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1  |  INTRODUC TION

The biological world is spectacularly diverse, and one of the most 
fundamental properties of organisms is their remarkable ability to 
evolve. Upon a cursory glance, it appears that the capacity of an 
organism to evolve is boundless, and the process of adaptation to 

new environments is relatively stochastic. However, work over the 
last decades has provided tantalizing clues that evolutionary trajec-
tories may be more constrained and deterministic than previously 
appreciated (reviewed by Bolnick et al., 2018). Knowing whether 
evolution is predictable or stochastic is of fundamental importance 
in evolutionary biology and has critical implications for the fields of 
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Abstract
Highly pleiotropic genes are predicted to be used less often during adaptation, as mu-
tations in these loci are more likely to have negative fitness consequences. Following 
this logic, we tested whether pleiotropy impacts the probability that a locus will be 
used repeatedly in adaptation. We used two proxies to estimate pleiotropy: number 
of phenotypic traits affected by a given genomic region and gene connectivity. We 
first surveyed 16 independent stream-lake and three independent benthic-limnetic 
ecotype pairs of threespine stickleback to estimate genome-wide patterns in parallel 
genomic differentiation. Our analysis revealed parallel divergence across the genome; 
30%–37% of outlier regions were shared between at least two independent pairs in 
either the stream-lake or benthic-limnetic comparisons. We then tested whether par-
allel genomic regions are less pleiotropic than nonparallel regions. Counter to our a 
priori prediction, parallel genomic regions contained genes with significantly more 
pleiotropy; that is, influencing a greater number of traits and more highly connected. 
The increased pleiotropy of parallel regions could not be explained by other genomic 
factors, as there was no significant difference in mean gene count, mutation or re-
combination rates between parallel and nonparallel regions. Interestingly, although 
nonparallel regions contained genes that were less connected and influenced fewer 
mapped traits on average than parallel regions, they also tended to contain the genes 
that were predicted to be the most pleiotropic. Taken together, our findings are con-
sistent with the idea that pleiotropy only becomes constraining at high levels and that 
low or intermediate levels of pleiotropy may be beneficial for adaptation.
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agricultural breeding, conservation, and medicine. Yet, we are far 
from understanding the factors that underlie the predictability of 
evolutionary responses.

The repeated evolution of similar phenotypes in response to 
similar environments (hereafter referred to as parallel evolution) 
provides a remarkable opportunity to identify the sources of evo-
lutionary constraints during adaptation. In particular, if the genetic 
basis of adaptive phenotypic changes is the same in independently 
evolved populations or species, it suggests that there could be un-
derlying constraints in the types of loci used during evolution. Recent 
studies have demonstrated that the same genes or genomic loci are 
often identified when independent populations have evolved the 
same phenotypes or adapted to similar habitats (Conte et al., 2012; 
Martin & Orgogozo, 2013; Stern, 2013). Yet, these studies have not 
explicitly addressed the factors responsible for these patterns in 
nature.

Pleiotropy, the influence of a single locus on multiple traits, is 
thought to be an important mechanism of evolutionary constraint 
and could be an important deterministic factor during adaptive 
evolution (Martin & Orgogozo, 2013; Stern & Orgogozo, 2008). 
Theoretical models (Fisher, 1930; Orr, 2000; Otto, 2004) and work 
in quantitative genetics (Mckay et al., 2003) suggest that pleiotropy 
strongly impacts the probability that a given locus will be used in 
adaptation. Specifically, high levels of pleiotropy are predicted to 
decrease the frequency with which a locus is used over the course 
of evolution because it is much more likely that mutations in that 
locus will have negative fitness consequences. Conversely, loci ca-
pable of evoking the same phenotypic change but that have low 
levels of pleiotropy would be predicted to be used more frequently 
when the same phenotype evolves in parallel. Consistent with this 
prediction, “hotspots” of parallel genetic evolution are often found 
in genes or mutations that minimize pleiotropy while maximizing 
phenotypic change (Martin & Orgogozo, 2013; Stern & Orgogozo, 
2008). However, there is also the possibility for synergistic pleiot-
ropy, when a mutation or gene improves two or more traits (Leiby & 
Marx, 2014), which may circumvent the theorized cost of pleiotropy. 
Synergistic pleiotropy has even been suggested to drive adaptive 
evolution (e.g., Frachon et al., 2017; McGee et al., 2016). Despite 
these theoretical predictions and insights from specific case studies, 
we lack comprehensive and unbiased tests of how pleiotropy con-
tributes to evolutionary predictability.

