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Minimum Divergence Moment Based Binary Response Models: 

Estimation and Inference 

 

ABSTRACT 

This paper introduces a new class of estimators based on minimization of the Cressie-Read (CR) 

power divergence measure for binary choice models, where neither a parameterized distribution 

nor a parameterization of the mean is specified explicitly in the statistical model. By 

incorporating sample information in the form of conditional moment conditions and estimating 

choice probabilities by optimizing a member of the set of divergence measures in the CR family, 

a new class of nonparametric estimators evolves that requires less a priori model structure than 

conventional parametric estimators such as probit or logit. Asymptotic properties are derived 

under general regularity conditions and finite sampling properties are illustrated by Monte Carlo 

sampling experiments. Except for some special cases in which the general regularity conditions 

do not hold, the estimators have asymptotic normal distributions, similar to conventional 

parametric estimators of the binary choice model. The sampling experiments focus on the mean 

square errors in the choice probability predictions and the probability derivatives with respect to 

the response variable values.  The simulation results suggest that estimators within the CR class 

are more robust than conventional methods of estimation across varying probability distributions 

underlying the Bernoulli process. The size and power of test statistics based on the asymptotics 

of the CR-based estimators exhibit behavior similar to those based on conventional parametric 

methods. Overall, the new class of nonparametric estimators for the binary response model is a 

promising and potentially more robust alternative to the parametric methods often used in 

empirical practice. 

 

Keywords:  nonparametric binary response models and estimators, conditional moment 

equations, finite sample bias and precision, squared error loss, response variables, Cressie-Read 

statistic, information theoretic methods 
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Minimum Divergence Moment-Based Binary Response Models: 

Estimation and Inference 

 

1.  INTRODUCTION 

Discrete choice behavioral models occupy a significant niche in social science research, and 

especially in theoretical economics. As in any inference situation where attempts are made to 

learn from a sample of data, the analyst is confronted with numerous choices in the design of the 

information recovery process. Two important decisions relate to selecting the estimation criterion 

and how to represent the sample information. In this paper we investigate the statistical 

implications of these and other choices leading to a solution, in the binary case, of this decision 

problem under uncertainty. Our contributions include a new class of nonparametric alternatives 

to modeling binary response that nests the behavior of some prominent parametric estimators 

while exhibiting robustness relative to the actual, and generally unknown, statistical model 

underlying the generation of binary responses. 

  In binary response models it is assumed that on trial 1,2, , ,i n= …  one of two alternatives 

is observed to occur for the independent binary random variables { }1, , nY Y…  having 

, 1,...,ip i n= , as their respective probabilities of success. In empirical applications the data 

sampling process for the binary random variable iY  is generally specified in terms of a latent 

variable, *
iY , as 

  * *
.i i iY = +x β ε  (1.1) 
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where ( )* 0i iY I Y≡ > , i = 1,...,n  are independent Bernoulli random variables, I(A) is an indicator 

function that takes the value 1 when condition ( )A  is true and takes the value 0 otherwise, and 

.ix , i = 1,..., n are independent outcomes of  a ( )1 k×  random vector of response variables.  

 Given (1.1), the value of ip  is defined by 

  ( ) ( ) ( ) ( )*
. . * .1 1i i i i i ip P y P e G G= = = > − = − − = −x x xβ β β  (1.2) 

where ( )G i  is the cumulative distribution function (CDF) of the noise term *
iε  of the latent 

variable equation (1.1), and ( )*G i  is the complement of this CDF. In instances where the 

parametric family of probability density functions underlying the binary response model is 

known, the parametric functional form of ( ).iG x β  is then also known and one can fully define 

the log-likelihood function and utilize the traditional maximum likelihood (ML) approaches such 

as logit or probit as a basis for estimation and inference.  If the particular choice of the 

parametric functional form for the distribution happens to be correct, then the usual ML 

properties of consistency, asymptotic normality and efficiency hold (McFadden 1974, 1984 and 

Train 2003).  However, in reality there is normally some ambiguity relative to the correct 

behavioral model and thus uncertainty exists regarding the underlying data sampling process and 

how best to proceed with model specification, estimation , and inference (for further discussion, 

see Cosslett 1983, Maddala 1983, Ichimura 1993, Klein and Spady 1993,  and McCullough and 

Nelder 1995).  Given this estimation and inference problem we assume that the distribution of *
iε  

is not based on, or restricted to, a parametric family and suggest a range of nonparametric 

estimators to recover estimates of the choice probabilities as well as the corresponding 

derivatives of these probabilities with respect to the response variables.  Our choice of estimation 
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criterion is based on the Cressie-Read family of power divergence measures, and we represent 

sample information in a general nonparametric way based on sample moments devoid of a finite 

parametric structure.   

 The organization of the paper is as follows:  In Section 2 a class of data based 

nonparametric estimators based on moment conditions is defined and motivated. Section 3 

provides details of the functional solutions for the Bernoulli probabilities and derivations of the 

marginal probability effects for the various estimators. Asymptotic sampling properties of the 

estimators are developed in Section 4. Monte Carlo sampling results are presented in Section 5 to 

indicate the finite sample performance of the nonparametric estimators.  Finally, in Section 6, the 

sampling implications of our formulations are discussed and possible extensions of the 

methodology are suggested.  Proofs of the theorems are given in the Appendices. 

 

2.  GENERAL NONPARAMETRIC ESTIMATION FORMULATIONS 

Regarding alternatives to traditional binary likelihood and quasi-likelihood based formulations, 

two primary questions basic to estimation are how to represent the sample information and what 

estimation criterion should be used.  We represent the sample information in the form of 

conditional moments that link the empirical sample observations to the Bernoulli probabilities 

underlying the binary responses.  The estimation criterion is information theoretic in nature and 

utilizes the Cressie-Read family of power divergence statistics as the estimation objective 

function (Cressie and Read 1984 and Read and Cressie 1988).  
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2.1 Representation of Sample Information  

Given a particular discrete choice problem and an observed sample of data, an approach often 

followed in specifying the statistical model is to assume that the data outcomes follow a 

particular distributional form that depends on a certain fixed set of unknown parameters.  Two 

popular distributions within the binary response modeling context are the probit and logit 

distributions.  If one actually has such specific parameterized knowledge, rather than only a 

feasible set of distributions implied by an underlying conceptual response model, then maximum 

likelihood estimation is a viable way to proceed.  However in many cases little is know other 

than the observed sample of data originates from the basic model 

  = +Y p ε  (2.1) 

where ( )E = 0ε , which implies only that the binary random vector Y has some mean vector p.  

If through a process of interpretation the analyst makes use of a conceptual model (e.g., random 

utility) as the basis for discrete response outcomes, the statistical model usually involves known 

covariate information in the form of associated response variables, or instruments, Z. 

Conditioning on what is known, we represent this information in terms of orthogonality 

relationships in the form of moment conditions  

  ( )E ′ − =⎡ ⎤⎣ ⎦Z Y p 0 . (2.2) 

Without additional assumptions, this represents all of the sample and a priori information 

actually available for estimating the unknowns in the model.   

