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EPIGRAPH

...nothing at all takes place in the universe in which some rule of maximum or minimum

does not appear. — Leonhard Euler

...between two truths of the real domain, the easiest and shortest path quite often

passes through the complex domain. — Paul Painlevé

You can see everything with one eye, but looking with two eyes is more convenient. —

Jan Brinkhuis and Vladimir Tikhomirov
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As machine learning has more closely interacted with optimization, the concept

of convexity has loomed large. Two properties beyond simple convexity have received

particularly close attention: strong smoothness and strong convexity. These properties

(and their relatives) underlie machine learning analyses from convergence rates to gen-

eralization bounds — they are central and fundamental.

This thesis takes as its focus properties from operator theory that, in specific

instances, relate to broadened conceptions of convexity, strong smoothness, and strong

convexity. Some of the properties we consider coincide with strong smoothness and

strong convexity in some settings, but represent broadenings of these concepts in other
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situations of interest. Our intention throughout is to take an approach that balances

theoretical generality with ease of use and subsequent extension.

Through this approach we establish a framework, novel in its scope of applica-

tion, in which a single analysis serves to recover standard convergence rates (typically

established via a variety of separate arguments) for convex optimization methods promi-

nent in machine learning.

The framework is based on a perspective in which the iterative update for each

convex optimization method is regarded as the application of some operator. We estab-

lish a collection of correspondences, novel in its comprehensiveness, that exist between

“contractivity-type” properties of the iterative update operator and “monotonicity-type”

properties of the associated displacement operator. We call particular attention to the

comparison between the broader range of properties that we discuss and the more re-

stricted range considered in the contemporary literature, demonstrating as well the rela-

tionship between the broader and narrower range.

In support of our discussion of these property correspondences and the opti-

mization method analyses based on them, we relate operator theory concepts that may

be unfamiliar to a machine learning audience to more familiar concepts from convex

analysis. In addition to grounding our discussion of operator theory, this turns out to

provide a fresh perspective on many touchstone concepts from convex analysis.
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Chapter 1

Introduction

1.1 Introduction

As machine learning has more and more closely interacted with optimization

theory and optimization practice, the concept of convexity has taken center stage.

When applied to the analysis of algorithm performance, two properties beyond

simple convexity have received particularly close attention: strong smoothness and

strong convexity. These properties (and their relatives) underlie machine learning anal-

yses from convergence rates to generalization bounds — they are central and fundamen-

tal.

This thesis takes as its focus properties from operator theory that, in specific

instances, relate to broadened conceptions of convexity, strong smoothness, and strong

convexity. Some of the specific properties we consider coincide with strong smoothness

and strong convexity in the most basic settings, but represent broadenings of these con-

cepts when applied to other situations of interest. Our intention throughout is to take

an approach that balances theoretical generality with ease of use and subsequent exten-

sion. Through this approach we establish a framework, novel in its generality, in which

a single analysis serves to recover standard convergence rates (typically established via

a variety of separate arguments) for many of the most prominent convex optimization

methods in machine learning. We also touch on a more restrictive setting in which we

can say more.

The framework mentioned above is based on a perspective in which the itera-
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tive update for each convex optimization method under consideration is regarded as the

application of some operator. We establish a collection of correspondences, novel in

its comprehensiveness, that exist between “contractivity-type” properties of the itera-

tive update operator and “monotonicity-type” properties of the associated displacement

operator. We call particular attention to the comparison between the broader range of

properties that we discuss and the more restricted range considered in the contempo-

rary literature, demonstrating as well the relationship between the broader range and the

narrower range.

In support of our discussion of these operator property correspondences and the

optimization method analyses based on them, we provide necessary background in con-

vex analysis, optimization theory, and operator theory. As we proceed, we relate op-

erator theory concepts that may be unfamiliar to a machine learning audience to more

familiar concepts from convex analysis. In addition to grounding our discussion of op-

erator theory, this turns out to have the added benefit of providing a fresh perspective

on many of the touchstone concepts from convex analysis. Underlying our approach

throughout is the goal of establishing each definition, concept, or result through a verbal

description, an explicit mathematical expression, and (whenever possible) a visualiza-

tion.

1.2 Context

This is a thesis about convex optimization methods.

At the heart of our approach are ideas from operator theory concerning cor-

respondences between “contractivity-type” properties of an operator representing the

iterative update of an optimization method and “monotonicity-type” properties of an

associated “displacement” operator.

We show how these ideas are fundamentally connected to central ideas in convex

analysis, duality, and optimization.

Most of our attention will be directed to algorithms for convex optimization.

Focusing attention on the iterative update from the kth iterate, xk, to the next

iterate, xk+1, we provide the update with a generic name: T (·) . Thus, we say that an
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optimization method gets from xk to xk+1 by applying the iterative update operator T (·) ,
so that xk+1 set

= T
(
xk) .

Our investigations will relate properties of the iterative update operator (or, equiv-

alently, of the associated displacement operator G set
= I−T ) to the behavior of the opti-

mization methods in question.

In particular, we will see that monotonicity-type properties of the displacement

operator, G set
= I−T , associated with the iterative update T correspond to contractivity-

type properties of T ; these contractivity properties can then be leveraged to yield analy-

sis of convergence and of convergence rates. From a discussion of correspondences be-

tween “contractivity-type” properties and “monotonicity-type” properties that is novel

in its comprehensiveness, we arrive at a framework in which a single analysis suffices

to establish standard convergence rates (typically established via a variety of separate

arguments) for many of the most prominent convex optimization methods.

1.2.1 Convexity, strong smoothness, and strong convexity

Our discussion throughout relies on properties of functions and operators. While

we will go into formal discussions of each in subsequent chapters, for now our needs

can be met with relatively simple concepts of each: each point in the graph of a function

is of the form (Rn,R); each point in the graph of an operator is of the form (Rn,Rn)1.

Throughout this thesis, we will repeatedly discuss a particular familiar pairing of

function and operator: the function will be some convex objective function; the operator

will be the gradient (or the subdifferential) of that function. For this pairing of function

and operator, we can motivate our operator theoretic approach by comparing function

properties to the corresponding properties satisfied by the gradient operator.

The correspondence that we illustrate below relates convexity of a function to

monotonicity of its gradient operator, strong convexity of a function to strong mono-

tonicity of its gradient operator, and strong smoothness of a function to inverse strong

monotonicity of its gradient operator.

When we say that a function is convex, we are making a statement about the

1Strictly speaking, our discussion will consider points in the graph of an operator that are of the form
(Rn,Rn∗) — primal space, dual space.
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Figure 1.1: For a convex function, we can produce a supporting affine minorant to the
function at any argument.

existence of supporting affine minorants. We could say that a function is “convex at a

point” when there exists a supporting affine minorant to the function at that point. When

there is more than one affine minorant supporting the function at a point, the function is

nonsmooth at that point. See Figure 1.1.

When we say that an operator is monotone (more specifically, monotone non-

decreasing), we are making a statement about “quadrantal” bounds on the graph of the

operator. We could say that an operator is “monotone at a point” when the rest of the

graph lies in the “first” and “third” quadrants with respect to that point. See Figure 1.2.

When we say that an operator is Lipschitz, we are making a statement about a

restriction on the graph of the operator corresponding to upper-and-lower “wedge”-type

bounds on the graph of the operator. Using the notation of Figure 1.3, these bounds

can be stated as We could say that an operator is Lipschitz at a point when the rest of

the graph lies in a wedge with respect to that point. Note that Lipschitz is distinct from

monotone: the graph of a Lipschitz operator can venture outside the “relative” first and

third quadrants to which a monotone operator is restricted. See Figure 1.3.

When we say that an operator is “inverse Lipschitz”, we are making a state-

ment about a restriction on the graph of the operator corresponding (analogously to the

situation for Lipschitz) to upper-and-lower “wedge”-type bounds on the graph of the

operator; more specifically, the “inverse operator” satisfies a Lipschitz condition. We

could say that an operator is inverse Lipschitz at a point when the rest of the graph lies



5

Figure 1.2: An operator is “monotone at a point” when the rest of the graph lies in the
“first” and “third” quadrants with respect to that point (shaded). (After [AN09]).

Figure 1.3: An operator M is “Lipschitz at a point” when the rest of the graph of the
operator lies in a wedge (shaded) with respect to that point: the absolute value of the
change in s, must be no greater than a fixed scalar times the absolute value of the change
in x. (After [AN09]).
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Figure 1.4: An operator M is “Lipschitz at a point” when the rest of the graph of the
operator lies in a wedge (shaded) with respect to that point: the absolute value of the
change in x, must be no greater than a fixed scalar times the absolute value of the change
in s.

in a wedge with respect to that point. Note again that “inverse Lipschitz” is distinct from

monotone; the graph of an “inverse Lipschitz” operator can venture outside the “rela-

tive” first and third quadrants to which a monotone operator is restricted. See Figure

1.4.

Returning our focus to functions instead of operators, when we say that a func-

tion is strongly smooth, we are making a statement about bounds on how quickly the

function can change. Specifically, we are saying that the graph of the function lies be-

tween the graphs of two quadratic functions, one “curving upward” and one “curving

downward”. See Figure 1.5.

When we say that a convex function is strongly smooth, the supporting quadratic

function provides “less information” than the supporting affine minorant mentioned

above; thus for a convex function, strong smoothness in essence refers to the upward-

curving upper bounding quadratic function. See Figure 1.6

The corresponding statement about an operator would be monotone-and-Lipschitz-

at-a-point. When we say an operator is both monotone and Lipschitz and some point,

we again have bounds on the graph of the operator: now one of the relevant bounds

comes from the “horizontal” bound that arises from monotonicity, the other comes from
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Figure 1.5: A supported-at-(x0, f (x0)) quadratic majorant to a function f (·) and
supporting-at-(x0, f (x0)) quadratic minorant to a function f (·) characterization of
strong smoothness.

Figure 1.6: A supported-at-(x0, f (x0)) quadratic majorant to a function f (·), a
supporting-at-(x0, f (x0)) affine minorant to a f (·), and a supporting-at-(x0, f (x0))
quadratic minorant to f (·), corresponding to simultaneous convexity and strong smooth-
ness (at (x0, f (x0))).
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Figure 1.7: An operator that is both monotone and Lipschitz at (x0,s0).

one side of the bound that arises from Lipschitz-ness. See Figure 1.7.

Whereas convexity and strong smoothness lead to an affine supporting mino-

rant and a quadratic (upward curving) supported majorant, when we describe a convex

function as strongly convex, we are indicating the existence of a supporting quadratic

(upward-curving) minorant, rather than the previous existence of a supporting affine

minorant. See Figure 1.8.

Returning to the case for operators, we consider an operator that is monotone-

and-inverse-Lipschitz-at-a-point. When we say an operator is both monotone and Lip-

schitz and some point, we again have bounds on the graph of the operator: now one of

the relevant bounds comes from the “horizontal” bound that arises from monotonicity,

the other comes from one side of the bound that arises from Lipschitz-ness. See Figure

1.9. In keeping with the pattern observed thus far, when we say that a monotone oper-

ator is strongly monotone, we are making a statement about a restriction on the graph

of the operator corresponding to a “vertical” part of the quadrant bound coming from

monotonicity and another “bottom-of-wedge” bound coming from a lower bound on the

curvature.

When we consider a function that is both strongly smooth and strongly convex

at a point, we have both a quadratic (upward curving) majorant supported at that point

and a quadratic (upward curving) minorant supporting at that point; the corresponding
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Figure 1.8: Strong convexity at (x0, f (x0)): there exists a supporting (upward curving)
quadratic minorant to f (·) at (x0, f (x0)).

Figure 1.9: An operator that is both monotone and inverse Lipschitz at (x0,s0).
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Figure 1.10: For a convex function, the epigraph (the set of argument, value pairs that
are above the graph of the function) is a convex set.

statements for an monotone operator would be strong monotonicity and inverse strong

monotonicity at the same point. As mentioned above, the most helpful way to think of

these properties is in terms of “bounds” on the behavior of the function or the operator.

This view of bounds on the behavior of the function of the operator arises particularly

in convergence rate analyses.

We have been establishing relationships between the behavior of a function and

the behavior of an operator associated with that function. It turns out that we have

another path by which to consider the behavior of a function, since many statements

about the behavior of a function can be equivalently stated in terms of the epigraph, a

set that provides an equivalent representation of the function. See Figure 1.10.

When we have a foundation of viewpoints that provide us the ability to interpret

any property of interest via the function, the epigraph of the function, or the related

subdifferential operator we can move on to a specific idea that threads through each

view: conjugacy. An initial view of conjugacy connects lines in the (primal argument,

primal value) space of the (primal) function to points in the (dual argument, dual value)

space of the associated (dual) conjugate function (as well as connecting dual lines to

primal points). See Figure 1.11.

When we move to consider more general conjugacy between functions, we can

base our picture in terms of precisely this sort of point-line duality: in the primal space,
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Figure 1.11: A line in the primal space corresponds (via conjugacy) to a point in the
dual space. (After [BNO03]).

Figure 1.12: Primal lines correspond to dual points; primal points corresponds to dual
lines. (After [RW04]).

the (slope,intercept) pair of any affine minorant of the primal (convex) function corre-

sponds to a point in the epigraph of the dual function (see 1.12); the (slope,intercept)

pair of a supporting affine minorant of the primal function corresponds to a point in

the graph of the dual function. The same relationships hold when we consider affine

minorants in the dual, and points in the epigraph in the primal.
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Figure 1.13: Illustrating [(x,s) ∈ ∂ f ]⇐⇒[(s,x) ∈ ∂ f ∗]. (After [HUL93a]).

We find another view of the connection between a function and its associated

conjugate function when we shift our attention to the graph of the subdifferential. This

view also connects to the fundamental Fenchel-Young inequality. The key to under-

standing this alternate perspective is that, when f (·) is a closed proper convex function,

we have the symmetric relationship: (x,s) ∈ ∂ f if and only if (s,x) ∈ ∂ f ∗. See Figure

1.13.

This perspective emphasizes specifics of the association between a function and

its conjugate. We can trace the relationship starting at the primal function, then consider

the subdifferential of the primal function, then apply the symmetric relationship (x,s) ∈
∂ f if and only if (s,x) ∈ ∂ f ∗ (to “flip” the primal subdifferential and thereby obtain the

dual subdifferential), and then from the dual subdifferential “integrate” to arrive at the

dual function (up to a constant shift). This process is illustrated in Figure 1.14 for the

familiar case of the absolute value function.

For quadratics, the intermediate subdifferentials are lines; see Figure 1.15. In

the special case f (x) set
= 1

2x2, it is immediately apparent that the primal and dual are

identical.
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Figure 1.14: Function to conjugate via the subdifferential for f (x) set
= |x| . (After

[Luc06]).
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Figure 1.15: Function to conjugate via the subdifferential for f (x) set
= c1

2x2. (After
[Luc06]).
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Figure 1.16: Minkowski sum of (convex) sets. (After [RW04]).

Returning to a point of view based on the epigraphs of the functions, we will

also see that the recurring operation of “infimal convolution” can be visualized in terms

of “set addition” of epigraphs. The process of addition of sets provides an immediate

geometric interpretation to the standard definition of infimal convolution in terms of a

specific optimization problem. See Figure 1.16.

The most prominent instance of infimal convolution involves some function of

interest being “infimally convolved” with a scaled, squared norm; the result corresponds

to the set addition of the epigraphs of the functions in question. The resulting function

is called the Moreau envelope (of the function of interest). See Figure 1.17. We will

later establish in detail a number of properties visible in this illustration, and provide an

interpretation of these properties in terms of the associated subdifferential operators.

1.2.2 Assumptions and convergence rates from a standard perspec-

tive and a more general perspective

We highlight two aspects of the preceding illustrations: every time we make a

statement about a convex function (or its corresponding conjugate function), we could
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Figure 1.17: Smooth infimal convolution in terms of addition of epigraphs. (After
[RW04]).

also make a statement about the graph of the subdifferential of the convex function

(or the graph of the subdifferential of the conjugate function). This all will provide

us with a visual means of considering the connection between properties of functions

and corresponding properties of operators. Our goal will be to use these connections

between function properties and operator properties to provide a unified analysis, novel

in its generality, of the behavior (in terms of convergence and convergence rate) of a

number of prominent methods for convex optimization.

The standard convergence-rate analyses of gradient descent for a convex objec-

tive function f (·) depend on what assumptions we make beyond convexity.

Specifically, when we assume that f (·) is convex and strongly smooth, a stan-

dard analysis of gradient descent yields rates on convergence in objective function sub-

optimality and in gradient norm, but not in argument distance to solution.

When we assume that f (·) is not only convex but also both strongly smooth

and strongly convex, a standard analysis establishes that in this context gradient descent

yields convergence in objective function suboptimality, gradient norm, and argument

distance to solution, we also find that the convergence rate obtained is improved.

After seeing the arguments establishing these convergence rate results from the

standard perspective, we move on to consider the operator theory perspective. In particu-

lar, we will see that making corresponding assumptions about iterative-update-operator-

related properties recovers the standard arguments when considered for gradient descent.
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We then move on to show that, as a consequence of our operator theoretic perspective,

our argument immediately applies to a wide range of commonly-used convex optimiza-

tion methods.

In each case, by establishing where the iterative update falls within our collection

of relationships between “contractivity-type” and “monotonicity-type” properties, novel

in comprehensiveness, we see what behavior the method is expected to display.

1.2.3 Overview of what follows

Now that we have a sense for the target areas of contribution, we provide an

overview of the structure of the thesis.

The initial chapters provide necessary background covering concepts in convex

analysis in such a way that the close connection to our later discussion of operator theo-

retic concepts can be easily seen. In Chapter 2 we discuss the state of machine learning

optimization with particular reference to the papers for which there are connections to

the operator theory perspective. In Chapters 3 through 10, we provide a discussion of

basic facts from convex analysis. In Chapters 11 and 12, we provide a discussion of

basic facts from optimization theory. In Chapter 13, we provide a discussion of basic

facts from operator theory.

The remaining chapters include the primary contributions of this thesis. In Chap-

ters 14, 15, and 16, we provide a discussion, novel in its comprehensiveness, of the

fundamental relationships between “contractivity-type” properties of an iterative up-

date operator and “monotonicity-type” properties of the associated displacement oper-

ator. In addition to providing (to the best of our knowledge) the most comprehensive

discussion of the property categories and their relationships, we also identify an ap-

parently completely novel collection of properties that we refer to as “displacement

pseudocontractivity-type”. We also use the relationships between the contractivity view

and the corresponding monotonicity view to provide an alternative proof, novel in its

perspective, of a result from [OY02]. We then move on in Chapter 17 to consider our

framework for convergence rate analysis, novel in its scope of application. This analysis

is based in the more general perspective made possible by considering the previously

established relationships between “contractivity-type” properties of an iterative update
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operator and “monotonicity-type” properties of an associated displacement operator.

Appendix A provides a discussion of the notation and the conventions used throughout

the thesis.



Chapter 2

Related Literature

We first briefly cover some of the twists and turns of the terminology to refer

to the properties, of contractivity-type and monotonicity-type, that are the focus of our

discussion. We then move on to consider the appearances of some of these concepts in

the optimization literature proper.

The terminology “pseudocontraction” and “strict pseudocontraction” appears to

originate in [BP67]. The terminology strictly contractive, nonexpansive (unfortunately

called “contractive”), strictly pseudocontractive, and pseudocontractive are used here;

the latter two terms appear to be introduced here. We call particular attention to their

characterization of strictly pseudocontractive via the expression

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 + p‖Gx#−Gx$‖2
2 ,

where p ∈ (−∞,1). No special attention is given to the case in which p ∈ (−∞,0) that

we refer to as decreasing pseudocontractive. Subsequent usage fragments: some refer-

ences, such as [VA95, VE09] pay attention only to p ∈ (−∞,0) and call an operator that

satisfies this property “pseudocontractive” (or, implicitly, strongly Fejer); no mention is

made of the range p∈ (0,1). On the other hand, much of the subsequent operator theory

literature (for example [KCQ11, Zha11, OS09]) breaks with [BP67] in an opposite way:

they use the term “strictly pseudocontractive” to refer not to p ∈ (−∞,1) but only to

p ∈ (0,1) ; these references make no reference to the case p ∈ (−∞,0), instead lumping

together this case as an undifferentiated subcase of nonexpansive.

On the topic of convergence rates, [BP67] make a comment that applies to much

19
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of the subsequent literature:

There is a cost to the greater generality of our results which we must
mention here explicitly. In addition to the greater complication of the ap-
proximation schemes, there is the fact that many (though not all) of the
convergence proofs are not strictly constructive in the sense of giving ex-
plicit estimates for the error made at any given step of the approximation (a
fact not uncommon in nonlinear numerical functional analysis).

The lack of convergence rate analysis persists in the subsequent literature. Most of

the attention has been devoted to establishing strong or weak convergence of various

classes of operators, under various iteration schemes, in more and more general spaces.

This last leads to further fracturing, as in Banach space, there are two paths generally

taken to modifying operator property characterization in the absence of an inner product;

one path introduces a “semi-inner product” while the other proceeds with norm-based

“analogous” definitions of all of the properties previously defined for the Hilbert space

case. In the absence of a clear need for this generality in a specific machine learning

application, we do not consider these more abstract settings, restricting our attention to

Rn.

In the apparent absence of common terminology for the case where p∈ (−∞,0),

a number of authors refer to this class indirectly by describing with reference to non-

expansive operators: specifically, as “averaged nonexpansive” operators. This usage

appears to originate in [BR77] and [BBR78]; a prominent recent usage nearer to opti-

mization is [Com04] (we discuss the very recent [BNP14] below).

[BP67] serve as an early example of relating properties of “contractivity” type

to properties of “monotonicity” type, although the subsequent literature appears to fail

to follow this strong lead. In addition to their contractivity property discussion, [BP67]

also use the terms monotone and strongly monotone; while they define the property

that we call inverse strong monotonicity, they do not give this property a name. The

term “inverse strong monotonicity” appears to originate with [Gol75] bu a variety of

competing developed: for example co-coercivity, strong F-monotonicity, and the “Dunn

property”.

After [BP67] and [Dun76], most subsequent literature seems to have preferred to

cite these works rather than to further explore the correspondences present in the opera-



21

tor classes. A recent exception is [BMW12], which provides the closest comprehensive

discussion of operator properties to what we explore here, with the difference that the

discussion there is couched with regard to firm nonexpansiveness throughout.

The most prominent contractivity-type property is strict contractivity. [Dun76]

makes an observation about strict contractivity as a consequence of the combination of

strong monotonicity and inverse strong monotonicity, although he does not name any of

these properties. Another relevant result is [RW04, page 563], who in turn cites [Zar60];

closer to optimization, we have the result from [Nes04, page 66]). A more recent result

that pursues this strict contractivity in the presence of strong monotonicity and inverse

strong monotonicity (without citing any of this other work) is [AMS+05]. This trail

has been picked up very recently in [BNP14, BCPW13, DY14]; we discuss this further

below.

We now move on to discuss some of the connections with the optimization com-

munity.

Decreasing pseudocontractive operators abound in machine learning optimiza-

tion, but this fact is not explicitly mentioned (with the exception of some papers that

call attention to the special case of “firm nonexpansiveness”). Most standard optimiza-

tion texts (e.g., [Ber99, BNO03, NW06, BV04]) omit discussion of any of the operator

properties/characterizations that form the basis of our discussion; namely operators that

are characterized as being averaged (or averaged nonexpansive), or that satisfy the prop-

erty of inverse strongly monotonicity (for a specific parameter range), or of decreasing

pseudocontractivity. We now briefly consider those references that do mention one (or,

in some cases, two) of these operator classes.

In [Eck89] the discussion covers (projected) gradient descent, the proximal-point

method, forward-backward splitting, the alternating direction method of multipliers, and

numerous other methods. The coverage does touch on the special case of 1-decreasing

pseudocontractivity (under the name firm nonexpansiveness) and on the special case

of 1-inverse strong monotonicity; however, these are specific cases of the more general

concepts of ν-decreasing pseudocontractivity and σ -inverse strong monotonicity. Omit-

ting these more general concepts (and the relationship between these concepts) signif-

icantly limits the discussion. One particularly notable limitation of a focus on firmly
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nonexpansive operators is that the class of firmly nonexpansive operators is not closed

under composition.

[VA95] discusses both averaged operators and decreasing pseudocontractive op-

erators (although these operators are called pseudocontractive), and also establishes the

relationship between these classes; however, the general concept of inverse strong mono-

tonicity is not present. In addition to the absence of the combined relationship between

pseudocontractivity and inverse strong monotonicity, there is no unified convergence

rate analysis of the type we discuss. On the other hand, [BC11] discusses averagedness

and inverse strong monotonicity (called there co-coercivity). Both averagedness and in-

verse strong monotonicity are discussed extensively and the latter is the central property

on which most of the subsequent analysis is based. However, pseudocontractivity is

essentially absent and convergence rates are not discussed.

[GT96] discusses inverse strong monotonicity extensively in their discussion of

gradient-type methods and in methods involving modified monotone mappings; how-

ever, the concepts of averagedness and decreasing pseudocontractivity are absent. The

discussion in [Byr04] establishes that many iterative optimization methods have updates

that are averaged; this work also includes the inverse strongly monotonicity properties

satisfied by averaged nonexpansive operators. However, the concept of decreasing pseu-

docontractivity is absent. While the Krasnoselskii-Mann Theorem [Man53] is used to

establish convergence of methods with averaged updates, there is no analysis of conver-

gence rates.

[RW04] has a chapter on monotone mappings that covers maximality of mono-

tone operators, observes that M monotone implies M−1 monotone, that M monotone

implies λM monotone for any λ ∈ R++, and that the sum of monotone operators is

monotone. It is one of the few references that names the operator I−T (calling it the

displacement operator associated with T ) but this name is unfortunately used in exactly

one sentence. Strong monotonicity and inverse strong monotonicity are mentioned but

none of the relations to contractivity-type properties are mentioned, nor is the notion of

averagedness.

[Kon07], in a chapter on the theory of variational inequality problems, includes

the notion of monotonicity, strict monotonicity, and strong monotonicity as well as the
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relation of these properties to convexity, strict convexity, and strong convexity when con-

sidering a convex function; however, no mention is made of inverse strong monotonicity,

nor the relationship between monotonicity-type properties and contractivity-type prop-

erties.

Of more recent papers discussing proximal methods, such as [CW05, CP11],

the special case of firm nonexpansiveness appears, but not the more general cases of

interest to us. The story is similar for other recent papers discussing the alternating

direction method of multipliers, such as [BPC+11, PB13, HY12]. This, again, limits the

utility and breadth of applicability of the results obtained.

In the machine learning community, as in the optimization community, the classes

of operators that we consider pass largely unremarked. [LSS12] uses the proximal-point

mapping and establishes the firm nonexpansiveness of some of the operations involved

in their algorithm. The discussion in [DS09, SD09] squarely covers some of the meth-

ods that we touch on here; despite an apparent similarity in general outline, the analysis

is pursued from a rather different perspective that is largely disjoint from our approach;

in part this is due to a focus there on objective function value, in contrast to our focus

on the sequences of iterates and displacements. One of the methods we discuss, the

alternating direction method of multipliers, has recently been considered in stochastic

and online variants [OHTG13, WB12], but our discussion here is restricted to the batch

deterministic case.

The very recent paper [BNP14] should be regarded as establishing “regularity”

conditions under which the iterative update operator (described there as averaged non-

expansive) does not simply satisfy decreasing pseudocontractivity but strict contractiv-

ity (and thus linear convergence). [BCPW13] provides an extremely close analysis of

these ideas in the context of Douglas-Rachford splitting for the two subspace intersec-

tion problem. [DY14] applies these results to the more general settings (but still spe-

cialized relative to the breadth of possible applications) of Douglas-Rachford splitting

(DRS), Peaceman-Rachford splitting (PRS), and alternating direction method of multi-

pliers (ADMM) methods. That is, these papers consider what can be said in settings for

which additional properties are assumed to hold.



Chapter 3

Sets and convexity

3.1 Introduction

In this chapter, we set notation and definitions useful in talking about sets and

basic operations on sets. This material is standard; typical references include [BV04,

Roc70, Ber09, HUL93a, HUL93b, Rus06]. While the material is standard, no single

one of the references served to entirely cover the material in the fashion we sought as a

foundation for our later discussion. The concepts, terminology, notation, and examples

in this chapter provide the context in which to introduce later ideas.

3.2 Basic terminology and definitions

In the descriptions below, we often encounter parameterized expressions of the

form

x [θ ] set
= (1−θ)xbase +θxtgt.

To see why we refer to xbase as the base vector, consider the case θ
set
= 0. This leads to

x [0] = (1−0)xbase +0xtgt

= xbase.

Thus, in some sense we view the parameterization as starting at xbase.

24



25

Similar consideration for the case θ
set
= 1 leads to us to the intuition behind our

convention of referring to xtgt as the target vector:

x [1] = (1−1)xbase +1xtgt

= xtgt.

Thus, in some sense we view the parameterization as heading from xbase toward

xtgt.

An alternate perspective would be to conceive of the expression in terms of a

base vector xbase and a direction (or displacement) vdir

x [t] set
= xbase + tvdir.

To fit our previous expression in this base-plus-scaled-direction (or displace-

ment) format, we would write

x [θ ] = (1−θ)xbase +θxtgt

= xbase +θ
(
xtgt− xbase

)
.

This last form will be of particular interest when we discuss the relationship between an

operator T and its associated displacement operator G set
= I−T .

3.2.1 Affine combinations (lines), segments (line segments), and rays

We first introduce some basic geometric concepts involving two vectors in Rn.

Some rough patterns of usage are: we tend to use α for a parameter in the interval [0,1] ;

we tend to use t for a parameter in the range (0,∞) ; we often use θ in contexts where

the range in question is the entire real line.

Definition 1 (Affine combinations). The collection of all affine combinations of xbase,

xtgt ∈ Rn (sometimes described as the line through xbase and xtgt) is a set in Rn denoted

aff
[
xbase,xtgt

]
and is defined via the expression

aff
[
xbase,xtgt

] set
=
{

x ∈ Rn | x = (1−θ)xbase +θxtgt for some θ ∈ (−∞,+∞)
}
.
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Figure 3.1: The line segment (or convex combination) of x1,x2; the ray from x1 through
x2; the affine combinations of x1,x2.

We use the term “affine combinations of the vectors xbase,xtgt ∈ Rn” instead of

“line through the vectors xbase,xtgt ∈ Rn” to avoid saying things like: “the line through

xbase and xtgt is not a linear set (subspace) because it does not pass through the origin”.

Definition 2 (Segment). The segment (or line-segment, or interval) between xbase,xtgt

∈ Rn is a set in Rn denoted seg
[
xbase,xtgt

]
and is defined via the expression

seg
[
xbase,xtgt

] set
=
{

x ∈ Rn | x = (1−α)xbase +αxtgt for some α ∈ [0,1]
}
.

