were established in insect-proof cages measuring 60cm x 40cm x 50cm in an insect-proof
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screen house at an ambient temperature with 12 hrs of night and day. The cages had cloth-

mesh sides for aeration, and the rest were Plexiglas. The aphids used in this experiment were

healthy and did not show signs of fungal infection (mycosis) during maintenance. Appropriate

isolation distance between cages was ensured to establish and maintain separate aphid

lineages.

To confirm the identity of the aphids, techniques outlined by deWaard et al. [39] were used

for DNA extraction and amplification of about 700 bp segment of the mitochondrial cyto-

chrome oxidase subunit 1 (COI) using the primer pairs LepF (5’-ATTCA ACCAATCATAAA
GATATTGG-3’) and LepR (5’-TAAACTTCTGGATGTCCAAAAAATC A-3). The thermocy-

cling profile consisted of initial denaturation at 94 ˚C for 1.5 min, followed by 35 cycles of

denaturation at 95 ˚C for 30 sec, annealing at 55 ˚C for 1 min, elongation at 72 ˚C for 1.5 min,

final elongation at 72 ˚C for 7 min; and a final lap at 4 ˚C [40]. Purified PCR products were

sequenced in both orientations using the primers used for PCR by the Sanger sequencing

method at the DNA Sequencing Facility at Iowa State University, USA.

Fig 1. Sampling locations for banana aphids.

https://doi.org/10.1371/journal.pone.0310746.g001
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Fungal cultures and conidial suspension preparation

Three B. bassiana isolates (BIITAC10.3.3, BIITAC6.2.2, BIITAC8.1.5) and three M. anisopliae
isolates (MIITAC11.3.4, MIITAC6.2.2, MIITAC6.4.2) were obtained in the form of conidia

from the IITA-Cameroon fungal germplasm collection and they were cultured on Potato Dex-

trose Agar (PDA) in Petri dishes at 25 ± 1 ºC in the dark and 70–80% RH. Conidial suspen-

sions of each isolate were prepared from 14-day-old cultures using sterile distilled water

containing 0.1% (v/v) Tween-80. Conidial concentrations were determined using a hemocy-

tometer (Malassez counting chamber) under the microscope (Leica) (40×), and different con-

centrations were prepared through serial dilutions to obtain 3.2×101, 3.2×102, 3.2×104, and

3.2×106 conidia/ml [33]. The conidial solution for each fungal isolate was freshly prepared

before use.

Conidial viability assessment

Conidial suspensions, prepared as described above, were used to test conidia viability. A light

microscope (LEICA DMLS, Leica Microsystems GmbH, Wetzlar, Germany) was used to

adjust the conidia concentration to 3.2×106 conidia/ml, and 100 μl suspension was spread on

PDA media in 90-mm Petri dishes. Each isolate was tested in five replicates. Conidial germina-

tion was halted after 24 hours by spreading 100 μl of 2% formol on the agar surface in each

Petri dish. Each PDA culture plate was sectioned into four sections, and percentage conidial

viability was measured by a random assessment of 100 conidia from each of the four sections

(400 conidia per plate). Conidia were considered to have germinated if their germ tube was

longer than the propagule diameter [41, 42].

Bioassay procedure and virulence against aphids

Adult apterous aphids (9–12 days old) were allowed to settle for 24 hours on a fresh plantain

(Essong) pseudostem piece that had been disinfected in a 1% (v/v) sodium hypochlorite solu-

tion and rinsed several times in sterile distilled water before the bioassay. Fresh pseudostems

of the Essong plantain were harvested from the IITA Cameroon experimental farms (about

8–12 months old) and chopped to dimensions of 12 × 7 mm (L × W). This setup was carried

out in plastic boxes (5 × 13 × 20 cm) covered with lids made of white mousseline sheets to

enable aeration. A Pulmic Raptor 1 Garden sprayer (1 liter) that expels approximately 1 ml of

the inoculum with one squeeze was used to spray 5 ml of the suspension on aphids. Initially,

adult aphids from the 12 populations were sprayed using a single concentration of 3.2 × 106

conidia/ml. All treatments were replicated five times, and 20 adult aphids were used per repli-

cate. Mycosis and mortality were recorded daily for 10 days post-treatment. All dead insects

during the 10 days of observation were transferred to Petri dishes lined with sterile cotton and

moist filter paper and kept in the dark environment at 25 ± 1˚C and 70–80% RH to allow fun-

gal outgrowth. The development of mycosis on dead insects was checked seven days after

incubation.

