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Region-based Segmentation on Evolving
Surfaces with Application to 3D Reconstruction

of Shape and Piecewise Constant Radiance

Hailin Jin1, Anthony J. Yezzi2, and Stefano Soatto1

1 Computer Science Department, University of California, Los Angeles, CA 90095,
hljin,soatto@cs.ucla.edu

2 School of Electrical and Computer Engineering, Georgia Institute of Technology,
Atlanta, GA 30332, ayezzi@ece.gatech.edu

Abstract. We consider the problem of estimating the shape and radi-
ance of a scene from a calibrated set of images under the assumption
that the scene is Lambertian and its radiance is piecewise constant. We
model the radiance segmentation explicitly using smooth curves on the
surface that bound regions of constant radiance. We pose the scene re-
construction problem in a variational framework, where the unknowns
are the surface, the radiance values and the segmenting curves. We pro-
pose an iterative procedure to minimize a global cost functional that
combines geometric priors on both the surface and the curves with a
data fitness score. We carry out the numerical implementation in the
level set framework.

Keywords: variational methods, Mumford-Shah functional, image segmen-
tation, multi-view stereo, level set methods, curve evolution on manifolds.

Fig. 1. (COLOR) A plush model of “nemo.” The object exhibits piecewise constant
appearance. From a set of calibrated views, our algorithm can estimate the shape and
the piecewise constant radiance.

1 Introduction

Inferring three-dimensional shape and appearance of a scene from a collection
of images has been a central problem in Computer Vision, known as multi-
view stereo. Traditional approaches to this problem first match points or small
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Fig. 2. Man-made objects often exhibit piecewise constant appearance. Approximating
their radiances with smooth functions would lead to gross error and “blurring” of the
reconstruction. On the other hand, these objects are not textured enough to establish
dense correspondence among different views. However, we can clearly see radiance
boundaries that divided the objects into constant regions.

image regions across different views and then combine the matches into a three-
dimensional model3. Scene radiances can be reconstructed afterwards if neces-
sary. These approaches effectively avoid directly estimating the scene radiances,
which can be quite complex for real scenes. However, for these methods to work,
the scene has to satisfy quite restrictive assumptions, namely the radiance has to
contain “sufficient texture.” When the assumptions are not fulfilled, traditional
methods fail. Recently, various approaches have been proposed to fill the gaps
where the assumptions underlying traditional stereo methods are violated and
the scene radiance is assumed to be smooth, for instance [1, 2]. In this case, radi-
ance is modeled explicitly rather than being annihilated through image-to-image
matching. The problem of reconstructing shape and radiance is then formulated
as a joint segmentation of all the images. The resulting algorithms are very
robust to image noise.

However, there are certainly many scenes whose radiances are not heavily
textured, but are not smooth either. For instance, man-made objects are often
built with piecewise constant material properties and therefore exhibit approx-
imately piecewise constant radiances, for instance those portrayed in Figure 2.
For scenes like these, neither the assumption of having global constant or smooth
radiances is satisfied, nor their radiances are textured enough to establish dense
correspondence among different views.

For such scenes, one may attempt to use the algorithms designed for smooth
radiances to reconstruct pieces of the surface that satisfy the assumptions and
then patch them together to get the whole surface. Unfortunately, this approach
does not work because patches are not closed surfaces, but even if they were, indi-
vidual patches would not be able to explain the image data due to self-occlusions
(see for instance Figure 4). Therefore, more complete and “global” models of the
scene radiance are necessary. Our choice is to model it as a piecewise constant
function. Under this choice, we can divide the scene into regions such that each
region supports a uniform radiance, and the radiance is discontinuous across re-
gions. The scene reconstruction problem now amounts to estimating the surface
shape, the segmentation of the surface and the radiance value of each region.

