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ABSTRACT OF THE THESIS 

 

Utility of temporally-biased invasive species distribution models in the detection of  

Euwallacea sp. nr. fornicatus in California 

 

by 

 

Monica Dimson 

 

Master of Arts in Geography 

University of California, Los Angeles, 2017 

Professor Thomas Welch Gillespie, Chair 

 

Species distribution models (SDMs) are valuable risk assessment tools in the management of 

invasive species, for which early detection and containment are critical. Few studies have 

evaluated the utility of invasive SDMs trained on temporally-biased presence data. While the 

abundance and range of occurrence records may increase with time after invasion, management 

objectives become more difficult to achieve as a destructive species nears establishment. This 

research assesses the relative predictive ability of models for the invasive shot hole borer 

(Coleoptera: Curculionidae: Scolytinae: Euwallacea sp. nr. fornicatus), which was first detected 

in Southern California in 2003. A series of 100-meter resolution models were developed in 

Maxent, selected for its ability to produce reliable models with relatively few occurrence records. 

Models were trained using data from five chronologically cumulative sampling periods, which 
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simulate stages of invasion. The effects of spatial extent and spatial filtering were also examined. 

All models achieved high AUC (area under the receiver operating curve) values > 0.93 and 

correctly classified 87.7 ± 18.8% of independent test records, indicating high model performance 

regardless of the degree of temporal bias. The leading contributing variables were minimum 

temperature of the coldest month (for sixteen models) or percent impervious surface (for four 

models). Sensitivity was consistently higher for models that used the larger spatial extent, which 

suggests that for an emerging species, larger backgrounds may be less restrictive on model 

outcomes. Spatial filtering produced more discriminating results without compromising model 

sensitivity. The study finds that invasive SDMs can be useful in identifying areas vulnerable to 

invasion, particularly if they are integrated into adaptive management strategies.  
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1. INTRODUCTION 

Species distribution models (SDMs) describe the relationship between species occurrence 

and environmental conditions at a given location. SDMs have a wide variety of applications, 

including risk assessment for biological invasion (Peterson 2003; Elith et al. 2010; Jiménez-

Valverde et al. 2011). Invasive species can have a significant economic and ecological impact 

outside of their native range. In the United States, the annual cost of invasive species 

management is estimated at 219 billion USD (Pimentel 2011). Invasive species also threaten 

native biodiversity through interspecific interactions (e.g. competition, predation, parasitism) and 

habitat modification (Pimentel et al. 2005). Modeling the distribution of invasive species can 

help to identify areas that are most vulnerable to invasion, particularly when resources for full 

systematic surveys are limited. 

Invasive species are typically in disequilibrium with a novel environment, which presents 

a challenge for correlative models like Maxent (Elith et al. 2010; Uden et al. 2015). A modeling 

study of incipient Phytophthora ramorum found that invasive SDMs are less accurate in the early 

stages of invasion and more likely to under-predict ranges (Vaclavik and Meentemeyer 2012). It 

takes time for a species to establish and realize its full potential range, and models trained on 

records from the onset of invasion will likely be affected by spatial (e.g. from uneven survey 

effort) and temporal (e.g. surveying during ongoing species expansion or contraction) sampling 

bias (Bean et al. 2012).  

Several alternative approaches have been proposed to address the issue of disequilibrium. 

These include correlative models that project predictions from the native range onto introduced 

sites, mechanistic models based on species physiology, hybrid models that select environmental 

predictors according to species physiology, or collection of input data via planned, transect 
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sampling (Peterson 2003; Elith et al. 2011; Jiménez-Valverde et al. 2011; Vaclavik and 

Meentemeyer 2012; Brummer et al. 2013). Unfortunately, these data and methods are rarely 

readily available, and are often costly and time-consuming to acquire or implement.  

There is a need to further examine the utility of correlative SDMs in the early stages of 

biological invasion, despite the implicit temporal bias. Many invasive SDM studies have focused 

on species that are well-established at the time of study (Welk et al. 2004; Lippitt et al. 2008; 

Elith et al. 2010; West et al. 2016). Though predictive ability has been found to increase as 

species near establishment, these studies do not address early detection, prevention, and 

containment objectives critical to successful invasive species management (Epanchin-Niell and 

Liebhold 2015). It is impractical to wait until a destructive species has spread and established 

before attempting to predict its potential extent. As newly introduced species approach 

equilibrium in the invaded range—itself a difficult threshold to identify—efficient control and 

total eradication become near impossible to achieve (Venette et al. 2010; Uden et al. 2015). 

In this research, I modeled the distribution of the invasive shot hole borer (Coleoptera: 

Curculionidae: Scolytinae: Euwallacea sp. nr. fornicatus) (ISHB), an emerging invasive species 

in California that threatens commercial avocado industries, native forests, and urban landscapes 

(O’Donnell et al. 2016). A series of SDMs were produced using Maxent, a common correlative 

distribution model that consistently ranks among the most reliable species distribution modeling 

methods (Elith et al. 2006; Phillips et al. 2006; Wisz et al. 2008). Using ISHB survey data 

collected from 2012 to 2016, five chronologically cumulative sampling periods were created to 

simulate stages of invasion. Each sampling period was modeled 1) with and without spatial 

filtering and 2) using two different spatial extents. These additional parameters were examined 
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because the Maxent model is especially sensitive to sampling bias and can be greatly impacted 

by the size of the background area (VanDerWal et al. 2009; Elith et al. 2011). 

The objectives of this study were to 1) determine the relative predictive ability of models 

trained on temporally-biased ISHB data, 2) examine the effects of spatial extent and spatial 

filtering on invasive SDM outcomes, and 3) determine how SDMs for emerging invasive species 

can serve early detection and prevention management objectives.  

 

2. BACKGROUND 

2.1. Species Impact 

The common name invasive shot hole borer (ISHB) refers to two closely related 

ambrosia beetles that belong to genetically distinct clades of the Euwallacea fornicatus species 

complex (Stouthamer et al. 2017). The beetles are native to separate but overlapping regions of 

Asia. Each vectors a fungal symbiont (Fusarium spp.) that infects the xylem of the host plant and 

also serves as the insect’s food source (Eskalen et al. 2013). The mutualistic beetle/disease 

complex causes limb failure, branch dieback, and in severe cases, tree mortality.  

ISHB was first detected in 2003 in Los Angeles County, but its potential impact was not 

recognized until 2012 (Lynch et al. 2016). By 2013, ISHB/Fusarium had been observed on 112 

tree species (Eskalen et al. 2013). Over fifty host species support both fungal growth and beetle 

reproduction. These reproductive hosts include nineteen California native species, six invasive 

plants, and many trees common in the urban forest. ISHB is also a pest of avocado (Persea 

americana) (Stouthamer et al. 2017), a major agricultural crop in California valued at 274 

million USD (California Department of Food and Agriculture 2016). Avocado groves have been 

affected in Israel as well, where ISHB was first recorded in 2005 (Mendel et al. 2012).  
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Control tactics for ambrosia beetles are limited. ISHB feeds and mates within the tree 

galleries and does not appear to use an aggregation pheromone (Umeda et al. 2016). Infection by 

Fusarium inhibits the host plant’s ability to respond to chemical treatments (Eatough Jones et al. 