Here, we provide such a test of the contribution of pleiotropy 
to parallel adaptation at the genomic level. Pleiotropy is notoriously 
difficult to directly estimate because it requires a thorough charac-
terization of all of the traits affected by a given gene in a partic-
ular environment. While researchers have direct estimates of the 
pleiotropic effects of a handful of genes on phenotypic evolution 
(e.g., Mills et al., 2014; Greenwood et al., 2016; Smith, 2016; Nagy 
et al., 2018; Lewis et al., 2019; Archambeault et al., 2020), we lack 
these estimates genome-wide except in a few model organisms 
where phenotypes have been measured under laboratory conditions 
(Wang et al., 2010). We sought to overcome these difficulties using 
two proxies for pleiotropy. First, we used number of phenotypic 

traits affected by a given genomic region, which was determined 
from quantitative trait locus (QTL) mapping data, because evidence 
of multiple traits mapping to the same locus provides evidence of 
pleiotropy (Wagner & Zhang, 2011). Second, we used gene connec-
tivity, which was estimated from a gene coexpression network, as a 
metric because mutational screens and network analyses have pre-
viously suggested that highly connected genes exhibit greater plei-
otropy (Featherstone & Broadie, 2002; He & Zhang, 2006; Wagner 
et al., 2007). Network connectivity can indicate gene regulatory 
interactions, protein-protein interactions, or position in metabolic 
pathways (Proulx et al., 2005). Furthermore, gene connectivity has 
been found to be an important determinant of evolutionary con-
straint when responding to a selective challenge; genes with higher 
levels of connectivity tend to evolve at a slower rate (Mähler et al., 
2017; Masalia et al., 2017) and are associated with signatures of local 
adaptation (Hämälä et al., 2020). By using two different proxies, we 
were able to evaluate whether the observed relationship between 
genomic parallelism and pleiotropy was robust to the metric used.

Genetic factors aside from pleiotropy, that is, recombination rate 
and mutation rate, have also been hypothesized to contribute to 
patterns of parallel genomic evolution, so we also considered their 
effects here. When populations are experiencing strong divergent 
selection in the presence of gene flow, genetic differentiation is 
strongly biased towards the genomic regions with the lowest recom-
bination rates (Samuk et al., 2017). This reduction in the fraction of 
the genome that is able to maintain loci under divergent selection 
could lead to an increased probability of parallel evolution in ge-
nomic regions with suppressed recombination. Mutation rate might 
also influence the probability of parallel evolution. High mutation 
rates may frequently generate mutations, allowing independent 
populations to acquire the same or similar adaptive mutations, as 
seen in the parallel loss of the pelvic girdle in threespine stickleback 
(Xie et al., 2019).

The threespine stickleback (Gasterosteus aculeatus) is an ideal sys-
tem to test whether pleiotropy is a source of evolutionary constraint. 
These small fish are a classic example of parallel evolution, as they 
have independently and repeatedly adapted to freshwater habitats in 
the northern hemisphere since the retreat of the glaciers 12,000 years 
ago (Bell & Foster, 1994). Stickleback living in similar habitats have 
evolved similar phenotypes, with phenotypic divergence between 
sticklebacks inhabiting divergent habitats. One widespread exam-
ple is divergence between the stickleback found in streams versus 
lakes. These stream-lake pairs exhibit patterns of repeatable pheno-
typic evolution across Canada and Europe (Berner et al., 2008; Lucek 
et al., 2013; Stuart et al., 2017). Repeated phenotypic evolution is also 
found in three lakes in British Columbia, Canada where benthic and 
limnetic morphs have evolved repeatedly in sympatry (Gow et al., 
2008; Schluter & McPhail, 1993) and exhibit considerable genetic and 
phenotypic parallelism (Conte et al., 2015;  Jones, Chan, et al., 2012). 
Here, we used these two independent sets of stickleback species pairs 
along with two proxies of pleiotropy to investigate the genetic factors 
that contribute to the repeatability of genomic differentiation. In each 
species-pair comparison we first determined the genomic regions 
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diverging in parallel across our replicate population pairs (16 indepen-
dent stream-lake pairs and 3 independent benthic-limnetic pairs). We 
define parallel regions as those that are outliers in the genome-wide 
FST distribution in at least two independent population pairs of an eco-
type (stream-lake or benthic-limnetic). We then used these genome-
wide data to test the predictions that the parallel loci used repeatedly 
for adaptation have lower levels of predicted pleiotropy, are in regions 
of low recombination, or have higher mutation rates.