3 There are of course exceptions to this general approach, as we will discuss shortly.
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1.1 Relation to prior work and contributions

This work falls in the category of multi-view stereo reconstruction. The literature
on this topic is too large to review here, so we only report on closely related
work. Faugeras and Keriven [3] were the first to combine image matching and
shape reconstruction in a variational framework and carry out the numerical
implementation using level set methods [4]. The underlying principle of their
approach is still based on image-to-image matching and therefore their algorithm
works for scenes that contain significant texture. Yezzi et. al. [1] and Jin et. al.
[2] approached the problem by modeling explicitly a (simplified) model of image
formation, and reconstruct both shape and radiance of the scene by matching
images to the underlying model, rather than to each other directly. The class
of scenes they considered is Lambertian with constant or smooth radiances.
In this paper, we extend their work by allowing scenes to have discontinuous
radiances and model explicitly the discontinuities. In the work of shape carving
by Kutulakos and Seitz [5], matching is based on the notion of photoconsistency,
and the largest shape that is consistent with all the images is recovered. We use a
different assumption, namely that the radiance is piecewise constant, to recover a
different representation (the smoothest shape that is photometrically consistent
with the data in a variational sense) as well as photometry. Since we estimate
curves as radiance discontinuities, this work is related to stereo reconstruction of
space curves [6, 7]. The material presented in this paper is also closely related to
a wealth of contributions in the field of image segmentation, particularly region-
based segmentation, starting from Mumford and Shah’s pioneering work [8] and
including [9, 10].

We use curves on surfaces to model the discontinuities of the radiance. We
use level set methods [4] to evolve both the surface and the curve to perform
optimization. Our curve evolution scheme is closely related to [11–13].

We address the problem of multi-view stereo reconstruction for Lambertian
objects that have piecewise constant radiances. To the best of our knowledge
we are the first to address this problem. Our solution relies not on matching
image-to-image, but on matching all images to the underlying model of both
geometry and photometry.

For scenes that satisfy the assumptions, we reconstruct (1) the shape of the
scene (a collection of smooth surfaces) and the radiance of the scene, which
includes (2) the segmentation of the scene radiance, defined by smooth curves,
and (3) the radiance value of each region. Our implementation contains several
novel aspects, including simultaneously evolving curves (radiance discontinuities)
on evolving surfaces, both of which are represented by level set functions.

2 A variational formulation

We model the scene as a collection of smooth surfaces and a background. We
denote collectively with S ⊂ R3 all the surface, i.e., we allow S to have multi-
ple connected components. We denote with X = [X,Y, Z]T the coordinates of
a generic point on S with respect to a fixed reference frame. We assume to be
able to measure n images of the scene Ii : Ωi → R, i = 1, 2, . . . , n, where Ωi is
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the domain of each image with area element dΩi
4. Each image is obtained with

a calibrated camera which, after pre-processing, can be modeled as an ideal per-
spective projection πi : R3 → Ωi;X 7→ xi

.= πi(X) = π(Xi) = [Xi/Zi, Yi/Zi]T ,
where Xi = [Xi, Yi, Zi]T are the coordinates for X in the i-th camera reference
frame. X and Xi are related by a rigid body transformation, which can be repre-
sented in coordinates by a rotation matrix Ri ∈ SO(3)5 and a translation vector
Ti ∈ R3, so that Xi = RiX + Ti. We assume that the background, denoted
with B, covers the field of view of every camera. Without loss of generality, we
assume B to be a sphere with infinite radius, which can therefore be represented
using angular coordinates Θ ∈ R2. We assume that the background supports a
radiance function h : B → R and the surface supports another radiance function
ρ : S → R. We define the region Qi

.= πi(S) ⊂ Ωi and denote its complement by
Qc

i
.= Ωi\Qi.
Our assumption is that the foreground radiance ρ is a piecewise constant

function. We refer the reader to [14] for an extension to piecewise smooth ra-
diances. For simplicity, the background radiance h is assumed to be constant,
although extensions to smooth, piecewise constant or piecewise smooth functions
can be conceived. Furthermore, we assume that the discontinuities of ρ can be
modeled as a smooth closed curve C on the surface S, and C partitions S into
two regions D1 and D2 such that D1 ∪D2 = S. Note that we allow each region
Di to have multiple disconnected components. Extensions to more regions are
straightforward, for instance following the work of Vese and Chan [15]. We can
thus re-define ρ as follows:

ρ(X) = ρi ∈ R for X ∈ Di, i = 1, 2. (1)

We denote with πi(D1) and with πi(D2) the projections of D1 and D2 in the
i-th image respectively.