2017). Early detection and containment are therefore critical management strategies for ISHB.  

 

2.2. Study Area 

The current range of ISHB in California now includes Los Angeles, Orange, and San 

Diego Counties, as well as limited regions of Riverside, San Bernardino, Ventura, Santa Barbara, 

and San Luis Obispo Counties. ISHB models were created at two spatial extents: 1) the state of 

California and 2) an ecological sub-set defined by Level III Ecoregions (Fig. 1). Ecoregions 

describe areas of similar ecosystem type, resource quality and availability, and probable response 

to disturbance (Griffith et al. 2016). The Ecoregion hierarchy classifies ecosystems at different 

spatial scales, providing an adaptable framework for ecosystem research and management. 

The geographical and biological diversity of California divides the state into 13 Level III 

ecoregions. In Southern California, the Mediterranean climate produces cool, wet winters and 

warm, dry summers (Franklin 1998). This climate regime supports some of the highest levels of 

regional biodiversity in the world; Mediterranean California is home to 4,300 native plant 

species, 35% of which are endemic to the region (Cowling et al. 1996). Urbanization and 

agriculture are the main threats to regional diversity. 

The urban forest of Los Angeles is also extremely diverse and supports a higher number 

of tree species (both native and exotic) than some native forests in the U.S. (Gillespie et al. 

2016). Many of these species are susceptible to ISHB/Fusarium. 
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The modeled subset includes Ecoregions 8 and 85. Ecoregion 85, the Southern 

Californian/Northern Baja Coast, is an area characterized by coastal sage scrub and chaparral, as 

well as major urban areas and some agricultural land (Griffith et al. 2016). Ecoregion 8 describes 

the Southern California Mountains, an area of higher elevations, cooler summers, and higher 

precipitation than Ecoregion 85. It is also less developed, as much of the area is National Forest 

public land, and dominated by chaparral, oak woodlands, and coniferous woodlands.  

 

2.3. Modeling Method 

Maxent is a machine-learning program that predicts species geographic distributions 

using species point data and environmental variables (Phillips et al. 2006). It performs well with 

limited occurrence records and produces robust results with small sample sizes, compared to 

other correlative SDM methods (Hernandez et al. 2006; Anderson and Gonzalez 2011). Maxent 

is a presence-only model and does not require field records of species absence. Instead, pseudo-

absences are drawn from the background data (Phillips and Dudík 2008). This makes Maxent a 

valuable tool for modeling incipient species like ISHB, for which absence data in the novel range 

is often unavailable or unreliable (Phillips et al. 2006; Jiménez-Valverde et al. 2008).  

Presence-only models have a few disadvantages. True-absences can be valuable in 

providing a more complete picture of sampling bias, and may also help to produce more robust 

predictions if they are truly representative of unsuitable habitat (Elith and Leathwick 2009). 

Inclusion of true-absences, together with dispersal constraints, has been shown to improve 

invasive SDM performance (Vaclavik and Meentemeyer 2009). However, absence from a given 

area is difficult to verify for mobile species (Jiménez-Valverde et al. 2008). Observed absences 

could equally signify that habitat is unsuitable, or that it is suitable but currently unoccupied 
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(Elith and Leathwick 2009; Jiménez-Valverde et al. 2011). For an emerging species like ISHB, it 

is difficult to confirm the exact significance of observed absence. 

 

3. METHODS 

3.1. Species Data 

Presence-only occurrence data for ISHB were obtained from University of California 

(UC) Riverside; UC Cooperative Extension, Orange County; and USDA Forest Service, Forest 

Health Protection. The dataset was compiled from reports and informal surveys that recorded 

ISHB observations in Southern California from 2012 to 2016. Point locations were collected 

using hand-held GPS devices and represent individual ISHB-infested trees. Infestation was 

confirmed by trained experts using direct beetle observations, beetle signs and/or symptoms of 

attack, and/or Fusarium infection. 

The original dataset is the most spatially and temporally comprehensive dataset currently 

available and includes 9,530 ISHB presence records. By default, Maxent removes duplicate 

points that occur within a single grid cell, the size of which is determined by the spatial 

resolution of the environmental layers, in this case 100-meters (Fourcade et al. 2014). This 

reduced the dataset to 1,052 unique records. Though the ISHB point data are highly accurate and 

precise, they are affected by an unquantified degree of spatial sampling bias, which is primarily 

the result of uneven sampling effort. Much of the data was collected not during transect surveys, 

but during visual tree assessments within artificial boundaries where researchers have had 

permission to survey (e.g. county parks, riparian corridors, university campuses) (Umeda et al. 

2016). This resulted in clusters of dozens of points within a single 100-meter grid cell. Spatial 

sampling bias is a common obstacle in species distribution modeling, and the utility of data 
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despite these limitations is a point of investigation in this study (Rushton et al. 2004; Newbold 

2010). 

 

3.2. Environmental Variables 

Bioclimatic variables were downloaded from WorldClim 1.4, a popular dataset in species 

distribution modeling because it provides publicly available, global coverage at a relatively fine 

spatial resolution of 1-kilometer (Hijmans et al. 2005). Rasters were resampled to 100-meters 

using bilinear interpolation, which has been used, with robust results, to resample 250-meter 

climate data to as fine a scale as 10-meters (Rovzar et al. 2016). Resampling from this relatively 

coarser resolution may obscure microclimates in areas of high topographic relief, however, the 

topographic data have a finer resolution and may help to preserve this variability.  

Topographic, impervious surface, tree canopy cover, and NDVI (normalized difference 

vegetation index) data were acquired at a 30-meter resolution. These layers were aggregated by 

mean and resampled to 100-meter resolution using bilinear interpolation. Elevation, percent 

impervious surface, and percent tree canopy cover rasters were downloaded from the U.S. 

Geological Survey National Elevation Dataset and National Land Cover Database, respectively 

(Xian et al. 2011; Homer et al. 2015; USGS 2016). Aspect and slope were calculated from a 

mosaic of elevation rasters. Dry-season NDVI was calculated from August through September 

2016 Landsat 8 scenes (data obtained from the U.S. Geological Survey’s Earth Resources 

Observation and Science Center). NDVI is a remotely-sensed measure of greenness often used to 

quantify vegetation distribution and density. 

Lastly, a categorical shapefile for geologic substrate was acquired from the U.S. 

Geological Survey (Ludington et al. 2005). Vector to raster conversion was performed in 
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ArcMap 10.4.1 using a 100-meter cell size and the Maximum Area setting, which assigns values 

based on the majority area of the destination cell. This technique has been shown to be more 

accurate that alternative methods (Congalton 1997). 

ArcMap 10.4.1 was used to process all environmental layers to identical spatial resolution 

and extent, as required by Maxent. Rasters were projected to an equal area coordinate system 

(NAD 1983 California Teale Albers) before resampling. Outputs were then re-projected to WGS 

1984 and extracted by the two spatial extents used in the study (Fig. 1). A resolution of 100 

meters was selected so that results would be more applicable to management and conservation 

decision-making (Brummer et al. 2013). 