Concentration-response

The concentration-response bioassays were conducted using only the Bafia aphid population

because of its high population density at the time of the experiment and the three best-per-

forming isolates (BIITAC10.3.3, BIITAC6.2.2, and MIITAC6.2.2). Bioassays consisted of

spraying banana aphids with a conidial suspension of each isolate at four concentrations

(3.2×101, 3.2×102, 3.2×104, and 3.2×106 conidia/ml) [42], and data on aphid morbidity and

mortality was collected following the methods described in the previous section. A sterile
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solution of distilled water with 0.1% (v/v) Tween 80 was administered to the control group.

The presence of the fungus on treated aphids was confirmed under a light microscope. To

evaluate the fecundity of treated aphids, newly deposited 1st instar nymphs were counted and

removed from experimental boxes.

Statistical analysis

Data obtained from the experiment were analyzed with R software version v4.3.0. [43]. Mortal-

ity rates from different populations in each agroecological zone were pooled, and cumulative

mortality rates were corrected using Abbott’s formula [44]. The Kruskal-Wallis test was used

to compare conidial viability, mortality, and mycosis between isolates and agroecological

zones. Means were separated using the post hoc Nemenyi test for conidia viability and the

Dunn test for mortality and mycosis. LT50, LT90, LC50, and LC90 of the isolates were analyzed

at 95% confidence limits (CL) using probit analysis with the package "ecotox" with the same

version of R software [45]. Corrected mortality and mycosis were summarized using the

Rmisc package [46] implemented in R, while the correlation between conidia viability and

mortality was done in Excel.

Results

Conidia viability

The mean percentage of conidial viability of the fungal isolates (Beauveria and Metarhizium)

was generally high. BIITAC10.3.3 had the highest germination rate of 98.1% after 24 hours of

incubation while MIITAC11.3.4 had the lowest germination rate of 87.2% (Fig 2) (S3 Table.

Data for conidial viability). There were significant variations in conidial viability among the

six isolates (χ2 = 37.49; df = 5; P< 0.001). BIITAC10.3.3, MIITAC6.2.2, BIITAC8.1.5, and MII-

TAC6.4.2 had the highest germination rates with similar means, while BIITAC6.2.2 and MII-

TAC11.3.4 had the least germination rates (Fig 2).

Susceptibility of banana aphid populations to entomopathogenic fungi at a

concentration of 3.2×106

The mortality rates of banana aphid populations from four AEZ exposed to six fungal isolates

are presented in Table 1. All isolates were pathogenic to all aphid populations at an initial fun-

gal concentration of 3.2×106 conidia/ml, although there were differences in aphid mortality

among AEZ (χ2 = 8.58; df = 3; P< 0.04) and isolates (χ2 = 146.7; df = 5; P< 0.001). BII-

TAC10.3.3, BIITAC6.2.2, BIITAC8.1.5, and MIITAC6.2.2 caused the highest mortality in

aphid populations from all AEZ, ranging from 78.6–98.9%. while MIITAC11.3.4 and MII-

TAC6.4.2 caused the lowest mortality rates, ranging from 57.0–68.9%.

Aphid populations from zone V were most susceptible when treated with MIITAC6.2.2

(98.9% mortality) and BIITAC10.3.3 (95.5%) and least susceptible to MIITAC6.4.2 (57.0%).

The highest mortality of zone IV aphids was achieved with BIITAC10.3.3 (91.3%). BIITAC6.2.2

caused the highest mortality in zone III (89.4%), while BIITAC8.1.5 and MIITAC6.2.2 caused

89.1 and 89.9% mortalities, respectively, in zone I. The isolates MIITAC6.4.2 and MIITAC11.3.4

caused mortalities below 68.9% of aphids from all AEZ, and notably, they caused the least mor-

tality compared with all other fungal isolates within each agroecological zone.