2.1 The cost functional

The task is to reconstruct S, C, ρ1, ρ2, and h from the data Ii, i = 1, 2, . . . , n. In
order to do so, we set up a cost, Edata, that measures the discrepancy between the
prediction of the unknowns and the actual measurements. Since some unknowns,
namely the surface S and the curve C, live in infinite-dimensional spaces, we need
to impose regularization to make the inference problem well-posed. In particular,
we assume that both the surface and the curve are smooth (geometric priors),
and we leverage on our assumption that the radiance is constant within each
domain. The final cost is therefore the sum of three terms:

E(S,C, ρ1, ρ2, h) = Edata + αEsurf + βEcurv, (2)

4 More precisely, measured images are usually non-negative discrete functions defined
on a discrete grid and have minimum and maximum values. For ease of notation, we
will consider them to be defined on continuous domains and take values from the
whole real line.

5 SO(3) = {R | R ∈ R3×3 s.t. RT R = I and det(R) = 1}.
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where α, β ∈ R+ control the relative weights among the terms. The data fitness
can be measured in the sense of L2 as:

Edata =
n∑

i=1

(∫
πi(D1)

(Ii(xi)− ρ1)2dΩi +
∫

πi(D2)

(Ii(xi)− ρ2)2dΩi

)

+
n∑

i=1

∫
Qc

i

(Ii(xi)− h)2dΩi, (3)

although other function norms would do as well. The geometric prior for S is
given by the total surface area:

Esurf =
∫

S

dA, (4)

and that for C is given by the total curve length:

Ecurv =
∫

C

ds, (5)

where dA is the Euclidean area form of S and s is the arc-length parameterization
for C. Therefore, the total cost takes the expression:

Etotal(S,C, ρ1, ρ2, h) = Edata + αEsurf + βEcurv

=
n∑

i=1

(∫
πi(D1)

(Ii(xi)− ρ1)2dΩi +
∫

πi(D2)

(Ii(xi)− ρ2)2dΩi

)

+
n∑

i=1

∫
Qc

i

(Ii(xi)− h)2dΩi + α

∫
S

dA+ β

∫
C

ds. (6)

This functional is in the spirit of the Mumford-Shah functional for image seg-
mentation [8].

3 Optimization of the cost functional

In order to find the surface S, the radiances ρ1, ρ2, h and the curve C that
minimize the cost (6), we set up an iterative procedure where we start from a
generic initial condition (typically a big cube, sphere or cylinder) and update
the unknowns along their gradient directions until convergence to a (necessarily
local) minimum.

3.1 Updating the surface

The gradient descent flow for the surface geometric prior is given by St = 2κN,
where κ is the mean curvature and N is the unit normal to S. Note that we have
kept 2 in the expression in order to have the weights in the final flow match the
weights in the cost (2). To facilitate computing the variation of the rest terms
with respect to the surface, we introduce the radiance characteristic function φ
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to describe the location of C for a given surface S. We define φ : S → R such
that

D1 = {X | φ(X) > 0}, D2 = {X | φ(X) < 0}, and C = {X | φ(X) = 0}.
(7)

φ can be viewed as the level set function of C. However, one has to keep in
mind that φ is defined on S. We can then express the curve length as

∫
C
ds =∫

S
‖∇SH(φ)‖dA where H is the Heaviside function. We prove in the technical

report [14] that the gradient descent flow for the curve smoothness term has the
following expression