Correlation analysis was performed for all continuous variables using the principal 

component analysis tool in ArcMap 10.4.1. Highly correlated variables (≥|0.75|) in the 

correlation matrix were removed so that only one of the variables remained. In selecting and 

refining the predictors, I prioritized variables of ecological relevance to insect development, host 

availability and conditions, and disturbance (Elith et al. 2011). Twelve variables were used as 

predictors for all ISHB models (Table 1). 

The predictor set is limited in that it does not include biotic interactions that may 

influence beetle distribution. This is a common restriction on correlative SDMs, particularly for 

an invasive species that is relatively new to science. Little is known about ISHB’s life history in 

terms of interspecific competition or predation, especially in California (Umeda et al. 2016), or 

about specific host characteristics that influence vulnerability. 

Dry-season NDVI and land cover variables were intended to serve as proxies for host 

plant material, but host availability does not guarantee susceptibility. Likelihood of infestation is 

also influenced by host vigor and stand conditions (Paine et al. 1997), which can vary from year 
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to year. Because the bioclimatic variables are averaged over a thirty-year period, conditions that 

induce drought or moisture stress are not represented by these predictors.  

  

3.3. Model Parameters 

Maxent version 3.3.3 k was used to create twenty ISHB models at a 100-meter spatial 

resolution (Phillips et al. 2004). I tested models using three parameters: length of sampling 

period, spatial extent, and spatial filtering (Table 2). Default settings and 10,000 background 

points were used for all models. Each model used in the analyses was the average of ten cross-

validation replicates. This form of replication randomly splits the records into equal-size “folds,” 

each of which was used for model evaluation in one of the replicates. In this case, each run used 

nine of the folds for model training and the remaining fold—approximately 11% of the total 

sample size—for model testing.  

 

3.3.1. Length of Sampling Period 

In this research, temporal sampling bias was represented by the length of the sampling 

period from which ISHB records were taken. Five chronologically cumulative datasets, referred 

hereto after as sampling periods, were derived from the occurrence records. I refer to the models 

by the last year of data in the sampling period (e.g. models based on 2012-2015 records are 

called “2015 models”). There were four iterations of each sampling period, using different 

combinations of spatial extent and spatial filtering (described below).  

Models with a longer sampling period had a larger training dataset (Table 2) that was 

potentially more environmentally representative of the ISHB niche. This research did not control 

for differences in sample size, the effects of which may be less important than those of sampling 
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bias (Bean et al. 2012; Boria et al. 2014). Improvements in model performance are more often 

due to spatial bias treatment, rather than larger sample size alone. Bean et al. (2012) observed 

that “well-sampled data with few records are better than biased data of any sample size” (p. 255). 

Sample size also has an inconsistent relationship with area under the receiver operating curve 

(AUC), a common SDM performance metric. AUC has been found to both increase with 

(Hernandez et al. 2006) and be relatively unaffected by changes in sample size (Wisz et al. 2008; 

Anderson and Gonzalez 2011).  

 

3.3.2. Spatial Extent 

Ideally, areas that have not been surveyed should be excluded from the background area 

in Maxent (Elith et al. 2011). In a presence-only model, selecting too large a background may 

produce misleading model results, including inflated performance statistics (VanDerWal et al. 

2009). ISHB models were thus created using two spatial extents: 1) the state of California and 2) 

the external boundary of Ecoregions 8 and 85 (Environmental Protection Agency, Level III) 

(Fig. 1). The outputs are referred to as California and Ecoregion models, respectively. 

Ecoregions 8 and 85 were merged in ArcMap 10.4.1 to obtain a single outer boundary for the 

area. The small portion of Ecoregion 85 that extends into Mexico was clipped from the extent. 

The vast majority of ISHB records have been collected, coincidentally, from Ecoregion 85. Few 

areas outside of this extent have been surveyed, and this may have inflated some performance 

metrics for the California models. However, the political boundary of California was tested 

because it reflects the likely jurisdiction of policymakers. The future distribution of ISHB may 

concern resource managers at the state level, particularly if preventative strategies outside of 

Southern California are to be implemented. 
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3.3.3. Spatial Filtering 

A study by Yackulic et al. (2013) found that 87% of Maxent modeling studies are 

affected by spatial sampling bias. A spatially biased model is often fitted more closely to survey 

effort, rather than the actual distribution of a species (Phillips et al. 2009). Spatial filtering can 

help mitigate this bias by reducing clusters of geographic records. It has been shown to improve 

model predictive accuracy and improve representation of non- or less-surveyed areas in the 

modeled extent (Kramer-Schadt et al. 2013). 

In order to examine the impact of spatial sampling bias on emerging, invasive SDMs, 

ISHB models were created both with and without spatial filtering. I used a method similar to the 

rarefied unfiltered treatment in Boria et al. (2014) and the systematic sampling treatment in 

Fourcade et al. (2014), in which records are subsampled at a coarser resolution than that of the 

model. To create the spatially filtered dataset, NOAA Biogeography Branch’s Sampling Design 

Tool was used to randomly sample records from a 500-meter fishnet generated in ArcMap 

10.4.1. This further reduced the number of ISHB observations to 372. Models that have been 

treated with this method are hereafter referred to as “filtered,” versus “unfiltered.” 

 

3.4. Model Evaluation 

The primary metric of model performance in this study was sensitivity, or the proportion 

of true-presences correctly classified by each model. Sensitivity was calculated using 150 ISHB 

records that were excluded from model training (Appendix A). Thirty records were randomly 

selected from each survey year using NOAA Biogeography Branch’s Sampling Design Tool. 

The predicted values at each of the model-independent test points were extracted from 

the Maxent outputs using ArcMap 10.4.1. Correctly classified records were those points with 
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values greater than or equal to the minimum training presence (MTP) threshold of each 

respective model (Table 3).  

Thresholds are often used to create binary maps of habitat suitability, and should be 

selected based on study objectives and restrictions (Hernandez et al. 2006; Holcombe et al. 

2010). Fixed thresholds (e.g. threshold=0.5, 10 percentile training presence) omit a defined 

percentage of training records, which can help to account for varying quality of input data (Ward 

and Morgan 2014). The MTP, which sets the threshold to the lowest probability predicted for 

any of the true positives that trained the model, was selected because confidence in the precision 

and accuracy of the ISHB records is high.  

In addition to sensitivity, MTP was used to calculate suitable area. The range of suitable 

values, based on MTP, were also calculated for the leading contributing variables.  

Metrics based on specificity, the proportion of correctly classified true-absences, should 

be avoided for presence-only models (Hernandez et al. 2006; Merow et al. 2013). Errors of 

commission (true-absences classified as presences) are difficult to interpret, not only because 

true-absences are lacking, but because they could indicate sites where the species could exist and 

does not yet. For such species (e.g. rare, endangered, or invasive), which are known to presently 

occupy a limited part of their potential range, omission (true-presences classified as absences) is 

of greater concern than commission (Uden et al. 2015; Rovzar et al. 2016). Commission errors 

could also be caused by factors not included in the model, e.g. dispersal limitations and biotic 

interactions (Jiménez-Valverde et al. 2011).  