2  |  MATERIAL S AND METHODS

2.1  |  Quantification of parallelism

Illumina sequence data for 16 independent pairs of stream and lake 
stickleback (32 populations, 24 individuals per population) from 
British Columbia, Canada was previously generated by (Stuart et al., 
2017), using the double-digest restriction-site associated DNA-
sequencing (double-digest RAD) method. Illumina sequence data for 
the three independent pairs of benthic and limnetic stickleback (6 
populations, 20 individuals per population) from British Columbia, 
Canada was previously generated by (Samuk et al., 2017) using the 
genotyping-by-sequencing (GBS) method. Single nucleotide poly-
morphisms (SNPs) were identified using a standard, reference-based 
bioinformatics pipeline (see Samuk et al., 2017 for full details). For 
both data sets, alignment of reads was done to the Gasterosteus acu-
leatus.BROADS1.97 genome assembly (Jones, Grabherr, et al., 2012) 
for consistency with prior analyses of the same data sets (Samuk 
et al., 2017; Stuart et al., 2017).

Weir-Cockerham Fixation index (FST) (Weir & Cockerham, 1984) 
was used to estimate genetic differentiation for each independent 
pair of stream-lake or benthic-limnetic populations, equating to 19 
independent genome-wide FST data sets. FST was chosen as the met-
ric of differentiation rather than Dxy because it is less affected by 
the incomplete lineage sorting, which is widespread in stickleback 
(Samuk et al., 2017). Window-averaged FST values were calculated 
across 50 kilobase pair (kbp) windows by dividing the sum of the nu-
merators of all SNP-wise FST estimates within a given window by the 
sum of their denominators. These windows were constrained to have 
the same size and genomic location for each stream-lake or benthic-
limnetic population pair. For downstream analysis we required that 
each window contained at least three variable sites. Genomic win-
dows were classified as “outliers” or “nonoutliers” based on their 
mean FST. We classified outlier windows as those with mean FST val-
ues falling within the top 5% of the genome-wide FST distribution 
within a given stream-lake or benthic-limnetic comparison. Outlier 
classification was performed using custom R scripts (archived in 
Dryad doi: https://doi.org/10.5061/dryad.s4mw6​m97r) (R version 
3.6.0) (R Core Development Team, 2019). There were a total of 2,513 
windows meeting the criteria for inclusion in the stream-lake analy-
sis (previously reported and analysed in Rennison et al., 2019) and 
5,733 windows for the benthic-limnetic analysis. A window was cat-
egorized as parallel if it was an outlier in two or more independent 

population pairs of a given ecotype contrast (i.e., stream-lake or 
benthic-limnetic). Because there are only three independent pairs of 
benthic-limnetic ecotypes, we chose two as the cutoff for parallel-
ism in both data sets; this allowed us to include windows in which 
data was only available for two independent benthic-limnetic pairs. 
A window was categorized as nonparallel if it was not an outlier in 
any population pair or if it was an outlier in only a single population 
pair. For the results presented in the main paper, we compared our 
proxies of pleiotropy between parallel and nonparallel windows (see 
below). However, the results of similar comparisons between parallel 
outlier versus nonparallel outlier windows, as well as between outlier 
versus not outlier windows are presented in Supporting Information.

In addition to the comparisons of outlier vs. not outlier windows, 
we also performed analyses based on continuous values of FST. For 
these analyses, it was necessary to normalize FST across the inde-
pendent population pairs, as the replicate pairs varied in the overall 
magnitude of divergence. To normalize the FST values we determined 
the rank value of FST for each window in the FST distribution using the 
“rank” command in R, with the “ties.method” set to “average”. This 
method assigned larger rank values to windows with higher FST values 
and smaller rank values to windows with lower FST values. All win-
dows with the same FST value received the same rank value. We then 
averaged the rank scores for each window across the comparisons for 
each ecotype (the 16 stream-lake pairs or the 3 benthic-limnetic pairs).