Lethal time

Ten days following treatment, BITTAC 10.3.3, BIITAC6.2.2, MIITAC6.2.2, and BIITAC8.1.5

caused the greatest mortality within the least number of days. Generally, these isolates caused
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Fig 2. Mean conidial viability of Beauveria and Metarhizium isolates. Bars with the same letters are not statistically different (Nemenyi post-hoc test, α =

5%).

https://doi.org/10.1371/journal.pone.0310746.g002

Table 1. Percent mortality (mean± SE) of aphid populations from four agroecological zones after ten days of exposure to six entomopathogenic fungal isolates in

the laboratory at a concentration of 3.2×106.

Isolate Zone I Zone III Zone IV Zone V χ2 P
BIITAC10.3.3 81.4 ± 4.88bA 86.1 ± 2.89bA 91.3 ± 2.45abA 95.5 ± 1.36aA 9.85 0.02

BIITAC6.2.2 80.0 ± 6.16aA 89.4 ± 3.73aA 85.1 ± 4.08aA 88.8 ± 3.55aA 3.32 0.34

BIITAC8.1.5 89.1 ± 2.55aA 78.9 ± 4.12aA 80.8 ± 3.00aAB 88.1 ± 4.31aA 6.61 0.09

MIITAC11.3.4 62.7 ± 3.53aB 59.0 ± 2.96aB 68.9 ±3.26aBC 62.7 ± 3.34aB 3.57 0.31

MIITAC6.2.2 89.9 ± 4.69abA 78.6 ± 4.35bA 83.9 ± 4.81bA 98.9 ± 0.78aA 16.91 <0.001

MIITAC6.4.2 60.5 ± 2.93aB 58.0 ± 3.41aB 63.7 ± 3.18aC 57.0 ± 4.30aB 2.42 0.49

χ2 26.64 49.08 31.26 50.33 - -

P <0.001 <0.001 <0.001 <0.001 - -

Means followed by the same lower-case letter within rows or upper -case letter within the column are not significantly different for isolates or populations (Kruskal-

Wallis non-parametric and Dunn post-hoc tests, α = 5%). BIITAC = Beauveria bassiana; MIITAC = Metarhizium anisopliae

https://doi.org/10.1371/journal.pone.0310746.t001
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50% (LT50) and 90% (LT90) mortality of aphid populations across different AEZ, ranging

respectively from 3.08 to 5.70 and 8.04 to 15.9 days post-treatment. On the other hand, MII-

TAC6.4.2, and MIITAC11.3.4 had LT50 and LT90 values ranging respectively from 4.82 to 7.57

days and 13.5 to 28.2 days (Table 2). Based on the results of pathogenesis assays and the LT50

and LT90 values, MIITAC6.2.2, BIITAC6.2.2, and BIITAC10.3.3 were selected for the concen-

tration-response bioassays.

Aphid mycosis

There were no differences across all agroecologies in rates of aphid mycosis caused by BII-

TAC10.3.3, BIITAC6.2.2, BIITAC8.1.5, and MIITAC 6.4.2, unlike MIITAC11.3.4 and MII-

TAC6.2.2, which caused significant differences in mycosis among the agroecologies. However,

all fungal isolates displayed unique variations within each of the several AEZs (Table 3). Myco-

sis was not observed in the control group.

Aphid reproduction

Aphid reproduction was greatly affected by the different fungal isolates (F = 31.7; df = 6;

P< 0.001) compared with the control group. Moreover, aphids treated with BIITAC6.2.2,

MIITAC6.2.2, and BIITAC10.3.3 produced fewer nymphs compared with aphids treated with

BIITAC8.1.5, MIITAC11.3.4, and MIITAC6.4.2 (Fig 3).

Concentration-response

Conidial concentration of selected fungal isolates significantly affected mortality rates of the

aphid population 10 days post-treatment: BIITAC6.2.2 (F = 106.6; df = 3; P< 0.001), BII-

TAC10.3.3 (F = 148.1; df = 3; P< 0.001), and MIITAC6.2.2 (F = 106.9; df = 3; P< 0.001).