One of the most common threshold-independent metrics used in model assessment is the 

area under the receiver operating curve (AUC), which relies on measures of both sensitivity and 

specificity (Elith and Leathwick 2009; Merow et al. 2013). AUC describes the probability that 
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the model can randomly predict a higher probability for a presence cell versus an absence (or 

pseudo-absence) cell (Phillips and Dudík 2008). Values range from 0 to 1.0, where AUC = 0.5 

indicates model predictive ability equal to that of random prediction. Models with AUC  0.75 

are generally considered suitable for use in conservation planning (Elith et al. 2006). 

Though AUC is the only measure of predictive accuracy in some SDM studies 

(Broennimann et al. 2007; Wisz et al. 2008; Brummer et al. 2013), it is not an ideal performance 

metric of presence-only models due to the lack of true-absence data (Lobo et al. 2008; Pearson 

2010). In Maxent, AUC has been found to increase when using too large a background area 

(VanDerWal et al. 2009; Merow et al. 2013). AUC values remain high even when spatial 

sampling bias is deliberately added to a model, but also decrease when that same bias is 

corrected through spatial filtering (Kramer-Schadt et al. 2013; Syfert et al. 2013; Fourcade et al. 

2014). Because alternative metrics for presence-only models are few, AUC continues to be used 

in model evaluation. However, it is recommended that a secondary metric be used to corroborate 

high values and justify confidence in the model (Warren and Seifert 2011; Merow et al. 2013). 

This study used mean AUC as a comparative metric between models, rather than as an 

absolute measure of model performance. Four one-way analysis of variance (ANOVA) tests 

were used to compare the effect of different sampling periods on AUC within each model series. 

I refer to the model series by spatial extent and spatial filtering, where +F indicates filtered 

models (i.e. California, California+F, Ecoregion, Ecoregion+F). Two-way ANOVA was also 

used to compare models within the same sampling period (i.e. all 2012 models, all 2013 models, 

etc.). All ANOVA and post hoc Tukey tests were conducted in RStudio (RStudio Team 2016). 
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4. RESULTS 

4.1. Suitable Area 

Area predicted suitable increased with length of sampling period, all other parameters 

being equal (Table 4). Filtered models were generally more conservative than their unfiltered 

counterparts (Fig. 2a-2e, 3a-3e, 4a-4e, 5a-5e). Spatial filtering decreased area predicted suitable 

by 35.2 ±10.3% in the California extent and 22.7 ±10.8% in the Ecoregion extent (excluding 

2012 Ecoregion models). Area predicted suitable was 5.8% greater for the filtered versus 

unfiltered 2012 Ecoregion model. Due to the areal difference of the spatial extents, the suitable 

area of the California models cannot be directly compared to that of the Ecoregion models. 

 

4.2. Model Sensitivity 

Mean sensitivity increased with length of sampling period, all other parameters being 

equal (Table 5). The largest increase in sensitivity occurred between the 2012 and 2013 models. 

On average, sensitivity of each 2013 model was 42.9 ±6.9 percentage points higher than that of 

its 2012 counterpart. Average sensitivity of the 2014, 2015, and 2016 models was consistently 

high at 99.3 ±0.6%. 

Sensitivity was higher to test records from the modeled sampling period (e.g. 2013 

models were more sensitive to 2012-2013 records than records after 2013). All models correctly 

predicted 97.9 ±1.6% of the 2012 test records. However, average sensitivity to the 2015 test 

records (77.5 ±29.8%) was lower than that of the 2016 test records (82.0 ±28.5%). 

Spatial filtering did not have a consistent effect on sensitivity. The largest increase in 

sensitivity due to spatial filtering occurred among the 2012 models. Sensitivity of the 2012 

California and 2012 Ecoregion models both increased by eight percentage points when training 
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records were filtered. The largest decrease occurred in the sensitivity of the 2013 Ecoregion 

models, which decreased by ten percentage points when records were filtered. 

The effect of spatial extent on sensitivity depended on sampling period. Average 

sensitivity of the 2012, 2013, and 2014 Ecoregion models was 5.7 ±4.3 percentage points lower 

than that of their California counterparts. Among 2015 and 2016 models, however, the difference 

in sensitivity between California and Ecoregion models was less than one percentage point.  

 

4.3. Area Under the Receiver Operating Curve 

All twenty ISHB models performed better than random prediction and obtained AUC 

greater than 0.93 (Table 6). Within each model series, AUC decreased with length of sampling 

period, which had a statistically significant effect on AUC at the p < 0.001 level as determined 

by one-way ANOVA. Post hoc Tukey tests showed multiple pairwise differences among the 

AUC values of each model series (Fig. 6). The AUC of each 2012 model was statistically 

significantly higher than that of its 2016 counterpart (p < 0.001). 

In each sampling period, spatial extent had a statistically significant effect on AUC as 

determined by two-way ANOVA. The AUC of each California model was statistically 

significantly higher than that of its Ecoregion counterpart (e.g. 2015 California+F > 2015 

Ecoregion+F) (p < 0.001; p < 0.01 for 2012 CA/Ecoregion pair) (Fig. 7).  

All else being equal, there was no statistically significant effect of spatial filtering alone 

on AUC, as determined by two-way ANOVA, except in the 2016 model group. Post hoc Tukey 

tests showed no statistically significant difference between the AUC of an Ecoregion model and 

its filtered Ecoregion counterpart (Fig. 7). Among California models, spatial filtering increased 

AUC for the 2014 (p < 0.01), 2015 (p < 0.01), and 2016 (p < 0.001) models only.  
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4.4. Variable Contribution 

The leading contributing variables were minimum temperature of the coldest month (for 

sixteen models) or percent impervious surface (for four models) (Table 7). Both were among the 

top three contributing variables for nineteen out of twenty models. Also among the top three 

contributing variables were isothermality (more important in California models) and dry-season 

NDVI (more important in Ecoregion models). Slope and aspect contributed least to the models. 

Precipitation metrics, percent tree canopy cover, and geologic substrate contributed less than 4% 

to the models. Variable contribution differed somewhat between the two spatial extents. 

Within the suitable area determined by MTP, mean minimum temperature of the coldest 

month was 3.97 ±1.13°C (Table 8). Mean suitable surface imperviousness was 14.0 ±10.1%, 

mean isothermality was 52.9 ±2.5%, and mean dry-season NDVI was 0.19 ±0.04. 

 

5. DISCUSSION 

The results of this study show that temporally-biased sampling data can be used to train 

high-performing SDMs for an incipient invasive species like ISHB, albeit with a limited shelf-

life. All models achieved AUC > 0.93 and correctly classified 98.8 ±1.1% of the independent test 

records from their sampling period. In discussing model predictive ability, I focus primarily on 

sensitivity and use AUC only as a relative measure of performance. Limitations of AUC are 

discussed below. 

 

5.1. Utility of Temporally-Biased Models 

Unsurprisingly, predictive ability was more robust for the time period on which the 

model was trained, then deteriorated with time after sampling period. This suggests that invasive 
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SDMs will more effectively meet detection and prevention aims if incorporated into an adaptive 

ecological management system, in which the results of management actions continuously inform 

subsequent decisions and strategies (Uden et al. 2015). There is no “best” or “final” model for an 

emerging invasive species. Model-informed surveys will yield additional species records, which 

should be added to training datasets as they become available. It is important to acknowledge 

that models have a temporal limit, but these actions may prolong the utility of the model. 