2.2  |  Quantification of QTL trait number and PVE

The stickleback QTL database assembled by (Peichel & Marques, 
2017) was used to determine the total number of traits mapped to 
each 50 kbp genomic region. Only traits mapped in threespine stick-
leback (G. aculeatus) were used. The database was curated to ensure 
that if a QTL for the same trait mapped to the same window, it was 
only counted one time (see Supporting Information Materials and 
Methods for full curation details). In the final data set (Data S1) there 
were 858 QTL for 219 traits across eight trait categories that diverge 
among stream-lake and benthic-limnetic pairs: behaviour/sensory 
system (24 QTL for 16 traits, e.g., lateral line sensory system, various 
components of schooling behaviour), body shape (312 QTL for 78 
traits, e.g., linear lengths, geometric morphometric landmarks), body 
size (3 QTL for 1 trait e.g., centroid size), defensive armour (135 QTL 
for 19 traits, e.g., anal, dorsal and pelvic spine lengths, lateral plate 
number and size), feeding morphology (333 QTL for 79 traits, e.g., 
tooth numbers, gill raker numbers and lengths, premaxilla length), 
pigmentation (13 QTL for 8 traits, e.g., nuptial coloration, melano-
phore patterning), respiration (17 QTL for 6 traits, e.g., opercle meas-
urements), and swimming (21 QTL for 12 traits, e.g., fin ray number, 
vertebrae number) (Peichel & Marques, 2017). The mid-point of the 
marker confidence interval was used to position each QTL into one 
of the predefined 50 kbp windows. If there was no information on 
the confidence interval, the mid-point of the flanking markers was 
used. Once traits were assigned to windows, the mean percent vari-
ance explained (PVE) of the QTL for all mapped traits was estimated 

https://doi.org/10.5061/dryad.s4mw6m97r
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from the values in the database. If independent studies mapped the 
same trait to the same window, PVE was averaged for that trait be-
fore estimating the mean for all traits.

2.3  |  Quantification of connectivity

RNA-seq data previously generated by Huang et al. (2016) from the 
spleens and head kidneys of stream and lake threespine stickleback 
was used to build a gene coexpression network, which allowed the 
estimation of total connectivity for each gene. Raw RNA-seq reads 
were downloaded from the European nucleotide archive on 5 July, 
2019. Reads were aligned to the Gasterosteus aculeatus.BROADS1.97 
transcript reference (Jones, Grabherr, et al., 2012). Paired-end read 
mapping was done using STAR 2.6.0c (Dobin et al., 2013). Gene ex-
pression was estimated using RSEM 1.3.0 with the default param-
eters (Li & Dewey, 2011). A custom PERL script (archived in Dryad 
doi: https://doi.org/10.5061/dryad.s4mw6​m97r) was used to output 
FPKM and create the final expression table. FPKM values were log 
transformed (log2(x+1)) according to (Langfelder & Horvath, 2008). 
Loci whose variance fell below the first quantile of genome-wide var-
iance were dropped for the data set as these lowly expressed or non-
varying genes usually represent noise (Langfelder & Horvath, 2008).

The WGCNA R package for weighted correlation network analy-
sis (Langfelder & Horvath, 2008) was used to build a gene coexpres-
sion network from the final gene expression data. A soft-thresholding 
power was selected after visual inspection of plots of the network 
topology analysis. At a power of 16 we saw saturation of the scale 
free topology model fit and mean connectivity and thus selected this 
value for our network construction. We used the “blockwiseModules” 
function to build our network, using an unsigned network and max-
imum block size of 20,000 (which allowed all loci to be estimated in 
a single block). The minimum module size used in the final network 
was 30, merged cut height was 0.25 and reassignment threshold 
was 0. However, increasing or decreasing each parameter by 50% 
did not affect any of the connectivity results reported in the paper. 
Intramodular connectivity was estimated using the “intramodular-
Connectivity.fromExpr” function. We used the “cor” correlation func-
tion and the Euclidean distance option. We then extracted the total 
connectivity values (kTotal), which is the connectivity of a gene within 
and between modules for each gene. The mid-point of the coding re-
gion of a gene was used to match the estimates of total connectivity 
to the predefined 50 kbp windows. Connectivity values were aver-
aged across all the genes that mapped to a given window, and these 
mean connectivity values were used in the downstream analysis.

2.4  |  Caveats of pleiotropy metrics

We chose to estimate pleiotropy using two independent metrics be-
cause we could not estimate pleiotropy directly. One limitation to 
the use of QTL mapping data for estimating pleiotropy is that we 
cannot tell whether observed comapping of independent traits is due 

to pleiotropy or linkage. A second limitation of the QTL data is that 
we do not know whether the direction of effects of the QTL on phe-
notypes lead to synergistic or antagonistic effects on fitness. A third 
limitation is that we rely on QTL data collected from a variety of dif-
ferent stickleback populations. Although more than half of the QTL 
are from crosses involving two of the benthic populations studied 
here and involve many traits known to evolve in parallel in benthic-
limnetic pairs (Conte et al., 2015), only 16% of the QTL (n = 139) are 
from benthic-limnetic crosses and less than 2% of the QTL (n = 17) 
are from a single stream-lake cross from Europe. Thus, we do not 
always know whether the QTL contained within the parallel windows 
are divergent in our benthic-limnetic and/or stream-lake populations.