Aphid mortality rates increased as the concentration increased (Fig 4). At 5 days post-treat-

ment, the lowest concentration required to eliminate 50% of aphids was from BIITAC6.2.2

(9.34 × 10−1 conidia/ml). This was closely followed by MIITAC6.2.2 (7.58 × 101) and then BII-

TAC10.3.3 (4.32 × 105). BIITAC6.2.2 and MIITAC6.2.2 required lower concentrations of 1.19

×107 and 1.14 × 107 to cause 90% mortality in the same length of time. Conversely, at 10 days

post-treatment, the LC50 for MIITAC6.2.2 was lower (3.12 × 10−2) than that of BIITAC10.3.3

(1.31 × 101). LC50 for BIITAC6.2.2 could not be estimated from our data. Of all isolates, MII-

TAC6.2.2 had the lowest LT90 (1.55 × 103) (Table 4).

Table 2. Lethal time (mean LT50 and LT90 with 95% confidence limits) for aphid populations from different agroecological zones exposed to six entomopathogenic

fungal isolates at a concentration of 3.2×106.

Isolates Agroecological zones

I III IV V

LT50 LT90 LT50 LT90 LT50 LT90 LT50 LT90

BIITAC10.3.3 4.46(4.12–4.80) 11.7(10.3–13.6) 4.57(4.38–4.77) 11.2(10.4–12.2) 4.04(3.78–4.31) 10.4(9.42–11.6) 4.55(4.29–4.80) 10.1(9.28–11.1)

BIITAC6.2.2 4.02(3.54–4.50) 12.3(10.3–15.9) 3.67(3.36–3.97) 9.35(8.39–10.7) 3.47(3.13–3.80) 10.6(9.30–12.6) 3.08(2.79–3.37) 9.12(8.13–10.5)

BIITAC8.1.5 4.49(4.11–4.87) 11.3(9.33–13.3) 5.70(5.37–6.04) 14.8(13.1–17.1) 4.82(4.57–5.09) 13.5(12.2–15.2) 5.52(5.19–5.85) 11.9(10.8–13.6)

MIITAC11.3.4 6.87(6.34–7.50) 28.2(22.9–37.0) 6.96(6.63–7.34) 26.0(22.8–30.3) 4.82(4.57–5.09) 13.5(12.2–15.2) 6.32(5.92–6.76) 22.0(18.8–26.8)

MIITAC6.2.2 3.29(2.94–3.36) 8.42(7.44–9.85) 5.15(4.77–5.56) 15.9(13.6–19.4) 3.57(3.10–4.05) 14.4(11.6–19.5) 3.83(3.55–4.09) 8.04(7.39–8.91)

MIITAC 6.4.2 7.11(6.65–7.65) 22.2(18.9–27.4) 7.09(6.71–7.53) 26.0(22.5–30.9) 5.95(5.60–6.33) 23.1(19.9–27.7) 7.57(7.02–8.25) 26.0(21.4–33.3)

BIITAC = Beauveria bassiana; MIITAC = Metarhizium anisopliae; I, III, IV, V designate respective agroecological zones

https://doi.org/10.1371/journal.pone.0310746.t002
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Discussion

Entomopathogenic fungi, including B. bassiana and M. anisopliae, have been widely studied as

biological control agents against various arthropod pests, including aphids [42, 47–49]. Viru-

lence and pathogenicity studies of EPF rarely, however, include multiple populations of a

Table 3. Mycosis rates (mean % ± SE) of aphids exposed to entomopathogenic fungi from four agroecological zones.

Isolate Zone I Zone III Zone IV Zone V χ2 P
BIITAC10.3.3 79.7 ± 4.74aABC 84.1 ± 3.49aAB 80.6 ± 4.36aABC 84.9 ± 2.84aAB 1.34 0.72

BIITAC6.2.2 85.2 ± 6.14aABC 87.4 ± 2.46aA 92.6 ± 1.81aA 91.6 ± 3.02aA 2.69 0.44

BIITAC8.1.5 66.8 ± 7.61aC 76.7 ±3.49aAB 76.4 ± 2.29aC 73.9 ± 3.37aB 1.82 0.61

MIITAC11.3.4 93.6 ± 2.05aA 81.5 ± 3.01abAB 81.0 ± 2.74abBC 72.1 ± 6.34bB 10.3 0.016