Despite these limits, the ISHB models were also able to predict records from the year 

subsequent to the training sampling period, i.e. the 2012 models predicted 60.0 ±14.7% of the 

2013 records; the 2013 models predicted 94.6 ±7.9% of the 2014 records; the 2014 models 

predicted 87.5 ±7.4% of the 2015 records; and the 2015 models predicted 97.5 ±1.7% of the 

2016 records (Table 5). This sensitivity suggests that Maxent models for emerging invasive 

species are able to anticipate new occurrences up to a certain threshold. That threshold is likely 

species-dependent and requires further investigation.  

The 2016 models performed best in terms of sensitivity. These models were trained on a 

larger and presumably more diverse dataset that covered a broader geographic extent. However, 

the 2015 test records were the most difficult to classify among all models, and yielded higher 

omission rates than the 2016 test records (Table 5). This suggests that fewer novel environments 

were sampled in 2016 than in 2015, despite the discovery of ISHB in new counties. SDMs are 

often fitted to environmental rather than geographic space (Phillips et al. 2009), which is why the 

2012 and 2013 (Fig. 2a-b, 3a-b, 4a-b, 5a-b) models could identify suitable habitat in San Diego 

County before ISHB was observed there in 2014 (Fig. 2c, 3c, 4c, 5c). Sampling across 

geographic space is thus less important than sampling across environmental space (Vaughan and 

Ormerod 2003). 
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It can be difficult to anticipate monitoring needs for a new invasive species before its full, 

potential threat has been recognized. But the sensitivity results in this study indicate that biases 

in species occurrence data can be minimized by balancing survey efforts across environmental 

space as well as geographic space. If this results in inconsistent geographic coverage across the 

landscape, correlative distribution models may help to fill in the gaps.   

ISHB continues to spread, but it is already well-established in many regions of Southern 

California. Detection and monitoring efforts are still limited to visual surveys and, more recently, 

trapping using the lure quercivorol, which is attractive to several other species of ambrosia beetle 

(Carrillo et al. 2015; Umeda et al. 2016). SDMs can contribute to management efforts for ISHB 

and other incipient invasive species in a cost-effective, adaptive way. The results of this study 

show that these models were able to reliably detect new occurrences, and that this ability would 

be complemented by concurrent field surveys in novel environmental conditions. The average 

2012 model was trained on the most biased data, but predicted over half of the 2013 test records 

(Table 5). Such predictions may have aided early containment of ISHB and identified vulnerable 

areas in and immediately surrounding Los Angeles.  

 

5.2. Effects of Spatial Filtering and Spatial Extent 

Spatial filtering is recommended if geographic clustering attributable to sampling bias 

occurs in the species presence data. Filtered models were generally more discriminating in terms 

of suitable area (Table 4), but did not inhibit sensitivity. Sensitivity of the 2014, 2015, and 2016 

models was high (≥ 94%) for both the filtered and unfiltered series (Table 5). Spatial filtering 

also increased sensitivity of the 2012 models, for which sampling bias was highest, by 15.6% 
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(California extents) and 17.9% (Ecoregion extents). This suggests that filtered models can guide 

the identification of priority conservation areas without compromising model sensitivity. 

It is generally recommended that presence-only SDMs utilize a more conservative spatial 

extent, so that pseudo-absences drawn from the background area do not inflate performance 

metrics (Lobo et al. 2008). In this study, however, each California model achieved higher 

sensitivity and AUC than that of its Ecoregion counterpart. The surveyed Ecoregions may have 

been too narrow an extent (VanDerWal et al. 2009) that fitted the model too closely to the 

training data. On the other hand, California may be an unnecessarily broad extent for a species 

like ISHB. There is likely an intermediate extent that would better serve ISHB detection. 

Including a buffer around the surveyed area may help to produce less restrictive predictions for 

invasive species that have yet to establish. 

While it is clear that the 2016 models were the most successful (within each series), it is 

more difficult to identify the spatial extent and spatial filtering settings that optimize model 

performance. Among the series in this study, the filtered 2016 California model provided the 

most accurate predictions of ISHB presence. But the “best” model in any comparative 

assessment will be constrained to the parameters of the study. In other words, there may be an in-

between spatial extent that better serves ISHB prediction. Selection of spatial extent, and the 

level of filtering, should be species- and data-oriented.  

 

5.3. Limitations of the AUC  

Though I discuss AUC as a comparative metric within and among model series, I 

attribute no ecological significance to the absolute AUC values, especially as a standalone 

performance metric.  
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AUC should not be used to compare invasive SDMs affected by varying degrees of bias. 

In the ISHB models, sensitivity increased as length of sampling period expanded, but AUC 

values decreased (Table 6). The 2012 models had the highest AUC values, but the lowest 

sensitivity to all records after 2012. The 2016 Ecoregion and 2016 Ecoregion+F models, despite 

achieving 100% sensitivity to the independent test records, achieved the lowest AUC values. 

Spatial filtering is known to reduce geographic bias in model results (Kramer-Schadt et 

al. 2013; Syfert et al. 2013), but the effect of spatial filtering on AUC was inconsistent (Fig. 7). 

AUC also failed to reflect the improved sensitivity of the 2012 filtered models. Selection of 

spatial extent should not be based on AUC alone, as large background areas often inflate AUC 

values (Lobo et al. 2008; Wisz et al. 2008; VanDerWal et al. 2009). 

 

5.4. Important Predictors of ISHB  

The two most important predictors of ISHB were minimum temperature of the coldest 

month and percent impervious surface. Relative variable contribution differed by spatial extent, 

so that the third leading contributor was isothermality for the California models and dry-season 

NDVI for the Ecoregion models. The climate variables are likely linked to beetle physiology, 

while the land cover variables help to describe host availability.   

 The importance of the minimum temperature of the coldest month variable suggests that 

ISHB, like many species in the subfamily Scolytinae, is freeze-susceptible (Lombardero et al. 

2000). Temperature minimums are often an important determinant of insect distributions 

(Ungerer et al. 1999). Cold temperatures may induce mortality and constrain reproduction, 

development, flight, and overwintering survival (Lombardero et al. 2000; Sidder et al. 2016). For 

ISHB, the lower limit of suitable minimum temperature was 0.36 ±2.56°C (Table 8), but care 
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should be taken in projecting this lower limit to other regions, as cold tolerance of other 

Scolytinae has been shown to vary geographically (e.g. due to microclimates) (Régnière and 

Bentz 2007; Sidder et al. 2016).  

 Isothermality, a measure of diurnal temperature oscillations relative to the annual 

temperature range, was also an important climatic predictor. Suitable isothermality ranged from 

43.8 ±3.3 to 62.3 ±4.0% (Table 8), suggesting a preference for milder climates with less short-

term variation in temperature. This may help to explain the predicted distribution of ISHB along 

the coast of California (Fig. 2a-2e, 3a-3e, 4a-4e, 5a-5e).  

Apart from percent impervious surface, the California models are dominated by climate 

variable contributions (Table 7). Isothermality (and to some extent, minimum temperature) may 

have been more prominent for the California extent because Ecoregions are, by definition, areas 

of similar climate. A more limited spatial extent may allow models to be more discriminating in 

terms of non-climatic variables, such as dry-season NDVI, which contributed significantly more 

to the Ecoregion models.  