The connectivity data also has some key limitations. First, the 
connectivity data is measured at the gene level and yields higher res-
olution data than the QTL data, but it does not have a direct link to 
phenotypes or to fitness. Second, the gene coexpression network was 
only built from RNA-seq data derived from stream-lake stickleback 
ecotypes. Thus, it is unclear whether the observed significant positive 
relationship between gene connectivity and parallelism for stream-
lake pairs (and/or lack of significance for benthic-limnetic pairs) was 
due to a bias created by building the gene network from only one 
ecotype pair. However, it is important to note that the data was from 
European stream-lake populations, which are very distantly related 
to the Canadian stream-lake populations used here and exhibit very 
little genetic parallelism (Rennison et al., 2020). Despite the different 
biases and limitations of these two metrics, when taken together they 
provide complementary (i.e., phenotype-dependent and phenotype-
independent) estimates of pleiotropy (Hämälä et al., 2020).

2.5  |  Estimation of mutation rate, gene density and 
recombination

We utilized previous estimates of mutation rate and recombination 
rate (Samuk et al., 2017). The recombination rates (cM/Mbp) were es-
timated from a high-density genetic map (Roesti et al., 2013). Mutation 
rates were estimated using PAML (Yang, 2007) as the synonymous 
substitution rate (dS) across a four species phylogeny (see Samuk et al., 
2017 for a full description of the methods used to estimate these two 
variables). Gene density was estimated using the package BioMart to 
obtain a list of all annotated G. aculeatus coding DNA sequences from 
ENSEMBL (with start and end positions). We then used a custom R 
script (archived in Dryad doi: https://doi.org/10.5061/dryad.s4mw6​
m97r) to estimate mean recombination rate, mean mutation rate, and 
total gene number for each of the pre-defined 50 kbp windows.

2.6  |  Comparison of pleiotropy, mutation rate, 
recombination rate and gene density between 
parallel and nonparallel windows

Using custom R scripts (archived in dryad doi: https://doi.
org/10.5061/dryad.s4mw6​m97r), we estimated the empirical 

https://doi.org/10.5061/dryad.s4mw6m97r
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difference in proxies of pleiotropy between parallel and nonparal-
lel windows using a linear model. Since pleiotropy estimates were 
non-normally distributed, we used permutations with 10,000 itera-
tions to build a null distribution to test for significance. For each it-
eration, the status of a given window as parallel or nonparallel was 
randomly shuffled across the genome, with missing data held in 
place. Then with the parallelism status of all windows randomized, 
we re-estimated the magnitude of difference in the level of pleiot-
ropy between parallel and nonparallel windows. We repeated the 
process 10,000 times, which yielded a null distribution of the dif-
ference in pleiotropy. We then compared our empirical estimate 
against this null to determine statistical significance; these are the 
p-values reported in the manuscript. The same process was repeated 
to estimate the significance of the differences in mutation rate, re-
combination rate, and gene density between parallel and nonparallel 
windows. Linear models were used to determine the strength of the 
relationship between our continuous metric of differentiation (mean 
FST rank) and our parallelism metrics (number of mapped traits or 
connectivity), as well as recombination rate, mutation rate, and gene 
density.

3  |  RESULTS

3.1  |  Levels of parallelism across the genome

Mean genome wide FST values ranged from 0.03 to 0.18 for 
stream-lake pairs and 0.19 to 0.21 for benthic-limnetic pairs 
(Table S1). In a previous analysis of genomic data from 16 inde-
pendent stream-lake population pairs (Rennison et al., 2019), 
we found 15% of all 50  kbp windows (37% of outlier windows) 
were FST outliers shared by at least two independent stream-lake 
population pairs, with up to ten pairs sharing an outlier window 
(although most are shared by two to four pairs) (Figure S1). For 
the benthic-limnetic population pairs, 3% of all genomic windows 
(30% of outlier windows) were FST outliers shared by at least two 
independent pairs, with 7% of outlier windows shared among all 
three of the pairs (Figure S1).