 Given (2.2), and the condition [ ].| 0,i i iE Y p i− = ∀x , a natural candidate for inclusion in 

the Z matrix is the ( )n k×  matrix X relating to (1.1).  Additional candidates for inclusion in Z 

might be powers and cross products of the nonconstant columns of the X matrix, because 
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.| 0i i iE Y p τ⎡ ⎤− =⎣ ⎦x  and/or . .| 0i i i jE Y p τ δ⎡ ⎤− =⎣ ⎦x x: , where :  denotes the Hadamard product and 

τ and δ are positive integers . If p were given an explicit parametric functional form, say as 

( )=p G xβ  with ( )G i  being some cumulative distribution function, then these moment 

equations could form the basis for empirical moments of the form ( )( )-1n ′ − =Z Y G x 0β  and 

nonlinear generalized method of moments (GMM) might be used to estimate the unknown 

parameter vector.  However in the context of (2.2), ( )G i is neither assumed known nor explicitly 

specified.  Thus a GMM approach to estimating the binary response model using moments of the 

type (2.2) is not possible. Moreover, it is clear that the empirical moments  

  ( )1n− ′ =z y - p 0  (2.3) 

cannot possibly be used in isolation to identify the Bernoulli probabilities since, regardless of 

their number, =p y  solves the set of moment constraints.  In a solution context, for this inverse 

problem, there are more unknowns than estimating equations.  Consequently, (2.3) is in the form 

of an ill-posed inverse problem and the system of equations is substantially underdetermined 

regarding a unique interior solution for the probability vector p.   

 

2.2 Divergence-Based Estimation Criteria  

As a basis for estimating the underdetermined p-vector in (2.3), we adopt the Cressie-Read (CR) 

family of power divergence measures (Cressie and Read, 1984) as our estimation objective 

function, which for the ith Bernoulli probability takes the form 

  
( )

2
1 1

12 2

1, , 1
1

iji i
ij

ji i ij

pp q
I p

p q q

γ

γ
γ γ =

⎡ ⎤⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎢ ⎥= −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦
∑  (2.4) 
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where ( ) 11i iP y p= = , ( ) 20i iP y p= = , and . 1 2i i ip p⎡ ⎤= ⎣ ⎦p  and  [ ]. 1 2i i iq q=q  represent the 

subject and reference distributions of the CR divergence measure, respectively. The choice of 

( ),∈ −∞ ∞γ   determines an entire family of measures of divergence between the discrete p and q 

probability distributions.  Henceforth, in regard to (2.4), it is tacitly understood that when 

0 or 1γ = − , the right hand side of (2.4) is defined in terms of its continuous limit as 

0 or 1γ → − . 

 The reference distribution representing the set of probabilities [ ]. 1 2i i iq q=q  is effectively 

the base probability distribution from which divergence is measured. The CR statistic achieves 

its smallest divergence value of 0 uniquely when the subject distribution equals the reference 

distribution. This follows directly from an application of Jensen’s inequality (Lin, 1990) to (2.4), 

which implies that ( ) ( ) ( ) ( )( ) ( )1 1 1 0
1

Eg E g E gγη η η
γ γ

⎛ ⎞⎡ ⎤= − ≥ = =⎜ ⎟⎜ ⎟⎣ ⎦+⎝ ⎠
, where ( )g η  is 

strictly convex in η  and the expectation in this case is being taken with respect to the 

distribution implied by the ijp ’s (see Ullah, p. 145). One choice for the reference distribution is 

the uniform distribution, which is consistent with the notion that outcomes 0 and 1 are equally 

likely, a priori, and for expository purposes we henceforth adopt this reference distribution 

specification.  Consequently, the CR statistic may be written in the form  

  
( ) ( )

2
1

*
12

1, 2 1
1

i
ij ij

ji

p
I p p

p
γ

γ
γ γ =

⎛ ⎞⎛ ⎞ ⎡ ⎤= −⎜ ⎟⎜ ⎟ ⎢ ⎥⎣ ⎦+⎝ ⎠⎝ ⎠
∑ . (2.5) 

Given that 1 2 1i ip p+ = , the CR(pi,γ) statistic, with ( )1i ip P y= = , can be equivalently written as 

  ( ) ( ) ( )( )111, 2 1 1
1i i iCR p p p γγ γγ

γ γ
++⎡ ⎤= + − −⎢ ⎥⎣ ⎦+

. (2.6)  
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The CR divergence measure is extended to a set of n binary responses by summing over 

the n responses, leading to the generalized CR statistic 

  ( ) ( ) ( )( )
1

111, 2 1
1

n

i i
i

CR p p nγγ γγ
γ γ =

++⎡ ⎤= + − −⎢ ⎥+ ⎣ ⎦
∑p . (2.7) 

The family of divergence measures includes Owen’s (2000) empirical likelihood ( 1γ = − ), 

Kullback-Leibler’s discrepancy or Shannon’s (1948) entropy ( 0γ = ), and the log-Euclidean 

discrepancy measure ( 1γ = ).  

  

2.3 The General Estimation Problem 

Using the information available in the form of moment equations (2.3), consider the problem of 

choosing the binary response probabilities so as to minimize the generalized CR divergence of 

the Bernoulli probabilities,  

  ( ){ } ( ) ( )( )
1

111min , min 2 1
1

n

i i
i

CR p p nγγ γγ
γ γ =

++⎧ ⎫⎡ ⎤⎪ ⎪= + − −⎨ ⎬⎢ ⎥+ ⎣ ⎦⎪ ⎪⎩ ⎭
∑p pp  (2.8) 

subject to: 

   ( )1n− ′ =z y - p 0  and [ ]
1

0,1
n

i=
∈ ×p   (2.9) 

The fundamental motivation for this constrained estimation objective is to choose Bernoulli 

probability distributions as close to their respective reference distributions as possible while 

satisfying the sample data-based moment conditions. Closeness is measured in terms of the 

CR(γ) metric and CR(γ) is used as shorthand for the CR-measure determined by the given value 

of γ . As such, the problem (2.8)-(2.9) can be viewed as a nonparametric variant of a shrinkage-

type estimator in which the estimates of the choice probabilities adapt to satisfy the data-based 
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constraint information while being shrunk toward their reference distributions (e.g. see Judge and 

Bock, (1978) for a parametric context).  

 

3.  SOLUTIONS FOR PROBABILITIES AND MARGINAL EFFECTS 

Regarding the solution to the minimization problem in (2.8) – (2.9), the Lagrangian form of the 

optimization problem is given by 

  
( ) ( ) ( )( ) ( )

1

111, 2 1 + 
1

n

i i
i

L p p nγγ γ

γ γ =

++⎡ ⎤ ′ ′= + − − −⎢ ⎥+ ⎣ ⎦
∑p z y pλ λ  (3.1) 

where it is understood that the inequality constraints [ ]1 0,1n
i=∈×p  are also enforced, and we 

eliminate the superfluous multiplicative factor 1n−  from the definition of the sample moment 

conditions in (2.9). The first derivatives of the Lagrangian with respect to the probability terms 

are given, i∀ , by 

  
( )( ) [ ]

( ) ( ) [ ]

2 1 ,. 0
0 for

0
ln ln 1 ,.

i i

i
i i

p p iL
p

p p i

γ
γ

γ

γ γ
⎧ ⎫

− − − ≠⎧ ⎫∂ ⎪ ⎪= =⎨ ⎬ ⎨ ⎬=∂ ⎩ ⎭⎪ ⎪− − −⎩ ⎭

z

z

λ

λ
. (3.2) 

These first derivatives are necessary conditions that apply whenever the respective inequality 

constraint on ip  is not binding. Accounting for the Kuhn-Tucker complementary slackness 

conditions relating to the inequality constraints on p leads to the following solution for ip , 

expressed as a function of λ : 
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( ) ( )( ) [ ]

( ) ( ) [ ]

( )( ) [ ] [ ] ( )

,.
arg 1 for 0

2

arg ln ln 1 ,. for 0

1
1

,. ,.
arg 1 for 0 and 1, 1

2 2
1

0

i

i

i

i i i

i i

i i

p

p

p

i
p p p

p p i

i i
p p

γ

γ

γ
γ

γ
γ γ

γ
γ

γ

γ γ
γ

⎡ ⎤
= − − = <⎢ ⎥

⎣ ⎦
⎡ ⎤= − − = =⎣ ⎦

⎧ ⎫
≥⎪ ⎪ ⎧ ⎫

⎛ ⎞⎡ ⎤⎪ ⎪ ⎪ ⎪= − − = > ∈ −⎜ ⎟⎨ ⎬ ⎨ ⎬⎢ ⎥⎜ ⎟⎣ ⎦⎪ ⎪ ⎪ ⎪⎝ ⎠ ≤ −⎩ ⎭⎪ ⎪
⎩ ⎭

z

z

z z

λ
λ

λ

λ λ

  (3.3)    

A unique solution for ( )ip λ  necessarily exists by the monotonicity of either 

( ) ( )( )1i i ip p pγ γη = − −  or  ( ) ( ) ( )( )ln ln 1i i ip p pη = − −  in ip  for 0γ ≠  or 0γ = , respectively.  