Dry-season NDVI and percent impervious surface were intended to describe host 

availability. Average suitable surface imperviousness (14.0 ±10.1%) is skewed towards the lower 

end of the range, where a higher density of host material could be expected (Table 8). The range 

maximum (85.0±22.3%) supports field observations that ISHB will readily infest hosts in the 

urban forest as well as natural areas. The high contribution of surface imperviousness also 

suggests that indicators of anthropogenic activity (disturbance/development) are highly relevant 

to invasive species SDMs, as they indicate the probability of introduction (Lippitt et al. 2008). 

ISHB distribution cannot be explained solely by climate, especially if more 

discriminating predictions are required. Variables that describe host conditions are just as 
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influential, and potentially more so (DeRose et al. 2013), because ISHB occurrence is necessarily 

linked to host presence. Predictions of ISHB habitat suitability are effectively predictions of host 

availability, if not actual susceptibility (based on host vigor). It is therefore important to account 

for finer-scale temporal variations in local climate conditions that affect host vigor. This cannot 

be provided by the thirty-year averages of the WorldClim variables, but change in NDVI, rather 

than dry-season NDVI alone, may be serve as a useful predictor for future models.  

 

6. CONCLUSION 

The results of this research indicate that SDMs can be used to predict new occurrences of 

an emerging invasive species, in spite of temporal sampling bias. Model performance can be 

improved, and temporal sampling bias mitigated, by approaching the modeling process through 

an adaptive management strategy that continuously incorporates new field data into updated 

models. Management objectives should be considered in the implementation of spatial filtering 

and selection of spatial extent, which can produce more or less discriminating predictions as well 

as influence relative contributions of environmental predictors. 

It is recommended that AUC be used cautiously in the interpretation of presence-only 

SDMs. A sensitivity metric should be used to corroborate and provide context for AUC values. 

One limitation of the sensitivity results in this study is that the test records, while independent 

from model training, were randomly subsampled from the original ISHB dataset and thus 

potentially affected by the same biases as the training data (Boria et al. 2014). Field validation 

would provide completely independent test records, as well as temporally novel 2017 records 

with which to test the 2016 models. Ground-truthing would also yield both sensitivity and 
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specificity results. Collection of true-absence data is needed to determine whether models are 

over-predicting ISHB occurrence.  

Whether the modeled species is emerging or established, invasive or native, SDMs are 

subject to bias in occurrence records. In a presence-only correlative model like Maxent, invasive 

SDMs will only be sensitive to environments represented by or similar to the training data. This 

may be inadequate if the goal is to describe the species’ full, potential range or niche. If, 

however, the objective is to detect and protect environments with conditions similar to those that 

have already proven suitable, then the methods in this paper provide a framework for creating 

reliable invasive SDMs.  
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TABLES AND FIGURES 

 

 

Table 1 

Descriptions of variables and rationale for inclusion in models.  

 

Variable Rationale Source 

Isothermality Insect development WorldClim 1.4 

Max Temp. of Warmest Month Insect development WorldClim 1.4 

Min Temp. of Coldest Month Insect development WorldClim 1.4 

Temperature Annual Range 
Insect development/ 

Host environmental conditions 
WorldClim 1.4 

Precipitation of Wettest Qtr. Host environmental conditions WorldClim 1.4 

Precipitation of Driest Qtr. Host environmental conditions WorldClim 1.4 

Slope Host environmental conditions USGS 3D Elevation Program 

Aspect Host environmental conditions USGS 3D Elevation Program 

Geologic substrate Host environmental conditions USGS Open-File Report 2005-1305 

Percent Impervious Surface Disturbance/Host availability National Land Cover Database 

Percent Tree Canopy Cover Host availability National Land Cover Database 

Dry-season NDVI Host availability USGS EROS Center 
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Table 2 

Descriptions of model outputs created in the study. Sampling period refers to the temporal range 

of occurrence records used in model training and testing. Ecoregion Spatial Extent refers to 

ecoregions 8 and 85 (EPA Level III).  

 
 

Model Series 
Sampling 

Period 
Spatial Extent 

Spatial 

Filtering 

Sample Size 

(Training 

records) 

California 

unfiltered 

2012 California No 120 

2012-2013 California No 239 

2012-2014 California No 530 

2012-2015 California No 637 

2012-2016 California No 1052 

California 

filtered 

2012 California Yes 64 

2012-2013 California Yes 116 

2012-2014 California Yes 215 

2012-2015 California Yes 267 

2012-2016 California Yes 372 

Ecoregion 

unfiltered 

2012 Ecoregion No 120 

2012-2013 Ecoregion No 239 

2012-2014 Ecoregion No 530 

2012-2015 Ecoregion No 637 

2012-2016 Ecoregion No 1052 

Ecoregion 

filtered 

2012 Ecoregion Yes 64 

2012-2013 Ecoregion Yes 116 

2012-2014 Ecoregion Yes 215 

2012-2015 Ecoregion Yes 267 

2012-2016 Ecoregion Yes 372 
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Table 3 

Minimum training presence (MTP) threshold of each model output. 

 
 

Model Series 
Sampling 

Period 
MTP 

California 

unfiltered 

2012 0.1036 

2012-2013 0.048 

2012-2014 0.0209 

2012-2015 0.0287 

2012-2016 0.017 

California 

filtered 

2012 0.2534 

2012-2013 0.0571 

2012-2014 0.0501 

2012-2015 0.0686 

2012-2016 0.0296 

Ecoregion 

unfiltered 

2012 0.0532 

2012-2013 0.0293 

2012-2014 0.0159 

2012-2015 0.0158 

2012-2016 0.0073 

Ecoregion 

filtered 

2012 0.1386 

2012-2013 0.1181 

2012-2014 0.065 

2012-2015 0.0351 

2012-2016 0.0221 
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Table 4 

Area predicted suitable by the minimum training presence threshold, expressed as a percentage 

of the total spatial extent. California models cannot be compared to Ecoregion models. 

 

California Models  Ecoregion Models 

Sampling 

Period 
Unfiltered Filtered 

 Sampling 

Period 
Unfiltered Filtered 

2012 2.1% 1.6%  2012 12.0% 12.8% 

2013 4.7% 3.5%  2013 21.9% 13.3% 

2014 8.1% 4.4%  2014 28.4% 21.1% 

2015 9.1% 5.3%  2015 33.5% 29.7% 

2016 12.9% 7.5%  2016 44.5% 37.9% 

Average 7.4 ±3.7% 4.4 ±1.9%  Average 28.1 ±10.9% 23.0 ±9.7% 
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Table 5 

Sensitivity of model outputs, calculated using the minimum training presence threshold. Thirty 

model-independent test records were randomly selected from each sampling year (columns 

indicate sensitivity to test records from that year only). Filtered models are indicated by +F.  