We will later connect the notion of segments between vectors to convex combin-

ations of those vectors.

Definition 3 (Ray). The ray emanating from xbase ∈Rn and passing through xtgt ∈Rn is

a set in Rn denoted ray
[
xbase,xtgt

]
and is defined via the expression

ray
[
xbase,xtgt

] set
=
{

x ∈ Rn | x = (1− t)xbase + txtgt for some t ∈ (0,+∞)
}
.

As mentioned above, we have the following alternative perspective (1− t)xbase+

txtgt = xbase + t
(
xtgt− xbase

)
; this is arguably a more intuitive expression for a ray.

These concepts are illustrated in Figure 3.1.

3.2.2 Combinations

Consider a collection of K vectors {x1,x2, . . . ,xK}, with each xk ∈ Rn. Consider

also a collection of K corresponding “combination parameters” (alternately, a set of

“multipliers”) {θ1,θ2, . . . ,θK} with each θk ∈ R for k ∈ {1, . . . ,K} .
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Definition 4 ({θk}-combination). We describe a {θk}-combination of the K vectors

{x1,x2, . . . ,xK}, as the vector expressible in the form ∑
K
k=1 θkxk = θ1x1 + θ2x2 + · · ·+

θKxK.

Thus, a “combination” involves a collection of scaling parameters as well as

addition. We consider several specific classes of combination parameter values, where

each class is characterized by a property that holds for the combination parameters.

Definition 5 (Linear {θk}-combination). A linear {θk}-combination of {x1,x2, . . . ,xK},
denoted lin [x1,x2, . . . ,xK;{θk}] is a {θk}-combination of {x1,x2, . . . ,xK} for which the

combination parameters satisfy θk ∈ R.

Note that there is always at least one choice of linear {θk}-combination parame-

ters for which the corresponding linear {θk}-combination of {x1,x2, . . . ,xK}, lin[x1,x2,

. . .,xK;{θk}] is equal to 0: specifically, lin [x1,x2, . . . ,xK;{0}] = 0.

Definition 6 (Affine {θk}-combination). An affine {θk}-combination of {x1,x2, . . . ,xK},
denoted aff [x1,x2, . . . ,xK;{θk}] is a {θk}-combination of {x1,x2, . . . ,xK} for which the

combination parameters satisfy θk ∈ R and ∑
K
k=1 θk = 1.

Unlike the case found in linear combinations, there need not be a choice of affine

{θk}-combination parameters for which the corresponding affine {θk}-combination of

{x1,x2, . . . ,xK}, aff [x1,x2, . . . ,xK;{θk}] is equal to 0. We also have the related notion

of barycentric coordinates: consider a specific vector x = aff [x1,x2, . . . ,xK;{θk}] ; the

parameters {θk} in this affine {θk} combination of {x1,x2, . . . ,xK} are sometimes called

the barycentric coordinates of x (with respect to {x1,x2, . . . ,xK}) [Ewa96].

Definition 7 (Convex {θk}-combination). A convex {θk}-combination of {x1,x2, . . . ,xK},
denoted cvx [x1,x2, . . . ,xK;{θk}] is a {θk}-combination of {x1,x2, . . . ,xK} for which the

combination parameters satisfy θk ∈ R+ and ∑
K
k=1 θk = 1.

We will consider convex {θk}-combinations most frequently. One typical in-

terpretation of a convex combination is as a “mixture” or “weighted average” of the

{x1,x2, . . . ,xK}; in this interpretation, the kth combination parameter θk is sometimes

described as the “fraction of xk” in the weighted average.
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Definition 8 (Convex conic {θk}-combination). A convex conic {θk}-combination of

{x1,x2, . . . ,xK}, denoted ccone [x1,x2, . . . ,xK;{θk}] is a {θk}-combination of {x1,x2, . . . ,

xK} for which the combination parameters satisfy θk ∈ R+.

What we call a convex conic {θk}-combination is often referred to as a conic

{θk}-combination; however, since the collection of all {θk}-combinations of {x1,x2, . . . ,

xK} for which the combination parameters satisfy θk ∈ R+ always produces a convex

cone, we prefer to use a naming convention that reflects this.

3.2.3 Set terminology

Definition 9 (Linear set or subspace). We say that a set is a linear set (or subspace) when

it contains every linear combination of two points in the sets. That is, for a linear set

(subspace)L, we have that x1,x2 ∈L and θ1,θ2 ∈R together imply that θ1x1+θ2x2 ∈L.

Note that every linear set (subspace) necessarily contains the origin.

Definition 10 (Affine set or flat). We say that a set is an affine set (alternately referred to

as a linear manifold, linear variety, or a flat) when it contains every affine combination of

two points in the set. That is, for an affine set A, we have that x1,x2 ∈ A and θ1,θ2 ∈ R
and θ1 +θ2 = 1 together imply that θ1x1 +θ2x2 ∈ A.

Note that, unlike a linear set, an affine set need not contain the origin.

Definition 11 (Convex set). We say that a set is a convex set when it contains every

convex combination of two points in the set. That is, for a convex set C, we have that x1,

x2 ∈ C and θ1,θ2 ∈ R+ and θ1 +θ2 = 1 together imply that θ1x1 +θ2x2 ∈ C.

Convex sets will be the focus of most of our attention.

Definition 12 (Nonnegatively homogeneous set or cone). We say that a set is a non-

negatively homogeneous set (a conic set or cone) when it contains every nonnegative

scaling of a point in the set. That is, for a nonnegatively homogeneous set Q, we have

that x ∈Q and θ ∈ R+ together imply that θx ∈Q. Note the absence of addition in this

definition.
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A nonnegatively homogeneous set is a set that is (membership) “homogeneous”

with respect to nonnegative scaling.

Definition 13 (Convex conic set or convex cone). We say that a set is a convex conic set

when it contains every convex conic combination of two points in the set; that is, if it

contains every convex combination of the nonnegative scalings of its elements. That is,

for a convex conic set (convex cone)K, we have that x1,x2 ∈K and θ1,θ2 ∈R+ together

imply that θ1x1 +θ2x2 ∈ K.

3.2.4 Hulls

From the starting point of an arbitrary set, for example S ∈ Rn, we can consider

various types of combinations of all of the elements of the set. We refer to the resulting

set as a “hull” of the set, with the specific kind of hull being determined by the type

of combination used to generate the set. In particular, we consider the linear hull, the

affine hull, the convex hull, and the convex conic hull. We first consider the notion of

the linear hull (or span) of a finite set.

Definition 14 (Linear hull or span). The linear hull (or span) of a finite set {x1,x2, . . . ,

xK}, each xk ∈ Rn, is the set in Rn denoted by lin [x1,x2, . . . ,xK] and defined via the

expression

lin [x1,x2, . . . ,xK]
def
=

{
x ∈ Rn | x =

K

∑
k=1

θkxk for some {θk} with θk ∈ R

}
.

In words, the linear hull of the set {x1,x2, . . . ,xK} is the set of all linear combin-

ations of the elements of {x1,x2, . . . ,xK}.

We also note that the linear hull of a set S is the intersection of all linear sets

(subspaces) that contain S.

Further, the linear hull of a set S is the smallest subspace that contains the set

S: any subspace (linear set) L containing S also contains lin S, the linear hull of S.

We may write this more explicitly as: if L is a subspace (linear set) and S ⊆ L, then

lin S ⊆ L.
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Figure 3.2: Affine hull of a set. (After [HUL93a]).

Definition 15 (Affine hull). The affine hull of a finite set {x1,x2, . . . ,xK} , each xk ∈Rn,

is the set in Rn denoted by aff [x1,x2, . . . ,xK] and defined via the expression

aff [x1,x2, . . . ,xK]
def
=

{
x ∈ Rn | x =

K

∑
k=1

θkxk for some {θk} with θk ∈ R,
K

∑
k=1

θk = 1

}
.

In words, the affine hull of the set {x1,x2, . . . ,xK} is the set of all affine combinations of

the elements of {x1,x2, . . . ,xK}.

We also note that the affine hull of a set S is the intersection of all affine sets that

contain S.

Further, the affine hull of a set S is the smallest affine set that contains the set S:

any affine set A containing the set S also contains aff S, the affine hull of S. We may

write this more explicitly as: ifA is an affine set and S ⊆A, then aff S ⊆A. See Figure

3.2.

Definition 16 (Convex hull). The convex hull of a finite set {x1,x2, . . . ,xK} , each xk ∈
Rn, is the set in Rn denoted by cvx [x1,x2, . . . ,xK] and defined via the expression

cvx [x1,x2, . . . ,xK]
def
=

{
x ∈ Rn | x =

K

∑
k=1

θkxk for some {θk} with θk ∈ R+,
K

∑
k=1

θk = 1

}
.

In words, the convex hull of the set {x1,x2, . . . ,xK} is the set of all convex combinations

of the elements of {x1,x2, . . . ,xK}.

We also note that the convex hull of a set S is the intersection of all convex sets

that contain S. Further, the convex hull of a set S is the smallest convex set that contains
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Figure 3.3: Convex hull and convex conic hull for a nonconvex set S. (After [BV04]).

the set S, in the following sense: any convex set C containing S also contains cvx S, the

convex hull of S. We may write this more explicitly as: if C is a convex set and S ⊆ C,
then cvx S ⊆ C. See Figure 3.3.

Definition 17 (Convex conic hull). The convex conic hull (sometimes called the positive

hull [Ewa96]) of a finite set {x1,x2, . . . ,xK} , each xk ∈ Rn, is the set in Rn denoted by

ccone [x1,x2, . . . ,xK] and defined via the expression

ccone [x1,x2, . . . ,xK]
def
=

{
x ∈ Rn | x =

K

∑
k=1

θkxk for some {θk} with θk ∈ R+

}
.

In words, the convex conic hull of the set {x1,x2, . . . ,xK} is the set of all convex conic

combinations of the elements of {x1,x2, . . . ,xK}.

We also note that the convex conic hull of a set S is the intersection of all convex

conic sets that contain S.

Further, the convex conic hull of a set S is the smallest convex conic set (convex

cone) that contains the set S: any convex conic set (convex cone) K containing S also

contains ccone S, the convex conic hull of S. We may write this more explicitly as: if

K is a convex conic set (convex cone) and S ⊆ K, then ccone S ⊆ K. See Figure 3.3.
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Figure 3.4: Scaling/dilation of a set.

3.3 Operations involving sets

3.3.1 Scaling of a set

Definition 18 (Scaling). The λ -scaling of a set, sayX ⊆Rn , is denoted λX and defined

via the expression

λX def
= {z ∈ Rn | z = λx where x ∈ X and λ ∈ R} .

See Figure 3.4.

3.3.2 (Minkowski) sum of two sets

Another fundamental operation is “setwise addition” (also called Minkowski set

addition, the Minkowski sum, or the vector sum) of (e.g., convex) sets. The Minkowski

sum will be particularly relevant when we consider infimal convolution.

Definition 19 (Minkowski sum). The (Minkowski) sum of two sets, say X ⊆ Rn and
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Figure 3.5: Minkowski sum of two sets. (After [RW04]).

Y ⊆ Rn, is denoted X +Y and defined via the expression

X +Y def
= {z ∈ Rn | z = x+ y where x ∈ X and y ∈ Y} .

See Figure 3.5.

3.4 Frequently relevant sets

3.4.1 Affine hyperplane

Definition 20. An (affine) hyperplane (or flat, or linear variety, or linear manifold) is

a set denoted Hs,b ⊆ Rn, specified via s ∈ Rn∗\{0} and b ∈ R, and defined via the

expression

Hs,b
def
= {x ∈ Rn | 〈s,x〉= b} .
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The affine hyperplane Hs,b is the b-level set of the linear function 〈s, ·〉 . We also intro-

duce notation for the associated halfspaces and strict halfspaces as follows:

H>
s,b

def
= {x ∈ Rn | 〈s,x〉> b}

H≥s,b
def
= {x ∈ Rn | 〈s,x〉 ≥ b}

Hs,b
def
= {x ∈ Rn | 〈s,x〉= b}

H≤s,b
def
= {x ∈ Rn | 〈s,x〉 ≤ b}

H<
s,b

def
= {x ∈ Rn | 〈s,x〉< b} .

Note that for the hyperplane, halfspaces and strict halfspaces above, we can

alternately describe them as a level set, a (strict or nonstrict) sublevel set, or a (strict or

nonstrict) superlevel set of a “reference” affine function.

3.4.2 Norm ball

A ‖·‖�-norm ball is a set in Rn; here ‖·‖� : Rn → R denotes a generic norm.

In general we specify a center xc ∈ Rn and a radius r ∈ R++; the resulting norm ball is

then denoted B� (xc,r) and defined via the expression

B� (xc,r)
def
= {x ∈ Rn | ‖x− xc‖� ≤ r}

= {x+ ru | ‖u‖� ≤ 1} .

When considering the specific case of the unit ‖·‖�-norm ball where xc
set
= 0 and

r set
= 1 it is common practice to drop the explicit reference to xc and r. That is, we have

the following shorthand for the unit ‖·‖�-norm ball:

B�
set
= B� (0,1) .

3.4.3 Norm cones

The ‖·‖�-norm cone is the epigraph of the norm ‖·‖�; we will refer to the ‖·‖�-
norm cone as K� ⊆ Rn×R. Explicitly, we have

K�
set
= epi ‖·‖�
= {(x, t) ∈ Rn×R | t ≥ ‖x‖�} .
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3.4.4 Polyhedron

Definition 21. A polyhedron, say P ⊆ Rn, is defined as the solution set of a finite

number of linear equalities and inequalities:

P set
=
{

x ∈ Rn | 〈si,x〉= bi, i ∈ {1, . . . ,m} ,
〈
v j,x

〉
≤ b j, j ∈ {1, . . . , p}

}
.

In words: a polyhedron is the intersection of a finite number of hyperplanes and

halfspaces. Particular examples of polyhedra include subspaces, hyperplanes, lines, any

affine set, rays, line segments, and halfspaces.

3.4.5 Simplex, unit simplex, probability simplex

Simplexes are convex sets corresponding to specific instances of polyhedra.

Definition 22. A convex set is called a K-simplex if it is the convex hull of K+1 affinely

independent vectors. For specificity, suppose that the K + 1 vectors {x0, . . . ,xK} with

xk ∈Rn are affinely independent; by this we mean that the K vectors {x1−x0, . . . ,xK−x0

} are linearly independent.

Then the simplex of these K +1 affinely independent vectors {x0, . . . ,xK} is an

alternate term for the convex hull of those vectors; explicitly

splx {x0, . . . ,xK}
set
= cvx {x0, . . . ,xK}

=

{
x ∈ Rn | x =

K

∑
k=1

θkxk for some {θk} with θk ∈ R+,
K

∑
k=1

θk = 1

}
.

The name K-simplex is a shorter form of K-dimensional simplex; this terminol-

ogy is used because the affine dimension (that is, the dimension of the affine hull) of the

convex hull of K +1 affinely independent points is K.

See Figure 3.6.

Definition 23. The unit simplex in Rn is the n-dimensional simplex constructed as the

convex hull of the origin and {e1,e2, . . . ,en}, the n unit vectors in Rn: cvx {0,e1,e2, . . . ,

en}. We note that we could alternately describe the unit simplex in Rn as the intersection

of n+1 halfspaces:

cvx {0,e1,e2, . . . ,en}={x ∈ Rn | xi ≥ 0, i ∈ {1, . . . ,n} and 〈1,x〉 ≤ 1}

={x ∈ Rn | 〈ei,x〉 ≥ 0, i ∈ {1, . . . ,n} and 〈1,x〉 ≤ 1} .
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Figure 3.6: Simplexes.

Perhaps the most frequently seen simplex is the probability simplex.

Definition 24. The probability simplex in Rn, denoted ∆n, is the (n−1)-dimensional

simplex constructed as the convex hull of {e1,e2, . . . ,en}, the n unit vectors in Rn : cvx

{e1,e2, . . . ,en} . We note that we could alternately describe the unit simplex in Rn as the

intersection of n halfspaces and 1 hyperplane:

∆n
set
=cvx {e1,e2, . . . ,en}

={x ∈ Rn | xi ≥ 0, i ∈ {1, . . . ,n} and 〈1,x〉= 1}

={x ∈ Rn | 〈ei,x〉 ≥ 0, i ∈ {1, . . . ,n} and 〈1,x〉= 1} .



Chapter 4

Functions and convexity

4.1 Introduction

The material in this chapter is again standard. Typical references include [RW04,

HUL93a, HUL93b, BV04, Ber09, Rus06]. We provide a coherent collection of the

specific concepts that will assist in our subsequent discussions.

4.2 Extended-real-valued functions

When considering constrained minimization problems, it is often convenient to

consider the notion of extended-real-valued functions.

A real-valued function is allowed to take on values in R; an extended-real-valued

function is allowed to take on values in R∪{+∞} . In our discussions, this will allow us

the possibility of alternate conceptions of constraints. In general, we write f (·) : Rn→
R∪{+∞} .

Definition 25 (Effective domain). The effective domain of an extended-real-valued func-

tion f (·) : Rn→R∪{+∞} is denoted dom f (·) and defined as the set of all arguments

for which f (·) takes on finite value; that is

dom f (·) def
= {x ∈ Rn | f (x)<+∞} .

An important example of an extended-real-valued convex function is the indi-

cator function of a convex set. We first define the notion of an indicator function for a

37



38

Figure 4.1: For a convex function, both the effective domain and the epigraph are con-
vex sets.

general (not necessarily convex) set and then particularize to the case of the indicator

function of a convex set.

Definition 26 (Indicator function). Consider a set S ⊆Rn. The indicator function of the

set S ⊆ Rn is denoted IS [·] : Rn→ R∪{+∞} and defined via the expression

IS [·]
def
=

0 when x ∈ S

+∞ when x /∈ S.

The effective domain of the indicator function of the set S is thus S itself. The

use of indicator function of a set can provide us with an alternative means of expressing

constrained optimization problems. We will also see the usefulness of extended-real-

valued convex functions in our discussions of Legendre-Fenchel conjugacy and infimal

convolution.

When the set in question is nonempty and convex, the corresponding indicator

function is a proper convex extended-real-valued function; we introduce the (somewhat

technical) concept of properness next. One may get a clearer notion of the significance

of whether a convex function is proper or improper from the alternative description

used by Aubin [Aub98]: he calls improper convex functions “trivial” and proper convex

functions “nontrivial”.

Definition 27 (Proper function). We say that a convex extended-real-value function is

proper when it is finite for at least one argument and never takes on the value −∞.

The requirement that a proper convex extended-real-valued function be finite for

at least one argument means that the effective domain of a proper extended-real-valued
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Figure 4.2: The epigraph of the indicator function of a convex set. (After [Luc06]).

convex function is non-empty. The requirement that a proper convex extended-real-

valued function never take on the value−∞ has the geometric meaning that the epigraph

will not contain any vertical lines.

By restricting attention as much as possible to proper extended-real-valued con-

vex functions we avoid technical problems that would otherwise arise. One might ask

whether there are improper convex extended-real-valued functions of sufficient use that

they might prompt us to put up with these technical problems; it turns out that the re-

quirements of convexity imply that convex extended-real-valued functions that are im-

proper can display only very limited behavior. If we further restrict attention to convex

extended-real-valued functions for which lower semicontinuity holds (even if only at

a single point), the behavior becomes even more limited. We now describe just what

kinds of behavior are possible for a convex extended-real-valued function that is al-

lowed to be improper; for this discussion only we consider convex functions f (·) :

Rn→ R∪{−∞}∪{+∞} .
For any convex extended-real-valued function that takes on the value −∞ any-

where, convexity implies that it must be the case that f (x) =−∞ for every x ∈ int dom
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f (·). Further, an improper convex function satisfying lower semicontinuity can only

take on infinite values: there must be a closed, convex set D such that f (x) = −∞ for

x ∈ D and f (x) = +∞ for x /∈ D. Stated slightly differently: an extended-real-valued

convex function that is lower semicontinuous at any point and that takes the value −∞

anywhere cannot take on values other than +∞ and −∞. The preceding observations

follow from the definition of convexity and from “extended-real-valued arithmetic”: if

f (x#) = −∞ and f (x$) < +∞, then at any intermediate point xτ

set
= (1− τ)x# + τx$,

where τ ∈ (0,1), we must have f (xτ) =−∞.

An example of an improper convex function taking on finite values in addition

to infinite values is

f (x) =


−∞ when x ∈ (0,+∞)

10 when x = 0

+∞ when x ∈ (−∞,0) ;

note that this improper convex function taking on a finite value is not lower semicontin-

uous at any argument.

A similar example is

f (x) =


−∞ when |x|< 1

2 when |x|= 1

+∞ when |x|> 1.

While we will seek to avoid improper functions, they can arise even from stan-

dard operations that involve only proper convex extended-real-valued functions. For ex-

ample, the conjugate of a proper convex function might be improper; further the infimal

convolution of two proper convex extended-real-valued functions can be an improper

convex function. For more detailed discussion of the preceding results, see [AT03],

[BV10], and, especially, [RW04].

4.3 Sublevel sets, level sets, superlevel sets

Definition 28 (α-sublevel set). The α-sublevel set (of arguments) of a function f (·) :

Rn→R∪{+∞} is a subset of Rn denoted lvl f (·)≤ (α)⊆Rn and defined via the expres-
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Figure 4.3: Illustrating the concept of sublevel set. (After [HUL93a]).

sion

lvl f (·)≤ (α)
set
= {x ∈ dom f (·) | f (x)≤ α} .

Discussions of α-sublevel sets frequently arise in the context of convex func-

tions. Alternative names for α-sublevel sets of f (·) are “trenches” of f (·), “lower level

sets” of f (·), “lower sections” of f (·), “wide sections” of f (·), or simply “sections” of

f (·) [Aub98].

Definition 29 (α-level set). The α-level set (of arguments) of a function f (·) : Rn→
R∪{+∞} is a subset of Rn denoted lvl f (·)= (α)⊆ Rn and defined via the expression

lvl f (·)= (α)
set
= {x ∈ dom f (·) | f (x) = α} .

In convex analysis, the term “level set” is sometimes used for what we refer to

as a sublevel set. We prefer to maintain the distinction, since, for example we would

like to be able to describe a hyperplane as a level set of an affine (or, alternately, linear)

function.

Definition 30 (α-superlevel set). The α-superlevel set (of arguments) of a function

f (·) : Rn→ R∪{+∞} is a subset of Rn denoted lvl f (·)≥ (α)⊆ Rn and defined via the

expression

lvl f (·)≥ (α)
set
= {x ∈ dom f (·) | f (x)≥ α} .
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Discussions of α-superlevel sets frequently arise in the context of concave func-

tions.

We note that the sublevel sets of a convex function are convex for any value of

α; however, a function with all sublevel sets convex is not necessarily a convex function.

As an example, consider f (x) set
=
√
|x|. Similarly, we note that the superlevel sets of a

concave function are convex for any value of α; however, a function with all superlevel

sets convex is not necessarily a concave function.

It is common practice to establish that a set is convex by expressing that set

either as a sublevel set of a convex of a convex function or as a superlevel set of a

concave function.

4.4 Graph, epigraph, hypograph

Definition 31 (Graph). The graph of a function f (·) : Rn→ R∪{+∞} is a subset of

Rn×R denoted by gr f (·)⊂ Rn×R and defined via the expression

gr f (·) def
= {(x, t) ∈ Rn×R | x ∈ dom f (·) and t = f (x)}

= {(x, f (x)) ∈ Rn×R | x ∈ dom f (·)} .

We use the graph of a function as a reference for two other geometric notions

associated with a function.

Definition 32 (Epigraph). The epigraph of a function f (·) : Rn→ R∪{+∞} is “ev-

erything that lies on or above the graph”; more precisely, a subset of Rn×R denoted

epi f (·)⊂ Rn×R and defined via the expression

epi f (·) def
= {(x, t) ∈ Rn×R | t ≥ f (x) and x ∈ dom f (·)} .

We may describe the epigraph epi f (·) as a collection of closed “half-lines” in R
of the form [ f (x#) ,+∞) . The base (in Rn) of each half-line is the corresponding input

argument x# ∈ Rn.

One link between convex sets and convex functions is via the notion of epigraph:

A function f (·) is convex if and only if epi f (·) is a convex set. See Figure 4.1.
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Definition 33 (Strict epigraph). The strict epigraph of a function f (·) : Rn→R∪{+∞}
is “everything that lies strictly above the graph”; more precisely, a subset of Rn×R
denoted s-epi f (·)⊂ Rn×R and defined via the expression

s-epi f (·) def
= {(x, t) ∈ Rn×R | t > f (x) and x ∈ dom f (·)} .

We may describe the strict epigraph s-epi f (·) as a collection of open “half-

lines” in R of the form ( f (x#) ,+∞) . The base (in Rn) of each half-line is the corre-

sponding input argument x# ∈ Rn.

Definition 34 (Hypograph). The hypograph of a function f (·) : Rn → R∪{+∞} is

“everything that falls at or below the graph”; more precisely, a subset of Rn×R denoted

hypo f (·)⊂ Rn×R and defined via the expression

hypo f (·) def
= {(x, t) ∈ Rn×R | t ≤ f (x) and x ∈ dom f (·)} .

A function f (·) is concave if and only if hypo f (·) is a convex set.

Definition 35 (Strict hypograph). The strict hypograph of a function f (·) : Rn →
R∪{+∞} is “everything that falls strictly below the graph”; more precisely, a subset of

Rn×R denoted s-hypo f (·)⊂ Rn×R and defined via the expression

s-hypo f (·) def
= {(x, t) ∈ Rn×R | t < f (x) and x ∈ dom f (·)} .

Remarks Any function for which both the epigraph and the hypograph correspond to

convex sets is affine.

Many results for convex functions can be established (or interpreted) geometri-

cally considering the epigraph and applying results for convex sets.

For example, consider a slight re-expression of the first order condition for con-

vexity of a continuously differentiable function f (·):
for each x# ∈ dom f (·) , we can form a supporting affine minorant of f (·) at x#,

denoted l f (·),x# (x)
set
= f (x#)+ 〈∇ f (x#) ,x− x#〉 so that

f (x)≥ l f (·),x# (x) for all x ∈ Rn

f (x#) = l f (·),x# (x#) .
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We can interpret this basic inequality in terms of the epigraph epi f (·) , as fol-

lows: l f (·),x# (x)
set
= f (x#)+ 〈∇ f (x#) ,x− x#〉 is a supporting affine minorant to f (·) at

x#. Thus, any (x, t) ∈ epi f (·) also satisfies (x, t) ∈ epi l f (·),x# (·) . This in turn means

t ≥ l f (·),x# (x)

t ≥ f (x#)+ 〈∇ f (x#) ,x− x#〉

0≥ f (x#)− t + 〈∇ f (x#) ,x− x#〉

0≥

〈(
∇ f (x#)

1

)
,

(
x− x#

f (x#)− t

)〉
.

Rearranging slightly, 〈(
∇ f (x#)

−1

)
,

(
x− x#

t− f (x#)

)〉
≤ 0

〈(
∇ f (x#)

−1

)
,

(
x

t

)
−

(
x#

f (x#)

)〉
≤ 0.

This is precisely the characterization of a halfspace of the form 〈u,y〉− b ≤ 0;

this halfspace is in Rn×R, with normal vector

(
∇ f (x#)

−1

)
∈Rn∗×R∗ and bias value〈(

∇ f (x#)

−1

)
,

(
x#

f (x#)

)〉
.

This halfspace in fact supports the epigraph at

(
x

t

)
set
=

(
x#

f (x#)

)
, since

〈(
∇ f (x#)

−1

)
,

(
x#

f (x#)

)
−

(
x#

f (x#)

)〉
= 0.

Alternately, we can say that 0-level set of the affine function l f (·),x# (·) is a hyper-

plane that supports epi f (·) at the point

(
x#

f (x#)

)
. Another observation that is central

to convex analysis is that the epigraph of the convex function f (·) coincides with the in-

tersection of the epigraphs of the supporting-at-x# affine minorants of f (·) over all pos-

sible arguments of support x# ∈ dom f (·) ; explicitly, epi f (·) =
⋂

x#∈dom f (·)
epi l f (·),x# (·) .

We define affine minorants in the next section.
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Figure 4.4: Primal lines correspond to dual points; primal points corresponds to dual
lines. (After [RW04]).

4.5 Minorant, majorant, supporting minorant, supported

majorant

Definition 36 (Minorization, minorant). Consider two functions f (·) : Rn→R∪{+∞}
and g(·) : Rn→R∪{+∞} . We say that g(·) minorizes f (·) (or equivalently, that f (·)
is minorized by g(·)) if g(·) is pointwise less than or equal to f (·) : that is

g(x)≤ f (x) ,

for each x ∈ Rn.

When g(·) minorizes f (·) we alternately describe g(·) as a minorant of f (·).

A minorant of f (·) provides a pointwise (not-necessarily-strict) lower bound to

f (·) everywhere in Rn.

Definition 37 (Majorization, majorant). Consider two functions f (·) : Rn→R∪{+∞}
and g(·) : Rn→R∪{+∞} . We say that g(·) majorizes f (·) (or equivalently, that f (·)
is majorized by g(·)) if g(·) is pointwise greater than or equal to f (·) : that is

g(x)≥ f (x) ,
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Figure 4.5: The supporting affine minorant characterization of convexity.

for each x ∈ Rn.

When g(·) majorizes f (·) we alternately describe g(·) as a majorant of f (·).

A majorant of f (·) provides a pointwise (not-necessarily-strict) upper bound to

f (·) everywhere in Rn.

Definition 38 (Supporting minorant). We say that g(·) is a supporting minorant of f (·)
at x# when g(·) is a minorant of f (·) that coincides with f (·) at x#; that is, when

g(x)≤ f (x) for all x ∈ Rn

and

g(x#) = f (x#) .

We will later see that supporting minorants appear in the definitions of convexity

and strong convexity.

Definition 39 (Supported majorant). We say that g(·) is a supported majorant of f (·)
at x# when g(·) is a majorant of f (·) that coincides with f (·) at x#; that is, when

g(x)≥ f (x) for all x ∈ Rn

and

g(x#) = f (x#) .
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We will later see that supported majorants appear in the definition of “strong

smoothness”.

Remarks Note that if g(·) minorizes f (·) , we have both that epi g(·)⊇ epi f (·) and

that lvl f (·)≤ (α)⊆ lvlg(·)≤ (α) for any level value α ∈ R.

Similarly, if g(·) majorizes f (·) , we have both that epi f (·)⊇ epi g(·) and that

lvlg(·)≤ (α)⊆ lvl f (·)≤ (α) for any level value α ∈ R.

4.6 Affine, linear, and convex functions

Definition 40 (Affine function). We say that a function f (·) is affine when, for any

θ1,θ2 ∈ R satisfying that θ1 + θ2 = 1, it is the case that f (θ1x1 +θ2x2) = θ1 f (x1)+

θ2 f (x2) .