3.2  |  Comparison of pleiotropy between 
parallel and nonparallel windows

Pleiotropy in each genomic window was estimated using two in-
dependent proxies, number of mapped QTL (measured as either 
total number of traits affected by the QTL or mean PVE of all those 
QTL) and mean gene connectivity. All pleiotropy proxies yielded 
estimates with exponential frequency distributions across the win-
dows (Figure S2). Using the QTL estimates of pleiotropy, we found 
that parallel windows contained twice as many mapped traits as 
nonparallel windows (stream-lake: parallel windows = 2.96 ± 1.10 
traits, nonparallel windows  =  1.49  ±  0.11 traits, permutation test 
p  =  .004; benthic-limnetic: parallel windows  =  3.48  ±  1.20 traits, 

nonparallel windows  =  1.68  ±  0.11, permutation test p  =  .002) 
(Figure 1a). QTL in parallel windows also tended to explain more 
variance than those in nonparallel windows, although this was not 
quite significant in the stream-lake comparison (stream-lake: paral-
lel windows = 13.68 ± 4.14%, nonparallel windows = 9.48 ± 0.95%, 
permutation test p  =  .074; benthic-limnetic: parallel win-
dows  =  17.36  ±  4.7%, nonparallel windows  =  9.02  ±  0.48%, per-
mutation test p  =  .0002) (Figure S3). The pattern of significantly 
increased pleiotropy in parallel windows relative to nonparallel win-
dows remains true if only windows that were an outlier in at least 
one population are considered; we also find no difference in the 
number of QTL mapping to outlier windows compared to nonoutlier 
windows (see Supporting Information text for full statistical results).

To avoid any possible biases imposed by categorizing windows 
into the binary classes of parallel or nonparallel, we also used a 
continuous metric of repeatability: mean FST rank across replicate 
ecotype pairs (a larger rank indicates that a window had a higher 
FST value among the distribution of values in a given population 
pair; thus a larger mean rank indicates a parallel window that had a 
higher FST value across multiple pairs). Using mean FST rank, we find 
that for both the benthic-limnetic and stream-lake comparisons, ge-
nomic windows with higher mean FST rank contain significantly more 
mapped QTL (stream-lake correlation coefficient (r) = 0.14, p = .032; 
benthic-limnetic r = 0.15, p = .0022) (Figure 1b).

Using gene connectivity as the metric of pleiotropy we find 
the same pattern of increased pleiotropy in parallel windows and 
in windows with higher mean FST rank. Genes in parallel windows 
were 1.2-fold more connected than those in nonparallel windows 
(stream-lake: parallel windows  =  18.1  ±  1.5, nonparallel win-
dows = 14.9 ± 0.6 mean connectivity, permutation test p = 0.014; 
benthic-limnetic: parallel windows  =  18.1  ±  1.7, nonparallel win-
dows = 14.2 ± 1.0 mean connectivity, permutation test p =  .063) 
(Figure 2a). There is also a positive relationship between gene 
connectivity in a window and the mean FST rank across replicate 
stream-lake (r = 0.01, p =  .13) and benthic-limnetic ecotype pairs 
(r = 0.03, p = .03) (Figure 2b). The relationship between gene con-
nectivity and parallelism did not change if only outlier windows 
were considered, and connectivity levels did not differ between 
outlier and nonoutlier windows (see Supporting Information text 
for full statistical results).

3.3  |  Comparison of gene density, mutation 
rate, and recombination rate between 
parallel and nonparallel windows

There was no significant difference in the mean gene count be-
tween parallel and nonparallel windows (stream-lake: parallel win-
dows = 3.23 ± 0.2 genes, nonparallel windows = 3.1 ± 0.1 genes, 
permutation test p  =  .18; benthic-limnetic: parallel win-
dows = 3.0 ± 0.2 genes, nonparallel windows = 3.2 ± 0.03 genes, 
permutation test p = .85) (Figure 3a). In the stream-lake compari-
son, there was no difference in mean recombination rate (parallel 
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windows  =  3.6  ±  0.51  cM/Mbp, nonparallel  =  4.24  ±  0.34  cM/
Mbp, permutation test p  =  .76) or mean mutation rates (parallel 
windows dS = 0.92 ± 0.02, nonparallel windows dS = 0.92 ± 0.01, 
permutation test p  =  .45) between parallel and nonparallel win-
dows (Figure 3b,c). In the benthic-limnetic comparison, mean 
recombination and mutation rates were significantly lower for par-
allel windows (recombination: parallel windows = 0.30 ± 0.1 cM/
Mbp, nonparallel windows  =  4.86  ±  0.2  cM/Mbp, permutation 
test p = .002; mutation rate (dS): parallel windows = 0.89 ± 0.017, 
nonparallel windows = 0.94 ± 0.003, permutation test p =  .004) 
(Figure 3b,c). Recombination rates and mutation rates were posi-
tively correlated (r  =  0.12, p  =  .0001) in the benthic-limnetic 
comparison. However, when only outlier windows were con-
sidered in the benthic-limnetic comparison, there was no sig-
nificant difference in the recombination or mutation rate of 
parallel versus nonparallel windows (recombination rate: non-
parallel outlier windows  =  2.45  ±  0.8  cM/Mbp, parallel outlier 