St =
δ(φ)
‖∇Sφ‖

II(∇Sφ×N)N, (8)

where II(t) denotes the second fundamental form of a vector t ∈ TP (S), i.e.
the normal curvature along t for ‖t‖ = 1 and δ denotes the one-dimensional
Dirac distribution: δ = Ḣ. TP (S) is the tangent space for S at P . Note that
∇Sφ×N ⊥ N and therefore ∇Sφ×N ∈ TP (S). Since flow (8) involves δ(φ), it
only acts on the places where φ is zero, i.e., the curve C. To find the variation of
the data fitness term with respect to S, we need to introduce two more terms. Let
χi : S → R be the surface visibility function with respect to the i-th camera, i.e.
χi(X) = 1 for points on S that are visible from the i-th camera and χi(X) = 0
otherwise. Let σi be the change of coordinates from dΩi to dA, i.e, σi

.= dΩi

dA =
〈Xi, Ni〉 /Z3

i , where Ni the unit normal N expressed in the i-th camera reference
frame. We now can express the data term as follows (see the technical report
[14] for more details):

n∑
i=1

(∫
πi(D1)

(Ii(xi)− ρ1)2dΩi +
∫

πi(D2)

(Ii(xi)− ρ2)2dΩi +
∫

Qc
i

(Ii(xi)− h)2dΩi

)

=
n∑

i=1

∫
S

χiΓiσidA+
n∑

i=1

∫
Ωi

(Ii(xi)− h)2dΩi, (9)

where Γi
.= H(φ)(Ii − ρ1)2 + (1−H(φ))(Ii − ρ2)2 − (Ii − h)2. Note that we have

dropped the arguments for Ii and φ for ease of notation. Since, for a fixed h,∑n
i=1

∫
Ωi

(Ii(xi) − h)2dΩi does not depend upon the unknown surface, we only
need to compute the variation of the first term

∑n
i=1

∫
S
χiΓiσidA with respect

to S. We prove in the technical report [14] that the gradient descent flow for
minimizing cost functionals of a general type

∑n
i=1

∫
S
χiΓiσidA takes the form:

St =
n∑

i=1

1
Z3

i

(
Γi

〈
χiX, R

T
i Xi

〉
− χi

〈
ΓiX, R

T
i Xi

〉 )
N, (10)

where χiX and ΓiX denote the derivatives of χi and Γi with respect to X re-
spectively. We further note that

〈
IiX, R

T
i Xi

〉
= 0 [16] and obtain〈

ΓiX, R
T
i Xi

〉
= δ(φ)

(
(Ii − ρ1)2 − (Ii − ρ2)2

) 〈
∇Sφ,R

T
i Xi

〉
. (11)
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Therefore, the whole gradient descent flow for the cost (6) is given by

St =
( n∑

i=1

Γi

Z3
i

〈
χiX, R

T
i Xi

〉
− χi

δ(φ)
Z3

i

(
(Ii − ρ1)2 − (Ii − ρ2)2

) 〈
∇Sφ,R

T
i Xi

〉
+2ακ+ β

δ(φ)
‖∇Sφ‖

II(∇Sφ×N)
)
N. (12)

Note that flow (12) depends only upon the image values, not the image gradients.
This property greatly improves the robustness of the resulting algorithm to image
noise when compared to other variational approaches [3] to stereo based on
image-to-image matching (i.e. less prone to become “trapped” in local minima).

3.2 Updating the curve
We show in the technical report [14] that the gradient descent flow for C related
to the smoothness of the curve is given by

Ct =
( n∑

i=1

(
(Ii − ρ2)2 − (Ii − ρ1)2

)
σi + βκg

)
n, (13)

where κg is the geodesic curvature and n is the normal to the curve in TP (S)
(commonly referred to as the intrinsic normal to the curve C). Since n ∈ TP (S),
C stays in S as it evolves according to equation (13).