 

3.1 Solving for p(λ) when 1, 0, 1γ = − and  

Explicit closed form solutions exist for p(λ) when γ  assumes one of the historically prominent 

values of -1, 0, or 1.  When 1γ = − , multiply both sides of the bracketed equality in (3.3) by 

( )1i ip p−  and solve the resultant second order polynomial in ip  for the appropriate root 

contained in the (0,1) interval to obtain 

  ( )
[ ]( )

[ ] [ ]

.52
1 1

.5
,.2

.5

i

i

p if ii

⎧ ⎫⎛ ⎞⎡ ⎤+ −⎪ ⎪⎜ ⎟⎣ ⎦+ ≠⎧ ⎫⎪ ⎪⎜ ⎟= ⎨ ⎬ ⎨ ⎬⎜ ⎟ ⎩ ⎭⎪ ⎪⎝ ⎠
⎪ ⎪
⎩ ⎭

z , .

zz , .

λ
0

λ λλ
= 0

 (3.4) 

 For 0γ = , exponentiation of both sides of the bracketed equality in (3.3), and then 

solving for ( )ip λ  yields 

  ( ) [ ]( )
[ ]( )

exp ,.
1 exp ,.i

i
p

i
=

+

z
z

λ

λ
λ . (3.5) 

The functional form for ip  in (3.5) is the same as in the logistic binary choice model.   
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 When 1γ = , the bracketed equality in (3.3) is a linear equation in ip  that can be 

straightforwardly solved to yield 

  ( ) [ ] [ ] ( )

1
1

,. ,.1 1 0, 1
2 4 2 4

0
0

i

i i
p for

⎧ ⎫
≥⎧ ⎫⎪ ⎪

⎛ ⎞⎪ ⎪ ⎪ ⎪= + + ∈⎨ ⎬ ⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪ ⎪ ⎪≤⎩ ⎭⎪ ⎪⎩ ⎭

z zλ λ
λ . (3.6) 

 

3.2 Solving for p( λ ) Unconditional on γ  

All of the preceding solutions for p in Section 3.1 are conditional on a given choice of the CR 

power parameter γ . Since the γ  parameter can be viewed as indexing functional forms 

contained within the CR family of divergence measures, one might also consider solving for the 

choice of γ  when estimating the Bernoulli probabilities in the binary response model.  

Minimizing the CR statistic with respect to γ  in the context of (2.8)-(2.9) can be 

interpreted as choosing the divergence measure, among all of the divergence measures within the 

CR family, that results in the assignment of the minimum divergence value to any given pair of 

subject probability distribution, p, and reference probability distribution, q, for any given 

moment constraint specification. As such, the influence of divergence measure choice on the 

subsequent choice of which p-distribution to be paired with the q-distribution in any estimation 

of the probabilities p is minimized. Thus, the γ -unconditional CR approach can be thought of as 

choosing the least influential or most neutral divergence measure to be applied to any pair of 

subject and reference distributions in the CR family. 
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 The γ -unconditional approach to estimating the binary response probabilities is defined 

by the solution to the following extremum problem: 

  ( ){ } ( ) ( )( )
1

111min , min 2 1
1

n

i i
i

CR p p nγγ γ
γ γγ

γ γ =

++⎧ ⎫⎡ ⎤⎪ ⎪= + − −⎨ ⎬⎢ ⎥+ ⎣ ⎦⎪ ⎪⎩ ⎭
∑p, p,p  (3.7) 

subject to: 

  ( )1n− ′ =z y - p 0  and [ ]
1

0,1
n

i=
∈ ×p . (3.8) 

Rewriting the CR objective function as 

  ( ) ( ) ( )
( )( )

( )1

112 1 1
, , , where ,

1

n i i

i i
i

p p
CR Q p Q p

γγ γ

γ γ γ
γ γ=

++ + − −
= ≡

+∑p  (3.9) 

note that the functions ( ),iQ p γ , i = 1,..., n are convex in γ . Moreover,   

  ( ) ( ){ } [ ]* arg min , 1.472, 1.5t Q tγγ γ= ∈  for [ ]0, 1t ∈ . (3.10) 

The upper bound value of 1.5γ =  is obtained when .5t → , while the lower bound value of 

1.472γ =  is obtained when either 0t →  or 1t → .  It follows that the solution for γ  in the 

estimation problem in (3.7) and (3.8) is restricted to this very narrow band of possible solution 

values.  In discussing this option, we henceforth adopt the solution 1.5γ =  as the approximate γ-

unconstrained solution to the CR problem. 

 The solution for ( )ip λ  derived from (3.3) with 1.5γ =  is 

 ( )
[ ]( )( ) [ ]( ) ( )

2

1.5

1
1sign ,. 1 4 1.5 ,.

.5 for 0 and 1, 1
2 2

10

i

i w i
p γ

⎧ ⎫
⎪ ⎪ ≥⎧ ⎫−⎪ ⎪⎪ ⎪ ⎪ ⎪= + > ∈ −⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪≤ −⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

z zλ λ
λ  (3.11) 
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where ( ) [ ]( )( )( ) ( )2
w = cos 1/ 3 arccos 1 - .5625 ,. 1/ 2i −z λ .  

 

3.3 Marginal Probability Effects of Changes in Response Variables 

In empirical work, the effect that changes in response variables have on the probabilities of the 

discrete choices being realized is often a focal point of the analysis. Estimates of these marginal 

probability effects, represented by i ijp x∂ ∂  for the jth response variable and the ith binary 

response probability, are straightforwardly defined in the case of the fully parametric logit and 

probit models: 

  Logit:  
( )
( )

.

2

.

ˆexpˆ ˆ
ˆ1 exp

ii
j

ij
i

p b
x

∂
=

∂ ⎡ ⎤+⎣ ⎦

x b

x b
 (3.12)  

  Probit:  ( ).
ˆ ˆˆi

i j
ij

p b
x

φ∂
=

∂
x b ,  (3.13) 

where ( )φ i  is the standard normal probability density function. 

In the case of the CR estimators, marginal probability effects can be derived by 

differentiating the appropriate definition of ( )ip λ  with respect to the instruments used in 

defining the moment conditions underlying the estimation problem. Assuming henceforth that z 

= x, the derivatives are given as follows:  

  0γ < �  

( )( )
j

11

ˆˆ
ˆ ˆ2 1

i

ij i i

p
z p p γγ γ

λ
−−

∂
=

∂ + −
  (3.14) 

  0γ = �  
( )
( )

.

j2

.