The epigraph of an affine function is a half-space not necessarily containing the

origin.

Definition 41 (Linear function). We say that a function f (·) is linear when, for any

θ1,θ2 ∈ R, it is the case that f (θ1x1 +θ2x2) = θ1 f (x1)+θ2 f (x2) .

Note that this means that f (0) = 0 for any linear function.

The epigraph of a linear function is a half-space containing the origin.

Definition 42 (Subadditive function). We say that a function f (·) is subadditive when

f (x1 + y1)≤ f (x1)+ f (x2).

Any nonincreasing function is subadditive; any function of the form f (x) set
=

mx+b with m,b ∈ R+ is subadditive.

Definition 43 (Strictly positively homogeneous function). We say that a function f (·)
is strictly positively homogeneous when f (αx) = α f (x) for any strictly positive scalar

α ∈ R++. The concept of a nonnegatively homogeneous function corresponds to the

case α ∈ R+.

Most of our attention will be devoted to convex functions.
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Figure 4.6: Relationships between convexity, sublinearity, positive homogeneity, and
subadditivity. (After [HUL93a]).

Definition 44 (Convex function). We say that a function f (·) is convex when, for any

θ1,θ2 ∈ R+ satisfying θ1 + θ2 = 1, it is the case that f (θ1x1 +θ2x2) ≤ θ1 f (x1) +

θ2 f (x2) .

Geometrically, this means that the line segment between (x1, f (x1)) and (x2, f (x2))

is entirely contained in the epigraph of f (·) ; said slightly differently, that the chord con-

necting (x1, f (x1)) and (x2, f (x2)) lies above the graph of f (·) .
The epigraph of a convex function is a convex set.

Definition 45 (Sublinear function). We say that a function f (·) is sublinear when it is

both subadditive and strictly positively homogeneous.

The class of sublinear functions is alternately describable as any convex function

that is also strictly positively homogeneous. The epigraph of any sublinear function is a

convex cone.

The 0-sublevel set of any sublinear function is a cone.

Some authors refer to any function that is both subadditive and strictly positively

homogeneous as a gauge function rather than a sublinear function; we reserve the term

gauge function for another (admittedly related) usage defined later. We indicate the

relationships between subadditivity, positive homogeneity, convexity, and sublinearity

in Figure 4.6.

Remarks We further note that any affine function satisfies the convexity inequality as

well as the corresponding inequality characterizing concavity; we may thus say that any

affine function is both convex and concave. Conversely, any function that is both convex

and concave is affine.
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A function is convex if and only if that function is convex when restricted to any

line that intersects dom f (·) . That is, f (·) is convex if and only if g(t) set
= f (x+ tv) is

convex on its domain dom g(·) = {t ∈ R | x+ tv ∈ dom f (·)} , for any x∈ dom f (·) and

all v ∈ Rn. This means that we can check whether a function is convex by considering

the convexity of its restriction to an arbitrary line.



Chapter 5

Strong smoothness and strong

convexity

5.1 Introduction

In discussions of convex optimization, most analyses start from assumptions

involving either Lipschitz continuity of the gradient of the function or a combination

of Lipschitz continuity of the gradient of the function and strong convexity. As has

long been known under various descriptions (for example, [Jam47], or more recently

[KSST09]) there is a symmetry (via duality) between Lipschitz continuity of the gra-

dient of a function and strong convexity of a function. Despite the symmetry in the

relationships, it is apparent from our preceding statement that the usual descriptions

are somewhat misaligned — one references the function via its gradient, the other di-

rectly refers to the function. Following the usage in [KSST09] we use the terms “strong

smoothness” (specifically, of a convex function) and “strong convexity” when empha-

sizing properties of the function; when we later consider terminology for operators, the

analogous terminology will be “inverse strong monotonicity” and “strong monotonic-

ity”. The most prominent reference for this material is [Nes04].

50
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5.2 Strong smoothness with parameter L

We say that the (at least once differentiable) convex function f (·) : Rn→ R is

L-strongly smooth when it satisfies

f (y)≤ f (x)+ 〈∇ f (x) ,y− x〉+L
1
2
‖y− x‖2

2

for all x,y ∈ Rn.

As most prominently demonstrated in [Nes04], this description can be expressed

in several equivalent forms.

As L-Lipschitz continuity of the gradient of f (·):

‖∇ f (x)−∇ f (y)‖2 ≤ L‖x− y‖2 .

As secant-type inequalities:

[α f (x)+(1−α) f (y)]− [ f (αx+{1−α}y)]≤α (1−α)L
1
2
‖x− y‖2

2

and

α (1−α)
1
L

1
2
‖∇ f (x)−∇ f (y)‖2

2 ≤ [α f (x)+(1−α) f (y)]− [ f (αx+{1−α}y)] .

As expressions of inverse strong monotonicity:

1
L
‖∇ f (x)−∇ f (y)‖2

2 ≤ 〈∇ f (x)−∇ f (y) ,x− y〉

and

〈∇ f (x)−∇ f (y) ,x− y〉 ≤L‖x− y‖2
2 .

As expressions related to the existence of a supported quadratic minorant:

f (y)≤ f (x)+ 〈∇ f (x) ,y− x〉+L
1
2
‖y− x‖2

2
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and

f (x)+ 〈∇ f (x) ,y− x〉+ 1
L

1
2
‖∇ f (y)−∇ f (x)‖2

2 ≤ f (y) .

Finally, a re-expression of the immediately preceding expressions provides us

with a statement involving bounds on the Bregman divergence using the function f (·) ,
based at x and evaluated at y:

D f (y;x)≤ L
1
2
‖y− x‖2

2

and

1
L

1
2
‖∇ f (y)−∇ f (x)‖2

2 ≤ D f (y;x) .

Here D f (y;x) denotes the Bregman divergence using the function f (·) , based at

x and evaluated at y.

We collect these results in Table 5.1.

Nesterov uses the notation F1,1
L (Rn) to refer to the class of convex functions

f (·) : Rn→ R for which the first derivative exists and for which L strong smoothness

is satisfied.

5.3 Strong convexity with parameter µ

We say that the (say, at least once differentiable) convex function f (·) : Rn→R
is µ-strongly convex when it satisfies

f (y)≥ f (x)+ 〈∇ f (x) ,y− x〉+µ
1
2
‖y− x‖2

2

for all x,y ∈ Rn.

Again, [Nes04] is the most prominent reference for the equivalent forms of this

statement.

That is, the case in which f (·) is a function for which the first derivative exists,

and for which f (·) is µ strongly convex.
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As a condition similar in form to Lipschitz continuity:

µ ‖x− y‖2 ≤ ‖∇ f (x)−∇ f (y)‖2 .

As secant-type inequalities:

α (1−α)µ
1
2
‖x− y‖2

2 ≤

[α f (x)+(1−α) f (y)]− [ f (αx+{1−α}y)]

and

[α f (x)+(1−α) f (y)]− [ f (αx+{1−α}y)]≤

α (1−α)
1
µ

1
2
‖∇ f (x)−∇ f (y)‖2

2 .

As expressions of strong monotonicity:

µ ‖x− y‖2
2 ≤ 〈∇ f (x)−∇ f (y) ,x− y〉

and

〈∇ f (x)−∇ f (y) ,x− y〉 ≤ 1
µ
‖∇ f (y)−∇ f (x)‖2

2 .

As expressions related to the existence of a supporting quadratic minorant:

f (x)+ 〈∇ f (x) ,y− x〉+µ
1
2
‖y− x‖2

2 ≤ f (y)

and

f (y)≤ f (x)+ 〈∇ f (x) ,y− x〉+ 1
µ

1
2
‖∇ f (y)−∇ f (x)‖2

2 .
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Again, a re-expression of the immediately preceding expressions provides us

with a statement involving bounds on the Bregman divergence using the function f (·) ,
based at x and evaluated at y:

µ
1
2
‖y− x‖2

2 ≤ D f (y;x)

and

D f (y;x)≤ 1
µ

1
2
‖∇ f (y)−∇ f (x)‖2

2 .

We collect these results in Table 5.2.

In Nesterov-style notation, S1
µ (Rn) would refer to the class of convex functions

f (·) : Rn→ R for which the first derivative exists and for which µ strong convexity is

satisfied.

5.4 Both strong smoothness and strong convexity

The next result is central, for example, to the analysis in [Nes04]. Despite this

centrality, it is less widely referenced than one might expect (although this seems to be

changing).

Proposition 1. When the convex function f (·) : Rn→R is a function for which the first

derivative exists, and for which f (·) is both µ-strongly convex and L-strongly smooth,

it is that case that

1
L+µ

‖∇ f (x)−∇ f (y)‖2
2 +

Lµ

L+µ
‖x− y‖2

2 ≤ 〈∇ f (x)−∇ f (y) ,x− y〉

for all x,y ∈ Rn.

For later reference, we also note that the expression above could be written
1(

L+µ

2

) 1
2
‖∇ f (x)−∇ f (y)‖2

2 +
1(

1
L+

1
µ

2

) 1
2
‖x− y‖2

2 ≤ 〈∇ f (x)−∇ f (y) ,x− y〉 .

Nesterov [Nes04] uses the notation S1,1
µ,L (Rn) to refer to the class of convex func-

tions f (·) : Rn→ R for which the first derivative exists and for which both L strong

smoothness and µ strong convexity are satisfied.
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µ
‖ x
−

y‖
2
≤
‖ ∇

f(
x)
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∇
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‖ 2

α
(1
−

α
)

µ
1 2
‖ x
−

y‖
2 2
≤
[α

f(
x)
+
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−

α
)

f(
y)
]−

[f
(α
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−
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} y

)]
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f(
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−
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)

f(
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−
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α
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α
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‖2 2

µ
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〈 ∇

f(
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,x
−
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〈 ∇
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µ
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≤

f(
y)

f(
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f(
x)
+
〈 ∇

f(
x)
,y
−

x〉
+

1 µ

1 2
‖ ∇

f(
y)
−
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µ
1 2
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≤

D
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)

D
f
(y

;x
)
≤

1 µ

1 2
‖ ∇

f(
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−

∇
f(
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Chapter 6

Sets associated with other sets

6.1 Introduction

The material in this standard, although (as we comment below) surprisingly

inconsistent in terminology and notation. Typical references include [Aub98, Ber09,

BV04, HUL93a, HUL93b, RW04, Rus06, BSS06].

The title of this chapter is somewhat generic, so as to accurately encompass all

of the material discussed. The majority of the discussion, however, is devoted to the

much more specific topic of cones associated with various sets of interest. In the case

of the cone generated by a set, or the polar cone associated with a set, or the dual cone

associated with a set, the set in question is mentioned explicitly, but there is no explicit

“reference point” mentioned (the origin is the “implicit” reference point in these cases).

When instead considering feasible cones, tangent cones, or normal cones, the discussion

requires an explicit statement of the set in question, as well as an explicit reference point

(in the set).

The polar cone and dual cone provide a context for the relationship between cor-

responding tangent cones and normal cones. Normal cones most frequently (although

implicitly) appear in our discussion in their relation to subdifferential sets.
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Figure 6.1: A convex set and its associated polar set.

6.1.1 Hulls: linear, affine, convex, convex conic

We have already seen the notion of hulls; many of the most fundamental and

widely used results in convex analysis are stated in terms of hulls.

We consider further sets associated with sets below.

6.1.2 The polar set of a generic nonempty set

Definition 46 (Polar set). Consider a generic set S ⊆ Rn. We associate with any such

set another set in Rn∗ called the polar of the set S , denoted plr S and defined via the

expression

plr S def
= {s ∈ Rn∗ | 〈s,x〉 ≤ 1 for all x ∈ S} .

The polar set of the empty set is (“vacuously”) all of Rn : explicitly, plr /0 = Rn.

We observe that whether or not the set S is convex, the associated polar set plr S
is convex; this follows by noting that plr S is defined as an intersection of convex sets

(namely, half-spaces). Moreover, it is always the case that 0 ∈ plr S. See Figure 6.1.

The polar set of a generic set is relatively infrequently referenced in convex anal-

ysis ([Roc70, RW04, HUL93a] being notable exceptions); however, as we see below, the

polar set associated with a specific convex cone arises very frequently and is known as

the polar cone.
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Figure 6.2: The polar cone of a set S set
= {x1,x2} coincides with the polar cone of the

convex conic hull of S : that is, plrc S = plrc ccone S. (After [Ber09]).

6.2 Cones associated with any set

6.2.1 The polar cone of a generic set

Definition 47. Consider a nonempty generic set S ⊆ Rn. To any such set we associate

a polar cone in Rn∗, denoted plrc S (or S◦) and defined via the expression

plrc S def
= {s ∈ Rn∗ | 〈s,x〉 ≤ 0 for all x ∈ S} .

We note that an alternative path to the polar cone of the set S is: begin with

the nonempty set S. Form ccone S, the associated convex conic hull of S. The polar

set associated with ccone S coincides with the polar cone of the set S : plr ccone S =

plrc S. See Figure 6.2.

The polar cone of the empty set is (“vacuously”) Rn : explicitly, plrc /0 = Rn.

For any arbitrary nonempty set S, the polar cone associated with S is character-

ized as the intersection of closed convex sets — specifically, “homogeneous” halfspaces

(that is, half-spaces including the origin as a point in the boundary). This implies that

the polar cone of any arbitrary set S is a closed convex cone.

Other notation for the polar cone includes S⊥[Ber99], S−[BV10], S	[Lue69],

and (unfortunately) S∗[RW04]. Other terms for the polar cone are the negative polar

cone [BV10] or the negative conjugate cone [Lue69], the supplementary cone [KW79],

and (unfortunately) the dual cone [Deu01].
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Figure 6.3: The polar cone, plrc K, and the dual cone, dulc K, of a convex cone K.

6.2.2 The dual cone of a generic set

Definition 48. Consider a nonempty generic set S ⊆ Rn. To any such set we associate

a dual cone in Rn∗, denoted dulc S (or S∗) and defined via the expression

dulc S def
= {s ∈ Rn∗ | 〈s,x〉 ≥ 0 for all x ∈ S} .

An alternative definition of the dual cone is as the negative of the polar cone:

dulc S =−plrc S. See Figure

For any arbitrary nonempty set S, the dual cone associated with S is character-

ized as the intersection of closed convex sets — specifically, “homogeneous” halfspaces.

This implies that the dual cone of any arbitrary set S is a closed convex cone.

The dual cone of the empty set would (“vacuously”) be Rn∗ : explicitly, plrc /0 =

Rn∗.

For a subspace V , the associated dual cone dulc V and polar cone plrc V coincide

with each other — they both correspond to the orthogonal subspace V⊥; explicitly, when

V is a subspace dulc V = plrc V = V⊥. For a vector to be orthogonal to a generic set S,

that vector must be a member of both the polar cone plrc S and the dual dulc S : s ∈ S⊥

if and only if s ∈ plrc S ∩dulc S.
Other notation for the dual cone includes S+[BV10] and S⊕[Lue69]. Other

terms for the dual cone are the positive polar cone [BV10], the positive conjugate cone

[Lue69], and the adjoint cone [Lev94].
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Remark. There is a surprising lack of agreement on terminology and notation surround-

ing (polar and dual) cones. In [Ber99], the polar cone is denoted S⊥; the dual cone is

not mentioned. In [BV10] the polar cone is called the negative polar cone and is denoted

S−; the dual cone is called the positive polar cone and is denoted S+. Even though they

do not use the term dual cone, they do use the term “self-dual” in describing a special

class of cones. In [Deu01] the polar cone is called the dual cone (with a brief note

indicating that negative polar cone is an alternative). In [Lev94] the polar cone is not

mentioned; the dual cone is called the adjoint cone. In [Lue69] the polar cone is called

the negative conjugate cone and is denoted S	; the dual cone is called the positive con-

jugate cone and is denoted S⊕; a brief remark notes that these cones are “related to” the

polar cone and dual cone. In [BV04] the polar cone is not mentioned. In [RW04] the

polar cone is denoted S∗, even though the polar set is mentioned and denoted S◦; the

dual cone is not mentioned. In the apparently rare example of [Rus06] both the polar

cone and the dual cone are mentioned.

6.3 Cones associated with a set and some point in that

set

We now come to cones that are associated with a generic set and some point in

that set. Denoting the generic set as S and the point as x# ∈ S we have

The cone of directions that are “feasible” with respect to the set S at the point

x# ∈ S.
The cone of directions that are “tangent” with respect to the set S at the point

x# ∈ S.
The cone of vectors that are “normal” with respect to the set S at the point x# ∈S.
Just as one has the notion of a linear subspace, say V, and a corresponding trans-

lated linear subspace, say V+ x#, we an analogous correspondence between a cone, say

Q, and a corresponding translated cone, say Q+ x#. Thus, rather than think of cones

translated to x# ∈ S, we may instead think of these cones as associated with the trans-

lated set S − x#. See Figure 6.6. Since we restrict the usage of the term “cone” to the

setting in which the origin is included, the notion that a “cone” is made up of directions
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is justified; we might then say that a translated cone is made up of translated directions.

A discussion of “directions” as a class of objects distinct from a “vector starting at the

origin” can be found in [RW04].

6.3.1 The cone of directions that are “feasible” with respect to the

set S at the point x# ∈ S.

We will first consider the case of a generic set S . We then will consider how the

definition can be stated more simply when the set in question is a nonempty convex set

C.

First, we define the notion of a direction that is “feasible” (at the point x# ∈ S)

with respect to a generic set S.

Definition 49. We say that a direction d ∈ Rn is a feasible direction with respect to the

set S at the point x# ∈S if it is the case that seg [x#,x# + td]⊂S for some strictly positive

t ∈ R++.

Note that 0 is always a feasible direction from any x# ∈ S.
We can now define the cone of feasible directions.

Definition 50. We call the collection of all directions that are feasible with respect to a

generic set S at the point x# ∈ S the feasible cone (with respect to S at the point x# ∈ S),

denoted FS (x#)⊆ Rn. Explicitly,

FS (x#)
def
= {d ∈ Rn | seg [x#,x# + td]⊂ S for some t ∈ R++} .

We previously observed that 0 is always a feasible direction from any x# ∈ S .

If we begin with d ∈ FS (x#), considering d set
= αd and t set

= 1
α

t for some α ∈ R++,

immediately establishes that the set of all feasible directions is a cone (although it need

not be closed or convex). See Figure 6.4.

Roughly, we are saying that a direction d is feasible with respect to S at the

point x# ∈ S if we can travel from x# in the direction d to some other point in S without

ever leaving S along the way. This description emphasizes a method of “testing” a

direction to see if it satisfies the requirement for being a feasible direction. An alternative
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approach would be to consider the point of interest x# ∈ S, and then consider seg [x#,x%]

for some other x% ∈S; whenever seg [x#,x%]⊂S, we conclude that the direction aligned

with x%− x# is feasible with respect to S at the point x# ∈ S (and the direction aligned

with x#− x% is feasible with respect to S at the point x% ∈ S).

This segment-based description of feasible directions indicates that the charac-

terization of the cone of feasible directions can be more direct when the set in question

is convex (since a convex set contains the entire line segment joining any two points in

the set).

Proposition 2. For a nonempty closed convex set C, the feasible cone FC (x#) with re-

spect to C at the point x# ∈ C can be expressed as

FC (x#) = ccone(C − x#) .

When considering a convex set C, the feasible cone FC (x#) will always be a

convex cone; however, it need not be closed. See Figure 6.5 for an example.

Other terminology for the cone of feasible directions includes the radial cone,

the cone of interior directions, and the cone of attainable directions. It is sometimes

indirectly referred to as “the cone generated by the set C − x#”.

6.3.2 The cone of directions that are “tangent” with respect to the

set S at the point x# ∈ S.

For a nonconvex set S, the notion of a direction being “tangent” with respect

to the set S at the point x# ∈ S requires careful consideration. There are a number

of possible alternative definitions, each of which is defined in terms of some limiting

sequence (or limiting sequences). In the general case of nonconvex S, these definitions

can lead to significantly different sets; fortunately, when we consider a convex set, say C,
all of these definitions coincide. Not only do the various definitions of tangent direction

coincide, it further turns out that the set of all directions that are “tangent” with respect

to a convex set C at the point x# ∈ C has a notably direct characterization:

Definition 51. Consider a nonempty closed convex set C ⊆ Rn and a point x# ∈ C. We

associate with any such set C and point x# ∈ C a set in Rn called the tangent cone to the
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Figure 6.4: The cone FC (x1) of directions that are feasible with respect to the convex
set C at the point x1 ∈ C (translated to the point x1 at which it is calculated). Note that
the “upper boundary ray” is not included as a feasible direction. (After [Rus06]).

Figure 6.5: An example of a nonclosed feasible cone for a nonempty closed bounded
convex set. (After [Ber09]).
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Figure 6.6: The tangent cone and normal cone to a convex set C at a point x0 ∈ C. We
also emphasize the alternate means of illustrating tangent and normal cones: as cones
or as “translated cones”. (After [Aub98]).

convex set C at the point x# ∈ C (or the cone of directions that are “tangent” with respect

to the convex set C at the point x# ∈ C), denoted TC (x#)⊂ Rn and characterized via the

expression

TC (x#)
def
= cl FC (x#)

= cl ccone(C − x#) .

See Figure 6.6 for an illustration of a tangent cone. We have directly defined

the cone of tangent directions above, rather than first defining the notion of tangent

direction. Roughly, we may say that a direction d is a tangent direction to the convex

set C at the point x# ∈ C if it can be expressed as the limit of a sequence of feasible

directions (to C at x# ∈ C). See Figure 6.7 for an example of the distinction between

tangent cone and feasible cone.

The subtleties involved in defining tangent cones (and normal cones) to arbi-

trary sets are comprehensively discussed in [AF08]; specifically, they discuss the Clarke

tangent cone (or circatangent cone), the contingent cone (or Bouligand tangent cone),

the convex kernel of the contingent cone, the intermediate cone (or adjacent cone or

derivable cone), and the paratingent cone. A less comprehensive but somewhat more

accessible discussion can be found in [HUL93a]. When using a definition of tangent
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Figure 6.7: The tangent cone to C at x0 ∈ C is the closure of the feasible cone to C at
x0 ∈ C. (After [BNO03].

cone that yields convexity (either by virtue of its definition or because of the character-

istics, e.g. regularity, of the set S at the point x# ∈ S), an associated normal cone can be

satisfactorily defined as the polar cone of the tangent cone. In less favorable situations,

the definition of normal cone again requires additional care. By restricting our attention

to nonempty convex sets, we need not address these complications. The terminology for

the tangent cone of a nonempty convex set is fairly uniform; however, [SW70] introduce

the notion of a “supporting cone” that (in specific settings) coincides with the tangent

cone.

6.3.3 The cone of vectors that are “normal” with respect to the set

S at the point x# ∈ S.

In our discussion of tangent cones, we restricted our attention to the setting of

nonempty convex sets; we continue this in our discussion of normal cones.

Definition 52. We say that a vector s ∈Rn∗ is a normal vector to the convex set C ⊆Rn

at the point x# ∈ C when

〈s,x− x#〉 ≤ 0 for all x ∈ C.

In words, we can say that a vector is normal to the convex set C at the point x# if

it makes an obtuse angle with every direction that is feasible with respect to C at x# ∈ C.
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When C is smooth at x# ∈ C, the feasible directions form a halfspace and the normal

cone reduces to a single vector (orthogonal to the boundary of the feasible direction

halfspace).

The normal cone is defined as the collection of all normal vectors:

Definition 53. We call the collection of all vectors that are normal to the convex set C
at the point x# ∈ C the normal cone (to C at x# ∈ C), denoted NC (x#)⊆ Rn∗. Explicitly,

NS (x#)
def
= {s ∈ Rn∗ | 〈s,x− x#〉 ≤ 0 for all x ∈ C} .

We can interpret this definition in terms of a polar cone to the translated set C −
x#. In particular, note that x ∈ C corresponds to x−x# ∈ C−x#; introducing the notation

d set
= x− x# and Cshft

set
= C − x#, we observe that as x ranges over C, the corresponding

vector d set
= x− x# ranges over Cshft

set
= C− x#. In the language of this additional notation,

we find

〈s,x− x#〉 ≤0 for all x ∈ C

becomes

〈s,d〉 ≤0 for all d ∈ C− x#.

Thus we find

NS (x#)
def
= {s ∈ Rn∗ | 〈s,x− x#〉 ≤ 0 for all x ∈ C}

= {s ∈ Rn∗ | 〈s,d〉 ≤ 0 for all d ∈ C− x#} .

We now observe that the set {s ∈ Rn∗ | 〈s,d〉 ≤ 0 for all d ∈ C− x#} (of all vec-

tors s ∈ Rn∗ satisfying the requirement for being a normal vector to C at x# ∈ C) is

precisely the definition of the polar cone plrc(C − x#) associated with the set C − x#;

explicitly we are recalling that

plrc(C − x#)
def
= {s ∈ Rn∗ | 〈s,d〉 ≤ 0 for all d ∈ C− x#} .

Thus, our explicit observation is

NS (x#) = plrc(C − x#) .
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Figure 6.8: Normal cones for various convex sets. (After [Ber09]).

As a polar cone, the normal cone is a cone formed by the intersection of closed convex

sets (closed halfspaces), and thus is itself a closed convex cone.

Finally, note that the polar cone of C − x# coincides with the polar cone of

ccone(C − x#) and with the polar cone of cl ccone(C − x#) ; since our definition of the

tangent cone to C at x# ∈ C is TC (x#)
def
= cl ccone(C − x#) this means that we have

NS (x#) = plrc(C − x#)

= plrc(ccone(C − x#))

= plrc(cl ccone(C − x#))

= plrcTC (x#) .

Since both the tangent cone TC (x#) and the normal coneNC (x#) are closed con-

vex cones, they are thus cones that are mutually polar.

The normal cone is sometimes described as the cone of supporting functionals

[Van84].



Chapter 7

Functions associated with sets

7.1 Introduction

We now encounter our (essentially) initial instance of a “primal” representation

of an object (such as a set or a function) versus a “dual” representation of that object. In

the present chapter, the objects in question are sets; the “primal” representation of the set

is in terms of the indicator function of the set, while the “dual” representation of the set

is in terms of the support function (or, more explicitly, supporting hyperplane function)

of the set. When the set in question is the epigraph of a function, we will subsequently

see how the “dual” representation of the epigraph of a function relates to the notion of

(Fenchel) conjugacy; other connections lead to the subdifferential set and to the normal

cone of the epigraph at a specified point.

This material is standard; typical references include [BV04, RW04, Rus06, Ber09,

HUL93a, HUL93b].

7.2 Indicator function of an arbitrary set

We now introduce the notion of an indicator function of an arbitrary set. We may

think of the indicator function of a set as a means of representing a set by a function.

More specifically, the indicator function of a set can be described as a “primal” func-

tional representation of the set. This is in contrast to the support function introduced

69
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Figure 7.1: Indicator function of a convex set.

below, which we would analogously describe as a “dual” functional representation of

the set. When the indicator function evaluates to the finite value 0, we know that the

corresponding (primal) element argument is a member of the set. When the support

function evaluates to a finite value, we know that the corresponding (dual) element ar-

gument is the “slope”/“normal vector” for some hyperplane that supports (the convex

hull of) the set (and the specific finite value returned completes the description of that

supporting hyperplane).

Definition 54 (Indicator function). With any arbitrary nonempty set S ⊆ Rn we asso-

ciate an extended-real-valued function called the indicator function of the set S. The

indicator function of an arbitrary set S is denoted IS (·) : Rn→ R∪{+∞} and defined

via the expression

IS (x)
def
=

0 when x ∈ S

+∞ when x /∈ S.

A typical indicator function is illustrated in Figure 7.1.

The epigraph of the indicator function consists of all half-lines starting at (x,0)∈
S ×{0} and extending upward to +∞. Explicitly, epi IS (·) = S × [0,+∞) . See Figure

7.2.

The indicator function of a nonempty set is a proper extended-real-valued func-

tion.
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Figure 7.2: Epigraph of the indicator function of a convex set. (After [Luc06]).

The indicator function of a nonempty convex set is a proper convex extended-

real-valued function.

The indicator function of a nonempty closed convex set is a closed proper convex

extended-real-valued function.

We will later devote particular attention to the indicator function of a closed

convex function and to the indicator function of a unit norm ball.

Alternative notations for the indicator function of a set S include δS (·) [Ber09],

ιS (·) [BC11], ψS (·) [Aub98], and χS (·) [Sin06].

An alternative term for the indicator function of a set is the “characteristic func-

tion” of that set [Aub98].

7.3 Support function of an arbitrary set

We now come to the notion of a support function that we may associate with

any arbitrary set; a more fully descriptive name for the support function might be the

“supporting hyperplane function” (an even more fully descriptive name would be “a
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function by which we can specify a particular ’supporting’ member of the family of

hyperplanes with (shared) normal vector provided as the input argument”).

As we discussed above, the support function associated with an arbitrary set is a

means of representing a set (or more specifically, the closed convex hull of that set) in

the form of a function. We have also mentioned that the support function is a “dual”-type

function representation: we provide a dual vector s and the support function returns the

scalar specifying a hyperplane with “normal” s that supports the set; if the set extends

without bound in the direction corresponding to s, the support function returns +∞.

In contrast to the “primal”-type function representation provided by the indica-

tor function, we may view definition of the support function as containing “built-in”

convexification of the set; one manifestation of this convexification is that the support

function associated with a set coincides with the support function of the convex hull of

the set, and also coincides with the support function associated with the closure of the

convex hull of the set.

Definition 55 (Support function). With any arbitrary nonempty set S ⊆Rn we associate

an extended-real-valued function called the support function of the set S. The support

function of an arbitrary set S is denoted σS (·) : Rn∗→ R∪{+∞} and defined via the

expression

σS (s)
def
= supremum

x∈Rn
{〈s,x〉 | x ∈ S} .

When 0 ∈ K, it will be the case that σK (·)≥ 0 for all arguments.

Alternative notations for the support function of a set S include I∗S (·) [Roc70],

hS (·) [Lue69], HS (·) [Bar92] and sS (·).

7.4 Distance function associated with a convex set (and

a generic norm)

As its name suggests, the distance function associated with a convex set mea-

sures how far the provided argument is from the convex set, as measured by some yard-

stick function (the 2-norm is the most typical yardstick function, but we will state the

definition for a generic norm).
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Figure 7.3: One evaluation (for the argument s0 ∈ R∗) of the support function σC (·) of
the nonempty closed convex set C; note the corresponding halfspace containing C.

Definition 56. Consider a nonempty convex set C ⊂ Rn. The ‖·‖�-norm distance func-

tion (using a generic norm ‖·‖� : Rn→ R to measure distance to the set C) is a real-

valued function denoted distC,� (·) : Rn→ R and defined via the expression

distC,� (x#)
def
= infimum

x∈Rn
{‖x#− x‖� | x ∈ C} .