 

  % Correctly Classified Test Records 

Sampling 

Period 

Model 

Series 
2012 2013 2014 2015 2016 

All 

Records 

In Sampling 

Period 

2012 

CA 96.7 53.3 50.0 20.0 36.7 51.3 96.7 

CA +F 96.7 76.7 53.3 40.0 30.0 59.3 96.7 

Ecoregion 96.7 43.3 50.0 13.3 20.0 44.7 96.7 

Ecoregion +F 100.0 66.7 50.0 23.3 23.3 52.7 100 

2012 

- 

2013 

CA 96.7 100.0 100.0 86.7 93.3 95.3 98.4 

CA +F 96.7 100.0 100.0 90.0 93.3 96.0 98.4 

Ecoregion 96.7 100.0 93.3 83.3 90.0 92.7 98.4 

Ecoregion +F 96.7 100.0 83.3 53.3 80.0 82.7 98.4 

2012 

- 

2014 

CA 96.7 100.0 100.0 93.3 100.0 98.0 98.9 

CA +F 96.7 100.0 100.0 90.0 96.7 96.7 98.9 

Ecoregion 96.7 100.0 100.0 90.0 93.3 96.0 98.9 

Ecoregion +F 100.0 100.0 100.0 76.7 93.3 94.0 100 

2012 

- 

2015 

CA 96.7 100.0 100.0 100.0 100.0 99.3 99.2 

CA +F 96.7 100.0 100.0 96.7 96.7 98.0 98.4 

Ecoregion 100.0 100.0 100.0 96.7 96.7 98.7 99.2 

Ecoregion +F 100.0 100.0 100.0 96.7 96.7 98.7 99.2 

2012 

- 

2016 

CA 96.7 100.0 100.0 100.0 100.0 99.3 99.3 

CA +F 100.0 100.0 100.0 100.0 100.0 100.0 100 

Ecoregion 100.0 100.0 100.0 100.0 100.0 100.0 100 

Ecoregion +F 100.0 100.0 100.0 100.0 100.0 100.0 100 

Average Sensitivity 97.9 92.0 89.0 77.5 82.0 87.7 98.8 

Standard Deviation 1.6 17.4 20.0 29.8 28.5 18.8 1.1 

 

 

 

 

 

 

 

 

 

 



29 

Table 6 

Test area under the receiver operating curve (AUC) and standard deviation. Sampling periods are 

described by the last year of test data. Filtered models are indicated by +F. 

 

 

 Sampling Period 

Model Series 2012 2013 2014 2015 2016 

California 0.993 ±0.0015 0.986 ±0.0023 0.974 ±0.0026 0.970 ±0.0028 0.954 ±0.0032 

California +F 0.994 ±0.0016 0.991 ±0.0022 0.987±0.0023 0.983 ±0.0028 0.978 ±0.0027 

Ecoregions 0.977 ±0.0088 0.969 ±0.0084 0.958 ±0.0069 0.948 ±0.0078 0.933 ±0.0069 

Ecoregions +F 0.966 ±0.0108 0.965 ±0.0111 0.954 ±0.0112 0.941 ±0.0135 0.935 ±0.0122 
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Table 7 

Mean variable contribution to all twenty ISHB models (second column) and to individual model 

series. 

 

 Mean Contribution 

Variable All models CA series 
CA+F 

series 

Ecoregion 

series 

Ecoregion+F 

series 

Min temp. coldest month 34.5 ±13.3 45.3 ±8.7 35.7 ±12 31.0 ±9.9 26.2 ±13.9 

Percent impervious surface 24.9 ±9.5 19.1 ±7.1 28.0 ±11.8 21.8 ±5.2 30.6 ±7.8 

Isothermality 13.7 ±6.3 18.0 ±4.5 18.9 ±4.0 10.9 ±3.3 7.2 ±4.1 

Temperature annual range 5.9 ±3.3 8.4 ±3.3 6.8 ±3.2 3.2 ±1.3 5.4 ±2.7 

Dry-season NDVI 5.4 ±5.4 0.6 ±0.1 0.9 ±0.5 12.0 ±3.0 7.9 ±3.7 

Max temp. warmest month 4.9 ±2.6 5.2 ±2.4 5.1 ±0.6 5.6 ±4.0 3.6 ±1.6 

Percent tree canopy cover 3.3 ±2.3 1.2 ±0.5 2.4 ±1.4 3.3 ±1.3 6.2 ±1.8 

Geologic substrate 2.4 ±2.7 0.6 ±0.5 0.8 ±0.7 3.5 ±2.0 4.8 ±3.4 

Precipitation of driest qtr. 2.0 ±2.8 0.5 ±0.5 0.4 ±0.2 4.3 ±3.7 2.9 ±2.3 

Precipitation of wettest qtr. 1.9 ±2.2 1.0 ±1.2 0.8 ±0.8 2.7 ±2.8 2.9 ±2.5 

Slope 0.8 ±0.9 0.1 ±0.1 0.1 ±0.1 1.2 ±0.5 1.8 ±0.9 

Aspect 0.3 ±0.4 0.1 ±0.1 0.2 ±0.2 0.6 ±0.5 0.5 ±0.4 

 

 

 

Table 8 

Mean, minimum, and maximum values of the leading contributing variables across all ISHB 

models, calculated within the suitable area defined by the minimum training presence threshold.  

 

 

Variable Mean Minimum Maximum 

Min temp. coldest month (°C) 3.97 ±1.13 0.36 ±2.56 7.27 ±2.18 

Percent impervious surface 14.0 ±10.1 0 ±0 85.1 ±22.3 

Isothermality (%) 52.9 ±2.5 43.8 ±3.3 62.3 ±4.0 

Dry-season NDVI 0.19 ±0.04 -0.1 ±0.15 0.57 ±0.06 
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Figure 1 

Model outputs were produced for two spatial extents: California and Ecoregions (8 and 85 

combined). 
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Figures 2a-2e 

California unfiltered model outputs. Gray areas are unsuitable, based on the minimum training 

presence threshold.  
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Figures 3a-3e 

California filtered model outputs. Gray areas are unsuitable, based on the minimum training 

presence threshold. 

 



34 

Figures 4a-4e 

Ecoregion unfiltered model outputs. Gray areas are unsuitable, based on the minimum training 

presence threshold.  
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Figures 5a-5e 

Ecoregion filtered model outputs. Gray areas are unsuitable, based on the minimum training 

presence threshold. 
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Figure 6 

Mean area under the receiver operating curve (AUC). Models are grouped by series (spatial 

extent and spatial filtering). Shared letters indicate that there is no statistically significant 

difference between the sampling periods (within that model series only) as determined by one-

way ANOVA and post hoc Tukey tests. Filtered models are indicated by +F. 

 

 

 

Figure 7 

Mean area under the receiver operating curve (AUC). Models are grouped by length of sampling 

period. Shared letters indicate that there is no statistically significant difference between those 

model series (within that sampling period only) as determined by two-way ANOVA and post hoc 

Tukey tests. Filtered models are indicated by +F. 
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APPENDIX 

Longitude, latitude, and year observed for 150 model-independent ISHB test records. Thirty 

records were randomly selected from each year of sampling. Records are listed by original 

identification number (OID). 
 