ˆexpˆ ˆ
ˆ1 exp

ii

ij
i

p
z

λ∂
=

∂ ⎡ ⎤+⎣ ⎦

z

z

λ

λ
. (3.15) 
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  0γ > �  

( )( )
[ ] ( )j

11

0
1ˆ ˆ,.ˆ

0, 1
2ˆ ˆ2 1 0

0

i

ij i i

ip for
z p p −−

⎧ ⎫
⎪ ⎪ ≥⎧ ⎫⎛ ⎞⎪ ⎪∂ ⎪ ⎪ ⎪ ⎪⎜ ⎟= ∈⎨ ⎬ ⎨ ⎬⎜ ⎟∂ ⎜ ⎟+ −⎪ ⎪ ⎪ ⎪≤⎝ ⎠ ⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

z λγ
γγγ γ

λ
 (3.16)  

The derivative in (3.15) is recognized as identical in functional form to the logit derivative 

defined in (3.12). Moreover, the solution for λ̂  and the logit estimate of b̂  are in fact identical 

because the first order conditions to both estimation problems coincide, and thus the marginal 

effect in (3.16), and indeed all other aspects of the solution to the CR(0) problem, are identical to 

the logit solution. 

 In comparing the derivative relationships between the parametric probit and logit models, 

and the models based on any of the CR formulations, it is apparent that the latter do not depend 

on estimates of the value of a fixed parameter vector β , but instead depend on the estimated 

value of the Lagrange multiplier vector λ  associated with the moment constraints.  

 

4. ASYMPTOTIC PROPERTIES OF CR(γ)-BASED ESTIMATORS 

As one important basis for evaluating estimation performance, in this section we develop 

asymptotic properties of the class of minimum divergence estimators for the binary response 

model. We also indicate how the asymptotic properties of the estimators can be used to define 

inference procedures. The proofs of the lemmas and theorems are presented in Appendix A. 

Consistent with the proof appendix, 0λ  is defined by arg ( ( (Y p( )) 0)E ′= − =0
λ

λ λ] , where ′]  

denotes a random column vector whose iid outcomes represent the response variable 

observations, and the definition of p( )λ  is based on (3.3) with the i subscripts suppressed and 
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[ ,.]iz  replaced by] . In the case of the CR estimators, we also define ( )/ 2γγ 0β = λ  when 

0≠γ  and = 0β λ  otherwise, 

 

4.1 Consistency and Asymptotic Distributions 

The asymptotic results will utilize the following basic assumptions:  

1.  Each observation ( )i iy
•
′,z  is an iid random realization of the random row vector ( )Y ,]  

with some unknown distribution. The random variable Y  is a zero-one binary variable.  

2.  ( )E ]  and ( )E ′] ]  exist and are finite.  

3.  ( )E ′] ]  is a nonsingular matrix, and if 0γ >  then ( 1 1)E ′ | − < <β] ] ]  is a nonsingular 

matrix, with ( 1 1) 0Pµ = − < < >β] . 

Under assumptions 1, 2 and 3, 0λ  must be uniquely defined and finite.  The role of assumption 3 

is to guarantee that λ̂  is asymptotically identified, as well as to ensure the existence of a well-

defined asymptotic distribution. 

 The following three theorems identify the consistency of the CR-based estimators, and 

also identify applicable asymptotic normal distributions, including the asymptotic covariance 

matrix of the estimators.  

Theorem 1: Given assumptions 1-3, �plim( ) = 0λ λ , so that �λ  consistently estimates 0λ .  

Theorem 2: Given assumptions 1-3 and 1γ < , �( ) ~ ( )
a

n N− ,0 −1 −1
0 0 0λ λ Ω ΨΩ , where  

  0 1 12 ( ( ) (1 ( )) )
E γ γ γ− −

⎛ ⎞′
Ω = ⎜ ⎟+ −⎝ ⎠p p0 0λ λ

] ]  and 2(( ( )) )E Y ′= − .p 0Ψ λ ] ]  (4.1) 
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Theorem 3: Given assumptions 1-3, 1γ ≥ , and ( 1) 0P | |= =β] , �( ) ~ ( )
a

n N− ,0 −1 −1
0 0 0λ λ Ω ΨΩ , 

where Ψ  is as defined in (4.1) and 

 0 1 1 1 1( 1 1)( )
2 ( ( ) (1 ( )) ) 2 ( ( ) (1 ( )) )

E I Eγ γ γ γ γ γµ− − − −

⎛ ⎞ ⎛ ⎞′ ′
= − < < =⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠p p p p0 0 0 0

Ω β
λ λ λ λ

] ] ] ]] .(4.2) 

 When 1γ ≥  and ( 1) 0P | |= >β]  the situation is more complex. While �( )n − 0λ λ  does 

have an asymptotic distribution, it need not be in the normal parametric family. 

 Given that ˆ
p

→ 0Λ λ , the estimated Lagrange multipliers can be interpreted as estimates of 

some underlying fixed Lagrange multiplier value as sample size increases without bound. Thus, 

at least in a limiting sense, the Lagrange multipliers in the CR-method can be interpreted 

analogously to the parameters in parametric models, and the CR approach can thus be viewed as 

a semiparametric method asymptotically. 

 

4.2 Implications for Inference 

The preceding asymptotic results suggest a relatively straightforward method of constructing 

estimates for the asymptotic covariance matrices of λ̂ . A consistent estimator of Ψ  can be 

defined for 1γ <  by 

  1 2
. .

1

ˆˆ ˆ ˆwhere Y ( )
n

i i i i i i
i

n pε ε−

=

′ = −∑ Z ZΨ = λ . (4.3) 

Define ˆ
0Ω  when 1γ <  by 

  ( )( )
11

1 1
0 . .

1

ˆ ˆˆ ˆ ˆwhere 2 ( ) 1 ( )
n

i i i i i i
i

n p p
γ

γ γω ω
−−

− −

=

⎛ ⎞′ = + −⎜ ⎟
⎝ ⎠∑ Z ZΩ = λ λ . (4.4) 
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Then a consistent estimator of the asymptotic covariance matrix of l( )n − 0Λ λ  is defined by 

n l( ) 1 1
0 0

ˆ ˆ ˆ( )Cov n − −− =0Λ λ Ω ΨΩ . For the case where 1γ ≥ , the preceding formulae still apply, but 

the summation is then taken over only those observations for which ( )ˆ( ) 0,1ip ∈λ .  

 Confidence intervals and hypothesis tests relating to the values of 0λ  can be conducted 

based on the usual t-type statistics and Wald asymptotic chi-square methods. The significance of 

individual response variables can be evaluated by testing the associated value of the Lagrange 

multiplier of the moment constraint constructed from the response variable. Confidence intervals 

and hypothesis tests on marginal effects can be obtained based on the asymptotic distribution 

derived from the functional mapping of λ̂  to the value of the derivative ( ) ( )( )ˆ /i ijp z∂ ∂  of 

interest, or based on bootstrapping.  

 

5.  SAMPLING EXPERIMENTS 

This sampling experiment section is designed with several purposes in mind. To avoid the 

sometimes artificial applied example in a theoretical paper, we have fashioned the sample design 

to reflect the elements of a discrete choice problem often found in practice. The results of the 

sampling experiments illustrate the finite sample properties of various ( )CR γ  in comparison to 

the traditional probit and logit estimators. Finally, carrying through the experiments suggests 

how an application can be implemented and the results interpreted.  