7.5 Gauge function associated with a convex set contain-

ing the origin

Whereas a distance function begins with convex set and a yardstick (e.g. the

2-norm) and then uses that yardstick function to measure distance with respect to that

set, the gauge function takes some convex set (which, for reasons discussed below, we

require to contain the origin) and uses that set to define a yardstick. That is, we use the

specified set as a means of “gauging” distance from the origin.

Definition 57. Consider a closed nonempty convex set C ⊂ Rn containing the origin;

that is, 0 ∈ C. The gauge function associated with any such set C is an extended-real-
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valued function denoted γC (·) : Rn→ R∪{+∞} and defined via the expression

γC (x)
def
= infimum

λ∈R++

{λ | x ∈ λC} .

In words: when called with the argument x ∈ Rn, the gauge function associated

with C returns the (infimum of the) amount of scaling needed so that x is contained in

the scaled version of C.
Gauge functions can be seen as a generalization of the concept of norm, in the

sense that we can express any norm as a gauge function: usingB�
def
= {x ∈ Rn | ‖x‖� ≤ 1}

to denote the unit ball of the ‖·‖�-norm, we see that the ‖·‖�-norm can be expressed as

the gauge function of the unit ball B�: explicitly, ‖·‖� = γB� (·) .
For any closed nonempty convex set C the associated gauge function γC (·) is

convex. More specifically, γC (·) is sublinear (nonnegatively homogeneous and subadd-

itive).

Whenever x ∈ C, the corresponding value of the gauge function does not exceed

1: γC (x)≤ 1 if and only if x ∈ C.

When the set C is absorbing 1 we can say more:

For C absorbing, whenever x ∈ int C, the corresponding value of the gauge func-

tion is strictly less than 1: γC (x)< 1 if and only if x ∈ int C.

We also note that when C is absorbing, the associated gauge function γC (·) is

finite for all arguments.

Alternative terms for the gauge function include the Minkowski gauge, the Min-

kowski functional [Lue69], the Minkowski distance function [Lay82], the calibration

function [IT68], and the distance function [Ben66].

Alternative notations for the gauge function include pC (·) , ρC (·) , mC (·) , and

µC (·) .

1C absorbing means that the entire space can be expressed as X =
⋃

λ∈R+
λC
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Figure 7.4: The 2-level set of the gauge function γC (·) associated with the convex set C
(containing the origin). (After [Lue69]).



Chapter 8

Conjugacy in convex analysis

8.1 Introduction

Rockafellar [Roc70] makes the following very relevant observation:

There are two ways of viewing a classical curve or surface like a conic:
the “primal” view, as the locus of points or the “dual” view, as an envelope
of “tangents” (each tangent has a corresponding normal).

When we consider the strictly convex case there is a one-to-one relation-
ship between points and “tangents”; nonsmoothness will lead us to point-
to-set mappings relating points and “tangents”.

In Har-Peled [Har11], this relationship appears as duality between points and lines. In

Vasin and Eremin [VE09], this relationship appears as duality between forms of repre-

sentation of a (convex) set. In portions of the engineering literature, the correspondence

between points (primal) and tangents (dual) is referred to as the slope transform (or,

sometimes, as the maximum transform). In computer vision, this slope transform is also

referred to as the Hough line transform. In classical mechanics, this transform corre-

sponds to the Legendre transform (and the related notion of the fiber derivative) linking

the Lagrangian mechanics perspective and the Hamiltonian mechanics perspective. In

thermodynamics, this transform shifts the representation of the energy in terms of an

“extensive” variable to a representation of the energy in terms of the (conjugate) “inten-

sive” variable.

We have previously seen an instance of this duality in our two “complementary”

methods for describing a set by means of some associated function: the “primal”-type
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representation using the indicator function and the “dual”-type representation using the

support(ing hyperplane) function. We now consider “primal”-type (indicator function)

and “dual”-type (support function) representations of a very specific type of set: sets

corresponding to the epigraph of some function. When we consider our primal and dual

representations of the epigraph of a function we will find a wide range results referred

to collectively under the umbrella of “conjugacy”. We will initially establish results

explicitly stated for the epigraph, but we will soon move to directly state our results

in terms of the functions being considered. Finally, we have one additional aspect to

watch for: just as we observed when we discussed sets in general, we will find that

the “dual”-type representations here have convexity as part of their construction while

“primal”-type representations are only convex when considered for convex functions.

This material is standard; typical references include [BV04, Rus06, Ber09]and

especially [RW04, HUL93a, HUL93b].

8.2 Conjugate function definition via the support func-

tion of the epigraph of a function

First, consider an extended-real-valued function f (·) : Rn→ R∪{+∞}; recall

the definition of the epigraph epi f (·)⊂ Rn×R of any such function:

epi f (·) def
= {(x, t) ∈ Rn×R | t ≥ f (x)} .

Next, we state (in a slightly more convenient form) the definition of the support

function σS (·) : Rn∗×R∗→ R∪{+∞} associated with an arbitrary set S ⊂ Rn×R :

σS

([
v

u

])
def
= supremum x

t

∈Rn×R

{〈[
v

u

]
,

[
x

t

]〉
|

[
x

t

]
∈ S

}
.

In order to connect our support function characterization to the traditional defi-

nition of conjugacy, we must make an additional observation: specifically, recall that the

support function is nonnegatively homogeneous; explicitly, σS

(
α

[
v#

u#

])
is equal to
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ασS

([
v#

u#

])
for any nonnegative scaling α ∈ R+. For our current purposes, the

significance of this statement lies in observation that, so long as α ∈ R++ the hy-

perplane with normal vector

[
v

u

]
set
=

[
v#

u#

]
and scalar term σS

([
v#

u#

])
exactly

coincides with the hyperplane with normal vector

[
v

u

]
set
= α

[
v#

u#

]
and scalar term

ασS

([
v#

u#

])
; explicitly, we are stating the equality of the following two sets:

{[
x

t

]
∈ Rn×R |

〈[
v#

u#

]
,

[
x

t

]〉
= σS

([
v#

u#

])}

is equal to

{[
x

t

]
∈ Rn×R |

〈
α

[
v#

u#

]
,

[
x

t

]〉
= ασS

([
v#

u#

])}
.

So long as the normal vector in question does not correspond to a “vertical”

hyperplane, the scalar portion, the u ∈ R in

[
v

u

]
∈ Rn×R, will be nonzero; thus, for

any nonvertical hyperplane we can choose to consider the specific scaled normal vector

for which the scalar portion equals−1. With this scaling argument in mind, we consider

the “scaled” support function σepi f (·) (·) : Rn∗×R∗ → R∪{+∞} of the epigraph of
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the extended-real-valued function f (·) to be

σepi f (·)

([
s

−1

])
def
= supremum x

t

∈Rn×R

{〈[
s

−1

]
,

[
x

t

]〉
|

[
x

t

]
∈ epi f (·)

}

= supremum x

t

∈Rn×R

{〈[
s

−1

]
,

[
x

t

]〉
| t ≥ f (x)

}

= supremum x

t

∈Rn×R

{〈s,x〉− t | t ≥ f (x)}

= supremum x

t

∈Rn×R

{〈s,x〉− t | − t ≤− f (x)}

= supremum
x∈Rn.

{〈s,x〉− f (x)} .

This last expression is the standard definition for value of the conjugate function evalu-

ated for argument s ∈ Rn.

We will next consider an argument emphasizing supporting affine minorants that

turns out to coincide (although in different language) with the support function argument

described above.

8.3 Conjugate function definition via supporting affine

minorants

From the locus-of-points versus envelope-of-tangents view described in the in-

troduction, our process of establishing a connection between a “primal” locus-of-points

view of a function and a “dual” envelope-of-tangents view of the same function could

be expected to begin from either a point or a slope. When the function in question is

smooth, starting from some point in the graph of the function is a natural approach (pur-

sued via the derivative). However, when we consider nonsmooth functions, the standard
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Figure 8.1: Relating the conjugate function of f (·) to the support function of the epi-
graph of f (·) . (After [HUL93b]).

definition of the derivative breaks down and we are instead motivated to consider an

approach that begins by considering a possible “slope” that could be possessed by some

affine minorant to the function.

More specifically, our process begins by considering a possible slope s and then

asking: does there exist any affine minorant (with slope s ∈ Rn∗) to the function f (·)?
For the absolute value function, the answer would be “no” if we asked whether there

was an affine minorant with slope s set
= 2, (or any slope in the range (−∞,1)∪ (1,+∞))

but “yes” if we asked whether there was an affine minorant with slope s set
= 1 (or any

slope in the range [−1,1]).

If there does exist some slope-s affine minorant to f (·), we proceed by asking

“what is the maximum value of the associated bias term b such that the affine function

`s,b (x) = 〈s,x〉+b is still an affine minorant”? Suppose that bmax is that maximum bias.

Then the affine minorant `s,bmax (·) will support epi f (·) at one or more points (otherwise

we could increase the bias until the minorant did support the epigraph). Call some such

point of support (x@, f (x@)) . If f (·) is differentiable at x@, f (·) will have slope s at

x@. We illustrate supporting affine minorants in Figure 8.2.

This process is encapsulated in the following questions:

1. For which “slope” vectors s ∈ Rn∗ do affine minorants of the form `s,b (x) =
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Figure 8.2: Illustrating the supporting affine minorant characterization of convexity.

〈s,x〉+b exist?

2. Out of all slope-s affine minorants to f (·) , is there finite supremum of the associ-

ated bias values b?

3. Is it possible to represent f (·) as a pointwise supremum of all possible affine

minorants, that is, over all possible “slope” vectors s ∈ Rn∗?

This last point is precisely the “dual” envelope-of-tangents perspective.

We will see how the process considered above leads us to the notion of a conju-

gate function. We will begin with the standard definition and then see how this definition

corresponds to the questions we have asked above.

Definition 58. Conjugate function. Consider a proper extended-real-valued function

f (·) : Rn→ R∪{+∞}. Associated with such any such function we have the conjugate

function, denoted f ∗ (·) : Rn∗→ R∪{+∞} and defined via the expression

f ∗ (s) def
= supremum

x∈Rn
{〈s,x〉− f (x)} .

At the moment, the connection between the process described above and the

definition of the conjugate function may be somewhat unclear. However, we can see how
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our the the process of determining a supporting affine minorant leads to this definition

as follows:

The problem we are motivated by is

supremize
b∈R

b

subject to 〈s,x〉+b≤ f (x) for all x ∈ Rn.

Or, to more explicitly emphasize the “affine minorant” aspect of our process

supremize
b∈R

b

subject to
{
`s,b (·)

set
= 〈s, ·〉+b

}
minorize f (·) .

If no affine minorant with slope s exists for the function f (·) , then the supremal value b?

will equal−∞; this possible outcome is in fact the reason that we have written “suprem-

ize” rather than “maximize”.

If an affine minorant with slope s for the function f (·) does exist, then the supre-

mal value b? will be finite; we then define the value of the conjugate function f ∗ (·) at

argument s as f ∗ (s) set
= −b?.

To get from the motivating problem to the standard definition of the conjugate

function, we reformulate the problem with variable a set
= −b.

supremize
a∈R

−a

subject to 〈s,x〉−a≤ f (x) for all x ∈ Rn,

which leads to

infimize
a∈R

a

subject to 〈s,x〉−a≤ f (x) for all x ∈ Rn,

and thence to

infimize
a∈R

a

subject to 〈s,x〉− f (x)≤ a for all x ∈ Rn.
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Note that in the alternative formulation immediately above, if no affine minorant

with slope s exists for the function f (·) , then the infimal value a?will equal +∞; this

means that our definition of conjugate will lead to a potentially extended-real-valued

function.

This last formulation can now be connected to the conventional definition of the

conjugate. In order for a to be feasible, we must satisfy 〈s,x〉− f (x)≤ a for all x ∈ Rn;

this condition comes directly from the requirement that `s,−a (·)
set
= 〈s, ·〉 − a minorize

f (·). An alternative means of finding the smallest a that is still feasible, we can instead

ask “What is the largest value of 〈s,x〉− f (x) over all x ∈ Rn? That value will coincide

with the smallest feasible value for a.” This is precisely the conventional definition of

the value of the conjugate f ∗ (·) for the argument s:

f ∗ (s) def
= supremum

x∈Rn
{〈s,x〉− f (x)} .

This process is somewhat roundabout, but does lead to a conjugate function that is a

convex function in the “slope” argument s ∈ Rn∗. To see that this is the case, observe

that f ∗ (·) is defined as a pointwise supremum of convex functions — more precisely, as

a pointwise supremum of the affine-in-s functions 〈s,x〉− f (x). Moreover, the argument

establishes that the conjugate function f ∗ (·) is a convex function of s whether or not f (·)
is a convex function of x, since 〈s,x〉− f (x) is affine in s whether or not f (·) is a convex

function in x. This is an instance of the “convexity by construction” that we observed

for “dual”-type representations.

In Figure (8.3) we can see dom f ∗ (·), the set of slopes s ∈ Rn∗ for which f ∗ (s)

is finite. Note that dom f ∗ (·) is determined by the behavior of f (·) “at infinity” (or “at

the boundary of dom f (·)”, for the case of “barrier” functions as used in interior point

methods).

Informally, dom f ∗ (·) is the answer to the question “which slopes occur for

f (·)?” — that is, dom f ∗ (·) consists of the slopes s ∈ Rn∗ for which the supremum

〈s,x〉− f (x) is finite. Another restatement would be dom f ∗ (·) consists of the slopes s∈
Rn∗ for which the difference 〈s,x〉− f (x) is bounded above over all x ∈ Rn. Slopes that

“don’t occur” lead to f ∗ (s) = +∞; for slopes that “do occur”, consider x@ ∈ dom f and

any associated subgradient s@ ∈ ∂ f (x@) . The corresponding affine minorant f (x@)+

〈s@,x− x@〉 supports epi f (·) at (x@, f (x@)) , leading to the observation that f ∗ (s@) =
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Figure 8.3: One evaluation of a conjugate function.

Figure 8.4: Correspondence between a function and its conjugate by repeated point-line
conjugacy. (After [RW04]).
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〈s@,x@〉− f (x@) for the slope s@. This follows because s@ ∈ ∂ f (x@) tells us that there

exists a slope-s@ affine minorant for f (·) . Thus, we can go from the supremum form

f ∗ (s@)
def
= supremum

x∈Rn
{〈s@,x〉− f (x)} to the maximum form f ∗ (s@)

def
= maximum

x∈Rn

{〈s@,x〉− f (x)} . Continuing, we observe that x@ = argmax
x∈Rn

{〈s@,x〉− f (x)} so that

we can plug in this attaining argument to find f ∗ (s@)
def
= maximum

x∈Rn
{〈s@,x〉− f (x)}=

〈s@,x@〉− f (x@) as previously claimed.

Remark. For finite, coercive, convex, twice continuously differentiable functions f (·)
with Hessian everywhere positive definite, the conjugacy operation defined above co-

incides with the “classical” Legendre transform [RW04]; however, the conjugacy op-

eration above remains valid even in settings where the requirements for the classical

Legendre transform definition do not hold. The conjugacy operation is called the Young

transform in [IT68]. The conjugacy operation (although with a focus on concavity in-

stead of convexity) is called the maximum transform in [BK61, BK62]. A closely related

idea in mathematical morphology is the slope transform [DV94, Mar95]. The conjugate

function is called the polar function in [Mor67, ET99]; other common descriptions for

the conjugate function include the Fenchel conjugate, the Legendre-Fenchel conjugate,

and the dual function. In some references, e.g. [BL06, Sin06], a (closely-related) defini-

tion is given for a concave conjugate function (differing essentially in replacing supre-

mum by infimum); in such settings the definition above is distinguished by being called

the convex conjugate function. Luenberger [Lue69] uses the term conjugate concave

function instead of concave conjugate function.

In some application-oriented references the conjugate of f (·) is denoted by

f ? (·) instead of f ∗ (·) ; we prefer to keep a superscript “∗” as an indication of con-

jugacy/duality and to use a superscript “?” as an indication of argument optimality in

optimization problems.
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8.4 Basic Properties of the Conjugate

8.4.1 Fenchel-Young inequality

Note that the definition f ∗ (s) def
= supremum

x∈Rn
{〈s,x〉− f (x)} immediately yields

the Fenchel-Young inequality

f (x)+ f ∗ (s)≥ 〈s,x〉 ,

for all x ∈ Rn, s ∈ Rn∗.

This is because

f ∗ (s) def
= supremum

x∈Rn
{〈s,x〉− f (x)} ,

which by the definition of supremum means that

f ∗ (s)≥ 〈s,x〉− f (x) for all x ∈ Rn, s ∈ Rn∗.

We then get the Fenchel-Young inequality by adding f (x) to both sides:

f ∗ (s)+ f (x)≥ 〈s,x〉 for all x ∈ Rn, s ∈ Rn∗.

We illustrate examples of strict inequality in Figure 8.5; the case of equality is

found in Figure 8.6.

8.4.2 The case of equality in the Fenchel-Young inequality

We first recall the definitions of subgradient and subdifferential.

Definition 59. For a closed proper convex extended-real-valued function f (·) : Rn→
R∪{+∞} we say that s ∈ Rn∗ is a subgradient of f (·) at the point x# ∈ Rn when

f (x)≥ f (x#)+ 〈s,x− x#〉 for all x ∈ Rn.

The subdifferential is the collection of all subgradients:

Definition 60. For a closed proper convex extended-real-valued function f (·) : Rn→
R∪ {+∞} the collection of all subgradients of f (·) at the point x# ∈ Rn is a set in
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Figure 8.5: Connecting a function, its subdifferential, the subdifferential of the con-
jugate, the conjugate, and the Fenchel-Young inequality: examples of strict inequality.
(After [AN09]).

Figure 8.6: Connecting a function, its subdifferential, the subdifferential of the conju-
gate, the conjugate, and the Fenchel-Young inequality: the case of equality.
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Rn∗ called the subdifferential of f (·) at x#, denoted ∂ f (x#) ⊂ Rn∗ and defined via the

expression

∂ f (x#)
def
= {s ∈ Rn∗ | f (x)≥ f (x#)+ 〈s,x− x#〉 for all x ∈ Rn} .

The language remains the same when we consider the conjugate function:

Definition 61. For a closed proper convex extended-real-valued function f ∗ (·) : Rn∗→
R∪{+∞} we say that x ∈ Rn is a subgradient of f ∗ (·) at the point s$ ∈ Rn∗ when

f ∗ (s)≥ f ∗ (s$)+ 〈s− s$,x〉 for all s ∈ Rn∗.

and

Definition 62. For a closed proper convex extended-real-valued function f ∗ (·) : Rn∗→
R∪{+∞} the collection of all subgradients of f ∗ (·) at the point s$ ∈ Rn∗ is a set in

Rn called the subdifferential of f ∗ (·) at s∗, denoted ∂ f ∗ (s∗) ⊂ Rn and defined via the

expression

∂ f ∗ (s$)
def
= {x ∈ Rn | f ∗ (s)≥ f ∗ (s$)+ 〈s− s$,x〉 for all s ∈ Rn∗} .

For a closed proper convex function extended-real-valued function f (·), the case

of equality in the Fenchel-Young inequality corresponds to a characterization of mem-

bership in the subdifferential:

Proposition 3 (Subdifferentials and conjugacy). Consider a closed proper convex ex-

tended real valued function f (·) : Rn→ R∪{+∞}. For any such a function we have

the following equivalences:

[s ∈ ∂ f (x)]⇐⇒ [ f (x)+ f ∗ (s) = 〈s,x〉]⇐⇒ [x ∈ ∂ f ∗ (s)] .

Proof. We first demonstrate that [s ∈ ∂ f (x)] =⇒ [ f (x)+ f ∗ (s) = 〈s,x〉]. Suppose that

s$ ∈ Rn∗ and x# ∈ Rn are such that s$ ∈ ∂ f (x#) . From the definition of s$ ∈ ∂ f (x#) we

have

f (x)≥ f (x#)+ 〈s$,x− x#〉 for all x ∈ Rn.
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We observe that

f (x)≥ f (x#)+ 〈s$,x− x#〉 for all x ∈ Rn

f (x)≥ f (x#)+ 〈s$,x〉−〈s$,x#〉 for all x ∈ Rn

〈s$,x#〉− f (x#)≥ 〈s$,x〉− f (x) for all x ∈ Rn.

The preceding statement 〈s$,x#〉 − f (x#) ≥ 〈s$,x〉 − f (x) for all x ∈ Rn means that

〈s$,x#〉 − f (x#) is an upper bound for 〈s$,x〉 − f (x) over x ∈ Rn; we can see that

〈s$,x#〉− f (x#) is in fact the least upper bound because 〈s$,x〉− f (x) attains the up-

per bound for the choice x set
= x#. Our conclusion that 〈s$,x#〉− f (x#) is the least upper

bound for 〈s$,x〉− f (x) over x ∈ Rn can be explicitly written

〈s$,x#〉− f (x#) = supremum
x∈Rn

{〈s$,x〉− f (x)} .

Recognizing that supremum
x∈Rn

{〈s$,x〉− f (x)} is the definition of f ∗ (s$), we have thus

established that

[s$ ∈ ∂ f (x#)] =⇒ [〈s$,x#〉− f (x#) = f ∗ (s$)]

which is only a slight re-expression of our desired goal.

We now demonstrate that [ f (x)+ f ∗ (s) = 〈s,x〉] =⇒ [s ∈ ∂ f (x)]. Suppose that

s$ ∈Rn∗ and x# ∈Rn are such that f (x#)+ f ∗ (s$) = 〈s$,x#〉 ; that is, such that 〈s$,x#〉−
f (x#) = f ∗ (s$) . Recalling again that f ∗ (s$) is defined as supremum

x∈Rn
{〈s$,x〉− f (x)}

we have

f ∗ (s$)
def
= supremum

x∈Rn
{〈s$,x〉− f (x)}

f ∗ (s$)≥ 〈s$,x〉− f (x) for all x ∈ Rn.

We have assumed that s$ ∈ Rn∗ and x# ∈ Rn are such that 〈s$,x#〉− f (x#) = f ∗ (s$) and

thus we can continue from the preceding inequality to find

f ∗ (s$)≥ 〈s$,x〉− f (x) for all x ∈ Rn

〈s$,x#〉− f (x#) = f ∗ (s$)≥ 〈s$,x〉− f (x) for all x ∈ Rn

〈s$,x#〉− f (x#)≥ 〈s$,x〉− f (x) for all x ∈ Rn

f (x)≥ f (x#)+ 〈s$,x− x#〉 for all x ∈ Rn.
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We recognize the final inequality as the definition of s$ ∈ ∂ f (x#) . Thus, we have estab-

lished that [〈s$,x#〉− f (x#) = f ∗ (s$)] =⇒ [s$ ∈ ∂ f (x#)] . In summary, we have shown

the equivalence [s$ ∈ ∂ f (x#)]⇐⇒ [ f (x#)+ f ∗ (s$) = 〈s$,x#〉] .
We next show that, by virtue of our assumption that f (·) is a closed proper con-

vex extended-real-valued function, we can establish an additional equivalence, for the

final claimed result [s$ ∈ ∂ f (x#)]⇐⇒ [ f (x#)+ f ∗ (s$) = 〈s$,x#〉]⇐⇒ [x# ∈ ∂ f ∗ (s$)] .

Introduce the notation g(·) set
= f ∗ (·) . Reasoning identical to that above demon-

strates that [x# ∈ ∂g(s$)] ⇐⇒ [g∗ (x#)+g(s$) = 〈s$,x#〉] . From our assumption that

f (·) is a closed proper convex extended-real-valued function we have that f (·)= f ∗∗ (·) ;

expressed in the notation g(·) set
= f ∗ (·) this means f (·) = f ∗∗ (·) = g∗ (·). The fact that

g∗ (·) = f (·) means that we have

[x# ∈ ∂g(s$)]⇐⇒ [g∗ (x#)+g(s$) = 〈s$,x#〉]

[x# ∈ ∂ f ∗ (s$)]⇐⇒ [ f ∗∗ (x#)+ f ∗ (s$) = 〈s$,x#〉]

[x# ∈ ∂ f ∗ (s$)]⇐⇒ [ f (x#)+ f ∗ (s$) = 〈s$,x#〉] .

Combined with the previous equivalence, we have established the desired result:

[s$ ∈ ∂ f (x#)]⇐⇒ [ f (x#)+ f ∗ (s$) = 〈s$,x#〉]⇐⇒ [x# ∈ ∂ f ∗ (s$)] .

The implication of

[ f (x#)+ f ∗ (s$) = 〈s$,x#〉]⇐⇒ [s$ ∈ ∂ f (x#)]

is that the pairs (x,s) ∈ Rn×Rn∗ for which we have equality in the Fenchel-Young

inequality correspond precisely to gr ∂ f (·) , the graph of the subdifferential of f (·) .
The implication of

[(x,s) ∈ ∂ f ]⇐⇒ [(s,x) ∈ ∂ f ∗]

is that we can form gr ∂ f ∗, the graph of the subdifferential of the conjugate function

f ∗ (·), from gr ∂ f , the graph of the subdifferential of the primal function f (·); more

specifically, every pair (x,s) ∈ ∂ f corresponds to a pair (s,x) ∈ ∂ f ∗.

We illustrate the result

[(x,s) ∈ ∂ f ]⇐⇒ [(s,x) ∈ ∂ f ∗]
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Figure 8.7: Illustrating [(x,s) ∈ ∂ f ]⇐⇒ [(s,x) ∈ ∂ f ∗] . (After [HUL93a]).

in Figure 8.7.

The symmetry present in the expression [(x,s) ∈ ∂ f ]⇐⇒ [(s,x) ∈ ∂ f ∗] is some-

times written as ∂ f ∗ = [∂ f ]−1. This “inverse” notation emphasizes that we go from ∂ f

to ∂ f ∗ by exchanging x and s; examples of this “inversion”/“argument flipping” process

can be seen in the relationship between a function f (·) and the corresponding conju-

gate function f ∗ (·) illustrated in Figures 8.8 and 8.9. This is also present in the earlier

illustration of the Fenchel-Young inequality 8.5.

8.4.3 Basic transformation results for the conjugate

We collect for later use a number of results describing how simple operations

applied to a function of interest are reflected in the conjugate of that function [HUL93b].

Proposition 4 (Basic results on the conjugate). The functions f (·) and the f j (·) appear-

ing below are assumed to be closed proper convex extended-real-valued functions

(1) The conjugate of the function g(x) set
= f (x)+α is g∗ (s) = f ∗ (s)−α.

(2) For any α ∈ R++, the conjugate of the function g(x) set
= α f (x) is g∗ (s) =

α f ∗
( 1

α
s
)
.
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Figure 8.8: Function to subdifferential to subdifferential of conjugate to conjugate:
f (x) set

= |x| . (After [Luc06]).
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Figure 8.9: Function to subdifferential to subdifferential of conjugate to conjugate:
f (x) set

= c1
2x2. (After [Luc06]).
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(3) For any nonzero scalar α 6= 0, the conjugate of the function g(x) set
= f (αx)

is g∗ (s) = f ∗
( 1

α
s
)
.

(4) A generalization of the above result is: if A is an invertible linear operator,

( f ◦A)∗ (·) = f ∗ ◦
(
A−1)∗ (·) .

(5) The conjugate of the function g(x) set
= f (x− x0) is g∗ (s) = f ∗ (s)+ 〈s,x0〉 .

(6) The conjugate of the function g(x) set
= f (x)+ 〈s0,x〉 is g∗ (s) = f ∗ (s− s0) .

(7) If f1 (·)≤ f2 (·) then f ∗1 (·)≥ f ∗2 (·) .
(8) “Convexity” of the conjugation: If dom f1 (·)∩ dom f2 (·) 6= /0 and if α ∈

(0,1) , we have

[(1−α) f1 (·)+α f2 (·)]∗ (·)≤ (1−α) f ∗1 (·)+α f ∗2 (·)

(9) The Legendre-Fenchel transform preserves decomposition: Suppose that x ∈
Rn := Rn1×·· ·×Rnm, and “decomposable” objective function

f (x) set
=

m

∑
j=1

f j
(
x j
)
.

If we assume that Rn = Rn1×·· ·×Rnm has the scalar product of a product-space, then

the conjugate is

f ∗ (s1, . . . ,sm) =
m

∑
j=1

f ∗j
(
s j
)
.



Chapter 9

Convex analysis results: preliminaries

9.1 Introduction

In this chapter we direct attention to some specific examples of support functions

in contexts that occur frequently. This material is standard, but in many cases is relegated

to exercises only.

9.2 Support function examples

9.2.1 Support function of the empty set

For the empty set, S set
= /0, the associated support function σS (s) is the (improper)

function identically equal to −∞:

σS (s)
def
= supremum

x∈S
〈s,x〉 .

= supremum
x∈ /0

〈s,x〉

σ /0 (s) =−∞.

95
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9.2.2 Support function of Rn

The support function of Rn is the indicator function of the singleton set {0} :

σRn (·) = I{0} (·) .

9.2.3 Support function of a singleton set

For a singleton set S set
= {x#} , the associated support function σ{x#} (s) coincides

with “the scalar product of s with x#”:

σS (s)
def
= supremum

x∈S
〈s,x〉 .

= supremum
x∈{x#}

〈s,x〉

σ{x} (s) = 〈s,x#〉 .

This simplest example of this is σ{0} (·) = 0.

We will see later how this provides a perspective on the way in which the gradient

is the “singleton case” of the subdifferential.

9.2.4 Support function of a linear subspace

For an arbitrary linear subspace S set
= V the associated support function σV (s) is

IV⊥ (·) (the indicator function of the orthogonal subspace V⊥ associated with the sub-

space cone V):

σS (s)
def
= supremum

x∈S
〈s,x〉 .

= supremum
x∈V

〈s,x〉

=

+∞ when s /∈ V⊥

0 when s ∈ V⊥

σV (s) = IV⊥ (·) .
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9.2.5 Support function of an arbitrary cone

For an arbitrary cone S set
= Q the associated support function σQ (s) is Iplrc Q (·)

(the indicator function of the polar cone plrc Q associated with the cone Q):

σS (s)
def
= supremum

x∈S
〈s,x〉 .

= supremum
x∈Q

〈s,x〉

=

+∞ when s /∈ plrc K

0 when s ∈ plrc K

σQ (s) = Iplrc Q [·] .

To see this more clearly, let us recall the definition of the polar cone plrc Q
associated with the cone Q. Specifically

• s∈ plrc Qmeans 〈s,x〉 ≤ 0 for all x∈Q. Since 0∈ cl Q for any cone, we conclude

that s ∈ plrc Q implies that supremum
x∈Q

〈s,x〉= 0.