windows = 0.30 ± 1.6 cM/Mbp, permutation test p = .09; Mutation 
rate (dS): nonparallel outlier windows = 0.90 ± 0.01, parallel outlier 
windows = 0.89 ± 0.02, permutation test p =  .32). The analyses 
using our continuous estimate of parallelism, rank FST showed the 
same patterns (see Figure S4).

4  |  DISCUSSION

4.1  |  Magnitude of parallelism

Benthic-limnetic pairs exhibit a relatively high magnitude of paral-
lelism (33%) among putatively adaptive loci; this matches the find-
ings of a previous study where ~33% of benthic-limnetic outlier 
SNPs were shared among at least two pairs (Jones, Chan, et al., 
2012). A similar level of parallelism was observed for stream-lake 
pairs (37% of outliers), with two to 10 population pairs sharing a 

F I G U R E  1  (a) Comparisons of 
pleiotropy (number of traits with 
mapped QTL) between parallel and 
nonparallel windows. An asterisk indicates 
permutation test p < .05. (b) Relationship 
between pleiotropy (number of traits 
with mapped QTL) and mean FST rank. 
Note that the total number of windows 
with data or having unique FST values 
differed between the stream-lake and 
benthic-limnetic ecotype pairs so that the 
mean FST rank values differ among these 
comparisons
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given outlier. The variable magnitude of parallelism observed for 
stream-lake pairs mirrors phenotypic parallelism, which has also 
been shown to be highly variable in these populations (Stuart 
et al., 2017).

4.2  |  Association between 
parallelism and pleiotropy

Parallel windows contain loci that are more pleiotropic on average 
than loci in windows that are adaptive in only a single population 
pair or evolving neutrally. This pattern was consistent across the two 
ecotype pairs (benthic-limnetic and stream-lake) and across the two 
measures of pleiotropy (number of mapped QTL and gene connec-
tivity). Both pleiotropy proxies were found to have exponential dis-
tributions, suggesting that most genes have low levels of predicted 
pleiotropy, while some genes are highly pleiotropic. Our distribu-
tions of pleiotropy were similar to those found previously for yeast, 
nematodes and mice (Wang et al., 2010).

On average, nonparallel windows contained genes that were less 
connected and influenced fewer mapped traits than parallel win-
dows. However, we observed that nonparallel windows also tended 
to contain the genes that were the most pleiotropic (i.e., most con-
nected and influencing the greatest number of traits) (i.e., Figure 1, 
Figure 2, and Figure S3). To examine the possibility that intermediate 
levels of pleiotropy are favoured in parallel windows, we examined 
the relationship between the magnitude of pleiotropy and the mag-
nitude of parallelism. Unfortunately, there was not enough variation 
in magnitude of parallelism to conduct these analyses using the 
three available benthic-limnetic pairs. However, in the stream-lake 
pairs, the greatest levels of pleiotropy are seen at intermediate levels 
of parallelism, when two or three populations share an outlier region 
(Figure S5). These data suggest that higher levels of pleiotropy might 
become constraining.

Overall, a pattern of increased pleiotropy in parallel outlier 
windows is consistent with the idea that low or intermediate lev-
els of pleiotropy may be beneficial for adaptation (Frachon et al., 
2017; Wagner & Zhang, 2011; Wang et al., 2010), and that it is 