MIITAC6.2.2 93.3 ± 2.28abA 782.0 ± 2.85cAB 82.0 ± 3.26bcAB 95.0 ± 1.32aA 16.1 <0.001

MIITAC6.4.2 65.2 ± 7.34aBC 68.9 ± 4.96aB 72.1 ± 4.49aC 82.0 ± 2.80aAB 4.94 0.48

χ2 15.73 12.5 21.5 27.3 - -

P 0.008 0.03 <0.001 <0.001 - -

Means followed by the same lower-case letter within columns or upper-case letter within rows are not significantly different for isolates or populations respectively using

Kruskal-Wallis non-parametric and Dunn posthoc tests, α = 5%. BIITAC = Beauveria bassiana; MIITAC = Metarhizium anisopliae.

https://doi.org/10.1371/journal.pone.0310746.t003

Fig 3. Mean offspring production of the aphid population treated with different fungal isolates at a concentration of 3.2×106.

https://doi.org/10.1371/journal.pone.0310746.g003
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target pest. In this study, we determined the insecticidal potential of Cameroon-indigenous

isolates of B. bassiana and M. anisopliae against various populations of the banana aphid

which were collected from four Cameroon agroecologies that are known to represent much of

Central Africa. Preserving spores and maintaining their viability is crucial for long-term stor-

age, research, and applications of EPF. Most studies consider germination rate as a crucial

parameter in the selection of microbial agents [50]. In a first step of our study, we determined

that conidial viability of our fungal isolates ranged from 87.2 to 98.1%. These results are similar

Fig 4. Cumulative mortality rates of aphids treated with four concentrations of BIITAC10.3.3, BIITAC6.2.2, and MIITAC6.2.2.

https://doi.org/10.1371/journal.pone.0310746.g004

Table 4. Lethal concentrations (conidia/ml with 95% fiducial limits) of B. bassiana and M. anisopliae isolates used against the Bafia banana aphid population at 5

and 10 days after inoculation.

Fungal isolates LC50 LC90

Day 5 Day10 Day 5 Day10

BIITAC10.3.3 4.32 × 105 (3.51 × 104–1.43 × 108) 1.31 × 101 (8.86 × 10−2–1.22×102) 1.33× 1013 (6.11 × 109−9.84×1023) 5.4 × 105 (4.66 × 104–1.87 × 108)

BIITAC6.2.2 9.34 × 10−1 (1.24 × 10−23–9.57 × 101) * 1.19×107 (9.66 × 104−2.50 × 1031) 1.71 × 105 (#)

MIITAC6.2.2 7.58 × 101 (7.95 × 100−3.30 × 102) 3.12 × 10−2 (4.29 × 10−28–4.99 × 100) 1.14 × 107 (1.12×106−7.43×108) 1.55 × 103 (3.01 × 101–1.53 × 107)

*More than 50% mortality obtained for all concentrations

#fuducial limits could not be estimated.

https://doi.org/10.1371/journal.pone.0310746.t004
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to Membang et al. [33], who found more than 75% viability rates for similar isolates within 24

hours of incubation. The exhibition of such high levels of conidial viability by the EPF isolates

is a strong indication that they were suitable for further pathogenicity and virulence studies for

the eventual development of a biopesticide for the suppression of the banana aphid.

The results of pathogenicity experiments showed that all tested aphid populations were sus-

ceptible to the various fungal isolates but there were considerable differences in susceptibility

of various aphid populations to the fungal isolates. For example, BIITAC10.3.3 and MII-

TAC6.2.2 caused the highest aphid mortality rates of 95.5% and 98.9%, respectively, but the

time to reach 50% mortality was the shortest for MIITAC6.2.2 on aphids from AEZ I (LT50 =