• s /∈ plrc Q means there exists at least one argument, say x> ∈ Q, for which

〈s,x>〉> 0; for specificity, introduce the notation b>
set
= 〈s,x>〉> 0. Since a cone

is a nonnegatively homogeneous set, we have that x> ∈Qmeans that λx> ∈Q for

any nonnegative scalar λ ∈ R+. Thus, we observe that since supremum
x∈K

〈s,x〉 ≥

supremum
λ∈R+

〈s,λx>〉 = supremum
λ∈R+

λb> = +∞, we are led to the conclusion that

s /∈ plrc Q implies that supremum
x∈K

〈s,x〉=+∞.

9.2.6 Support function of the polar set of a convex set that contains

the origin

Consider a nonempty convex set C ⊂ Rn containing the origin: 0 ∈ C. Denote

the polar set to C as plr C.

The support function of the polar set plr C coincides with the gauge function

γC (·) of the original set:

σplr C (x) = γC (x) .
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For more details, see [Lue69, page 142], [Roc70], [RW04], or [HUL93a].

9.2.7 Support function of a unit norm ball

For a norm ball S set
= B� the associated support function σB� (·) is ‖·‖∗ (the dual

norm to ‖·‖�):

σS (s)
def
= supremum

x∈S
〈s,x〉 .

= supremum
x∈B�

〈s,x〉

= supremum
x∈X

{〈s,x〉 | ‖x‖� ≤ 1}

σB� (s) = ‖s‖∗ .

9.2.8 Support function of the epigraph of an arbitrary function

We have already seen a relationship between (a slightly restricted version of) the

support function of the epigraph of an arbitrary function and the conjugate f ∗ (·) of that

function:

f ∗ (s) = σepi f (s,−1) = supremum
x,t∈Rn×R

{〈
s

−1
,

x

t

〉
| (x, t) ∈ epi f (·)

}
.

A more complete description of the support function of the epigraph of an arbi-

trary function is

σepi f (s,−α) =


α f ∗

( 1
α

s
)

when α ∈ R++

σepi f (s,0) = σdom f (s) when α = 0

+∞ when α ∈ R−−.

See [HUL93b] for more details.



Chapter 10

Convex analysis results on Fenchel

conjugates

10.1 Introduction

In this section we direct attention to convex analysis results for several specific

functions that occur frequently in applications. Specifically, we consider Fenchel con-

jugacy results for a wide range of basic functions that occur in common practice. This

material is standard, but is usually relegated to exercises. Typical references include

[Rus06, BV04, RW04, Ber09, HUL93a, HUL93b].
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10.2 Fenchel conjugates

10.2.1 Conjugate of a linear function

Consider the linear function f (·) set
= 〈s#, ·〉 : Rn→R. From the definition of the

Fenchel conjugate, we have

f ∗ (s) def
= supremum

x∈Rn
{〈s,x〉− f (x)}

= supremum
x∈Rn

{〈s,x〉− [〈s#,x〉]}

= supremum
x∈Rn

{〈s− s#,x〉}

=

0 when s = s#

+∞ when s 6= s#

= I{s#} (s) .

10.2.2 Conjugate of an affine function

Consider the affine function f (·) set
= 〈s#, ·〉−b$ : Rn→ R. From the definition

of the Fenchel conjugate, we have

f ∗ (s) def
= supremum

x∈Rn
{〈s,x〉− f (x)}

= supremum
x∈Rn

{〈s,x〉− [〈s#,x〉−b$]}

= supremum
x∈Rn

{〈s− s#,x〉+b$}

=

b$ when s = s#

+∞ when s 6= s#.

See Figure 10.1.
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Figure 10.1: Conjugate function of an affine function. (After [Ber09]).

10.2.3 Conjugate of absolute value

Consider the function f (·) set
= |·| : Rn→ R. From the definition of the Fenchel

conjugate, we have

f ∗ (s$)
def
= supremum

x∈Rn
{〈s$,x〉− f (x)}

= supremum
x∈Rn

{〈s$,x〉− |x|}

=−infimum
x∈Rn

{|x|− 〈s$,x〉}

=

0 when s ∈ [−1,1]

+∞ when s /∈ [−1,1] .

See Figure 10.2.
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Figure 10.2: Conjugate function of an affine function. (After [Luc06]).
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10.2.4 Conjugate of c · 1
2x2 for strictly positive c

Consider the function f (·) set
= c1

2x2 : Rn→R, with c∈R++. From the definition

of the Fenchel conjugate, we have

f ∗ (s$)
def
= supremum

x∈Rn
{s$x− f (x)}

= supremum
x∈Rn

{
s$x− c · 1

2
x2
}

=−infimum
x∈Rn

{
c · 1

2
x2− s$x

}
=−minimum

x∈Rn

{
c · 1

2
x2− s$x

}
=−c · 1

2

(
1
c

s$

)2

+ s$ ·
1
c

s$

=
1
c
· 1

2
s2

$.

See Figure 10.3.

10.2.5 Conjugate of the indicator function of a generic set

Consider a generic set S ⊆ Rn with associated indicator function IS (·) : Rn→
R∪{+∞}. The corresponding Fenchel conjugate I∗S (·) : Rn∗→ R∪{+∞} coincides

with σS (·) : Rn∗→ R∪{+∞}, the support function of the generic set S:

I∗S (s) = σS (s) .

Consider a generic set S ⊆ Rn. Recall that the indicator function of a set S is

defined as

IS (x)
def
=

0 when x ∈ S

+∞ when x /∈ S.

The definition of the Fenchel conjugate of a function f (·) : Rn→ R∪{+∞} is

f ∗ (s) def
= supremum

x∈Rn
{〈s,x〉− f (x)} .
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Figure 10.3: Conjugate function for f (x) set
= c1

2x2.
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For the specific case of f (·) set
= IS (·) we have

I∗S (s)
def
= supremum

x∈Rn
{〈s,x〉− IS (x)}

= supremum
x∈S

〈s,x〉

def
= σS (s) .

10.2.6 Conjugate of the indicator function of a closed convex set

The correspondence between closed convex sets and their corresponding support

functions is “imbedded” within Fenchel conjugacy:

when C is a closed convex set we have

IC (·)←→∗ σC (·)

I∗C (·) = σC (·)

σ
∗
C (·) = IC (·) .

Further, the following are all equivalent

s$ ∈NC (x#)

x# ∈ ∂σC (s$)

x# ∈ C and σC (s$) = 〈s#,x#〉

IC (x#)+ I∗C (s$) = 〈s$,x#〉

IC (x#)+σC (s$) = 〈s$,x#〉 .

See [RW04] for further discussion.

10.2.7 Conjugate of a positively homogeneous function

For a nonnegatively homogeneous function h(·) : Rn → R∪ {+∞} we have

h∗ (s) =

0 when 〈s,x〉 ≤ h(x) for all x ∈ Rn

+∞ when 〈s,x〉> h(x) for some x ∈ Rn
.
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Said slightly differently: for any nonnegatively homogeneous function (that is,

for any function whose epigraph is a cone), say h(·) : Rn→R∪{+∞}, the correspond-

ing Fenchel conjugate function is the indicator function of the set denoted U and given

by {s ∈ Rn∗ |s ∈ Rn∗ | 〈s,x〉 ≤ h(x) for all x ∈ Rn}.
Consider a nonnegatively homogeneous function h(·) : Rn→ R∪{+∞}.
We will show that

h∗ (s) =

0 when 〈s,x〉 ≤ h(x) for all x ∈ Rn

+∞ when 〈s,x〉> h(x) for some x ∈ Rn

=

0 when s ∈ U

+∞ when s /∈ U

= IU (s) ,

where U set
= {s ∈ Rn∗ | 〈s,x〉 ≤ h(x) for all x ∈ Rn} .

The definition of the Fenchel conjugate of a function f (·) : Rn→ R∪{+∞} is

f ∗ (s) def
= supremum

x∈Rn
{〈s,x〉− f (x)} .

For the specific case of f (·) set
= h(·) we have

h∗ (s) def
= supremum

x∈Rn
{〈s,x〉−h(x)} .

Suppose that s ∈ U .
In this case we have 〈s,x〉 ≤ h(x) for all x ∈ Rn, which implies that 〈s,x〉 −

h(x) ≤ 0 for all x ∈ Rn. Since 〈s,x〉− h(x) ≤ 0 for all x ∈ Rn and we can attain 0 with

the choice x set
= 0, since we then have〈s,0〉−h(0) = 0−0 = 0, we conclude that

when s ∈ U we have h∗ (s) def
= supremum

x∈Rn
{〈s,x〉−h(x)}= 0.

Suppose that s /∈ U .
This means that there exists some x∈Rn, say x>, such that 〈s,x>〉> h(x>) . This

in turn implies that 〈s,x>〉− h(x>) > 0; for convenience, let us introduce the notation

b>
set
= 〈s,x>〉− h(x>) > 0. We now recall that, because the function h(·) was assumed

to be nonnegatively homogeneous, we have h(λx>) = λh(x>) whenever λ ∈ R+. This
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in turn tells us that 〈s,λx>〉−h(λx>) = λ 〈s,x>〉−λh(x>) = λb> whenever λ ∈ R+.

We continue by observing that

when s /∈ U

we have, recalling that h∗ (s) def
= supremum

x∈Rn
{〈s,x〉−h(x)},

h∗ (s)≥ supremum
λ∈R+

{〈s,λx>〉−h(λx>)}= supremum
λ∈R+

λb =+∞.

We can summarize this as

when s /∈ U we have h∗ (s) def
= supremum

x∈Rn
{〈s,x〉−h(x)}=+∞.

Thus we have the claimed result:

h∗ (s) =

0 when 〈s,x〉 ≤ h(x) for all x ∈ Rn

+∞ when 〈s,x〉> h(x) for some x ∈ Rn

=

0 when s ∈ U

+∞ when s /∈ U

= IU (s) .

10.2.8 Conjugate of the indicator function of a generic cone

For a generic cone Q⊆ Rn, we have I∗Q (·) = IplrcQ (·) = σQ (·) .
That is, for a coneQ⊆Rn the conjugate of the indicator function IQ (·) : Rn→

R∪{+∞} is the indicator function of the corresponding polar cone.

10.2.9 Conjugate of the indicator function of a convex cone

For a convex cone K ⊆ Rn, we have I∗K (·) = Iplrc K (·) = σK (·) .
We will show that the conjugate of the indicator function of a convex cone K is

the indicator function of the polar cone plrc K; explicitly,

I∗K (·) = Iplrc K (·) .
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Consider a convex cone K ⊆ Rn and its indicator function

IK (·) def
=

0 if x ∈ K

+∞ if x /∈ K.

Let us calculate the conjugate of this indicator function, I∗K (·) . We have

I∗K (s) def
= supremum

x∈K
{〈s,x〉− IK (x)}

= supremum
x∈K

〈s,x〉

= σK (s) .

We claim that

supremum
x∈K

〈s,x〉= Iplrc K (s)

=

0 when s ∈ plrc K

+∞ when s /∈ plrc K

=

0 when 〈s,x〉 ≤ 0 for all x ∈ K

+∞ when 〈s,x〉> 0 for some x ∈ K.

Let us consider the two cases:

Case 1: suppose that s ∈ plrc K.
When s ∈ plrc K we have that 〈s,x〉 ≤ 0 for all x ∈ K. Moreover, for the choice

x set
= 0 we have 〈s,0〉= 0. From these observations we conclude that

when s ∈ plrc K

it is the case that

supremum
x∈K

〈s,x〉= 0.

Case 2: suppose that s /∈ plrc K.
This means that there exists some x ∈Rn, say x>, such that 〈s,x>〉> 0. For con-

venience, let us introduce the notation b>
set
= 〈s,x>〉> 0. We now observe that 〈s,λx>〉=

λ 〈s,x>〉= λb> > 0 whenever λ ∈ R++. We continue by observing that

when s /∈ plrc K
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we have

supremum
x∈K

〈s,x〉 ≥ supremum
λ∈R++

〈s,λx>〉= supremum
λ∈R+

λb> =+∞.

We can summarize this as

when s /∈ plrc K we have supremum
x∈K

〈s,x〉=+∞.

Thus we have the claimed result:

I∗K (s) =

0 when 〈s,x〉 ≤ 0 for all x ∈ Rn

+∞ when 〈s,x〉> 0 for some x ∈ Rn

=

0 when s ∈ plrc K

+∞ when s /∈ plrc K

= Iplrc K (s) .

That is, we have that I∗K (·) = Iplrc K (·) .

10.2.10 Conjugate of the indicator function of a generic norm unit

ball

We will show that the conjugate function, I∗B� (·) : Rn∗ → R, of the indicator

function of a generic ‖·‖�-norm unit ball is ‖·‖∗ : Rn∗→ R, the dual norm associated

with that generic norm:

I∗B� (s) = ‖s‖∗ .

Consider a generic norm in Rn, say ‖·‖� : Rn→R∪{+∞} . Consider B� ⊂Rn, the unit

‖·‖�-norm ball in Rn :

B�
def
= {x ∈ Rn | ‖x‖� ≤ 1} .

Recall that IB� (·) : Rn, the indicator function of the generic norm unit ball, is defined

as

IB� (x)
def
=

0 when ‖x‖� ≤ 1

+∞ when ‖x‖� > 1.
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The conjugate function to the indicator function of the generic norm unit ball, I∗B� (·) :

Rn∗→ R, has the form

I∗B� (s)
def
= supremum

x∈Rn
{〈s,x〉− IB� (x)}

= supremum
x∈Rn

{〈s,x〉 | x ∈ B�}

= σB� (s)

= supremum
x∈B�

〈s,x〉

= supremum
‖x‖�≤1

〈s,x〉 .

However, we note that this last expression is precisely the definition of the dual norm

‖s‖∗ . Thus, we have

I∗B� (s) = supremum
x∈B�

〈s,x〉= ‖s‖∗ .

so

I∗B� (s) = ‖s‖∗
= σB� (s) .

10.2.11 Conjugate of the support function of a generic set

Summary: σ∗S (s) = I∗∗S (s) = cl cvx IS (s) = Icl cvx S (s) .

Consider a generic set S ⊆ Rn. Recall that the support function of the set S is

denoted σS (s) : Rn∗→ R∪{+∞} and is defined via the expression

σS (s)
def
= supremum

x∈S
〈s,x〉 .

Slight reformulation of the expression above yields

σS (s)
def
= supremum

x∈S
〈s,x〉

= supremum
x∈Rn

{〈s,x〉 | x ∈ S}

= supremum
x∈Rn

{〈s,x〉− IS (x)}

= I∗S (s) .
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Thus, this demonstrates that the support function σS (·) of the set S coincides with the

conjugate function, I∗S (·), of the indicator function of the set S. From this observation

that

σS (·) = I∗S (·) ,

we further note that the conjugate σ∗S (·) of the support function of the set S is equal to

the biconjugate I∗∗S (·) : Rn→ R∪{+∞} of the indicator function of the set S:

σ
∗
S (·) = I∗∗S (·) .

By the Fenchel-Moreau Theorem (or the Biconjugate Function Theorem), we observe

that

epi I∗∗S (·) = cl cvx(epi IS (·))

= epi Icl cvx S (·) .

Combining this with our previous result, we have

σ
∗
S (·) = I∗∗S (·)

= Icl cvx S (·) .

That is, if the set S is not assumed to be convex and closed, the biconjugate

I∗∗S (·) of the indicator function of the (neither convex nor closed) set S is Icl cvx S (·), the

indicator function of the closed convex hull of the set S; explicitly, I∗∗S (·) = Icl cvx S (·) .

10.2.12 Conjugate of the support function of a closed convex set

If, on the other hand, the set S is convex and closed, say S set
= C, we have the

standard statement that C = cl cvx C; from this statement and the immediately preced-

ing result we conclude that σC (·) , the support function of the closed convex set C, is

“mutually conjugate” to IC (·) , the indicator function of that same closed convex set C;

explicitly,

for a closed convex set C

σ
∗
C (·) = IC (·)

and

I∗C (·) = σC (·) .
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10.2.13 Conjugate of the support function of a norm unit ball

We note in light of the earlier example (on the conjugate of support function of

a closed convex set) that a generic norm ‖·‖� can be seen as the support function of the

dual norm unit ball B∗.
Explicitly, we consider the set B�

def
={x ∈ Rn | ‖x‖� ≤ 1}. Since any norm is a

closed convex function, and since sublevel sets of closed proper convex functions are

closed convex sets, we conclude that the unit norm ball is a closed convex set. Proceed-

ing from this observation, we have “mutual conjugacy” between support function and

indicator function:

since B� is closed and convex

σ
∗
B� (·) = I∗∗B� (·) = IB� (·)

and

I∗B� (·) = σB� (·) .

We have an analogous result for the case of the dual norm unit ball B∗
def
={s ∈ Rn∗ |

‖s‖∗ ≤ 1}:

since B∗ is closed and convex

σ
∗
B∗ (·) = IB∗ (·)

and

I∗B∗ (·) = σB∗ (·) .

We can say a little more, since we have also previously seen that the conjugate, I∗B� (·) ,
of the indicator function of the generic norm unit ball corresponds to the dual norm:

I∗B� (·) = ‖·‖∗ . This observation is demonstrates that the dual norm ‖·‖∗ is the support

function of the (primal) ‖·‖�-norm unit ball B�; explicitly

‖·‖∗ = I∗B� (·) = σB� (·) .

Likewise, we see later that [‖·‖�]
∗ (·) = IB∗ (·) , from which we can conjugate both sides

to find ‖·‖� = I∗B∗ (·) . Together with the result that I∗B∗ (·) = σB∗ (·) , this tells us that the

primal norm ‖·‖� is the support function of the (dual) ‖·‖∗-norm unit ball; explicitly

‖·‖� = I∗B∗ (·) = σB∗ (·) .
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10.2.14 Conjugate of the support function of a convex cone

The support function of any cone (convex or otherwise) is the indicator function

of the polar cone.

Thus, the conjugate of the support function of any cone is the conjugate of the

indicator function of the polar cone, and thus (from the earlier result I∗K (·) = Iplrc K (·) =
σK (·)) we have

I∗plrc K (·) = Iplrc plrc K (·)

= Icl cvx K (·)

= σplrc K (·) .

10.2.15 Conjugate of a generic norm

We next show that the conjugate function, [‖·‖�]
∗ (·) : Rn∗→ R, of a generic

norm coincides with the indicator function IB∗ (·) of the dual norm unit ball: [‖·‖�]
∗ (·) =

IB∗ (·).
Consider a generic norm ‖·‖� : Rn → R. The conjugate function to the ‖·‖�-

norm is defined via the expression

[‖·‖�]
∗ (s) def

= supremum
x∈Rn

{〈s,x〉−‖x‖�} .

We consider two cases:

on the one hand we will consider any s ∈Rn∗ for which it is the case that 〈s,x〉−
‖x‖� ≤ 0 for all x ∈ Rn. We claim that this is the case for any s in the dual norm unit

ball:

if s ∈ B∗ it will be the case that 〈s,x〉−‖x‖� ≤ 0 for all x ∈ Rn.

on the other hand we will consider any s ∈Rn∗ for which it is the case that there

exists some x ∈ Rn for which 〈s,x〉−‖x‖� > 0. We claim that this is the case for any s

not in the dual norm unit ball: if s /∈ B∗ it will be the case that there exists some x ∈ Rn

for which 〈s,x〉−‖x‖� > 0.

We first establish that s /∈ B∗ implies that there exists some x ∈ Rn for which

〈s,x〉 − ‖x‖� > 0; we then show that this in turn implies that [‖·‖�]
∗ (s) = supremum

x∈Rn

{〈s,x〉−‖x‖�}=+∞.
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By definition, s /∈ B∗ means that ‖s‖∗ > 1. For specificity, let us introduce the

reference notation ‖s‖∗
set
= α> > 1.

We claim that, as a particular example, the choice of x set
= 2

α2
>

s satisfies the in-

equality being considered 〈s,x〉−‖x‖� > 0.

To see why, note that for the current case we have ‖s‖∗
set
= α> > 1 and x set

=

2
α2
>

s; this leads to 〈s,x〉 =
〈

s, 2
α2
>

s
〉
= 2

α2
>
〈s,s〉 = 2

α2
>

α2
> = 2. On the other hand, we

have ‖x‖� =
∥∥∥ 2

α2
>

s
∥∥∥
�
= 2

α2
>
‖s‖� = 2

α2
>

α> = 2
α>

< 2; this last inequality follows from the

implication that s /∈ B∗ means ‖s‖∗
set
= α> > 1.

Taken together we have seen that when ‖s‖∗
set
= α> > 1 the choice x set

= 2
α2
>

s leads

to 〈s,x〉= 2 and to ‖x‖� = 2
α>

< 2. Thus there does indeed exist an x ∈ Rn such that

〈s,x〉−‖x‖� > 0.

Having established (by construction) that s /∈ B∗ implies the existence of an x ∈
Rn for which 〈s,x〉−‖x‖� > 0, we will now show that for any such s /∈ B∗ we have the

consequence [‖·‖�]
∗ (s) = supremum

x∈Rn
{〈s,x〉−‖x‖�}=+∞.

Returning to our argument: We have shown by construction that s /∈ B∗ implies

the existence of an x ∈ Rn for which 〈s,x〉−‖x‖� > 0. We introduce the notation x> for

a particular such x; that is, x> denotes an element of Rn for which 〈s,x>〉−‖x>‖� > 0.

Our previous construction is one example of such an element of Rn.

For specificity, we introduce the reference notation 〈s,x>〉− ‖x>‖�
set
= b> > 0.

We now observe that

[‖·‖�]
∗ (s) =supremum

x∈Rn
{〈s,x〉−‖x‖�} ≥ supremum

λ∈R++

{〈s,λx>〉−‖λx>‖�} ,

and that

supremum
λ∈R++

{〈s,λx>〉−‖λx>‖�}= supremum
λ∈R++

{λ (〈s,x>〉−‖x>‖�)}

= supremum
λ∈R++

{λb>}

=+∞.

Thus, we have demonstrated that s /∈ B∗ implies [‖·‖�]
∗ (s) = +∞.
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We now consider the case s ∈ B∗.
We first establish that s∈B∗ implies that 〈s,x〉−‖x‖�≤ 0 for all x∈Rn; we then

show that this in turn implies that [‖·‖�]
∗ (s) = supremum

x∈Rn
{〈s,x〉−‖x‖�}= 0.

By definition, s ∈ B∗ means that ‖s‖∗ ≤ 1. We observe that this means

‖s‖∗ ≤ 1

‖s‖∗ ‖x‖� ≤ ‖x‖� for all x ∈ Rn.

The (generic norm) Cauchy-Schwarz inequality tells us 〈s,x〉 ≤ ‖s‖∗ ‖x‖� for all s∈Rn∗

and x ∈ Rn; in particular it holds for any s ∈ B∗. Taken together, we have for any s ∈ B∗

〈s,x〉 ≤ ‖s‖∗ ‖x‖� ≤ ‖x‖� for all x ∈ Rn

〈s,x〉 ≤ ‖x‖� for all x ∈ Rn

〈s,x〉−‖x‖� ≤ 0 for all x ∈ Rn.

We now observe that we have seen that s ∈ B∗ implies 〈s,x〉−‖x‖� ≤ 0 for all x ∈ Rn;

we also note that (no matter what value s takes on), the choice

x set
= 0 leads to 〈s,0〉−‖0‖� = 0.

Since s∈B∗ implies that 〈s,x〉−‖x‖�≤ 0 for all x∈Rn and since 〈s,x〉−‖x‖�=
0 for x set

= 0, we thus have that s ∈ B∗ implies

[‖·‖�]
∗ (s) = supremum

x∈Rn
{〈s,x〉−‖x‖�}= 0.

Collecting our results from the s /∈ B∗ and s ∈ B∗ cases together, we have

[‖·‖�]
∗ (s) = supremum

x∈Rn
{〈s,x〉−‖x‖�}=

0 when s ∈ B∗

+∞ when s /∈ B∗.

This is exactly the indicator function of the dual norm unit ball, so:

[‖·‖�]
∗ (·) = IB∗ (·) .

Remark: Norms and dual norm unit balls are mutually conjugate. We have seen

that

I∗B� (·) = ‖·‖∗ ,
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and that

[‖·‖�]
∗ (·) = IB∗ (·) .

10.2.16 Conjugate of (one-half) generic norm squared

Suppose that our original function is

f (x) set
=

1
2
‖x‖2
� ,

where ‖·‖� : Rn→R is a generic norm. We demonstrate that the conjugate function to

f (x) set
= 1

2 ‖x‖
2
� is f ∗ (s) = 1

2 ‖s‖
2
∗ .

We will proceed by showing first that it is the case that 1
2 ‖s$‖2

∗ is an upper bound

for
{
〈s$,x〉− 1

2 ‖x‖
2
� | x ∈ Rn

}
and then showing that it is the case that we actually

have attainment, so that 1
2 ‖s$‖2

∗ is in fact the least upper bound: 1
2 ‖s$‖2

∗ = f ∗ (s$)
set
=

supremum
x∈Rn

{
〈s$,x〉− 1

2 ‖x‖
2
�

}
.

We first show that 1
2 ‖s$‖2

∗ is an upper bound for
{
〈s$,x〉− 1

2 ‖x‖
2
� | x ∈ Rn

}
. We

recall that the dual norm is defined as

‖s‖∗
def
= supremum

x∈X
{〈s,x〉 | ‖x‖� ≤ 1} .

From the definition of the dual norm, we note in particular that

〈s,x〉 ≤ ‖s‖∗ ‖x‖� for all s ∈ Rn∗ and x ∈ Rn.

From this, we see that for all x ∈ Rn we have

〈s,x〉 ≤ ‖s‖∗ ‖x‖�
〈s,x〉−‖s‖∗ ‖x‖� ≤ 0

2〈s,x〉−2‖s‖∗ ‖x‖� ≤ 0

We also note that

0≤ (‖x‖�−‖s‖∗)
2 .

Combining the respective last lines, we find that for all x ∈ Rn and all s ∈ Rn∗ it is the

case that
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2〈s,x〉−2‖s‖∗ ‖x‖� ≤ 0≤ (‖x‖�−‖s‖∗)
2

2〈s,x〉−2‖s‖∗ ‖x‖� ≤ (‖x‖�−‖s‖∗)
2

2〈s,x〉−2‖s‖∗ ‖x‖� ≤ ‖x‖
2
�−2‖x‖� ‖s‖∗+‖s‖

2
∗

2〈s,x〉 ≤ ‖x‖2
�+‖s‖

2
∗

〈s,x〉 ≤ 1
2
‖x‖2
�+

1
2
‖s‖2
∗

〈s,x〉− 1
2
‖x‖2
� ≤

1
2
‖s‖2
∗ for all x ∈ Rn, s ∈ Rn∗.

From the last line above, we have that 1
2 ‖s$‖2

∗ is an upper bound on {〈s$,x〉− 1
2 ‖x‖

2
� |

x ∈Rn} for any choice s$ ∈Rn∗. We next show that there exists an x ∈Rn for which we

have attainment, thus demonstrating that 1
2 ‖s$‖2

∗ is the least upper bound of {〈s$,x〉−
1
2 ‖x‖

2
� | x ∈ Rn}; in other words, that 1

2 ‖s$‖2
∗ = f ∗ (s$) .

We need to demonstrate that for any s$ ∈Rn∗, there is a corresponding choice of

x, say x set
= x̃ ∈ Rn for which we have attainment: 〈s$, x̃〉− 1

2 ‖x̃‖
2
� =

1
2 ‖s$‖2

∗ .

We proceed by construction.

Case 1: s = 0. In the case where s$ = 0, we note that the choice x set
= 0 achieves

equality since then both sides evaluate to 0.

Case 2: s 6= 0. We recall that the dual norm is defined as

‖s‖∗
def
= supremum

x∈X
{〈s,x〉 | ‖x‖� ≤ 1} .

A convex function attains its supremum on a closed nonempty convex set at an

argument in the boundary of the set. Introduce the notation x+s$
for argmax

x∈Rn
{〈s$,x〉 |

‖x‖� ≤ 1}; this optimizing argument satisfies ‖s$‖∗ =
〈

s$,x+s$

〉
and

∥∥∥x+s$

∥∥∥
�
= 1, so that

we also recognize that s$ and x+s$
attain equality in the (generic norm) Cauchy-Schwarz

inequality: ‖s$‖∗
∥∥∥x+s$

∥∥∥
�
=
〈

s$,x+s$

〉
.

For such an equality achieving x+s$
∈ Rn, construct a new (scaled) value x̃ set

=
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‖s$‖∗∥∥∥x+s$

∥∥∥
�

x+s$
. We note that for this scaled x̃, it is the case that

‖x̃‖� =

∥∥∥∥∥ ‖s$‖∗∥∥x+s$

∥∥
�

x+s$

∥∥∥∥∥
�

=
‖s$‖∗∥∥x+s$

∥∥
�

∥∥∥x+s$

∥∥∥
�

= ‖s$‖∗ .

Further, since we began with x+s$
satisfying〈
s$,x

+
s$

〉
= ‖s$‖∗

∥∥∥x+s$

∥∥∥
�
,

we examine what the result of inner product with s$ is for the scaled x̃ :

〈s$, x̃〉=

〈
s$,
‖s$‖∗∥∥x+s$

∥∥
�

x+s$

〉

=
‖s$‖∗∥∥x+s$

∥∥
�

〈
s$,x

+
s$

〉
using

〈
s$,x

+
s$

〉
= ‖s$‖∗

∥∥∥x+s$

∥∥∥
�

=
‖s$‖∗∥∥x+s$

∥∥
�

(
‖s$‖∗

∥∥∥x+s$

∥∥∥
�

)
= ‖s$‖2

∗ .

Since we have established that

〈s$, x̃〉= ‖s$‖2
∗ ,

if we subtract 1
2 ‖x̃‖

2
� from both sides, we get

〈s$, x̃〉−
1
2
‖x̃‖2
� = ‖s$‖2

∗−
1
2
‖x̃‖2
�

recalling that ‖x̃‖� = ‖s$‖2
∗ ,

so that
1
2
‖x̃‖� =

1
2
‖s$‖2

∗ ,

we substitute on the right hand side to find

〈s$, x̃〉−
1
2
‖x̃‖2
� = ‖s$‖2

∗−
1
2
‖s$‖2

∗

〈s$, x̃〉−
1
2
‖x̃‖2
� =

1
2
‖s$‖2

∗ .
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Thus, the choice x set
= x̃ yields attainment.

Since 1
2 ‖s$‖2

∗ is an upper bound on {〈s$,x〉− 1
2 ‖x‖

2
� | x ∈Rn} and since for each

s$ ∈Rn there exists a corresponding choice of x argument for which that upper bound is

attained , we conclude that

1
2
‖s$‖2

∗ = supremum
x∈Rn

{
〈s$,x〉−

1
2
‖x‖2
�

}
def
= f ∗ (s$) .

10.2.17 Conjugate of the generic ‖·‖�-norm measured distance from

a point x# to a closed convex set C

Consider a closed nonempty convex set C ⊂ Rn. Consider also a generic norm,

say ‖·‖� : Rn→ R. The distance to such a closed nonempty convex set C, as measured

by the generic ‖·‖�-norm will be denoted distC,‖·‖� (·) : Rn → R and defined via the

expression

distC,‖·‖� (x#)
def
= minimum

x∈C
‖x#− x‖� .