 We implement the following version of the binary response model, where the latent 

variable equation and binary outcomes are given by: 

 ( )* 0i iY I Y= >  and * *
0 i1 i2 i3 i41x -1 x 2x 2 x  i iY β ε= − ++ +   for i = 1,...,n, (5.1)  
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 the 'sijx  are iid outcomes from a Uniform(0,2) distribution, and the value of the intercept 0β  is 

increased incrementally, beginning at zero, to simulate various probabilities of the Bernoulli 

probability ( )1i ip P y= = , i∀ .  Specifications of the binary response model such as (5.1) are 

typical of a wide range of empirical analyses in the literature, where the latent variable is 

modeled as a linear index in response variables that affect the probabilities that either of the 

dichotomous outcomes is chosen. The distributions allow for substantially different noise 

outcome characteristics that include a symmetric bell-shaped sampling distribution (N(0,9)), a 

highly right-skewed sampling distribution (Exponential(4)), and a very fat-tailed, U-shaped 

symmetric distribution (Beta(.5,.5)) with compact support, where the latter two distributions are 

centered to have zero means.  

 For each of the distribution, and intercept value combinations, we estimated the logit, 

probit, and four alternative ( )CR γ estimators associated with { }1, 0, 1, 1.5γ = − .  Note the 

scenario involving the normal noise distribution is the case where probit is actually the correctly 

specified maximum likelihood estimator. For the Monte Carlo results reported here, the sample 

size was set to n = 300, and all Monte Carlo calculations are based on 5,000 sample repetitions.  

At this number of repetitions, all of the empirically calculated averages representing estimates of 

the associated MSEs are very accurately determined, where standard errors of the mean 

calculations are typically < .0001 in magnitude.    Sampling results for selected scenarios are 

displayed by figures in Appendix B and discussed in narrative form in Sections 5.2 - 5.4. Results 

for CR(1.5) are suppressed in both the discussion and graphs because they were virtually 

indistinguishable from the CR(1) case. The CR(0) and ML logit results are numerically identical 

under all scenarios, and thus the results for this estimator are reported together in the discussion 
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and figures. Graphs of other scenarios (n = 75, 150) and tables reporting the data underlying the 

figures are available electronically from the authors.  

 

5.1 Estimation Performance Measures 

In terms of sampling performance we concentrate on two measures.  The first is the empirical 

mean square error (MSE) ( ) ( )21
1

ˆ ˆn
i ii

MSE n p p−
=

= −∑p  in predicting the binary response 

probabilities across sample observations. We also calculate the empirical MSE associated with 

predicting the values of the marginal effects of changes in response variable values on the binary 

response probabilities, which were defined across all k = 4 explanatory variables and on all 

sample observations as ( ) ( ) 1ˆ /MSE kn −∂ ∂ =p x  ( )2

1 1
ˆ/ /k n

i ij i ijj i
p x p x

= =
∂ ∂ − ∂ ∂∑ ∑ .   

 

5.2 Probability Prediction Performance 

The empirical results for probability prediction performance are presented graphically in Figure 

1 of Appendix B. Regarding relative performance in predicting P(y=1) across sample scenarios, 

it is evident that in the non-normal sampling situations, the CR(1) estimator is superior in MSE 

to all of the remaining estimators, especially for higher values of P(y=1). The probit is next in 

terms of empirical risk performances, followed closely by the logit-CR(0) measure. This 

illustrates the negative performance implications of assuming an incorrect underlying data 

sampling process in the parametric model approach.  The CR(-1) measure performs worse than 

its competitors, and when the average value of P(y=1)  is relatively high, the predictive risk 

performance of the CR(-1) measure degrades substantially. 

 For the case of the normal sampling distribution, CR(-1) is notably superior in predictive 

MSE except for the highest average values of P(y=1). The logit-CR(0) and probit estimators are 
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hardly distinguishable, and are risk-wise the next best method of predicting probabilities.  The 

CR(1) estimator performs least well under the normal sampling distribution. However, the 

differences between all of the estimation methods becomes quite small as average P(y=1) 

increases.  

 

5.3 Estimation of Probability Derivatives 

The empirical MSE for estimation of the vector of probability derivatives with respect to the 

vector Z is displayed graphically in Figure 2. For the non-normal sampling cases, CR(1) is the 

best estimator of probability derivatives in terms of MSE.  Sampling performances are very 

similar for the Beta distribution case, with CR(1) having a modest advantage in the Exponential 

distribution case. The next closest competitor is probit, followed closely by logit-CR(0). The 

relative advantage of CR(1) is small in the Beta case, except for high average P(y=1).  The 

advantage of CR(1) is more substantial in the Exponential case, for average P(y=1). This 

suggests that the relative MSE advantage may be affected by the degree of skewness in the 

underlying noise distribution.  

 In the case of sampling from a normal distribution, the probit and logit-CR(0) estimators 

are superior to the CR(1) estimator. However, the CR(-1) estimator is superior to all of the 

estimators for the smaller average values of P(y=1), but its advantage dissipates for high average 

P(y=1).  

  

5.4  Hypothesis Testing 

The inference performance associated with the probit, logit, and alternative CR approaches to 

estimating the binary response model was illustrated by analyzing their sampling performance in 
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testing various hypotheses relating to the parameters or Lagrange multipliers of the model. 

Specifically, the hypothesis : roH ′ι λ =  can be tested based on a t-ratio and the asymptotic 

covariance results identified in Section 4, where λ  is replaced by the parameter vector β  in the 

case of the probit and logit formulations and ι  is a conformable vector defining linear 

combinations of the Lagrange multipliers to be tested. The specific form of the t-ratio is given by 

   
( )

( )
1/ 2

1/ 2

0 0

ˆ r
t

ˆ ˆ ˆ

n ′

′
=

−1 −1

ι λ −

ι Ω ΨΩ ι
. (5.2) 

The particular results presented here concerns testing the value of the “intercept term”, which is 

the Lagrange multiplier, say 1λ , associated with the unit vector in the Z matrix. The empirical 

power functions of these tests were simulated based on setting ( )1
ˆr E= Λ  to assess the size of 

the test. A grid of r values up to ±  3.5 standard deviations above and below ( )1
ˆE Λ , in half-

standard deviations units, was used to assess the power of the tests. The true mean of 1Λ  was 

calculated as the sample moment of the entire set of 1λ̂  outcomes that were observed for the 

particular sampling scenario being analyzed. 

 Results are displayed for the three different sampling distributions, and for the lowest and 

highest average values of ( )1P y = , in Figure 3. The critical values of the test were based on the 

asymptotically valid standard normal distribution, and the target size of the test was set equal to 

.05. All of the methods behaved similarly at all levels of ( )1P y = , although the CR(-1) 

estimator still exhibited inferior behavior in terms of size and power in comparison to the others. 

The CR(-1) estimator’s size is the least accurate of all of the methods and the test exhibits 
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notable bias for some of the sampling scenarios. The power function characteristics are 

particularly poor for high average values of ( )1P y = . 

 Comparing the power functions of the remaining methods, the power characteristics are 

all quite similar. In particular, the sizes of the test are all close to the target level of .05 and the 

power, for deviations away from the true null hypothesis, are also all quite comparable. In the 

case of sampling from the normal distribution, the probit method appears to have a modest 

advantage in terms of size, lack of bias, and overall power, although the CR(1) method has 

power characteristics that are quite competitive with the probit approach. The CR(0)-logit 

approach appears to be modestly inferior in performance in comparison to CR(1) and probit, 

especially for high ( )1P y = . 

 Overall, the CR(1) method appears to offer good power function performance when the 

parametric model (probit) is correct, and affords a degree of robustness and performs somewhat 

better than the parametric specifications when the parametric model specification is incorrect. 