F I G U R E  2  (a) Comparisons of 
pleiotropy between parallel and 
nonparallel windows as measured by 
mean connectivity. An asterisk indicates 
permutation test p < .05. (b) Relationship 
between mean connectivity and mean 
FST rank. Note that the total number of 
windows with data or having unique FST 
values differed between the stream-lake 
and benthic-limnetic ecotype pairs so that 
the mean FST rank values differ among 
these comparisons
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F I G U R E  3  Comparison of (a) gene 
number, (b) recombination rate (cM/Mbp), 
and (c) mutation rate (dS) between parallel 
and nonparallel windows. An asterisk 
indicates permutation test p < .05
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only at high levels that pleiotropy becomes constraining (Hansen, 
2003). These recent findings conflict with earlier theoretical work 
suggesting that pleiotropy is constraining and should always be 
disfavoured (Fisher, 1930; Orr, 2000; Otto, 2004). Our results 
are also contrary to the suggestion that genes and mutations that 
minimize pleiotropy will contribute more often to repeated phe-
notypic evolution (Martin & Orgogozo, 2013; Stern & Orgogozo, 
2008), but consistent with more recent work demonstrating that 
pleiotropic loci can contribute to adaptive phenotypic evolution 
(Archambeault et al., 2020; Greenwood et al., 2016; Hämälä et al., 
2020; Lewis et al., 2019; Mills et al., 2014; Nagy et al., 2018; 
Smith, 2016).

Why might pleiotropic loci be reused over the course of adap-
tive evolution? First, low levels of pleiotropy can increase the ge-
netic variation available for selection to work upon (Hansen, 2003). 
Second, synergistic pleiotropy can facilitate a rapid change of mul-
tiple characters simultaneously, allowing coadaptation of a suite 
of traits (Frachon et al., 2017; Wagner & Zhang, 2011; Wang et al., 
2010). Loci with such synergistic pleiotropic effects might be par-
ticularly maintained as standing genetic variation in systems such as 
sticklebacks, in which repeated adaptation to similar environments 
has occurred many times (Jones, Grabherr, et al., 2012; Nelson & 
Cresko, 2018). These bouts of recurrent selection might lead to 
the preservation of genetic variants with optimal levels of pleiot-
ropy. Future work should determine whether adaptive loci arising 
due to standing genetic variation have higher levels of pleiotropy 
than those due to novel mutation. Most crucially, future work should 
also determine whether traits with a pleiotropic genetic basis have 
synergistic or antagonistic fitness effects. Such studies will provide 
insight into the mechanisms by which pleiotropy is not a constraint 
and perhaps even beneficial.

4.3  |  Association between parallelism and other 
genomic factors

It is important to note that the observed increase in mean pleiot-
ropy of parallel windows could not be explained by other genomic 
factors. We did find that in the benthic-limnetic comparison, mean 
recombination and mutation rates were significantly lower for paral-
lel windows. However, in the benthic-limnetic pairs recombination 
rates and mutation rates were positively correlated, which probably 
accounts for the observed reduced mutation rates in parallel win-
dows. The finding of low recombination rates in parallel windows 
for benthic-limnetic stickleback is not completely surprising. It has 
previously been shown that there is a strong relationship between 
low recombination rate and probability of a variant being classified 
as an outlier in stickleback populations that are experiencing ongo-
ing gene flow paired with strong divergent selection (Samuk et al., 
2017). It is known that there is ongoing gene flow between benthic 
and limnetic stickleback in all three pairs (D. Rennison, unpublished 
data). The absence of a relationship between recombination rate and 
outlier status (or parallelism) for stream-lake stickleback pairs may 

be explained by lower levels of gene flow between these ecotypes 
(Samuk et al., 2017; Stuart et al., 2017) or perhaps by weaker diver-
gent selection. The effect of recombination in benthic-limnetic pairs 
could also be explained by some other shared feature of the genome 
that is correlated with recombination rate. Nonetheless, the effect 
of recombination in these pairs cannot fully explain the association 
between parallelism and pleiotropy because it is still found when 
only outlier windows are considered. Thus, pleiotropy appears to be 
a key predictor of patterns of repeatable divergence in threespine 
stickleback.

4.4  |  Concluding remarks

In two independent systems of wild stickleback and using two in-
dependent proxies for pleiotropy, we consistently see that genomic 
regions diverging in parallel have higher levels of pleiotropy than 
nonparallel regions. We find evidence that intermediate levels of 
pleiotropy are favoured, suggesting that high levels of pleiotropy 
may become constraining. Thus, levels of pleiotropy appear to affect 
genome-wide patterns of repeated divergence in nature. In contrast, 
parallel divergence is not readily explained by differences in muta-
tion rate, gene density or recombination rate. This study provides 
further empirical evidence supporting the idea that low or interme-
diate levels of pleiotropy are not constraining, and that some degree 
of pleiotropy may actually be advantageous for rapid adaptation.
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