3.29 days) and BIITAC6.2.2 on aphids from AEZ V (LT50 = 3.08 days). There are several possi-

ble reasons for the observed differences in susceptibility to EPF among the various geographic

populations of the banana aphid used in our study. First, it is widely known that genetic vari-

ability of an arthropod can affect its susceptibility to any pathogen. It is therefore, possible that

genetic variability among geographic populations of the banana aphid tested in our study

could underly differences in their susceptibility to EPF. While genetic variability can be quite

large among aphid populations of many species, as in the example of 18 geographic popula-

tions of Myzus persicae Sulzer (Hemiptera: Aphididae) from Italy [51], the genetic variability

of geographic populations of the banana aphid tends to be low, probably due to exclusive asex-

ual reproduction by this aphid [52]. In addition to low genetic variability, the banana aphid is

known to harbor the endosymbionts Buchnera and Wolbachia [53], and possibly other endo-

symbionts [54], which are known to affect the biology of their arthropod hosts, their relation-

ship with the host plants, and their response to their abiotic environments. It is known that

endosymbionts can confer [55] or increase resistance and/or susceptibility to entomopatho-

genic fungi [56]. Zélé et al. [57], reported that variability in mortality and susceptibility to fun-

gal infections among 12 spider mite populations was related to the presence of endosymbionts

generally found in most spider mite species. Different Wolbachia strains can either buffer or

affect fungal infection depending on the fungal species, host background, or environment.

Similarly, Rickettsia and Spiroplasma conferred resistance to Pandora neoaphidis Humber

(Entomophthorales: Entomophthoraceae) fungal infections of the pea aphid Acyrthospihon
pisum (Harris) (Hemiptera: Aphididae) [55]. Paker et al. [56] equally revealed that the bacterial

symbiont Regiella insecticola Moran (Enterobacterales: Enterobacteriaceae) can defend pea

aphids from the fungal entomopathogen Zoophthora occidentalis Batko (Entomophthorales:

Entomophthoraceae), but did not protect the pea aphid from the generalist fungal pathogen,

B. bassiana. Presently, information on the range and frequency of endosymbionts harbored by

the banana aphid populations used in our study is lacking. There is, therefore, a considerable

need to identify the endosymbiont profile in banana aphids from various AEZ of Cameroon

and elsewhere in Africa and to determine their effects on aphid biology, including its response

to infections by entomopathogenic fungi.

Of the six EPF isolates tested in our study, MIITAC11.3.4 and MIITAC6.4.2 were the least

pathogenic to the banana aphid, while BIITAC10.3.3, BIITAC6.2.2, BIITAC8.1.5, and MII-

TAC6.2.2 caused the highest aphid mortality and had the lowest lethal time across the four

AEZ. The relatively low aphid mortality caused by MIITAC11.3.4 and MIITAC6.4.2 is similar

to that reported by Mahot et al. [32] (56% and 55%, respectively), using the hemipteran host

insect S. singularis. In contrast to our study and that of Mahot et al. [32], Membang et al. [33]

and Niyibizi et al. [34] reported higher mortality rates with similar isolates infecting the cole-

opterans C. sordidus and N. uniformis. There are two possible reasons, among others, for the

differences among the aforementioned studies. First, it is possible that the M. anisopliae iso-

lates MIITAC11.3.4 and MIITAC6.4.2 are more pathogenic to coleopterans than hemipteran

insects. In contrast, the B. bassiana isolates BIITAC10.3.3, BIITAC6.2.2, and BIITAC8.1.5
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showed comparable aphid mortality rates in our experiment, consistent with the findings of

Membang et al. [33] and Niyibizi et al. [34] regarding the coleopterans C. sordidus and N. uni-
formis, respectively. In a comparison of B. bassiana and M. anisopliae, Erler et al. [58] found

that M. anisopliae tends to be more pathogenic to soil-dwelling insects, such as C. sordidus and

N. uniformis, although only the immature stages of N. uniformis are soil-dwelling. Insects have

different structures and defense systems, which can affect fungal infection [59–61]. For exam-

ple, banana aphids and cocoa mirids are soft-bodied, making it easier for fungal hyphae to

penetrate, while banana weevils and flea beetles have a firmer exoskeleton. Moreover, different

attributes, such as genetic variation, origin, pathogenicity, and virulence, are used to character-

ize fungal isolates. These attributes may vary in response to different factors, such as the

infected host species, the growth medium, abiotic factors, methods of application and manipu-

lation of the pathogen, and types of formulations used [62].