 

6.  SUMMARY AND CONCLUSIONS 

In this paper, we represent sample information about binary response outcomes 

nonparametrically via general moment conditions, ( )E È ˘- =¢Î ˚Z Y p 0 .  We then use the Cressie-

Read (CR) family of divergence measures, CR(γ) for ( ),g Œ -• • , to solve for the unknown 

Bernoulli probabilities, p, and the corresponding marginal effects on p of changes in the 

response variable values, which are underdetermined by the moment conditions alone.  The 

solved values of the probabilities, as well as the derivatives of the probabilities with respect to 

the response variables, are functions of the sample data through data-determined Lagrange 

multipliers and are not dependent on a fixed set of parameters.  The properties of consistency and 
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asymptotic normality for the family of CR(γ) estimators were analytically demonstrated.  The 

nonparametric CR(γ) estimators were shown via Monte Carlo simulations to have finite sample 

performance comparable to their parametric counterparts. For each of the MC scenarios 

examined, there was always at least one member of the CR class of estimators that was MSE-

superior to the parametric estimation methods. 

In parametric estimation there are usually two competing goals–efficiency, when the DSP 

is correctly specified, and robustness when it is not. Members of the CR-family of estimators 

performed well in comparison to the usual parametric estimators of the binary response model 

relative to both estimation goals.   

 A number of important issues relating to the CR approach to estimation and inference 

remain.  These  include generalizing the uniform reference distribution, q, to take account, in any 

particular applied problem, of known or estimable characteristics of the Bernoulli probabilities; 

developing a minimum divergence median-based estimator and contrasting it to Manski’s 

maximum score estimator (Manski 1975 and Horowitz 1992); generalizing the model to include 

endogenous response variables; pursuing other moment-formulations as a basis for representing 

the sample information; and developing a basis under model uncertainty for combining 

estimators of the type examined in this paper to obtain a minimum loss-based estimator (Judge 

and Mittelhammer 2004; Qin 2000).  

 Finally, we note that Grunwald and David (2004) have established a close relationship 

between the maximum entropy principle (CR(0)) and the problem of minimizing worst case 

expected loss.  In the important case where the class of distributions is described by mean value 

constraints, the challenge is to extend their results to our CR context of p and q distributions and 

the distance measures of relative entropy and divergence. 
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APPENDIX A. MOTIVATION AND PROOFS OF ASYMPTOTIC RESULTS 

A.1 Preliminaries 

Given data ( ),y z  where y  is an n -vector, and z  is an n  by k  matrix, i•
z  denotes the ith row of 

z  and k•
z  denotes the kth column of z , the minimum discrepancy estimator can be defined as:  

� ( )

1 1

( ) 0 0 1 1

( ) 0 0 1 1

( ) 0 0 1 1

1argmin 2 (1 ) 0 1
( 1)

argmin ( ln( ) (1 ) ln(1 )) ln(2) 0

1argmin (
2

i

i

i

n

i i
p all i i

n

i i i i
p all i i

n

p all i i

p p n

p p p p

γ γ γ γ
γ γ

γ

+ +⎛ ⎞
⎜ ⎟
⎝ ⎠′: − = ; ≤ ≤ , =

′: − = ; ≤ ≤ , =

′: − = ; ≤ ≤ , =

⎛ ⎞⎛ ⎞+ − − , ≠ , −⎜ ⎟⎜ ⎟+ ⎝ ⎠⎝ ⎠
⎛ ⎞

= + − − + , =⎜ ⎟
⎝ ⎠

−

∑

∑

∑

p z y p

p z y p

p z y p

p

ln( ) ln(1 )) ln(2) 1i ip p γ

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪ ⎛ ⎞⎛ ⎞⎪ + − − , = −⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎩

 (A.1) 

The case in (A.1) for 0, 1g π -  may be restated as 

  
1 1

( ) 0 0 1 1

2 (1 ) 1
ˆ argmin 0 1

( 1)i

n
i i

p all i i

p pγ γ γ

γ
γ γ

+ +⎛ ⎞
⎜ ⎟
⎝ ⎠

′: − = ; ≤ ≤ , =

⎛ ⎞⎛ ⎞+ − −
⎜ ⎟⎜ ⎟= , ≠ ,−

⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
∑

p z y p
p . (A.2) 

Now define  

  

( )

1 12 (1 ) 1
0 1

( 1)
( ) ln( ) (1 ) ln(1 ) ln(2) 0

1 ln( ) ln(1 ) ln(2) 1
2

q q

Q q q q q q

q q

γ γ γ

γ
γ γ

γ γ

γ

+ +⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧ + − −
⎪ ≠ , −

+⎪
⎪, = + − − + =⎨
⎪ −⎪ + − − , = −
⎪⎩

 (A.3) 

and let 

  
1

( ) ( )
n

i
i

CR Q pγ γ
=

, = ,∑p  (A.4) 

where �
( ) 0 0 1

argmin ( ( ))
ip all i

CR γ
′: − = ; ≤ ≤ ,

= ,
p z y p

p p . Henceforth, we will sometimes use the abbreviation 

( )CR p  and ( )iQ p , or CR  and Q , in place of ( )CR γ,p  and ( )iQ p γ, . Differentiating ( )iQ p  

yields:  
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2 (1 ) 0

ln( ) ln(1 ) 0

i i

i
i i

p pdQ
dp

p p

γ
γ γ γ

γ
γ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧
− − ≠⎪= ⎨

⎪ − − =⎩

 (A.5) 

and  

  
2

1 1
2 2 ( (1 ) )i i
i

d Q p p
dp

γ γ γ− −= + − .  (A.6) 

Therefore, ( )1

n
ii

CR Q p
=

= ∑  is globally convex in p  and any local minimum of CR  must be the 

unique global minimum, which applies to the constrained CR  as well.  

 The Lagrangian for the problem defined in (A.1) is:  

  L
1

( ) ( ) ( ) ( ) ( ( ) ( ))
n

i i i i
i

CR Q p y pγ γ
•

=

′, = , + − = , + − .∑p p z y p zλ λ λ  (A.7) 

Solving the Lagrangian problem implies:  

  i
i

dQ
dp •= .z λ  (A.8) 

For 0 1ip≤ ≤ , / idQ dp  is a strictly monotone function of the ip s′ . If we define β  by 

( )| | / 2γγ=β λ  for 0γ ≠ , =β λ  for 0γ = , and ( )qΞ  by:  

     
sign( ) (1 ) 0

( )
ln( ) ln(1 ) 0

q q
q

q q

γ γγ γ

γ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧ − − ≠⎪Ξ = ⎨
− − =⎪⎩

 (A.9) 

this leads to the result:  

    ˆ( )i ip
•

Ξ = z b  (A.10) 

 Note that for n  observations, k  variables and ′z z  of full rank, ( ) 0′ − =z y p  defines an 

n k−  dimensional subspace. For 0γ ≤ , / idCR dp  grows without bound as ip  approaches 0  or 

1. Therefore, for 0γ ≤ , if there is any interior solution to the constraint equation, the solution to 
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the complete problem must be an interior solution to the constraint equation. If p  and q  are two 

solutions to the constraint equation and p  contains one or more zeros or ones while q  contains 

none, then 0 1 ( (1 ) ) ( )CR CRδ δ δ δ γ γ∃ , < ≤ : + − , < ,q p p . For 0γ ≤  the solution can be simply 

characterized because / idQ dp  tends to ±∞  at the boundaries. Thus, for any finite v  and any 

0γ ≤ , the equation ( )q vΞ =  has a unique interior solution. Let 1( ) ( ) ( )p v p v vγ −; = ≡ Ξ  denote 

that solution. For 0γ > , (0) 1Ξ = − , (1) 1Ξ =  and thus when 1v| |> , the boundary constraint 

0 1ip≤ ≤  is binding. Therefore, for 0γ > :  

  1

1 1
( ) ( ) ( ) 1 1

0 1

v
p v p v v v

v
γ −

>⎧
⎪= , = Ξ − ≤ ≤⎨
⎪ < −⎩

 (A.11) 

Note that ( )qΞ  is well defined and monotone for 0 1q≤ ≤  thus 1( )v−Ξ  is well defined for 

1 1v− ≤ ≤ . In order to deal with the indeterminacy caused by the fact that, for 0γ > , ( ) 1p v = , 

for all 1v ≥  and ( ) 0p v = , for all 1v ≤ −  define ( )M n γ, , ,z b  by:  

  
1

1 1.