OID Longitude Latitude Year OID Longitude Latitude Year 

0 -117.063398997 32.5506940184 2015 37 -117.797007186 33.6505815464 2016 

1 -116.881833594 32.7742398614 2014 38 -117.820096428 33.6526805684 2016 

2 -116.872387995 32.7784379054 2014 39 -117.802254741 33.6526805684 2016 

3 -116.884982127 32.7794874164 2014 40 -117.801205230 33.6526805684 2015 

4 -116.882883105 32.7794874164 2014 41 -117.800155719 33.6526805684 2015 

5 -116.880784083 32.7794874164 2014 42 -117.831641049 33.6537300794 2013 

6 -116.879734572 32.7826359494 2014 43 -117.830591538 33.6537300794 2013 

7 -117.031913667 33.1216280024 2015 44 -117.829542027 33.6537300794 2013 

8 -117.029814645 33.1226775134 2015 45 -117.828492516 33.6547795904 2013 

9 -117.019319535 33.1405192004 2014 46 -117.802254741 33.6547795904 2015 

10 -117.025616601 33.1436677334 2014 47 -117.801205230 33.6547795904 2015 

11 -117.019319535 33.1436677334 2014 48 -117.835839093 33.6558291014 2013 

12 -117.163102542 33.2591139434 2015 49 -117.833740071 33.6558291014 2013 

13 -117.249162444 33.2633119874 2016 50 -117.828492516 33.6558291014 2013 

14 -117.703600707 33.5435314244 2013 51 -117.811700340 33.6558291014 2016 

15 -117.707798751 33.5498284904 2014 52 -117.833740071 33.6568786124 2014 

16 -117.706749240 33.5508780014 2014 53 -117.821145939 33.6568786124 2016 

17 -117.713046306 33.5519275124 2016 54 -117.813799362 33.6568786124 2016 

18 -117.708848262 33.5519275124 2013 55 -117.811700340 33.6568786124 2016 

19 -117.707798751 33.5519275124 2013 56 -117.590253519 33.6579281234 2015 

20 -117.714095817 33.5529770234 2013 57 -117.643778580 33.6621261674 2016 

21 -117.713046306 33.5529770234 2013 58 -117.943938726 33.6631756784 2015 

22 -117.711996795 33.5529770234 2014 59 -117.943938726 33.6652747004 2015 

23 -117.710947284 33.5529770234 2013 60 -117.624887382 33.6715717664 2016 

24 -117.708848262 33.5529770234 2014 61 -117.650075646 33.6726212774 2016 

25 -117.741383103 33.5571750674 2016 62 -117.664768800 33.6810173654 2015 

26 -117.741383103 33.5582245784 2016 63 -117.916651440 33.6820668764 2013 

27 -117.739284081 33.5582245784 2016 64 -117.940790193 33.7187997614 2014 

28 -117.720392883 33.5907594194 2013 65 -117.938691171 33.7198492724 2013 

29 -117.868373934 33.6295913264 2014 66 -117.943938726 33.7208987834 2016 

30 -117.794908164 33.6358883924 2015 67 -117.939740682 33.7208987834 2013 

31 -117.650075646 33.6390369254 2014 68 -117.938691171 33.7250968274 2014 

32 -117.797007186 33.6400864364 2016 69 -117.950235792 33.7261463384 2016 

33 -117.842136159 33.6442844804 2014 70 -117.950235792 33.7271958494 2015 

34 -117.843185670 33.6453339914 2015 71 -117.937641660 33.7292948714 2014 

35 -117.668966844 33.6453339914 2015 72 -117.951285303 33.7303443824 2016 

36 -117.948136770 33.6474330134 2015 73 -117.899859264 33.7534336244 2013 
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OID Longitude Latitude Year OID Longitude Latitude Year 

74 -118.091919777 33.7765228664 2012 112 -117.972275523 33.9633358244 2012 

75 -117.758175279 33.7975130864 2016 113 -117.430727847 33.9664843574 2016 

76 -118.103464398 33.8248003724 2012 114 -117.984869655 33.9801280004 2012 

77 -118.102414887 33.8248003724 2012 115 -117.979622100 33.9801280004 2012 

78 -118.103464398 33.8258498834 2012 116 -117.408688116 33.9906231104 2016 

79 -118.102414887 33.8258498834 2012 117 -118.050988848 34.0168608854 2012 

80 -117.719343372 33.8667808124 2014 118 -117.641679558 34.0651383914 2012 

81 -117.717244350 33.8667808124 2015 119 -118.024751073 34.0724849684 2012 

82 -117.767620878 33.8678303234 2015 120 -117.760274301 34.0745839904 2012 

83 -117.725640438 33.8678303234 2016 121 -118.113959508 34.1249605184 2012 

84 -117.719343372 33.8678303234 2014 122 -118.111860486 34.1260100294 2012 

85 -117.765521856 33.8688798344 2016 123 -118.116058530 34.1270595404 2012 

86 -117.719343372 33.8688798344 2014 124 -118.113959508 34.1281090514 2012 

87 -117.717244350 33.8688798344 2014 125 -118.155939948 34.1291585624 2014 

88 -117.709897773 33.8688798344 2015 126 -118.117108041 34.1302080734 2012 

89 -117.764472345 33.8699293454 2016 127 -118.112909997 34.1302080734 2012 

90 -117.760274301 33.8699293454 2016 128 -118.111860486 34.1312575844 2012 

91 -117.713046306 33.8699293454 2015 129 -118.110810975 34.1312575844 2012 

92 -117.708848262 33.8699293454 2015 130 -118.123405107 34.1375546504 2015 

93 -117.755026746 33.8730778784 2015 131 -118.059384936 34.1396536724 2013 

94 -117.716194839 33.8730778784 2016 132 -118.050988848 34.1438517164 2012 

95 -117.739284081 33.8793749444 2016 133 -118.164336036 34.1511982934 2013 

96 -118.179029190 33.8856720104 2013 134 -117.906156330 34.1553963374 2012 

97 -118.196870877 33.8930185874 2012 135 -118.040493738 34.1616934034 2013 

98 -117.867324423 33.9014146754 2014 136 -118.299722955 34.1658914474 2014 

99 -117.866274912 33.9024641864 2013 137 -118.078276134 34.1763865574 2012 

100 -117.886215621 33.9077117414 2016 138 -118.097167332 34.1774360684 2012 

101 -117.883067088 33.9077117414 2016 139 -118.079325645 34.1795350904 2013 

102 -117.889364154 33.9087612524 2014 140 -118.078276134 34.1795350904 2012 

103 -118.368990681 33.9161078294 2015 141 -118.078276134 34.1826836234 2012 

104 -117.836888604 33.9203058734 2013 142 -118.340653884 34.1963272664 2014 

105 -117.831641049 33.9213553844 2013 143 -118.143345816 34.2015748214 2013 

106 -117.829542027 33.9213553844 2013 144 -118.323861708 34.2613969484 2014 

107 -117.832690560 33.9224048954 2013 145 -119.102598870 34.3296151634 2015 

108 -117.831641049 33.9224048954 2013 146 -119.102598870 34.3380112514 2015 

109 -118.194771855 33.9496921814 2012 147 -119.087905716 34.3390607624 2015 

110 -117.940790193 33.9528407144 2012 148 -119.098400826 34.3527044054 2015 

111 -117.941839704 33.9538902254 2012 149 -119.299906938 34.4272196864 2015 
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