Second, the differences in mortality in the aforementioned studies could be partly caused

by differences in the method of inoculating the insects with the fungi. In our study, fungal sus-

pension was sprayed on the aphid, while Membang et al. [33] and Nyibizi et al. [34] immersed

C. sordidus and N. uniformis adults in fungal suspension. If that is indeed partly the cause of

observed differences in pathogenicity between the three studies, then we would expect differ-

ences between our study and that of Mahot et al. [32]; however, that was not the case, as patho-

genicity of Metarhizium isolates was similar for the banana aphid and S. singularis, which are

both hemipteran insects. They were inoculated using spraying and immersing methods,

respectively.

Apart from overall pathogenicity, aphid mortality increased with increasing fungal conidia

concentration as demonstrated with the 3 isolates - BIITAC10.3.3, BIITAC6.2.2, and MII-

TAC6.2.2 - that were tested at four concentrations against a single aphid population (Bafia).

Our results are, however, different from other studies using the same isolates against other

pests. Treatment with BIITAC10.3.3 had LC50 values of 5.09× 106 against banana weevil [33]

and 8.97× 105 against cocoa mirid [32]. Mahot et al. [32] reported an LC50 value of 4.32×106

for BIITAC6.2.2 tests, while Niyibizi et al. [34] reported an LC50 value of 2.00×108 for flea bee-

tles with the same isolate. Treatment with MIITAC6.2.2 led to LC50 values of 3.63×103 and

2.18×107 in trials against banana weevil and cocoa mirids, respectively. This shows that BII-

TAC10.3.3, BIITAC6.2.2, and MIITAC6.2.2 at concentrations of 5.09×106, 2.00×108, and

2.18×107 conidia/ml, respectively, could be used to control all the pests indicated above. More-

over, MIITAC6.2.2 produced 90% (LC90) mortality with the lowest concentration (1.55 x 103

conidia/ml) compared to the other two isolates. This indicates that MIITAC6.2.2 can cause

high mortality rates at relatively low fungus concentrations, which has economic advantages

since it would eventually cost less than the other isolates when used for aphid control.

The fungal isolates used in the study were also shown to produce high (though variable) lev-

els of mycosis in banana aphids, with up to 95% mycosis in certain populations when treated

with MIITAC6.2.2. High mycosis levels are highly desirable and entomopathogenic fungi, as

sporulating cadavers can become a source of infection, and for the persistence of the fungus in

the environment of the targeted arthropods, especially in arthropods, like the banana aphid,

where population patches generally contain all aphid life stages, making the entire population

vulnerable to fungal infection [63]. High conidia production is essential for the occurrence of

horizontal transmission and consequently for inducing epizootics that will contribute to the

decline in aphid populations [33, 64]. Moreover, factors like feeding patterns, habitats, host

morphology, and pathogen-specific characteristics can all affect the speed of fungal pathoge-

nicity [65].

A significant finding of our study is the reduction in aphid reproduction as a result of their

infection with BIITAC6.2.2, MIITAC6.2.2, and BIITAC10.3.3, an effect that can further
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accelerate the decline in treated aphid populations, in addition to inducing high levels of

banana aphid mortality. The fungi may have used insect body resources to produce conidia

instead of the host for reproductive output [66].

Conclusions

Of the six EPF isolates that were used in our study, two B. bassiana BIITAC6.2.2, BIITAC10.3.3

and one M. anisopliae MIITAC6.2.2 isolates, together with their induction of high aphid mor-

tality and mycosis and suppression of aphid reproduction show their great potential as biocon-

trol agents for the management of the banana aphid and banana bunchy top disease. The

choice of these three isolates is further bolstered by their relatively low LC50 and LT50 when

used against banana aphids from various agroecologies. The present study demonstrated that

significant variability in pathogenicity is observed when identical isolates are utilized to man-

age aphids from diverse agroecological zones. This underscores the crucial requirement for the

screening of IPM tools effective on broad-spectrum host strains and the customization of pest

management interventions that are tailored to specific regions, to optimize treatment efficacy.

Further works should consider the development of these isolates as formulated biopesti-

cides and should be tested for their in-field persistence, efficacy at the field level, as well as

their pathogenicity to non-target insects. Moreover, our results and those of several other stud-

ies with the same isolates support the selection of one or more of the promising EPF isolates

for targeting several insect pests in several cropping systems, including bananas, cocoa, and

vegetables.
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