3.3 Updating the radiances
Finally, the optimization with respect to the radiances can be solved in closed
forms as: 

ρ1 =
∑n

i=1

∫
πi(D1) Ii(xi)dΩi∑n

i=1

∫
πi(D1) dΩi

ρ2 =
∑n

i=1

∫
πi(D2) Ii(xi)dΩi∑n

i=1

∫
πi(D2) dΩi

h =
∑n

i=1

∫
Qc

i
Ii(xi)dΩi∑n

i=1

∫
Qc

i
dΩi

,

(14)

i.e., the optimal values are the sample averages of the intensity values in corre-
sponding regions.

4 A few words on the numerical implementation

In this section, we report some details on implementing the proposed algorithm.
Both the surface and curve evolutions are carried out in the level set framework
[4]. Since there has been a lot of work on shape reconstruction using level set
methods and the space is limited, we refer the interested reader to [2, 3, 17] for
general issues. We would like to point out that we do not include the term (8)
in the implementation of the surface evolution because experimental testing has
empirically shown that convinging results can be obtained even neglecting this
term given its localized influence only near the segmenting curve. The numerical
implementation of equations (14) should be also straightforward, since one only



8 Hailin Jin et. al.

needs to compute the sample average of the intensities in the regions πi(D1),
πi(D2) and Qc

i . Therefore, we will devote the rest of this section to issues related
to the implementation of the flow (13).

Note that flow (13) is not a simple planar curve evolution. The curve is
defined on the unknown surface, and therefore its motion has to be constrained
on the surface. (It does not make sense to move the curve freely in R3, which
would lead the curve out of the surface.) The way we approach the problem is
to exploit the radiance characteristic function φ. Our approach is similar to the
one considered by [11, 12]. Recall that C is the zeros of φ. We can express all
the terms related to C using φ. In particular, the geodesic curvature is given by
(we refer the reader to [14] for details on deriving this expression and the rest
equations in this section):

κg = ∇S ·
(

∇Sφ

‖∇Sφ‖

)
=
∇S · ∇Sφ

‖∇Sφ‖
−
〈
∇Sφ,∇S

(
1

‖∇Sφ‖

)〉
=

∆Sφ

‖∇Sφ‖
− ∇T

Sφ∇2
Sφ∇Sφ

‖∇Sφ‖3
, (15)

where ∇2
Sφ and ∆Sφ denote the intrinsic Hessian and the intrinsic Laplacian of

φ respectively. After representing the curve C with φ, we can implement the
curve evolution by evolving the function φ on the surface. We further relax6 φ
from being a function defined on S to being a function defined on R3. This is
related to the work of [13] for smoothing functions on surfaces. We denote with
ϕ the extended function. We can then express the intrinsic gradient as follows:

∇Sφ = ∇ϕ− 〈∇ϕ,N〉N, (16)

and the intrinsic Hessian as follows:

∇2
Sφ = (I−NNT )∇2ϕ(I−NNT )−(NT∇ϕ)

(I −NNT )∇2ψ(I −NNT )
‖∇ψ‖

, (17)

where ∇2 stands for the standard Hessian in space and ψ is the level set function
for S. ∆Sφ can be computed as

∆Sφ = trace(∇2
Sφ) = ∆ϕ− 2κNT∇ϕ−NT∇2ϕN. (18)

Finally the curve evolution (13) is given by updating the following partial dif-
ferential equation

φt = ‖∇Sφ‖
n∑

i=1

(
(Ii − ρ2)2 − (Ii − ρ1)2

)
σi + β

(
∆Sφ−

∇T
Sφ∇2

Sφ∇Sφ

‖∇Sφ‖2

)
, (19)

with φ replaced by ϕ and ∇Sφ, ∇2
Sφ and ∆Sφ replaced by the corresponding

terms of ϕ according to equations (16), (17) and (18).
6 This relaxation does not necessarily have to cover the entire R3. It only needs to

cover the regions where the numerical computation operates.
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Fig. 3. (COLOR) The left 2 images are 2 out of 26 views of a synthetic scene. The scene
consists of two spheres, each of which is painted in black with the word “ECCV”. The
rest of the spheres is white and the background is gray. Each image is of size 257×257.
The right 2 images are 2 out of 31 images from the “nemo” dataset. Each image is of
size 335 × 315 and calibrated manually using a calibration rig.