Introduce the temporary notation f (·) set
= distC,‖·‖� (·) , we claim that the corre-

sponding conjugate function f ∗ (·) = dist∗C,‖·‖� (·) : Rn∗→ R∪{+∞} has the form

f ∗ (s) = σC (s)+ IB∗ (s) ,

where σC (·) : Rn∗→R∪{+∞} is the support function of the closed nonempty convex

set C and IB∗ (·) : Rn∗→ R∪{+∞} is the indicator function of the dual norm unit ball

B∗
set
= {s ∈ Rn∗ | ‖s‖∗ ≤ 1} .

We will later use the immediately preceding result to calculate the subdifferential

of this function f (·) set
= distC,‖·‖� (·) .

As an initial step, we recall that the support function of any set, say S ⊆ Rn, is

denoted σS (·) : Rn∗→ R∪{+∞} and defined via the expression

σS (s)
def
= supremum

x∈S
〈s,x〉 .
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Also, the explicit statement of the indicator function of the dual norm unit ball is

IB∗ (s)
def
=

0 s ∈ B∗

+∞ s /∈ B∗

=

0 ‖s‖∗ ≤ 1

+∞ ‖s‖∗ > 1.

This means that we can more explicitly state our claim about the conjugate as

f ∗ (s) = σC [s]+ IB∗ [s]

=


supremum

x∈C
〈s,x〉 when s ∈ B∗

+∞ when s /∈ B∗

=


supremum

x∈C
〈s,x〉 when ‖s‖∗ ≤ 1

+∞ when ‖s‖∗ > 1

Continuing, we observe that the distance function is an instance of infimal con-

volution.

In particular, we have

distC,‖·‖� (x#)
def
= minimum

x∈C
‖x#− x‖�

= minimum
x∈Rn

{IC (x)+‖x#− x‖�}

=

[
IC (·)+

∨
‖·‖�

]
(x#) .

We have also seen that the conjugate of the infimal convolution is the sum of the

conjugates: in the current case, this means

dist∗C,‖·‖� (s$) =

[
IC (·)+

∨
‖·‖�

]∗
(s$)

= I∗C (s$)+ [‖·‖�]
∗ (s$) .

Further, we have seen that the conjugate of a generic norm ‖·‖� coincides with

indicator function of the unit dual norm unit ball: [‖·‖�]
∗ (·) = IB∗ (·) .

Finally, we know that I∗C (·) = σC (·) .
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Combined together, this gives us

dist∗C,‖·‖� (s$) = I∗C (s$)+ [‖·‖�]
∗ (s$)

= σC (s$)+ IB∗ (s$) .

10.2.18 Conjugate of (one-half) squared generic norm distance func-

tion of a point from a set

Consider a closed nonempty convex set C ⊂ Rn. Consider also a generic norm,

say ‖·‖� : Rn→ R. One-half the squared distance to such a closed nonempty convex

set C, as measured by the generic ‖·‖�-norm will be denoted 1
2dist2C,‖·‖� (·) : Rn→ R

and defined via the expression

1
2

dist2C,‖·‖� (x#)
def
= minimum

x∈C

1
2
‖x#− x‖2

� .

Introducing the temporary notation f (·) set
= 1

2dist2C,‖·‖� (·) , we claim that the cor-

responding conjugate function f ∗ (·) =
[

1
2dist2C,‖·‖�

]∗
(·) : Rn∗→ R has the form

f ∗ (s) = σC (s)+
1
2
‖s‖2
∗ .

To establish our claim, we first observe that one-half the square of the distance

function is an instance of infimal convolution.

In particular, we have

1
2

dist2C,‖·‖� (x#)
def
= minimum

x∈C

1
2
‖x#− x‖2

�

= minimum
x∈Rn

{
IC (x)+

1
2
‖x#− x‖2

�

}
=

[
IC (·)+

∨

1
2
‖·‖2
�

]
(x#) .

We have also seen that the conjugate of the infimal convolution is the sum of the

conjugates: in the current case, this means[
1
2

dist2C,‖·‖�

]∗
(s$) =

[
IC (·)+

∨

1
2
‖·‖2
�

]∗
(s$)

= I∗C (s$)+

[
1
2
‖·‖2
�

]∗
(s$) .
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Further, we have seen that the conjugate of 1
2 ‖·‖

2
� for a generic norm ‖·‖� coin-

cides with 1
2 ‖·‖

2
∗ .

Finally, we know that I∗C (·) = σC (·) .
Combined together, this gives us[

1
2

dist2C,‖·‖�

]∗
(s$) = I∗C (s$)+

[
1
2
‖·‖2
�

]∗
(s$)

= σC (s$)+
1
2
‖·‖2
∗ .



Chapter 11

Optimization theory

11.1 Introduction

For simplicity, we only consider problems with equality constraints; in this lim-

ited setting we establish basic results that can subsequently be related to results in more

general contexts. On one hand, we see below that when we determine an optimizing

argument to the Lagrangian problem for some specified λ value, we also determine a

subgradient of (the negative of) the Lagrange dual function g(·). On the other hand, we

establish that the primal optimal value function p? (·) is conjugate to (the negative of)

the Lagrange dual functiong(·) (with a negative applied to the argument). These results,

when considered in the appropriate contexts, provide the path by which to reach results

in distributed optimization and/or the use of inexact subproblem solutions.

While these results are well-established, standard textbook coverage tends to be

(relatively) much less extensive than one might expect. Our discussion here follows

(albeit with some modifications) the unusually comprehensive coverage in [HUL93b].

Some of the results we discuss below are related to areas known by a wide range of

names: for example, parametric programming, envelope theorems, data perturbation,

postoptimal analysis, marginal analysis, perturbation analysis, or sensitivity analysis.
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11.2 Equality constraints only

11.2.1 Problem: Primal optimization problem

We write

minimize
x∈Rn

f0 (x)

subject to hi (x) = 0 for i ∈ {1, . . . , p} .

Alternately

minimize
x∈Rn

f0 (x)

subject to h(x) = 0.

Here the use of “h” is intended to suggest “hyperplane”; this would be an accu-

rate name when the equality constraints are required to be affine, as would be needed to

ensure that the optimization problem involved a convex constraint set.

Primal optimal value function p? (·)

Introduce p? (·) : Rp→ R.

p? (b) def
= minimum

x∈Rn
{ f0 (x) | hi (x) = bi for i ∈ {1, . . . , p}}

= minimum
x∈Rn

{ f0 (x) | h(x) = b} .

Note that the optimal value of the unmodified primal optimization problem is

expressible in this notation as

p? (0) = minimum
x∈Rn

{ f0 (x) | h(x) = 0} .

Other names for the primal optimal value function include the “primal function”,

the “(infimal, extremal, primal) value function”, the “marginal function”, and the “per-

turbation function”.
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Primal optimizing argument and primal optimizing argument set

For each of the family of optimization problems

minimize
x∈Rn

f0 (x)

subject to h(x) = b

we introduce the notation x? (b) to refer generically refer to an optimizing primal ar-

gument for the corresponding primal optimization problem. The optimizing argument

point-to-point mapping takes input from the constraint space Rp and returns an element

of the argument space Rn that attains the minimum of the corresponding optimization

problem. That is, x? (·) : Rp→ Rn and is defined via

x? (b)
def
∈Argmin

x∈Rn
{ f0 (x) | h(x) = b} .

The optimizing argument point-to-set mapping takes an input from the constraint

space Rp and returns all elements of the argument space Rn that satisfy the optimality

conditions for the corresponding optimization problem. That is, X ? (·) : Rp→ 2R
n

and

is defined via

X ? (b) def
=Argmin

x∈Rn
{ f0 (x) | h(x) = b} .

11.2.2 Lagrangian function L(·, ·)

L(·, ·) : Rn×Rp∗→ R∪{−∞}∪{+∞}.

L(x,λ ) def
= f0 (x)+ 〈λ ,h(x)〉 .

11.2.3 The Lagrange dual function g(·)

g(·) : Rp∗→ R

g(λ ) def
= infimum

x∈Rn
L(x,λ )

= infimum
x∈Rn

{ f0 (x)+ 〈λ ,h(x)〉} .
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We note that the Lagrange dual function g(·) : Rp∗→ R is concave whether or

not the original primal optimization problem is convex. To see this, we will observe that

the negative of the Lagrange dual function is convex. Explicitly, we have

[−g] (λ ) def
= −infimum

x∈Rn
L(x,λ )

=−infimum
x∈Rn

{ f0 (x)+ 〈λ ,h(x)〉}

= supremum
x∈Rn

−{ f0 (x)+ 〈λ ,h(x)〉}

= supremum
x∈Rn

{− f0 (x)+ 〈λ ,−h(x)〉}

= supremum
x∈Rn

{〈λ ,−h(x)〉− f0 (x)} .

Considering the last expression, we note that {− f0 (x)+ 〈λ ,−h(x)〉} is affine in λ for

any choice of x ∈ Rn ; this is immediate from the observation that − f0 (x) is constant

with respect to λ and 〈λ ,−h(x)〉 is linear in λ . Thus, [−g] (·) is a pointwise-in-λ

supremum-indexed-by-x of affine-in-λ functions, and so we conclude that [−g] (·) is

convex in λ (and therefore that g(·) is concave in λ ).

11.2.4 Problem: Evaluate the Lagrange dual function for some λ$

For the original optimization problem stated above, we consider the notion of a

Lagrangian L(·,λ$) optimization-over-x problem for the specific λ -variable value λ
set
=

λ$ ∈ Rp∗. Specifically, this problem is

infimize
x∈Rn

L(x,λ$)

= infimize
x∈Rn

{ f0 (x)+ 〈λ$,h(x)〉} .

This problem is sometimes referred to as the “Lagrangian relaxation” of the La-

grange primal problem above; the term “relaxation” is used here to refer to the fact

that the Lagrange primal problem has the equality constraint h(x) = 0 whereas the La-

grangian L(·,λ$) problem has no such equality constraint — the constraint has been “re-

laxed”. In particular, where we previously incurred a penalty of +∞ whenever h(x) 6= 0

(“hard constraint”), we now incur an additional (penalty) of the form 〈λ$,h(x)〉 when
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h(x) 6= 0. We may describe λ$ as the price-per-unit-of-violation that is incurred when-

ever h(x) 6= 0.

11.2.5 Problem: Optimize the Lagrange dual function over all λ ∈

Rp∗

For the original optimization problem stated above, the corresponding Lagrange

dual optimize-g(·)-over-λ problem is

supremize
λ∈Rp∗

g(λ ) .

The optimal objective value of this Lagrange dual problem will be denoted d?,

defined as

d? def
= supremum

λ∈Rm∗
g(λ ) .

In our current circumstance the Lagrange dual problem does not have any feasibility

constraint requirements on the value of the λ -variable, so we will not presently intro-

duce the notion of the Lagrange dual problem optimal value function — there are no

constraints to shift. We note that because the Lagrange dual function is always a con-

cave function (whether or not the Lagrange primal problem is a convex problem), the

Lagrange dual problem is always a concave optimization problem (whether or not the

Lagrange primal problem is a convex problem).

Any λ -argument that attains the optimal Lagrange dual problem objective value

d? will be denoted as λ ?.

λ
? def
∈ Argmax

λ∈Rm∗
g(λ ) .

The set of all such optimal-objective-value-attaining λ -arguments will be de-

noted Λ?, defined as

Λ
? def
= Argmax

λ∈Rm∗
g(λ ) ,

or equivalently as

Λ
? def
= {λ ∈ Rm∗ | g(λ ) = d?} .
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11.2.6 Relations involving one or more of the three problems above

We now have three problems:

(b-perturbed) primal problem:

minimize
x∈Rn

{ f0 (x) | h(x) = b} .

λ$-Lagrangian problem: Evaluate the Lagrange dual function g(·) at some dual argu-

ment λ$ ∈ Rp∗ :

infimize
x∈Rn

L(x,λ$) .

Lagrange dual problem: Supremize the Lagrange dual function g(·) over all λ ∈ Rp∗ :

supremize
λ∈Rp∗

g(λ ) .

In order to evaluate the Lagrange dual function g(·) we determine an infimum of

the Lagrangian L(·,λ$) problem

In order to evaluate the Lagrange dual function g(·) at λ
set
= λ$ we determine the

infimum of the Lagrangian L(·,λ$) problem. This was precisely the definition of the

Lagrange dual function

g(λ$)
def
= infimum

x∈Rn
L(x,λ$)

= infimum
x∈Rn

{ f0 (x)+ 〈λ$,h(x)〉} .

Whenever the infimum in the evaluation of g(·) is attained, we have also deter-

mined a solution to a perturbed version of the primal problem

In order to evaluate the Lagrange dual function g(·) at an argument λ$ ∈ Rp∗,

we find an infimum:

g(λ$)
def
= infimum

x∈Rn
L(x,λ$)

= infimum
x∈Rn

{ f0 (x)+ 〈λ$,h(x)〉} .



129

When there exists some x argument, say x+
λ$

, for which this infimum is attained,

it is in fact the case that x+
λ$

is also an optimizing argument for a perturbed version of

the primal problem. Explicitly, we are saying that[
x+

λ$
∈ Argmin

x∈Rn
L(x,λ$)

]
=⇒

[
x+

λ$
∈ Argmin

x∈Rn

{
f0 (x) | h(x) = bλ$

}]
,

where bλ$

set
= h

(
x+

λ$

)
.

From x+
λ$
∈ Argmin

x∈Rn
L(x,λ$) we find

x+
λ$
∈ Argmin

x∈Rn
L(x,λ$)

L
(

x+
λ$
,λ$

)
≤ L(x,λ$) for all x ∈ Rn

f0

(
x+

λ$

)
+
〈

λ$,h
(

x+
λ$

)〉
≤ f0 (x)+ 〈λ$,h(x)〉 for all x ∈ Rn

f0

(
x+

λ$

)
≤ f0 (x) for all x ∈

{
x ∈ Rn | h(x) = bλ$

}
,

recalling that bλ$

set
= h

(
x+

λ$

)
, so that every x in the constraint set also yields h(x) = bλ$

=

h
(

x+
λ$

)
.

We recognize the last expression as an alternative method of stating x+
λ$
∈Argmin

x∈Rn{
f0 (x) | h(x) = bλ$

}
.

This result is sometimes referred to [Las70, HUL93b] as Everett’s Theorem

[Eve63].

In order to determine a subgradient of [−g] (·) we determine an optimizing argu-

ment of the Lagrangian L(·,λ$) problem

Consider the Lagrange dual function evaluation problem: with λ$ fixed, optimize

L(·,λ$) over x.

Suppose that this infimal value is attained by some x ∈ Rn,say

x+
λ$

set
∈ Argmin

x∈Rn
L(x,λ$)

∈ Argmin
x∈Rn

{ f0 (x)+ 〈λ$,h(x)〉} .
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We denote the set of all such Lagrangian L(·,λ$) infimal-value attaining x-

arguments as X+
λ$
, with definition

X+
λ$

def
= Argmin

x∈Rn
L(x,λ$) .

We now show how such an optimal argument x+
λ$

can be used to determine an

element of ∂ [−g] (λ$), the subdifferential set of the (convex by construction) function

[−g] (·) at the argument λ$.

Note that the optimal argument x+
λ$

satisfies g(λ$) = L
(

x+
λ$
,λ$

)
which is in turn

equal to
{

f0

(
x+

λ$

)
+
〈

λ$,h
(

x+
λ$

)〉}
.

Keeping in mind our notation x+
λ$

and X+
λ$

, we observe that −h
(

x+
λ$

)
is an el-

ement of ∂ [−g] (λ$) , the subdifferential set of the (convex by construction) function

[−g] (·) at the argument λ$. Explicitly,

−h
(

x+
λ$

)
∈ ∂ [−g] (λ$) .

To see this, first recall that g(λ ) def
= infimum

x∈Rn
{ f0 (x)+ 〈λ ,h(x)〉} . From this, we have

g(λ ) def
= infimum

x∈Rn
{ f0 (x)+ 〈λ ,h(x)〉}

g(λ )≤ f0 (x)+ 〈λ ,h(x)〉 for all x ∈ Rn

g(λ )≤ f0

(
x+

λ$

)
+
〈

λ ,h
(

x+
λ$

)〉
since x+

λ$
∈ Rn

[−g] (λ )≥− f0

(
x+

λ$

)
−
〈

λ ,h
(

x+
λ$

)〉
since x+

λ$
∈ Rn.

We next seek to relate the expression above to g(λ$) = L
(

x+
λ$
,λ$

)
which we have

seen is equal to f0

(
x+

λ$

)
+
〈

λ$,h
(

x+
λ$

)〉
; more precisely, to [−g] (λ$) = − f0

(
x+

λ$

)
−
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〈
λ$,h

(
x+

λ$

)〉
. We do this by adding and subtracting

〈
λ$,h

(
x+

λ$

)〉
, to find

[−g] (λ )≥− f0

(
x+

λ$

)
−
〈

λ ,h
(

x+
λ$

)〉
since x+

λ$
∈ Rn.

=− f0

(
x+

λ$

)
+
[〈

λ$−λ$,h
(

x+
λ$

)〉]
−
〈

λ ,h
(

x+
λ$

)〉
=− f0

(
x+

λ$

)
+
〈

λ$,h
(

x+
λ$

)〉
−
〈

λ$,h
(

x+
λ$

)〉
−
〈

λ ,h
(

x+
λ$

)〉
=− f0

(
x+

λ$

)
−
〈

λ$,h
(

x+
λ$

)〉
+
〈

λ$−λ ,h
(

x+
λ$

)〉
= [−g] (λ$)+

〈
λ$−λ ,h

(
x+

λ$

)〉
= [−g] (λ$)+

〈
λ −λ$,−h

(
x+

λ$

)〉
.

Since this last expression holds for any λ ∈ Rp∗ and any λ$ ∈ Rp∗, we have established

−h
(

x+
λ$

)
∈ ∂ [−g] (λ$) .

Lagrange duality relationships between the Lagrange dual function g(·) and the

primal objective function f0 (·) (evaluated in the feasible set): “weak duality”

First, consider any dual λ -argument, say λ$ ∈ Rp∗.

Now consider any feasible primal argument; say x̃; explicitly x̃ is an element of

the set denoted X̃ and characterized as {x ∈ Rn | h(x) = 0}.
For any such (dual, feasible primal) pair (λ$, x̃) ∈ Rp∗×X̃ pair, the following

relationship always holds:

g(λ$)≤ f0 (x̃) .

As one specific case of the above expression: if we consider an optimal (La-

grange dual problem) λ -argument λ
set
= λ ? and an optimal (and so feasible for primal

problem) x-argument x set
= x?, we have 1

g(λ ?)≤ f0 (x?) ,

1One somewhat abstract way to describe settings where we have “strong duality” d? = p? (0) is: we
have strong duality when the optimal value function p? (·) is lower semicontinuous at 0; when we consider
a problem with inequality constraints only, the satisfaction of Slater’s condition ensures that the optimal
value function p? (·) is continuous at 0.
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which we may alternately write using our previously introduced optimal value notation

as

d? ≤ p? (0) .

The conjugacy of p? (·) and [−g] (−·) .

It would be pleasing if the primal problem optimal value function p? (·) : Rp→
R∪{+∞} and the Lagrange dual function g(·) : Rp∗ → R∪{−∞} were related by

conjugacy. This turns out not to be the case (in some sense because of sign conven-

tions chosen elsewhere): for one thing, the Lagrange dual function g(·) is defined to be

concave while our definition of conjugacy was chosen to yield convex functions; on the

other hand, we defined the Lagrangian function as L(x,λ ) def
= f0 (x)+ 〈λ ,h(x)〉 rather

than f0 (x)−〈λ ,h(x)〉. This convention prevents [−g] (·) (the negative of the Lagrange

dual function, without an additional negative being applied to the input argument) from

being the conjugate of the primal optimal value function p? (·).
The actual relationship is that [−g] (−·) is the conjugate of p? (·) . Explicitly: if

dom [−g] (·) 6= /0, we have

[p? (·)]∗ (λ$) = [−g] (−λ$) for any λ$ ∈ Rp∗.

We can describe the operations by which (convex) function [−g] (−·) comes

from the (concave) Lagrange dual function g(·) as follows: given an input argument,

start by “mirroring” the argument; pass this mirrored argument to the concave Lagrange

dual function g(·); return the negative of the resulting value (returning the negative

means that we deal with convexity instead of concavity).

To see why this conjugacy relationship holds, observe

g(λ ) def
= infimum

x∈Rn
{ f0 (x)+ 〈λ ,h(x)〉}

g(λ ) =−supremum
x∈Rn

{− f0 (x)−〈λ ,h(x)〉} .

Shifting the minus to the left hand side yields

[−g] (λ ) = supremum
x∈Rn

{− f0 (x)−〈λ ,h(x)〉} .
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Considering the mirrored argument, we get

[−g] (−λ ) = supremum
x∈Rn

{− f0 (x)−〈−λ ,h(x)〉}

= supremum
x∈Rn

{− f0 (x)+ 〈λ ,h(x)〉}

= supremum
x∈Rn

{〈λ ,h(x)〉− f0 (x)}

We next introduce an “empty” supremum over the constraint variable b ∈ Rp

[−g] (−λ ) = supremum
b∈Rp

[
supremum

x∈Rn
{〈λ ,h(x)〉− f0 (x)}

]
We next introduce a constraint specified in terms of the constraint variable b ∈ Rp

[−g] (−λ ) = supremum
b∈Rp

[
supremum

x∈Rn
{〈λ ,b〉− f0 (x) | h(x) = b}

]
= supremum

b∈Rp

[
〈λ ,b〉+ supremum

x∈Rn
{− f0 (x) | h(x) = b}

]
= supremum

b∈Rp

[
〈λ ,b〉− infimum

x∈Rn
{ f0 (x) | h(x) = b}

]
= supremum

b∈Rp
[〈λ ,b〉− p? (b)]

= [p?]∗ (λ ) .

When we determine an optimizing argument of the Lagrangian L(·,λ$) problem,

we determine a subgradient of [p?]∗∗ (·)

We first note that −h
(

x+
λ$

)
∈ ∂ [−g] (λ$) implies that h

(
x+

λ$

)
∈ ∂ [−g] (−λ$)

2. We have previously seen that [(s,x) ∈ ∂ f ∗ (·)]⇐⇒ [(x,s) ∈ ∂ f ∗∗ (·)]. In the present

2Introduce the temporary notation q(λ ) set
= [−g] (−λ ) .

We note that b is a subgradient of [−g] (·) at λ$ if and only if −b is a subgradient of q(·) set
= [−g] (−·)

at −λ$ :

[−g] (λ )≥ [−g] (λ$)+ 〈b,λ −λ$〉
q(−λ )≥ q(−λ$)+ 〈b,λ −λ$〉
q(−λ )≥ q(−λ$)+ 〈−b,−(λ −λ$)〉
q(−λ )≥ q(−λ$)+ 〈−b,(−λ )− (−λ$)〉 .
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situation, this becomes

[(s,x) ∈ ∂ f ∗ (·)]⇐⇒ [(x,s) ∈ ∂ f ∗∗ (·)]

[(s,x) ∈ ∂ [−g] (−·)]⇐⇒
[
(x,s) ∈ ∂ [p?]∗∗ (·)

][(
λ$,h

(
x+

λ$

))
∈ ∂ [−g] (−·)

]
⇐⇒

[(
h
(

x+
λ$

)
,λ$

)
∈ ∂ [p?]∗∗ (·)

]
.

In particular, this means that anytime we have attainment in the evaluation of the La-

grange dual function we have a supporting affine minorant to [p?]∗∗ (·) = cl cvx p? (·) ;

the crossing point of this affine minorant with the “function evaluation axis”/“vertical

axis of the epigraph” (which is precisely the evaluated value g(λ$)) provides a lower

bound on p? (0) (the value of p? (·) at this axis).



Chapter 12

Optimization theory with modified

functions

12.1 Introduction

In the previous section, we considered the “standard” Lagrange duality approach;

in this section, we consider a “ρ
1
2 ‖·‖

2
2-modified” Lagrange duality approach. We will

see that (under some conditions) the ρ
1
2 ‖·‖

2
2-modified Lagrange duality approach will

lead to a ρ
1
2 ‖·‖

2
2-modified Lagrange dual function that will be smooth (whether or not

the unmodified Lagrange dual function is smooth). Note that we explicitly mention the

specific function (ρ 1
2 ‖·‖

2
2) by which we modify the Lagrange duality approach because

we wish emphasize that there exist many possible modification functions that can be

applied to the “standard” Lagrange duality approach.

We again only consider problems with equality constraints; these results can of

course be considered in more general contexts. In analogy with our previous discus-

sion, we establish results that provide the path by which to reach results in distributed

optimization and/or the use of inexact subproblem solutions. The results in this chap-

ter specifically extend to settings in which modification (or “augmentation”) is used in

place of standard, unmodified approaches.

These results are again well-established, but with standard textbook coverage

that tends to be (relatively) much less extensive than one might expect. Our discussion

135
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here again follows (with some alterations) the unusually comprehensive coverage in

[HUL93b].

12.2 Equality constraints only

We recall the equality constrained optimization problem previously discussed

before introducing the modifications that will be the focus of the present chapter.

12.2.1 Problem: Primal optimization problem

We write

minimize
x∈Rn

f0 (x)

subject to hi (x) = 0 for i ∈ {1, . . . , p} .

Alternately

minimize
x∈Rn

f0 (x)

subject to h(x) = 0.

Here the use of “h” is intended to suggest “hyperplane”; this would be an accu-

rate name when the equality constraints are required to be affine, as would be needed to

ensure that the optimization problem involved a convex constraint set.

12.2.2 Introducing modified functions

In our previous discussion of Lagrange duality, we introduced the following no-

tation and terminology:

• primal objective function f0 (·) : Rn→ R

• primal optimal value function p? (·) : Rp→ R

• Lagrangian function L(·, ·) : Rn×Rp∗→ R
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• Lagrange dual function g(·) : Rp∗→ R.

We will now consider “modified” versions of each of these functions. More precisely,

we will consider ρ
1
2 ‖·‖

2
2-modified versions (involving a nonnegative scalar ρ ∈ R+) of

each of these functions:

• ρ
1
2 ‖·‖

2
2-modified primal objective function fρ (·) : Rn→ R

• ρ
1
2 ‖·‖

2
2-modified primal optimal value function p?ρ (·) : Rp→ R

• ρ
1
2 ‖·‖

2
2-modified Lagrangian function Lρ (·, ·) : Rn×Rp∗→ R

• ρ
1
2 ‖·‖

2
2-modified Lagrange dual function gρ (·) : Rp∗→ R.

ρ
1
2 ‖·‖

2
2-modified primal objective function fρ (·) : Rn→ R

The ρ
1
2 ‖·‖

2
2-modified Lagrange primal problem objective function fρ (·) for our

ρ
1
2 ‖·‖

2
2-modified Lagrange primal problem (discussed below) is denoted fρ (·) : Rn→

R, and is defined as

fρ (x)
set
= f0 (x)+

1
2
‖h(x)‖2

2 .

ρ
1
2 ‖·‖

2
2-modified primal optimal value function p?ρ (·) : Rp→ R

The ρ
1
2 ‖·‖

2
2-modified primal problem optimal value function p?ρ (·) associated

with our ρ
1
2 ‖·‖

2
2-modified Lagrange primal problem (discussed below) is denoted p?ρ (·) :

Rp→ R and is defined as

p?ρ (b)
set
= infimum

x∈Rn

{
fρ (x) | h(x) = b

}
.

We note that the modified primal optimal value function can alternately be de-

scribed as p?ρ (b) = p? (b)+ρ
1
2 ‖b‖

2
2 .
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To see this, note that

p?ρ (b)
set
= infimum

x∈Rn

{
fρ (x) | h(x) = b

}
= infimum

x∈Rn

{
f0 (x)+ρ

1
2
‖h(x)‖2

2 | h(x) = b
}

= infimum
x∈Rn

{
f0 (x)+ρ

1
2
‖b‖2

2 | h(x) = b
}

= infimum
x∈Rn

{ f0 (x) | h(x) = b}+ρ
1
2
‖b‖2

2

= p? (b)+ρ
1
2
‖b‖2

2 .

Note the presence of ρ
1
2 ‖b‖

2
2 rather than ρ

1
2 ‖h(x)‖

2
2 , reflecting the fact that the optimal

value function requires the constraints to be satisfied.

ρ
1
2 ‖·‖

2
2-modified Lagrangian function Lρ (·, ·) : Rn×Rp∗→ R

The ρ
1
2 ‖·‖

2
2-modified Lagrangian function Lρ (·, ·) associated with our ρ

1
2 ‖·‖

2
2-

modified Lagrange primal problem (discussed below) is denoted Lρ (·, ·) : Rn×Rp∗→
R. The definition of the ρ

1
2 ‖·‖

2
2-modified Lagrangian function is

Lρ (x,λ )
set
= fρ (u)+ 〈λ ,h(x)〉

= f0 (u)+ρ
1
2
‖h(x)‖2

2 + 〈λ ,h(x)〉 .

We note that the modified Lagrangian function can alternately be described as

Lρ (x,λ ) = L(x,λ )+ρ
1
2 ‖h(x)‖

2
2 , since

Lρ (x,λ )
def
= fρ (x)+ 〈λ ,h(x)〉

= f0 (x)+ρ
1
2
‖h(x)‖2

2 + 〈λ ,h(x)〉

= f0 (x)+ 〈λ ,h(x)〉+ρ
1
2
‖h(x)‖2

2

= L(x,λ )+ρ
1
2
‖h(x)‖2

2 .

ρ
1
2 ‖·‖

2
2-modified Lagrange dual function gρ (·) : Rp∗→ R.

Theρ
1
2 ‖·‖

2
2-modified Lagrange dual function gρ (·) associated with our ρ

1
2 ‖·‖

2
2-

modified Lagrange primal problem (discussed below) is denoted gρ (·) : Rm∗→ R and

defined via the expression
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gρ (λ )
set
= infimum

x∈Rn
Lρ (x,λ )

= infimum
x∈Rn

{
L(x,λ )+ρ

1
2
‖h(x)‖2

2

}
= infimum

x∈Rn

{
f0 (x)+ 〈λ ,h(x)〉+ρ

1
2
‖h(x)‖2

2

}
.

12.2.3 Introducing modified problems

In our previous discussion of Lagrange duality, we introduced the following

problems:

• primal optimization problem:

– Determine p? (0) def
= infimum

x∈Rn
{ f0 (x) | h(x) = 0}

• primal “perturbed” optimization problem:

– Determine p? (b) def
= infimum

x∈Rn
{ f0 (x) | h(x) = b}

• evaluate the Lagrange dual function at λ$:

– Determine g(λ$)
def
= infimum

x∈Rn
L(x,λ$)

• dual optimization problem:

– Determine d? set
= supremum

λ∈Rp∗
g(λ ) .