1 0

( )
1 0

i
i i

n

i in
M n

n

γ

γ

γ

• •
=

:− < <

⎧ ′ >⎪
⎪, , , = ⎨
⎪

′ ≤⎪⎩

∑
z b

z z

z b

z z

 (A.12) 

For v  a vector of length n  let ( ) ( )( )1( ) , , nv v=p v p p… . Thus the problem can be restated as:  

  ( )
( ( )) 0

ˆ argmin ( )CR γ
′: − =

= , .
b z y p zb

b p  (A.13) 

If there is any finite b  that solves ( ( )) 0′ − =z y p zb  and for which ( )M n γ, , ,z b  is nonsingular, 

then  

  ˆ arg ( ( ( )) 0)′= − = ,
b

b z y p zb  (A.14) 
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and ˆ( )p zb  is the unique interior solution to (A.1).  Note that it is impossible for there to be a 

single unique interior solution to the constraint equation, ( ) 0′ − =z y p . For example, if p  is an 

interior solution, then so is (1 )α α+ −p y  for all α , 0 1α< < . Thus it is the restriction to the 

single index function ( )p zb  that makes the solution unique.  

 Assume that the observations of ( )i iy
•

,z  are iid random realizations of random variables 

( )Y ,]  with some unknown distribution. Let  

  ( ) arg ( ( ( p( )) 0)E Y′= = − ; =
b

bβ β γ γ] ]  (A.15) 

Define ( ) ( )ϕ = p β] ]  and ( ) ( )i ii ϕϕ • •
= =z p z β . Let ( ) ( )E Yρ = |] ]  and 

( ) ( )i i iE Yρ ρ
• •

= = | =z z] . Consequently, ( )ρ ]  is the true probability and ϕ  is an 

approximation to the true probabilities based on the metric ( )CR γ,p  and the measure ( )F ρ . 

Note that, in general, i iρ ϕ≠ . The β  vector is the analog to the true coefficient vector in 

parametric statistics.  

 In order to structure the problem for solution and to facilitate the exposition, define:  

1 1 1

1 1 1( ) ( ( ) ( )) ( ( ) ( )) ( ( ) )
n n n

i i i i i i i ii
i i i

p p p p
n n n

ϕ ϕ• • • • • • • •

= = =

′ ′ ′ ′ ′ ′ ′ ′∆ = − = − = − ,∑ ∑ ∑b z b z z z b z z z b zβ  (A.16) 

and  

  
1 1 1

1 1 1( ( )) ( ( )) ( )
n n n

i i i i i i i ii
i i i

y p y y
n n n

ϕ ϕ• • • • •

= = =

′ ′ ′ ′ ′= − = − = − .∑ ∑ ∑u z z z z zβ  (A.17) 

Redefining equation (A.13), the complete solution to the original problem is  

  �ˆ ˆarg ( ( ) ) ( )== ∆ , = .
b

b b u p p zb  (A.18) 
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A.2  Proofs of Asymptotic Results 

The following lemma will be used in the derivation of the asymptotic distributions of the 

semiparametric estimators. 

Lemma 1: Given assumptions 1 and 2, ~ ( )
a

n N ,U 0 Ψ , where 2(( ( )) )E Y p ′= − .Ψ β] ] ]  

Proof of Lemma 1: Let ( )i i iiy ϕ •
′= −w z  and ( ( ))Y ϕ ′= −W ] ] . Given assumptions 1 and 2 and 

the definition of iϕ , iw  is an iid realization of the random vector W  which has a mean of zero 

and finite variance covariance matrix, var( ) =W Ψ . Thus  

  ( )n = , .
a

U nW N 0 Ψ∼  (A.19) 

Proof of Theorem 1:  

If one were to make the highly parametric assumption that ( ) ( )pρ∃ : ≡b b] ] , then it 

would be trivial to show that ( )( ) ( )arg pρ= =
b

bβ ] ] . Thus ( )ϕ ]  would be the same as ( )ρ ]  

and the rest of the demonstration would be straightforward. Instead the framework here is 

nonparametric and, therefore, the best one can hope for is convergence to ( )ϕ ] . The function 

( )ϕ ]  can be thought of as a best approximation function under the implicit metric defined by the 

CR function and the distribution of ( )Y ,] . Note that for 0γ >  it is possible that ( )ϕ ]  may take 

the value of 0  or 1 even if ( )ρ ]  never does. Thus, in general, ( 1 ( )) 0P Y ϕ= − >]  and in the 

analysis data set it may happen that l1 ( )i iy p
•

= − z .  

For 0γ =  the model reduces to logit and the result is well known, so we focus on 0γ ≠ . 

Recall that �β  solves:  

  
1 1

1 1( ) ( ( ) ( )) ( ( ))
n n

i i i i i i
i i

p p y p
n n• • • • •

= =

′ ′∆ = − = − = .∑ ∑b z b z z z z uβ β  (A.20) 
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Note that ( ) ( )i ip ϕ
• •

≡z zβ , and ( )ip
•

z β  is used here to emphasize dependence on β . Also, 

( ( ( ))) ( ( ( )))E Y E Y′ ′− = − = 0ϕ ρ] ] ] ]  and ( ( ( )) )E Y ρ′ − | = 0] ] ] ; but ( ( ( )) ) 0E Y ϕ−′ | ≠] ] ] . 

Differentiating (A.11) yields 1 1( ( ) (1 ( )) )p v p v dp dvγ γγ − −| | + − = . Thus,  

  1 1

( ) 1
( ( ) (1 ( )) )

dp v
dv p v p vγ γγ − −

−
= ,

| | +
 (A.21) 

and  

  1 1
1

( ) ( )
( ( ) (1 ( )) )

n
i i

i i i

H
p pγ γγ

• •

− −

• •
−=

′∂∆
= = .

∂ | | +∑ z zb b
b z b z b

 (A.22) 

Note that, in general, for a vector q , 
1

max( )
=′:

′| |=
v v v

q v q . Now consider ( )a+′∆v vβ . For any 

v , �( )′ ′∆ =v v uβ . Equating a+ vβ  and �β  yields, �a =| − |β β  and �( ) �( )/= − −v β β β β .  Then 

  1 1
1

( )
( ( ( )) (1 ( ( ))) )

n
i i

i i i

d a
da p a p aγ γγ

• •

− −

• •=

′ ′′∆ +
= .

| | + + − +∑ v z z vv v
z v z v

β
β β

 (A.23) 

Let ( )Lξ M  denote the smallest eigenvalue of a square matrix M . Define  

  1 1( ) min
( ( ) (1 ( )) )Lk E
p pγ γβ δ

δ ξ
γ − −:| − |<

⎛ ⎞⎛ ⎞′⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟| | + −⎝ ⎠⎝ ⎠⎝ ⎠b b b b

] ]
] ]

 (A.24) 

Let k  be a scalar for which ( )E k<′ | | |] ] ]  is positive definite and ( ) 0P k<| | >] . Given 

assumptions 1 and 2 it is clear that such a k  exists and it follows that:  

  ( )( )1 1

1( ) min ( | ) 0
( ( ) (1 ( )) )k Lk P k E k
p p

β δ

γ γδ ξ
γ − −:| |≤

:| − |≤

⎛ ⎞ ′≥ | < || |< >⎜ ⎟| | + −⎝ ⎠v v
b b

vb vb
] ] ] ]  (A.25) 

At this point we need to consider probability statements that relate to the full data matrix. 