5 Experiments

In Figure 3 (left 2 images) we show 2 out of 26 views of a synthetic scene, which
consists of two spheres. Each image is of size 257× 257. Each sphere is painted
in black with the word “ECCV” and the rest is white. The background is gray.
Clearly modeling this scene with one single constant radiance would lead to gross
errors. One cannot even reconstruct either white or black part using the smooth
radiance model in [1, 2] due to occlusions. For comparison purpose, we report
the results of our implementation of [1] in Figure 4 (the right 2 images). The
left 4 images in Figure 4 show the final reconstructed shape using the proposed
algorithm. The red curve is where the discontinuities of the radiance are. The
explicit modeling of radiance discontinuities may enable further applications.
For instance, one can flatten the surface and the curve and perform character
recognition of the letters. The numerical grid used in both algorithms is the
same and of size 128 × 128 × 128. In Figure 5 we show the surface evolving
from a large cylinder to a final solid model. The foreground in all the images
is rendered with its estimated radiance values (ρ1 and ρ2) and the segmenting
curve is rendered in red. In Figure 6 we show the images reconstructed using
the estimated surface, radiances and segmenting curve compared with an actual
image from the original dataset.

In Figure 3 (right 2 images) we show 2 out of 31 views of a real scene,
which contains a plush model of “nemo”. The intrinsics and extrinsics of all the
images are calibrated off-line. Each image is of size 335× 315. Nemo is red with
white stripes. For the proposed algorithm to work with color images, we have
extended the model (6) as follows: we consider images to take vector values (RGB
color in our case) and modify the square error between scalars in equation (6)
to the simple square of Euclidean vector norm. In Figure 7 we show several
shaded views of the final reconstructed shape using the proposed algorithm. The
radiance discontinuities are rendered as green curves. The numerical grid used
here is of size 128 × 60 × 100. In Figure 8 we show the surface evolving from
an initial shape that neither contains nor is contained in the shape of the scene,
to a final solid model. The foreground in all the images is rendered with its
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Fig. 4. (COLOR) The first 4 images are shaded views of the final shape estimated using
the proposed algorithm. Radiance discontinuities have been rendered as red curves.
The location of the radiance discontinuities can be exploited for further purposes, for
instance character recognition. The last 2 images are the results of assuming that the
foreground has constant radiance, as in [1]. Note that the algorithm of [1] cannot
capture all the white parts or all the black parts of the spheres, because that is not
consistent with the input images due to occlusions.

Fig. 5. (COLOR) Rendered surface during evolution. The foreground in all the images
is rendered with the current estimate of the radiance (ρ1 and ρ2) plus some shading
effects for ease of visualization.

Fig. 6. The first image is just one view from the original dataset. The remaining 6
images are rendered using estimates from different stages of the estimation process. In
particular, the second image is rendered using the initial data and the last image is
rendered using the final estimates.

estimated radiance values (ρ1 and ρ2) and the segmenting curve is rendered in
green. In Figure 9 we show the images reconstructed using the estimated surface,
radiances and segmenting curve compared with one actual image in the original
dataset.
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Fig. 7. (COLOR) Several shaded views of the final reconstructed surface. The radiance
discontinuities have been highlighted in green.

Fig. 8. (COLOR) Rendered surface during evolution. Notice that the initial surface
is neither contained nor contains the actual object. The foreground in all the images
are rendered with the current estimate of the radiance values (ρ1 and ρ2) plus some
shading effects for ease of visualization.