We will now consider “modified” versions of each of these functions. More precisely,

we will consider ρ
1
2 ‖·‖

2
2-modified versions of each of these functions.

• ρ
1
2 ‖·‖

2
2-modified primal optimization problem:

– Determine p?ρ (0)
def
= infimum

x∈Rn

{
fρ (x) | h(x) = 0

}
• ρ

1
2 ‖·‖

2
2-modified primal “perturbed” optimization problem:
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– Determine p?ρ (b)
def
= infimum

x∈Rn

{
fρ (x) | h(x) = b

}
• evaluate the ρ

1
2 ‖·‖

2
2-modified Lagrange dual function at λ$:

– Determine gρ (λ$)
def
= infimum

x∈Rn
Lρ (x,λ$)

• ρ
1
2 ‖·‖

2
2-modified dual optimization problem:

– Determine d?
ρ

set
= supremum

λ∈Rp∗
gρ (λ ) .

12.2.4 Observations on the modified problems

The primal optimization problem coincides with the modified primal optimization

problem

We first note that ρ
1
2 ‖·‖

2
2-modified primal optimization problem is in fact a com-

pletely equivalent restatement of the original primal optimization problem; explicitly,

p?ρ (0) = p? (0) for any ρ ∈ R+ (in fact, for the equality constrained case, this holds

for any ρ ∈ R). This is immediate from the definition of the ρ
1
2 ‖·‖

2
2-modified primal

optimization problem:

p?ρ (0)
def
= infimum

x∈Rn

{
fρ (x) | h(x) = 0

}
= infimum

x∈Rn

{
f0 (x)+ρ

1
2
‖h(x)‖2

2 | h(x) = 0
}

= infimum
x∈Rn

{
f0 (x)+ρ

1
2
‖0‖2

2 | h(x) = 0
}

= infimum
x∈Rn

{ f0 (x) | h(x) = 0}

= p? (0) .

The conjugate of the modified primal optimal function

We previously saw that the conjugate of the primal optimal value function p? (·) :

Rp→R was [−g] (−·) : Rp∗→R. In the modified setting, all of the previous arguments
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follow immediately, so that the result is now that the conjugate of the modified primal

optimal value function p?ρ (·) is
[
−gρ

]
(−·) ; explicitly[

p?ρ
]∗
(·) =

[
−gρ

]
(−·) .

For specificity, the steps to establish this are

gρ (λ )
def
= infimum

x∈Rn

{
fρ (x)+ 〈λ ,h(x)〉

}
gρ (λ ) =−supremum

x∈Rn

{
− fρ (x)−〈λ ,h(x)〉

}
.

Shifting the minus to the left hand side yields[
−gρ

]
(λ ) = supremum

x∈Rn

{
− fρ (x)−〈λ ,h(x)〉

}
.

Considering the mirrored argument, we get[
−gρ

]
(−λ ) = supremum

x∈Rn

{
− fρ (x)−〈−λ ,h(x)〉

}
= supremum

x∈Rn

{
− fρ (x)+ 〈λ ,h(x)〉

}
= supremum

x∈Rn

{
〈λ ,h(x)〉− fρ (x)

}
We next introduce an “empty” supremum over the constraint variable b ∈ Rp

[
−gρ

]
(−λ ) = supremum

b∈Rp

[
supremum

x∈Rn

{
〈λ ,h(x)〉− fρ (x)

}]
We next introduce a constraint specified in terms of the constraint variable b ∈ Rp

[
−gρ

]
(−λ ) = supremum

b∈Rp

[
supremum

x∈Rn

{
〈λ ,b〉− fρ (x) | h(x) = b

}]
= supremum

b∈Rp

[
〈λ ,b〉+ supremum

x∈Rn

{
− fρ (x) | h(x) = b

}]
= supremum

b∈Rp

[
〈λ ,b〉− infimum

x∈Rn

{
fρ (x) | h(x) = b

}]
= supremum

b∈Rp

[
〈λ ,b〉− p?ρ (b)

]
=
[

p?ρ
]∗
(λ ) .
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Interpreting [−g] (−·) in light of infimal convolution

We just established that
[

p?ρ
]∗
(λ ) =

[
−gρ

]
(−λ ) . We have previously seen that

p?ρ (b) = p? (b)+ρ
1
2 ‖b‖

2
2 . Further, we know that the conjugate a sum is (the closure of)

the infimal convolution of the individual conjugates 1: ( f1 + f2)
∗ (·) = f ∗1 (·)+∨ f ∗2 (·).

Taken together, we have [
p?ρ
]∗
(λ ) =

[
−gρ

]
(−λ )[

p? (b)+ρ
1
2
‖b‖2

2

]∗
(λ ) =

[
−gρ

]
(−λ )[

[p?]∗ (·)+
∨

1
ρ

1
2
‖·‖2

2

]
(λ ) =

[
−gρ

]
(−λ )[

[−g] (−·)+
∨

1
ρ

1
2
‖·‖2

2

]
(λ ) =

[
−gρ

]
(−λ ) ,

so that the modified function
[
−gρ

]
(−·) is the Moreau envelope of the previous unmod-

ified function [−g] (−·). In particular, we observe that the modified function
[
−gρ

]
(−·)

will be smooth whether or not the unmodified function [−g] (−·) was.

In order to evaluate the modified Lagrange dual function gρ (·) we determine an

infimum of the Lagrangian Lρ (·,λ$) problem

In order to evaluate the modified Lagrange dual function gρ (·) at λ
set
= λ$ we de-

termine the infimum of the modified Lagrangian Lρ (·,λ$) problem. This was precisely

the definition of the modified Lagrange dual function

gρ (λ$)
def
= infimum

x∈Rn
Lρ (x,λ$)

= infimum
x∈Rn

{
fρ (x)+ 〈λ$,h(x)〉

}
.

1The statement here is for closed proper convex extended-real-valued functions f1 (·) , f2 (·) : Rn→
R ∪ {∞} such that relint dom f1 (·) ∩ relint dom f2 (·) 6= /0. [HUL93b]. If we have instead simply
dom f1 (·)∩dom f2 (·) 6= /0 we must take the closure of the infimal convolution of the conjugates. With the
earlier relint dom intersection “qualification condition”, the infimal convolution is “exact” and the closure
operation is superfluous (because the infimal convolution of the conjugates is already a closed function).
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Whenever the infimum in the evaluation of gρ (·) is attained, we have also deter-

mined a solution to a perturbed version of the modified primal problem

In order to evaluate the modified Lagrange dual function gρ (·) at an argument

λ$ ∈ Rp∗, we find an infimum:

gρ (λ$)
def
= infimum

x∈Rn
Lρ (x,λ$)

= infimum
x∈Rn

{
fρ (x)+ 〈λ$,h(x)〉

}
.

When there exists some x argument, say x+
ρ,λ$

, for which this infimum is attained,

it is in fact the case that x+
ρ,λ$

is also an optimizing argument for a perturbed version of

the modified primal problem. Explicitly, we are saying that[
x+

ρ,λ$
∈ Argmin

x∈Rn
Lρ (x,λ$)

]
=⇒

[
x+

ρ,λ$
∈ Argmin

x∈Rn

{
fρ (x) | h(x) = bρ,λ$

}]
,

where bρ,λ$

set
= h

(
x+

ρ,λ$

)
.

From x+
ρ,λ$
∈ Argmin

x∈Rn
Lρ (x,λ$) we find

x+
ρ,λ$
∈ Argmin

x∈Rn
Lρ (x,λ$)

L
(

x+
ρ,λ$

,λ$

)
≤ L(x,λ$) for all x ∈ Rn

fρ

(
x+

ρ,λ$

)
+
〈

λ$,h
(

x+
ρ,λ$

)〉
≤ fρ (x)+ 〈λ$,h(x)〉 for all x ∈ Rn

fρ

(
x+

ρ,λ$

)
≤ fρ (x) for all x ∈

{
x ∈ Rn | h(x) = bρ,λ$

}
,

recalling that bρ,λ$

set
= h

(
x+

ρ,λ$

)
, so that every x in the constraint set also yields h(x) =

bρ,λ$
= h

(
x+

ρ,λ$

)
.

We recognize the last expression as an alternative method of stating x+
ρ,λ$
∈

Argmin
x∈Rn

{
fρ (x) | h(x) = bρ,λ$

}
.

This is Everett’s Theorem for the modified primal problem.

In order to determine a subgradient of the modified
[
−gρ

]
(·) we determine an

optimizing argument of the modified Lagrangian Lρ (·,λ$) problem

Consider the modified Lagrange dual function evaluation problem: with λ$ fixed,

optimize Lρ (·,λ$) over x.
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Suppose that this infimal value is attained by some x ∈ Rn,say

x+
ρ,λ$

set
∈ Argmin

x∈Rn
Lρ (x,λ$)

∈ Argmin
x∈Rn

{
fρ (x)+ 〈λ$,h(x)〉

}
.

We denote the set of all such modified Lagrangian-L(·,λ$)-infimal-value-attaining

x-arguments as X+
ρ,λ$

, with definition

X+
ρ,λ$

def
= Argmin

x∈Rn
L(x,λ$) .

We now show how such an optimal argument x+
ρ,λ$

can be used to determine an

element of ∂
[
−gρ

]
(λ$), the subdifferential set of the (convex by construction) modified

function
[
−gρ

]
(·) at the argument λ$.

Note that the optimal argument x+
ρ,λ$

satisfies gρ (λ$) = Lρ

(
x+

ρ,λ$
,λ$

)
which is

in turn equal to { fρ

(
x+

ρ,λ$

)
+
〈

λ$,h
(

x+
ρ,λ$

)〉
}.

Keeping in mind our notation x+
ρ,λ$

and X+
ρ,λ$

, we observe that −h
(

x+
ρ,λ$

)
is an

element of ∂
[
−gρ

]
(λ$) , the subdifferential set of the (convex by construction) modified

function
[
−gρ

]
(·) at the argument λ$. Explicitly,

−h
(

x+
ρ,λ$

)
∈ ∂

[
−gρ

]
(λ$) .

To see this, first recall that gρ (λ ) is defined as infimum
x∈Rn

{
fρ (x)+ 〈λ ,h(x)〉

}
. From this,

we have

gρ (λ )
def
= infimum

x∈Rn

{
fρ (x)+ 〈λ ,h(x)〉

}
gρ (λ )≤ fρ (x)+ 〈λ ,h(x)〉 for all x ∈ Rn

gρ (λ )≤ f0

(
x+

ρ,λ$

)
+
〈

λ ,h
(

x+
ρ,λ$

)〉
since x+

ρ,λ$
∈ Rn[

−gρ

]
(λ )≥− f0

(
x+

ρ,λ$

)
−
〈

λ ,h
(

x+
ρ,λ$

)〉
since x+

ρ,λ$
∈ Rn.

We next seek to relate the expression above to gρ (λ$) = Lρ

(
x+

ρ,λ$
,λ$

)
= fρ

(
x+

ρ,λ$

)
+〈

λ$,h
(

x+
ρ,λ$

)〉
; more precisely, to

[
−gρ

]
(λ$) =− fρ

(
x+

ρ,λ$

)
−
〈

λ$,h
(

x+
ρ,λ$

)〉
. We do
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this by adding and subtracting
〈

λ$,h
(

x+
ρ,λ$

)〉
, to find[

−gρ

]
(λ )≥− fρ

(
x+

ρ,λ$

)
−
〈

λ ,h
(

x+
ρ,λ$

)〉
since x+

ρ,λ$
∈ Rn.

=− fρ

(
x+

ρ,λ$

)
+
[〈

λ$−λ$,h
(

x+
ρ,λ$

)〉]
−
〈

λ ,h
(

x+
ρ,λ$

)〉
=− fρ

(
x+

ρ,λ$

)
+
〈

λ$,h
(

x+
ρ,λ$

)〉
−
〈

λ$,h
(

x+
ρ,λ$

)〉
−
〈

λ ,h
(

x+
ρ,λ$

)〉
=− fρ

(
x+

ρ,λ$

)
−
〈

λ$,h
(

x+
ρ,λ$

)〉
+
〈

λ$−λ ,h
(

x+
ρ,λ$

)〉
=
[
−gρ

]
(λ$)+

〈
λ$−λ ,h

(
x+

ρ,λ$

)〉
=
[
−gρ

]
(λ$)+

〈
λ −λ$,−h

(
x+

ρ,λ$

)〉
.

Since this last expression holds for any λ ∈ Rp∗ and any λ$ ∈ Rp∗, we have established

−h
(

x+
ρ,λ$

)
∈ ∂ [−g] (λ$) .

Lagrange duality relationships between the modified Lagrange dual function g(·)
and the modified primal objective function fρ (·) (evaluated in the feasible set):

“weak duality”

First, consider any dual λ -argument, say λ$ ∈ Rp∗.

Now consider any feasible primal argument, say x̃; explicitly x̃ is an element of

the set denoted X̃ and characterized as {x ∈ Rn | h(x) = 0}.
For any such (dual, feasible primal) pair (λ$, x̃) ∈ Rp∗×X̃ pair, the following

relationship always holds:

gρ (λ$)≤ fρ (x̃) = f0 (x̃) .

As one specific case of the above expression: if we consider an optimal (mod-

ified Lagrange dual problem) λ -argument λ
set
= λ ?

ρ and an optimal (and so feasible for

modified primal problem) x-argument x set
= x? ∈ X̃ , we have

gρ

(
λ
?
ρ

)
≤ fρ (x?) = f0 (x?) ,

which we may alternately write using our previously introduced optimal value notation

as

d?
ρ ≤ p?ρ (0) = p? (0) .



Chapter 13

Operator theory basics

13.1 Introduction

We first establish informal conventions for use of the terms “function”, “opera-

tor”, and “mapping”.

We refer to objects that look like f (·) : Rn→ R as functions.

We refer to objects that look like T (·) : Rn → Rn or T (·) : Rn → Rn∗ as

operators.

We refer to objects that look like T (·) : Rn → Rm or T (·) : Rn → Rm∗ as

mappings.

We refer to objects that look like f (·) : Rn→ 2R as multifunctions, where 2R

denotes the power set of R (the set made up of all sets of elements in R) .

We refer to objects that look like T (·) : Rn → 2R
n

or T (·) : Rn → 2R
n∗

as

point-to-set operators.

We refer to objects that look like T (·) : Rn → 2R
m

or T (·) : Rn → 2R
m∗

as

point-to-set mappings.

The conventions above are informal in the sense that there appears to be no

consensus in the literature on what should distinguish the term “operator” from the term

“mapping”. In general usage, when we use the term “mapping” the comment will also

apply to operators. Other descriptions of point-to-set operators are include multivalued

operators and set-valued operators.

In general, we will use upper case letters to denote operators and mappings and

146
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lower case letters to denote functions.

Instead of the power-set-based notation T (·) : Rn→ 2R
m
, an alternative notation

sometimes used to indicate a point-to-set mapping is T (·) : Rn ⇒Rm. We prefer T (·) :

Rn→ 2R
m
, since the power set notation 2R

m
(as a reference to “the set of all sets in Rm”)

is arguably a more explicit statement of the setting in which the mapping takes on values

(that is, the mapping takes in some element of Rn and returns a set of elements that are

each in Rm). An alternative notation for the power set 2R
m

is P (Rm) .

As an example operator, consider the gradient descent iterative update from xk

to xk+1:

xk+1 set
= xk−α∇ f

(
xk
)
.

To interpret this update as the result of applying an operator, we introduce the notation

T (x) set
= x−α∇ f (x) .

13.2 Definitions

Definition 63 (Point-to-set mapping). A point-to-set mapping T (·) : Rn → 2R
m

is

characterized by the subset of the product space Rn×Rm made up of all pairs of (input,

output) elements (x,y) ∈ Rn×Rm that occur. The “set” in point-to-set indicates that a

single input element x may be associated (via the mapping) with an entire set of output

elements; we denote the set of output elements from Rm associated (via the mapping

T (·)) with an input element x by T (x)⊆ Rm.

A point-to-set mapping T (·) : Rn→ 2R
m

as introduced above associates with

each x a subset of Rm; in particular, note that the empty set is a subset of Rm and so we

may have F (x) = /0. We also introduce the convention that set addition between any set

and the empty set yields the empty set: explicitly, S+ /0 = /0 for any set S ⊆Rn. (This is

equivalent to the addition rule for extended-real-valued functions by which the sum of

any real value with infinity is equal to infinity).

Definition 64 (Effective domain). We refer to the collection of all input arguments to a

point-to-set mapping T (·) : Rn→ 2R
m

that do not map to the empty set as the effective



148

domain of the mapping T (·) . This is a subset in Rn denoted dom T (·)⊆Rn and defined

via the expression

dom T (·) def
= {x ∈ Rn | T (x) 6= /0} .

The effective domain dom T (·) ⊆ Rn can be visualized as the “projection” of gr T (·)
onto the input space Rn. An alternate name for the effective domain of a point-to-set

mapping is “the set of definition”.

We also have a notion of properness for point-to-set mappings.

Definition 65 (Properness). We say that a point-to-set mapping T (·) : Rn → 2R
m

is

proper (or nontrivial) when it has non-empty effective domain, explicitly

dom T (·) 6= /0.

That is, we refer to a point-to-set mapping T (·) : Rn → 2R
m

as proper when

there exists at least one x# ∈ Rn for which T (x#) 6= /0.

Definition 66 (Graph). The graph (or graphical representation) of a point-to-set map-

ping T (·) : Rn→ 2R
m

is a subset of Rn×Rm denoted gr T (·)⊂ Rn×Rm and defined

via the expression

gr T (·) def
= {(x,y) ∈ Rn×Rm | y ∈ T (x)} .

In particular, the expression (x,y) ∈ gr T (·) is equivalent to the expression y ∈
T (x) . In some settings, the “gr” is omitted and the expression (x,y) ∈ T (·) is used as a

shorthand for (x,y) ∈ gr T (·). An alternative path to point-to-set operators views them

directly as subsets of the (input,output) space Rn×Rm; these subsets are described as

“relations” (of Rn and Rm) or “correspondences” (of Rn and Rm). Our approach to this

subset view is by means of the graph gr T (·)⊂ Rn×Rm.

Definition 67 (Image of a point). We refer to the set T (x) ⊆ Rm as the image of the

point x ∈ Rn with respect to the point-to-set mapping T (·) : Rn→ 2R
m
.

We can generalize this notion to an entire set.
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Definition 68 (Image of a set). The image of a set, say S ⊆ Rn of the input space Rn

with respect to a point-to-set mapping T (·) : Rn→ 2R
m

is the subset of the output space

Rm described as the union of all image sets for input arguments from S. The image of

S with respect to T (·) is denoted T (S)⊆ Rm and defined via the expression

T (S) def
=
⋃
x∈S

T (x) .

We can also consider the image of the entire input space with respect to T (·) ;

this is sometimes referred to as the “image of the point-to-set-operator”.

Definition 69 (Image of input space). The image of the input space with respect to the

point-to-set mapping T (·) : Rn → 2R
m

(or the range of T (·) or set of values of T (·))
is the subset of the output space Rm described as the union of all image sets for input

arguments from Rn. The image of Rn with respect to T (·) is denoted image T (·)⊆ Rm

(or more explicitly T (Rn)) and defined via the expression

image T (·) def
= T (Rn) =

⋃
x∈Rn

T (x) =
⋃

x∈dom T (·)
T (x) .

The image T (Rn)⊆ Rm of the input space with respect to the point-to-set oper-

ator T (·) can be visualized as the “projection” of gr T (·) onto the output space Rm.

We can state the effective domain and the image of T (·) is a more matched way

by referencing the graph gr T (·):

dom T (·) = {x ∈ Rn | there exists some y ∈ Rm with (x,y) ∈ gr T (·)}

image T (·) = {y ∈ Rm | there exists some x ∈ Rn with (x,y) ∈ gr T (·)} .

The graph gr T (·) is also helpful in describing the inverse of a point-to-set map-

ping.

Definition 70 (Inverse mapping). The inverse mapping associated with a point-to-set

mapping T (·) : Rn→ 2R
m

is the (potentially) point-to-set mapping denoted T−1 (·) :

Rm→ 2R
n

and defined (via its graph) through the expression

gr T−1 (·) def
= {(y,x) ∈ Rm×Rn | (x,y) ∈ gr T (·)} .
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A more direct statement might be:

(y,x) ∈ gr T−1 (·)⇐⇒ (x,y) ∈ gr T (·)

or more completely

(y,x) ∈ gr T−1 (·)⇐⇒ x ∈ T−1 (y)⇐⇒ y ∈ T (x)⇐⇒ (x,y) ∈ gr T (·) .

From the statement immediately above and our matched expressions from dom

T (·) and image T (·) we observe expressions for dom T−1 (·) and image T−1 (·):

image T−1 (·) = dom T (·) = {x ∈ Rn | there exists some y ∈ Rm with (x,y) ∈ gr T (·)}

dom T−1 (·) = image T (·) = {y ∈ Rm | there exists some x ∈ Rn with (x,y) ∈ gr T (·)} .

Definition 71 (Constant mapping). We say that a point-to-set mapping T (·) : Rn →
2R

m∗
is a constant point-to-set mapping if there exists some subset of the output space

Rm, say S ⊆ Rm such that S is the image set for every element of the input space.

Explicitly,

T (x) set
= S for each x ∈ Rm.

Since our goal is to use operator theoretic ideas to analyze iterative methods of

optimization, we need to introduce some additional terms. Note that we are now con-

sidering operators (mappings of the form Rn→Rn or Rn→Rn∗) rather than mappings.

The identity operator is as one would expect:

Definition 72 (Identity operator). The identity operator I (·) : Rn→ Rn returns what-

ever its input is; we define it (via its graph) through the expression

gr I (·) def
= {(x,x) ∈ Rn×Rn | for all x ∈ Rn} .

Note that the identity operator is always single-valued.

Optimization methods typically iterate until some argument remains unchanged

by the update process; these are the fixed points of the update.
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Definition 73 (Fixed point). We say that a point x ∈ Rn is a fixed point of the operator

T (·) : Rn→ Rn when it remains unchanged after being acted on by T (·) ; explicitly

T (x) = x.

To indicate that a particular argument is a fixed point, we may use the notation

x?,x+, or xfix.

The collection of all fixed points of T (·) is the fixed point set of T (·).

Definition 74 (Fixed point set). Associated with any operator T (·) : Rn→ Rn is the

collection of all fixed points of T (·), a set in Rn denoted Fix T (·)⊆ Rn and defined via

the expression

Fix T (·) def
= {x ∈ Rn | T (x) = x} .

Note that an operator need not have any fixed points; consider the choice T (x) set
=

x+b.

An idea that (in some sense) runs parallel to the notion of a fixed point of an

operator is that of a zero of an operator. As we will discuss later, the “types” of operator

for which we are interested in zeros are not the same as the “types” of operators for

which we are interested in fixed points (although there will generally be a close corre-

spondence). To emphasize this distinction, we will shift from our previous use of T (·)
to denote a generic operator to a use of M (·) .

Definition 75 (Zero). We say that a point x ∈Rn is a zero of the operator M (·) : Rn→
Rn∗ when it is mapped to zero under M (·) ; explicitly

M (x) = 0.

The collection of all zeros of M (·) is the zero set of M (·) .

Definition 76 (Zero set). Associated with any operator M (·) : Rn → Rn∗ is the col-

lection of all zeros of T (·), a set in Rn denoted Zeros T (·) ⊆ Rn and defined via the

expression

Zeros M (·) def
= {x ∈ Rn |M (x) = 0} .
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We next consider the notion of a displacement operator associated with some

operator.

Definition 77. For any point-to-set operator T (·) : Rn→ 2R
n
, we have an associated

displacement operator, G(·), characterized via the expression

G(·) set
= [I−T ] (·) .

The displacement operator is called the complement operator by [Byr08]; this

follows from the observation that G is the additive complement of T, since G+T = I.

Many references do not provide a name for this operator at all, yet it shows up repeatedly

and in important ways. Note that the fixed point set of an operator T coincides with

the zeros of the associated displacement operator G set
= I − T ; explicitly, Fix T (·) =

Zeros G(·) .

Definition 78. For any point-to-set operator T (·) : Rn→ 2R
n
, we have an associated

reflection operator, R(·), characterized via the expression

R(·) set
= 2T (·)− I (·) .

The reflection operator of a point-to-set operator will be useful in discussing

“over- or under-relaxation” in the context of our iterative updates.

Definition 79. For any point-to-set operator M (·) : Rn→ 2R
n∗

, we have an associated

operator called the λ -Yosida regularization (or approximation) of M, parameterized by

a strictly positive scalar λ ∈ R++, typically denoted by Mλ (·) : Rn→ Rn and defined

via the expression

Mλ (·)
def
=
[
λ I +M−1]−1

(·) .

See Figure 13.1.

The standard reference for this material is [Ber63]; a reference notable for its

valuable comments is [AF08]. Other references include [KK95] and [ALM13].
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Figure 13.1: λ -Yosida regularization of a monotone operator M. (After [RW04]).

13.3 Relationships

13.3.1 Polarization identity

Consider a generic operator T (·) : Rn → Rn and its associated displacement

operator G(·) set
= I (·)−T (·) : Rn→ Rn.

We have

〈T x−Ty,x− y〉= 1
2
‖T x−Ty‖2

2 +
1
2
‖x− y‖2

2−
1
2
‖Gx−Gy‖2

2 .

This is an expression of the “polarization identity” [AST10]; we also may recognize this

as a “vector form” of the law of cosines:

‖u− v‖2
2 = ‖u‖

2
2 +‖v‖

2
2−2〈u,v〉

‖[T x−Ty]− [x− y]‖2
2 = ‖T x−Ty‖2

2 +‖x− y‖2
2−2〈T x−Ty,x− y〉

‖[x− y]− [T x−Ty]‖2
2 = ‖T x−Ty‖2

2 +‖x− y‖2
2−2〈T x−Ty,x− y〉

‖Gx−Gy‖2
2 = ‖T x−Ty‖2

2 +‖x− y‖2
2−2〈T x−Ty,x− y〉

〈T x−Ty,x− y〉= 1
2
‖T x−Ty‖2

2 +
1
2
‖x− y‖2

2−
1
2
‖Gx−Gy‖2

2 .

Note that we could equivalently express the immediately preceding result as

〈Gx−Gy,x− y〉= 1
2
‖Gx−Gy‖2

2 +
1
2
‖x− y‖2

2−
1
2
‖T x−Ty‖2

2 .
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Two additional forms will sometimes be useful:

‖T x−Ty‖2
2 = ‖x− y‖2

2−‖Gx−Gy‖2
2−2〈T x−Ty,x− y〉

‖Gx−Gy‖2
2 = ‖x− y‖2

2−‖T x−Ty‖2
2−2〈T x−Ty,x− y〉 .

13.3.2 Another identity

Consider a generic operator T (·) : Rn → Rn and its associated displacement

operator G(·) set
= I (·)−T (·) : Rn→ Rn.

We have

〈T x−Ty,x− y〉−‖T x−Ty‖2
2 = 〈Gx−Gy,x− y〉−‖Gx−Gy‖2

2 .

See [Byr08] for further discussion.



Chapter 14

Contractivity-type properties and

monotonicity-type properties

14.1 Contractivity-type properties

When one represents the iterative update of some optimization method as an

operator, questions about the convergence of the optimization method can instead be

rephrased as questions about properties of the operator.

In this section, we consider categorization of operator properties in the form of

inequalities relating ‖T x#−T x$‖2
2 (the squared distance between vectors after applying

the operator) to two other quantities: ‖x#− x$‖2
2 (the squared distance between vectors

before applying the operator) and ‖Gx#−Gx$‖2
2 (the squared distance after applying the

associated displacement operator to the vectors).

All of the main contractivity-type property categories that we consider can be

described in terms of parameter value ranges associated with a single inequality:

‖T x#−T x$‖2
2 ≤ a‖x#− x$‖2

2 +b‖Gx#−Gx$‖2
2 .

For most categories, this inequality is required to hold for all x#,x$ ∈ Rn; in some situ-

ations we may qualify the discussion to require the arguments (and/or their associated

displacement mappings) to be distinct.

We consider parameter ranges a ∈ (−∞,1] and b ∈ (−∞,1]; we discuss more

specific terminology depending on specific subranges.

155
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As we discuss below (and collect in Table 14.1), different values of the parame-

ters a and b above correspond to different operator classes:

• when T satisfies the inequality above for a set
= 1, b set

= 1, we say that T (·) is pseu-

docontractive

• when T satisfies the inequality above for a set
= 1, b ∈ (0,1), we say that T (·) is

strictly pseudocontractive

• when T satisfies the inequality above for a ∈ (0,1), b set
= 1, we say that T (·) is

displacement strictly pseudocontractive

• when T satisfies the inequality above for a set
= 1, b set

= 0, we say that T (·) is nonex-

pansive

• when T satisfies the inequality above for a set
= 0, b set

= 1, we say that T (·) is dis-

placement nonexpansive

• when T satisfies the inequality above for a set
= 1, b ∈ (−∞,0), we say that T (·) is

decreasing pseudocontractive

• when T satisfies the inequality above for a ∈ (−∞,0) ,b set
= 1, we say that T (·) is

displacement decreasing pseudocontractive

• when T satisfies the inequality above for a set
= 1, b set

=−1, we say that T (·) is firmly

nonexpansive

• when T satisfies the inequality above for a set
= −1, b set

= 1, we say that T (·) is

displacement firmly nonexpansive

• when T satisfies the inequality above for a ∈ [0,1), b set
= 0, we say that T (·) is

strictly contractive

• when T satisfies the inequality above for a set
= 0, b ∈ [0,1), we say that T (·) is

displacement strictly contractive.

The terminology above merits some additional discussion, because it differs from the

existing literature in two important respects. First, the existing literature appears to
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make no reference to any of the properties that we describe with the prefatory adjective

“displacement”; nonetheless, as we show when we consider the correspondence be-

tween contractivity-type properties and monotonicity-type properties, any discussion of

contractivity-type properties is incomplete without these displacement-operator-centric

categories. Second, the existing terminology is frequently fragmented and contradic-

tory. For example, our category of “decreasing pseudocontractivity” is in some places

simply referred to as “pseudocontractivity” (see [Byr08] or [Var09]); these references

omit any discussion of the categories that we refer to as “strictly pseudocontractive” or

“pseudocontractive”. On the other hand, references that refer to the categories that we

refer to as “pseudocontractive” and “strictly pseudocontractive” often omit any sepa-

rate discussion of the category that we refer to as “decreasing pseudocontractive” (see

[BP67]). Sometimes the category that we refer to as decreasing pseudocontractive is

instead referred to as “averaged nonexpansive” (see [BC11] or [Com04]); we feel that

this term breaks the connection that exists among the various varieties that we refer to

in common as “pseudocontractive” and so will not use this term.