Therefore, let Y  and Z  represent respectively the random vector and the random matrix of 

which y  and z  are realizations. Thus ( )i i•
,Y Z  is an iid random vector with the same 
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distribution as ( )Y ,] . It follows from equation (B 25).  that, for all 0ε > , 0δ > , 1( )n ε δ∃ ,  such 

that for all 1( )n n ε δ> , :  

  1 1
1

1 ( )min
( ( ) (1 ( )) ) 2

n
i i

L
i i i

kP
n p pγ γβ δ

δξ ε
γ

• •

− −

• •
:| − |≤

=

⎛ ⎞⎛ ⎞⎛ ⎞′
≤ <⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟| | + −⎝ ⎠⎝ ⎠⎝ ⎠

∑b b

Z Z
Z b Z b

 (A.26) 

Considering ∆  as a function of Z  rather that z  and combining Equations (B 23).  and (B 26).  for 

all 1( )n n ε δ> ,  yields  

  1 ( )min ( )
2

kP
nβ δ

δ δ ε
:| − |≥

⎛ ⎞⎛ ⎞
∆ < < .⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠b b
b  (A.27) 

Write b  in the form a+=b vβ  where a  is a scalar and v  a K -vector with 1| |=v . 

Lemma 1 proves that 1/ 2
1
( ( ))n

i i ii
n n Y p

• •

−
−

=
′= ∑U Z Zβ  is a mean zero asymptotically normal 

random variable. Thus, for any v , ′v U  is a mean zero asymptotically normal random variable. 

Therefore,  

  2 2
1

1( ) ( ( )) ( ( ))
n

i i i
i

n k n n k P y p k
n

ε ε ε• •

=

⎛ ⎞
′∃ , : ∀ > , − > < .⎜ ⎟

⎝ ⎠
∑ Z Zβ  (A.28) 

Let ( ) ( )( )( )( )1 22( ) max( ( ) / 2 , / 3n n n k, = , ,εε δ δ ε δ . Thus, for all ( )n n ε δ> , ,  

  1 ( )min ( ( ) ) 1
6

kP
n− ≥:| |

⎛ ⎞⎛ ⎞
∆ − > > − .⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠b b
b U

β δ

δ ε  (A.29) 

We have already shown that a feasible solution exists. Therefore, for all ( )n n ε δ> , :  

  �( ) 1P δ ε| − |< > −β β  (A.30) 

Thus �plim( ) =β β , from which lplim( ) = 0Λ λ  from the definition ( )| | / 2γγ=β λ . 
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Proof of Theorem 2:  

Expand ( )∆ b  in a Taylor series around β , where � ( ( ) )arg
l

l= ∆ = Uβ  is the minimum discrepancy 

estimator of β , to obtain  

  � �( ) ( )( )H ∗∆ = + − ,0β β β β  (A.31) 

where ∗β  is between �β  and β . In general, different ∗β  points will be required to represent the 

different coordinate functions in �( )∆ β . At the optimum, �( )∆ = Uβ  and �β  is a consistent estimator 

ofβ ; therefore
p

∗ →β β , and  

  �
1

11( ) ( )
d d

n H n n
n

−

−⎛ ⎞− ,= =⎜ ⎟
⎝ ⎠

U Uβ β β Ω  (A.32) 

where 
d

=  denotes the equivalence of the limiting distributions. From Lemma 1, ( )
d

n N ,=U 0 Ψ , 

therefore, � 1 1( ) ( )
d

n N − −− ,= 0β β Ω ΨΩ , from which l( ) ~ ( )
a

n N− ,0 −1 −1
0 0 0Λ λ Ω ΨΩ  from the 

definition ( )| | / 2γγ=β λ .  

Note that ( )H b  is a continuous function of Z  for all Z  and 1γ < . Furthermore, the 

concavity of the problem means that ϕ  is still well defined. Thus Theorem 2 is valid for all 

1γ < .  

Proof of Theorem 3:  

To proceed with 1γ ≥  we must consider the discontinuity in ( )H b  that occurs at 

1i•
= ±z b  for any i . Let ( )c nδℵ , , ,b z  denote the set of indices, i , 1 i n≤ ≤  for which the interval 

( ) ( )( min max )i iδ δ• •
< <:| − | :| − |

,
v v b v v b

z v z v  does not contain 1± ; and ( )d nδℵ , , ,b z  denote the set of indices, i , 
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1 i n≤ ≤  for which the interval ( ) ( )( min max )i iδ δ• •
< <:| − | :| − |

,
v v b v v b

z v z v  does contain 1± . Now define c∆  and 

d∆  as:  

  
( )

1( ) ( ( ) )
c

c i ii
i n

p
n β δ

ϕ• •

∈ℵ , , ,

′∆ = − ,∑
z

b z b z  (A.33) 

and  

  
( )

1( ) ( ( ) )
d

d i ii
i n

p
n β δ

ϕ• •

∈ℵ , , ,

′∆ = − .∑
z

b z b z  (A.34) 

Similarly define cH :  

  1 1
( )

( )( ) ( 1 1)
( ( ) (1 ( )) )

c

c i i
c i

i n i i

H I
p pγ γ

β δ γ
• •

• − −
∈ • •ℵ , , ,

′∂∆
= = − < < .

∂ | | + −∑
z

b z zb z
b z b z b

β  (A.35) 

The assumption that ( 1) 0P | |= =β]  guarantees that ( ) ( )( )( 1 min max 0
p

P
δ δ< <:| − | :| − |

± ∈ , →
v v b v v b

v v] ] . Also 

note that, for 1γ > , the contribution of any specified observation i  to c∆  and d∆  is 1( )iO n
•

− | |z  

and the contribution of any specified observation i  to 1
cn H−  is 1 2( )iO n

•

− | |z . Thus, given 

assumptions 1-3  and ( 1) 0P | |= =β]  as 0, , 0c dδ → ∆ → ∆ ∆ → , and 1
cn H− → Ω .  Therefore: 

  ( ) ( ) ( )( ) ( )
1 1

11 1ˆ ˆd d d

c dn H n H n n
n n

− −
−⎛ ⎞ ⎛ ⎞− = − ∆ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
U U Uβ β β β β Ω  (A.36) 

from which l( ) ~ ( )
a

n N− ,0 −1 −1
0 0 0Λ λ Ω ΨΩ  from the definition ( )| | / 2γγ=β λ . 
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 APPENDIX B: FIGURES 

Figure 1. MSE of Probability Predictions: Beta(.5,.5), Exp(4), N(0,9), n=300 
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Figure 2. MSE of dP/dZ: Beta(.5,.5), Exp(4), N(0,9), n=300 
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Figure 3: Power for ( ) ( )0 0 0 0: ,H r r E k stdλ λ λ= = ± , Beta(.5,.5), Exp(4), N(0,9) and 

n = 300 
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