Fig. 9. (COLOR) The first image is just one view from the original dataset. The
remaining 6 images are rendered using estimates from different stages of the estimation
process. In particular, the second image is rendered using the initial data and the last
image is rendered using the final estimates.

6 Conclusions

We have presented an algorithm to reconstruct the shape and radiance of a
Lambertian scene with piecewise constant radiance from a collection of cali-
brated views. We set the problem in a variational framework and minimize a
cost functional with respect to the unknown shape, unknown radiance values
in each region, and unknown radiance discontinuities. We use gradient-descent
partial differential equations to simultaneously evolve a surface in space (shape),
a curve defined on the surface (radiance discontinuities) and radiance values of
each region, which are implemented numerically using level set methods.



12 Hailin Jin et. al.

Acknowledgements

This work is supported by AFOSR grant F49620-03-1-0095, NSF grants IIS-
0208197, CCR-0121778 and CCR-0133736, and ONR grant N00014-03-1-0850.
We would like to thank Daniel Cremers for stimulating discussions and Li-Tien
Cheng for suggestions on implementing curve evolution on surfaces.

References

1. Yezzi, A.J., Soatto, S.: Stereoscopic segmentation. In: Proc. of Intl. Conf. on
Computer Vision. Volume 1. (2001) 59–66

2. Jin, H., Yezzi, A.J., Tsai, Y.H., Cheng, L.T., Soatto, S.: Estimation of 3d surface
shape and smooth radiance from 2d images: A level set approach. J. Scientific
Computing 19 (2003) 267–292

3. Faugeras, O., Keriven, R.: Variational principles, surface evolution, pdes, level
set methods, and the stereo problem. IEEE Trans. on Image Processing 7 (1998)
336–344

4. Osher, S.J., Sethian, J.A.: Fronts propagating with curvature dependent speed:
Algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79 (1988)
12–49

5. Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. Int. J. of
Computer Vision 38 (2000) 199–218

6. Kahl, F., August, J.: Multiview reconstruction of space curves. In: Proc. of Intl.
Conf. on Computer Vision. Volume 2. (2003) 1017–1024

7. Schmid, C., Zisserman, A.: The geometry and matching of lines and curves over
multiple views. Int. J. of Computer Vision 40 (2000) 199–233

8. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions
and associated variational problems. Comm. Pure Appl. Math. 42 (1989) 577–685

9. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. on Image
Processing 10 (2001) 266–277

10. Yezzi, A.J., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and
trimodal imagery. In: Proc. of Intl. Conf. on Computer Vision. Volume 2. (1999)
898–903

11. Cheng, L.T., Burchard, P., Merriman, B., Osher, S.J.: Motion of curves constrained
on surfaces using a level-set approach. J. Comput. Phys. 175 (2002) 604–644

12. Kimmel, R.: Intrinsic scale space for images on surfaces: the geodesic curvature
flow. Graphical Models and Image Processing 59 (1997) 365–372

13. Bertalmio, M., Cheng, L., Osher, S.J., Sapiro, G.: Variational problems and partial
differential equations on implicit surfaces. J. Comput. Phys. 174 (2001) 759–780

14. Jin, H., Yezzi, A.J., Soatto, S.: Region-based segmentation on evolving surfaces
with application to 3d reconstruction of shape and piecewise smooth radiance.
Technical Report CSD-TR04-0004, University of California at Los Angeles (2004)

15. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation
using the mumford and shah model. Int. J. of Computer Vision 50 (2002) 271–293

16. Soatto, S., Yezzi, A.J., Jin, H.: Tales of shape and radiance in multi-view stereo.
In: Proc. of Intl. Conf. on Computer Vision. Volume 1. (2003) 171–178

17. Jin, H., Soatto, S., Yezzi, A.J.: Multi-view stereo beyond lambert. In: Proc. of IEEE
Conf. on Computer Vision and Pattern Recognition. Volume 1. (2003) 171–178