Another example of contradictory use of the term “pseudocontractive” occurs in

[BT89], where the term “pseudocontractive” is used to refer to what we later describe

as “strictly contractive with respect to the fixed point set Fix T ”. We will call further

attention to this notational collision when we subsequently consider contractivity-type

conditions with respect to the fixed point set Fix T. A related notion applied to a slightly

different context is introduced in [CZ97] under the name “targeted contraction”.

Finally, we mention one additional thread of terminology as exemplified by

[VE09]. What we call below “nonexpansive with respect to the nonempty fixed point

set F set
= Fix T ” [VE09] refer to either as F-Fejer or F-quasi-nonexpansive. The cat-

egory that we call below “strictly contractive with respect to the nonempty fixed point

set F set
= Fix T ” corresponds (essentially) to what [VE09] refer to as F-Fejer or strictly

F-quasi-nonexpansive; this category also essentially corresponds what [BT89] refer to

as pseudocontractive (with respect to the nonempty fixed point set Fix T ) and to what

[Byr08] refers to as paracontractive (with respect to the nonempty fixed point set Fix T ).

What we refer to as “pseudocontractive with respect to the nonempty fixed point set

F set
= Fix T ” essentially corresponds to what [VE09] refer to as strongly F-Fejer or F-



158

pseudocontractive.

We formally define these property classes below and display the classes in Table

14.1.

The geometric picture for these property classes is that each class of the proper-

ties above corresponds to the iterate being contained in a ball of a radius reflecting the

class. We separately describe firm nonexpansiveness (because this term is widely used

in the literature) but we emphasize that firm nonexpansiveness is a specific instance of

decreasing pseudocontractivity.

Definition 80 (Strictly contractive with parameter c). We say that an operator T (·) :

Rn→ Rn is c-strictly contractive when there exists a constant c ∈ [0,1) such that

‖T x#−T x$‖2 ≤ c‖x#− x$‖2

for all x#,x$ ∈ Rn.

We denote the class of all strictly contractive operators by Ssc. When we wish

to include specific reference to the strict contractivity parameter c, we write Ssc (c) to

denote the class of all operators that satisfy the c-strict contractivity condition.

Definition 81 (Displacement strictly contractive with parameter d). We say that an oper-

ator T (·) : Rn→Rn is d-displacement strictly contractive when there exists a constant

d ∈ [0,1) such that

‖T x#−T x$‖2 ≤ d ‖Gx#−Gx$‖2

for all x#,x$ ∈ Rn.

We denote the class of all displacement strictly contractive operators by Sdsc.

When we wish to include specific reference to the displacement strict contractivity

parameter d, we write Sdsc (d) to denote the class of all operators that satisfy the d-

displacement strict contractivity condition.

Definition 82 (Firmly nonexpansive ). We say that an operator T (·) : Rn→Rn is firmly

nonexpansive when

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2−‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.
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We denote the class of all firmly nonexpansive operators by Sfne.

Definition 83 (Displacement firmly nonexpansive ). We say that an operator T (·) :

Rn→ Rn is displacement firmly nonexpansive when

‖T x#−T x$‖2
2 ≤ ‖Gx#−Gx$‖2

2−‖x#− x$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

We denote the class of all displacement firmly nonexpansive operators by Sdfne.

Definition 84 (Decreasing pseudocontractive with parameter ν). We say that an operator

T (·) : Rn→ Rn is ν-decreasing pseudocontractive, for some ν ∈ (0,+∞) , when

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2−ν ‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

We denote the class of all decreasing pseudocontractive operators by Sdpc. When

we wish to include specific reference to the decreasing pseudocontractivity parameter

ν , we write Sdpc (ν) to denote the class of all operators that satisfy the ν-decreasing

pseudocontractivity condition.

Definition 85 (Displacement decreasing pseudocontractive with parameter κ). We say

that an operator T (·) : Rn→ Rn is κ-displacement decreasing pseudocontractive, for

some κ ∈ (0,+∞) , when

‖T x#−T x$‖2
2 ≤ ‖Gx#−Gx$‖2

2−κ ‖x#− x$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

We denote the class of all displacement decreasing pseudocontractive operators

by Sddpc. When we wish to include specific reference to the displacement decreasing

pseudocontractivity parameter κ, we write Sddpc (κ) to denote the class of all operators

that satisfy the κ-decreasing pseudocontractivity condition.

Definition 86 (Nonexpansive). We say that operator T (·) : Rn→ Rn is nonexpansive

when

‖T x#−T x$‖2 ≤ ‖x#− x$‖2

for all x#,x$ ∈ Rn.



161

We denote the class of all nonexpansive operators by Sne.

Definition 87 (Displacement nonexpansive). We say that operator T (·) : Rn→ Rn is

displacement nonexpansive when

‖T x#−T x$‖2 ≤ ‖Gx#−Gx$‖2

for all x#,x$ ∈ Rn.

We denote the class of all displacement nonexpansive operators by Sdne.

Definition 88 (Lipschitz with parameter L). We say that an operator T (·) : Rn→Rn is

L-Lipschitz, for some nonnegative L ∈ R+, when

‖T x#−T x$‖2 ≤ L‖x#− x$‖2

for all x#,x$ ∈ Rn.

We denote the class of all Lipschitz operators by SLip. When we wish to include

specific reference to the Lipschitz parameter L, we write SLip (L) to denote the class of

all operators that satisfy the L-Lipschitz condition.

Definition 89 (Displacement Lipschitz with parameter Λ). We say that an operator

T (·) : Rn→ Rn is Λ-displacement Lipschitz, for some nonnegative Λ ∈ R+, when

‖T x#−T x$‖2 ≤ Λ‖x#− x$‖2

for all x#,x$ ∈ Rn.

We denote the class of all displacement Lipschitz operators by SdLip. When we

wish to include specific reference to the displacement Lipschitz parameter Λ, we write

SdLip (Λ) to denote the class of all operators that satisfy the Λ-displacement Lipschitz

condition.

Definition 90 (Strictly pseudocontractive with parameter p). We say that an operator

T (·) : Rn→ Rn is p-strictly pseudocontractive, for some p ∈ (0,1) when

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 + p‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.
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We denote the class of all strictly pseudocontractive operators by Sspc. When we

wish to include specific reference to the strict pseudocontractivity parameter p, we write

Sspc (p) to denote the class of all operators that satisfy the p-strict pseudocontractivity

condition.

Definition 91 (Displacement strictly pseudocontractive with parameter q). We say that

an operator T (·) : Rn → Rn is q-displacement strictly pseudocontractive, for some

q ∈ (0,1) when

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 +q‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

We denote the class of all displacement strictly pseudocontractive operators by

Sdspc. When we wish to include specific reference to the displacement strict pseudocon-

tractivity parameter q, we write Sdspc (q) to denote the class of all operators that satisfy

the q-displacement strict pseudocontractivity condition.

Definition 92 (Pseudocontractive ). We say that an operator T (·) : Rn→ Rn is pseu-

docontractive when

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

We denote the class of all pseudocontractive operators by Spc.

We note the following inclusion relationships: Ssc ⊂ Sdpc ⊂ Sne ⊂ Sspc ⊂ Spc.

We do not explicitly mention the class of firmly nonexpansive operators because we re-

gard this class as a special case of the class of decreasing pseudocontractive operators.

The analogous inclusion relationships for the displacement operator classifications are

Sdsc ⊂ Sddpc ⊂ Sdne ⊂ Sdspc ⊂ Spc. Note that the standard definition of pseudocontrac-

tivity coincides with what we might have called displacement pseudocontractive; this

motivates the use of the term pseudocontractive in either perspective.
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14.2 Monotonicity-type properties

In this section, we consider categorization of operator properties in the form of

inequalities relating 〈Gx#−Gx$,x#− x$〉 , the scalar product between the difference of

applications of the operator G and the difference of initial argument values, to two other

quantities: ‖x#− x$‖2
2, the squared distance between vectors before applying the opera-

tor and ‖Gx#−Gx$‖2
2, the squared distance after applying the operator G to the vectors.

We deliberately state our monotonicity-type properties in terms of an operator referred

to as G because we will see later that contractivity type properties of an operator, say

T , correspond to monotonicity-type properties of the associated displacement operator

G set
= I− T ; thus, since we have referred to contractivity-type properties of an opera-

tor denoted T above, it will be appropriately suggestive to consider monotonicity-type

properties of an operator denoted G.

With the exception of strict monotonicity, all of the categories that we consider

can be described in terms of parameter value ranges associated with a single inequality:

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2 +ρ ‖Gx#−Gx$‖2

2 .

For most categories, this inequality is required to hold for all x#,x$ ∈ Rn; in

some situations we may qualify the discussion to require the arguments (and/or their

associated displacement mappings) to be distinct.

As we discuss below (and display in Table 14.2), different values of the param-

eters σ and ρ above correspond to different operator classes:

• when G satisfies the inequality above for some σ ∈ R++ and some ρ ∈ R++, we

say that G(·) is combined strongly monotone

• when G satisfies the inequality above for some σ ∈ R++ and ρ
set
= 0 we say that

G(·) is strongly monotone

• when G satisfies the inequality above for some σ
set
= 0 and some ρ ∈R++ , we say

that G(·) is inverse strongly monotone

• when G satisfies the inequality above for σ
set
= 0 and ρ

set
= 0, we say that G(·) is

monotone.
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Figure 14.1: Monotone operator M (illustrated with respect to the point (x0,s0)∈ gr M).
(After[AN09] ).

We will see later how the parameter ranges considered here for monotonicity-type prop-

erties of the displacement operator G set
= I−T correspond to various categories of con-

tractivity type properties of the operator T.

The monotonicity-type property that we refer to as “inverse strong monotonic-

ity” is sometimes referred to as “co-coercivity” (see [Com09]), the “Dunn property”,

or “strong F monotonicity”. We prefer our terminology as it more fully emphasizes

the symmetry that exists between the categories under discussion and more explicitly

emphasizes the close connection to the important application area of convex optimiza-

tion. We also note that the category that we refer to as “combined strong monotonicity”

does not seem to appear in the existing literature; however, the discussion in Nesterov

[Nes04] provides great impetus to introduce such an explicit reference.

We formally define these property classes below and display the classes in Table

14.2. We also recall the previous illustrations of some of these properties; see Figures

14.1 and 14.2.

Definition 93 (Combined strongly monotone with parameters σ ,ρ). We say that an op-
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Figure 14.2: Lipschitz operator at the point (x0,s0) ∈ gr M. (After [AN09]).

erator G(·) : Rn→Rn is (σ ,ρ)-combined strongly monotone for some strictly positive

σ ∈ R++ and ρ ∈ R++when

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2 +ρ ‖Gx#−Gx$‖2

2

for all x#,x$ ∈ Rn .

We denote the class of combined strongly monotone operators byMcsm. When

we wish to include specific reference to the parameters σ and ρ, we writeMcsm (σ ,ρ)

to denote the class of all operators that satisfy the (σ ,ρ)-combined strong monotonicity

condition.

Definition 94 (Strongly monotone with parameter σ ). We say that an operator G(·) :

Rn→ Rn is σ -strongly monotone for some strictly positive σ ∈ R++ when

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

for all x#,x$ ∈ Rn .

We denote the class of strongly monotone operators byMsm. When we wish to

include specific reference to the parameter σ , we writeMsm (σ) to denote the class of

all operators that satisfy the σ -strong monotonicity condition.
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Definition 95 (Inverse strongly monotone with parameter ρ). We say that an operator

G(·) : Rn → Rn is ρ-inverse strongly monotone for some strictly positive ρ ∈ R++

when

〈Gx#−Gx$,x#− x$〉 ≥ ρ ‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn .

We denote the class of inverse strongly monotone operators byMism. When we

wish to include specific reference to the parameter ρ , we writeMism (ρ) to denote the

class of all operators that satisfy the ρ-inverse strong monotonicity condition.

Definition 96 (Separately strongly monotone with parameters σ ,ρ). We say that an op-

erator G(·) : Rn→Rn is (σ ,ρ)-separately strongly monotone for some strictly positive

σ ∈ R++ and ρ ∈ R++when

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

and

〈Gx#−Gx$,x#− x$〉 ≥ ρ ‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn .

Note that the category of separate strong monotonicity has a slightly asymmetric

relationship to the category of combined strong monotonicity: the separate assumptions

of separate strong monotonicity can be averaged to yield a range of combined strong

monotonicity results, but the respective parameter values do not directly correspond to

σ or ρ . On the other hand, an assumption of combined strong monotonicity immediately

implies separate strong monotonicity with the same individual parameter values (simply

drop the term that is not being considered). We include this category in our discussion

because analysis is frequently based on separate strong monotonicity assumptions rather

than a combined strong monotonicity assumption.

We denote the class of separately strongly monotone operators byMssm. When

we wish to include specific reference to the parameters σ and ρ, we writeMssm (σ ,ρ)

to denote the class of all operators that satisfy the (σ ,ρ)-separate strong monotonicity

condition.



168

Definition 97 (Strictly monotone). We say that an operator G(·) : Rn→ Rn is strictly

monotone when

〈Gx#−Gx$,x#− x$〉> 0

for all x#,x$ ∈ Rn such that x# 6= x$ and Gx# 6= Gx$.

We denote the class of strictly monotone operators byMms.

Definition 98 (Monotone). We say that an operator G : Rn→Rn is monotone (or, more

specifically, monotone nondecreasing) when

〈Gx#−Gx$,x#− x$〉 ≥ 0

for all x#,x$ ∈ Rn.

We denote the class of monotone operators byMm.

We note the following inclusion relationships:Mcsm⊂Mism⊂Mm andMcsm⊂
Msm ⊂Mm. We discussed the placement of separate strong monotonicity above; in the

preceding inclusion statement, separate strong monotonicity would essentially overlap

with combined strong monotonicity.

14.3 Contractivity-type properties with respect to a fixed

point

The definitions above require the contractivity-type inequalities to be satisfied

for all possible pairs x#,x$ ∈ Rn. We can also consider versions of these properties in

which we require the inequalities to hold in a more specialized way: we specify a single

fixed point, say xfix ∈ Fix T (·) , and require the inequalities to be satisfied with respect

to that fixed point as the other argument ranges over all of Rn. This is precisely analo-

gous to the setting in convex optimization where we might require a Lipschitz condition

to hold at the optimal argument. This correspondence to the case of restricting atten-

tion to a Lipschitz condition at the optimal argument highlights the reason we state

contractivity-type with respect to a fixed point, rather than with respect to a generic
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point (although the statement in for generic points is implicit in the previous statement

that considers all possible pairs of points).

The corresponding definitions closely match those we have previously consid-

ered; we formally define these property classes below and display the classes in Table

14.3. To more closely see the correspondence between properties that hold for all pairs

of arguments and properties that hold with respect to a fixed point xfix ∈ Fix T (·) , note

that xfix ∈ Fix T (·) implies T (xfix) = xfix and G(xfix) = xfix− T (xfix) = 0. Again, we

separately describe firm nonexpansiveness (because of the wide use of this term in the

literature) but we recognize that firm nonexpansiveness is a specific instance of decreas-

ing pseudocontractivity.

Definition 99 (Strictly contractive (with parameter c) with respect to a fixed point). We

say that an operator T (·) : Rn → Rn is c-strictly contractive with respect to a fixed

point, say xfix ∈ Fix T (·), when there exists a constant c ∈ [0,1) such that

‖T x#− xfix‖2 ≤ c‖x#− xfix‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators strictly contractive with respect to a fixed

point by Ssc,p. When we wish to include specific reference to the strict contractivity

parameter c, we write Ssc,p (c) to denote the class of all operators that satisfy the c-strict

contractivity condition with respect to a fixed point.

Definition 100 (Displacement strictly contractive (with parameter d) with respect to

a fixed point). We say that an operator T (·) : Rn → Rn is d-displacement strictly

contractive with respect to a fixed point, say xfix ∈ Fix T (·), when there exists a constant

d ∈ [0,1) such that

‖T x#− xfix‖2 ≤ d ‖Gx#‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators that are displacement strictly contractive

with respect to a fixed point by Sdsc,p. When we wish to include specific reference to the

displacement strict contractivity parameter d, we write Sdsc,p (d) to denote the class of



171

all operators that satisfy the d-displacement strict contractivity condition with respect to

a fixed point.

Definition 101 (Firmly nonexpansive with respect to a fixed point). We say that an

operator T (·) : Rn → Rn is firmly nonexpansive with respect to a fixed point, say

xfix ∈ Fix T (·), when

‖T x#− xfix‖2
2 ≤ ‖x#− xfix‖2

2−‖Gx#‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are firmly nonexpansive with respect to

a fixed point by Sfne,p.

Definition 102 (Displacement firmly nonexpansive with respect to a fixed point). We

say that an operator T (·) : Rn→ Rn is displacement firmly nonexpansive with respect

to a fixed point, say xfix ∈ Fix T (·), when

‖T x#− xfix‖2
2 ≤ ‖Gx#‖2

2−‖x#− xfix‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are displacement firmly nonexpansive

with respect to a fixed point by Sdfne,p.

Definition 103 (Decreasing pseudocontractive (with parameter ν) with respect to a fixed

point). We say that an operator T (·) : Rn→Rn is ν-decreasing pseudocontractive with

respect to a fixed point, xfix ∈ Fix T (·), for some ν ∈ (0,+∞) , when

‖T x#− xfix‖2
2 ≤ ‖x#− xfix‖2

2−ν ‖Gx#‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators decreasing pseudocontractive with respect

to a fixed point by Sdpc,p. When we wish to include specific reference to the decreasing

pseudocontractivity parameter ν , we write Sdpc,p (ν) to denote the class of all operators

that satisfy the ν-decreasing pseudocontractivity condition with respect to a fixed point.
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Definition 104 (Displacement decreasing pseudocontractive (with parameter κ) with

respect to a fixed point). We say that an operator T (·) : Rn → Rn is κ-displacement

decreasing pseudocontractive with respect to a fixed point, xfix ∈ Fix T (·), for some

κ ∈ (0,+∞) , when

‖T x#− xfix‖2
2 ≤ ‖Gx#‖2

2−κ ‖x#− xfix‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are displacement decreasing pseudo-

contractive with respect to a fixed point by Sddpc,p. When we wish to include specific

reference to the displacement decreasing pseudocontractivity parameter κ, we write

Sddpc,p (κ) to denote the class of all operators that satisfy the κ-displacement decreasing

pseudocontractivity condition with respect to a fixed point.

Definition 105 (Nonexpansive with respect to a fixed point). We say that operator T (·) :

Rn→ Rn is nonexpansive with respect to a fixed point, say xfix ∈ Fix T (·), when

‖T x#− xfix‖2 ≤ ‖x#− xfix‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators nonexpansive with respect to a fixed point

by Sne,p.

Definition 106 (Displacement nonexpansive with respect to a fixed point). We say that

operator T (·) : Rn → Rn is displacement nonexpansive with respect to a fixed point,

say xfix ∈ Fix T (·), when

‖T x#− xfix‖2 ≤ ‖Gx#‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators that are displacement nonexpansive with

respect to a fixed point by Sdne,p.
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Definition 107 (Strictly pseudocontractive (with parameter p) with respect to a fixed

point). We say that an operator T (·) : Rn → Rn is p-strictly pseudocontractive with

respect to a fixed point, say xfix ∈ Fix T (·), for some p ∈ (0,1) when

‖T x#− xfix‖2
2 ≤ ‖x#− xfix‖2

2 + p‖Gx#‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are strictly pseudocontractive with re-

spect to a fixed point by Sspc,p. When we wish to include specific reference to the strict

pseudocontractivity parameter p, we write Sspc,p (p) to denote the class of all operators

that satisfy the p-strict pseudocontractivity condition with respect to a fixed point.

Definition 108 (Displacement strictly pseudocontractive (with parameter q) with respect

to a fixed point). We say that an operator T (·) : Rn → Rn is q-displacement strictly

pseudocontractive with respect to a fixed point, say xfix ∈ Fix T (·), for some q ∈ (0,1)

when

‖T x#− xfix‖2
2 ≤ ‖Gx#‖2

2 +q‖x#− xfix‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are displacement strictly pseudocontrac-

tive with respect to a fixed point by Sdspc,p. When we wish to include specific reference

to the displacement strict pseudocontractivity parameter q, we write Sdspc,p (q) to de-

note the class of all operators that satisfy the q-strict pseudocontractivity condition with

respect to a fixed point.

Definition 109 (Pseudocontractive with respect to a fixed point). We say that an operator

T (·) : Rn→ Rn is pseudocontractive with respect to a fixed point, say xfix ∈ Fix T (·) ,
when

‖T x#− xfix‖2
2 ≤ ‖x#− xfix‖2

2 +‖Gx#‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.
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We denote the class of all operators that are pseudocontractive with respect to a

fixed point by Spc,p.

Definition 110 (Lipschitz (with parameter L) with respect to a fixed point). We say that

an operator T (·) : Rn → Rn is L-Lipschitz with respect to a fixed point, say xfix ∈
Fix T (·) , for some nonnegative L ∈ R+, when

‖T x#− xfix‖2 ≤ L‖x#− xfix‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators that are Lipschitz with respect to a fixed

point by SLip,p. When we wish to include specific reference to the Lipschitz parameter

L, we write SLip,p (L) to denote the class of all operators that satisfy the L-Lipschitz

condition with respect to a fixed point.

Definition 111 (Displacement Lipschitz (with parameter Λ) with respect to a fixed

point). We say that an operator T (·) : Rn→ Rn is Λ-displacement Lipschitz with re-

spect to a fixed point, say xfix ∈ Fix T (·) , for some nonnegative Λ ∈ R+, when

‖T x#− xfix‖2 ≤ Λ‖Gx#‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators that are displacement Lipschitz with respect

to a fixed point by SdLip,p. When we wish to include specific reference to the displace-

ment Lipschitz parameter Λ, we write SdLip,p (Λ) to denote the class of all operators that

satisfy the Λ-displacement Lipschitz condition with respect to a fixed point.

We note the following inclusion relationships: Ssc,p ⊂ Sdpc,p ⊂ Sne,p ⊂ Sspc,p ⊂
Spc,p. Also: Sdsc,p ⊂ Sddpc,p ⊂ Sdne,p ⊂ Sdspc,p ⊂ Spc,p.

14.4 Monotonicity-type properties with respect to a zero

point of the operator

When stated with respect to a point, contractivity properties are naturally con-

nected to elements of the fixed point set of the operator in question. For monotonicity-

type properties stated with respect to a point, the natural point to consider is an element
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of the set of zeros of the operator. This statement follows immediately from the relation-

ship between T and G, since G = I−T means that x ∈ Fix T if and only if x ∈ Zeros G.

As before, with the exception of strict monotonicity, all of the categories that we

consider can be described in terms of parameter value ranges associated with a single

inequality:

〈Gx#,x#− xzer〉 ≥ σ ‖x#− xzer‖2
2 +ρ ‖Gx#‖2

2 for all x# ∈ Rn\Zeros G.

We formally define these property classes below and display the classes in Table

14.4.

Definition 112 (Combined strongly monotone (with parameters σ ,ρ) with respect to

a zero point). We say that an operator G(·) : Rn → Rn is (σ ,ρ)-combined strongly

monotone with respect to a zero point, say xzer ∈ Zeros G, for some strictly positive

σ ∈ R++ and ρ ∈ R++when

〈Gx#,x#− xzer〉 ≥ σ ‖x#− xzer‖2
2 +ρ ‖Gx#‖2

2

for all x# ∈ Rn\Zeros G.

We denote the class of operators that are combined strongly monotone with re-

spect to a zero point by Mcsm,p. When we wish to include specific reference to the

parameters σ and ρ, we write Mcsm,p (σ ,ρ) to denote the class of all operators that

satisfy the (σ ,ρ)-combined strong monotonicity condition with respect to a zero point.

Definition 113 (Strongly monotone (with parameter σ ) with respect to a zero point).

We say that an operator G(·) : Rn→ Rn is σ -strongly monotone with respect to a zero

point, say xzer ∈ Zeros G, for some strictly positive σ ∈ R++ when

〈Gx#,x#− xzer〉 ≥ σ ‖x#− xzer‖2
2

for all x# ∈ Rn\Zeros G.

We denote the class of operators that are strongly monotone with respect to a

zero point by Msm,p. When we wish to include specific reference to the parameter

σ , we write Msm,p (σ) to denote the class of all operators that satisfy the σ -strong

monotonicity condition with respect to a zero point.
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Definition 114 (Inverse strongly monotone (with parameter ρ) with respect to a zero

point). We say that an operator G(·) : Rn→ Rn is ρ-inverse strongly monotone with

respect to a zero point, say xzer ∈ Zeros G, for some strictly positive ρ ∈ R++ when

〈Gx#,x#− xzer〉 ≥ ρ ‖Gx#‖2
2

for all x# ∈ Rn\Zeros G.

We denote the class of operators that are inverse strongly monotone with respect

to a zero point byMism,p. When we wish to include specific reference to the parameter

ρ , we write Mism,p (ρ) to denote the class of all operators that satisfy the ρ-inverse

strong monotonicity condition with respect to a zero point.

Definition 115 (Strictly monotone with respect to a zero point). We say that an operator

G(·) : Rn→ Rn is strictly monotone with respect to a zero point, say xzer ∈ Zeros G,

when

〈Gx#,x#− xzer〉> 0

for all x# ∈ Rn\Zeros G.

We denote the class of operators that are strictly monotone with respect to a zero

point byMms,p.

Definition 116 (Monotone with respect to a zero point).

We say that an operator G : Rn→ Rn is monotone with respect to a zero point,

say xzer ∈ Zeros G, when

〈Gx#,x#− xzer〉 ≥ 0

for all x# ∈ Rn\Zeros G.

We denote the class of operators that are monotone with respect to a zero point

byMm,p.

We note the following inclusion relationships: Mcsm,p ⊂Mism,p ⊂Mm,p and

Mcsm,p ⊂Msm,p ⊂Mm,p.
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14.5 Contractivity-type properties with respect to a fixed

point set

We have seen statements of contractivity-type properties with respect to a single

fixed point; we can also consider versions of these properties stated relative to a fixed

point set. In particular, we state this version with respect to a projection onto the fixed

point set and so requires the inequalities to be satisfied with respect to the appropriate

“closest fixed point” as the other argument ranges over all of Rn. For convenience, we

will introduce the notation F set
= Fix T .

The corresponding definitions closely match those we have previously consid-

ered; we formally define these property classes below and display the classes in Table

14.5. Again, note that xfix ∈ Fix T (·) implies T (xfix)= xfix and G(xfix)= xfix−T (xfix)=

0.

The literature again includes some alternative terminology for the contractivity-

type property categories listed above. Byrne [Byr08] includes the somewhat nonspe-

cific category of “paracontractions” (implicitly with respect to a fixed point set). An

operator T (·) : Rn → Rn is said to be paracontractive (with respect to Fix T ) when

‖T x#− xfix‖2 < ‖x#− xfix‖2 for every x# ∈ Rn\Fix T.

As mentioned above, another example of contradictory use of the term “pseu-

docontractive” occurs in [BT89], where the term “pseudocontractive” is used to refer to

what we describe below as “strictly contractive with respect to the fixed point set Fix T ”.

A related notion applied to a slightly different context is introduced in [CZ97] under the

name “targeted contraction”.

Further, we again mention the additional thread of alternative terminology ex-

emplified by [VE09]. What we call below “nonexpansive with respect to the nonempty

fixed point set F set
= Fix T ” essentially corresponds to what [VE09] refer to either as

F-Fejer or F-quasi-nonexpansive. The category that we call below “strictly contrac-

tive with respect to the nonempty fixed point set F set
= Fix T ” essentially corresponds

to what [VE09] refer to as F-Fejer or strictly F-quasi-nonexpansive; this category also

essentially corresponds what [BT89] refer to as pseudocontractive (with respect to the

nonempty fixed point set Fix T ) and to what [Byr08] refers to as paracontractive (with
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respect to the nonempty fixed point set Fix T ). What we refer to as “pseudocontractive

with respect to the nonempty fixed point set F set
= Fix T ” essentially corresponds to what

[VE09] refer to as strongly F-Fejer or F-pseudocontractive. Throughout each of these

examples, the distinction is that our use of the projection onto the fixed point set as the

reference point, rather than having the reference point range over any element of the

fixed point set. We adopt this to convention to more closely align our usage with the

usage of such concepts as “restricted strong convexity” that has recently gained promi-

nence in the machine learning optimization literature.

Definition 117 (Strictly contractive (with parameter c) with respect to Fix T ). We say

that an operator T (·) : Rn→ Rn is c-strictly contractive with respect to its fixed point

set Fix T (·) when there exists a constant c ∈ [0,1) such that

‖T x#−ΠF (x#)‖2 ≤ c‖x#−ΠF (x#)‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators that are strictly contractive with respect

to their fixed point set by Ssc,s. When we wish to include specific reference to the

strict contractivity parameter c, we write Ssc,s (c) to denote the class of all operators that

satisfy the c-strict contractivity condition with respect to their fixed point set.

Definition 118 (Displacement strictly contractive (with parameter d) with respect to

Fix T ). We say that an operator T (·) : Rn→ Rn is d-displacement strictly contractive

with respect to its fixed point set Fix T (·) when there exists a constant d ∈ [0,1) such

that

‖T x#−ΠF (x#)‖2 ≤ d ‖Gx#‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators that are displacement strictly contractive

with respect to their fixed point set by Sdsc,s. When we wish to include specific reference

to the displacement strict contractivity parameter d, we write Sdsc,s (c) to denote the class

of all operators that satisfy the d-displacement strict contractivity condition with respect

to their fixed point set.
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Definition 119 (Firmly nonexpansive with respect to Fix T ). We say that an operator

T (·) : Rn→Rn is firmly nonexpansive with respect to its fixed point set Fix T (·) when

‖T x#−ΠF (x#)‖2
2 ≤ ‖x#−ΠF (x#)‖2

2−‖Gx#‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are firmly nonexpansive with respect to

their fixed point set by Sfne,s.

Definition 120 (Displacement firmly nonexpansive with respect to Fix T ). We say that

an operator T (·) : Rn → Rn is displacement firmly nonexpansive with respect to its

fixed point set Fix T (·) when

‖T x#−ΠF (x#)‖2
2 ≤ ‖Gx#‖2

2−‖x#−ΠF (x#)‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are displacement firmly nonexpansive

with respect to their fixed point set by Sdfne,s.

Definition 121 (Decreasing pseudocontractive (with parameter ν) with respect to Fix T ).

We say that an operator T (·) : Rn→Rn is ν-decreasing pseudocontractive with respect

to its fixed point set Fix T (·), for some ν ∈ (0,+∞) , when

‖T x#−ΠF (x#)‖2
2 ≤ ‖x#−ΠF (x#)‖2

2−ν ‖Gx#‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are decreasing pseudocontractive with

respect to their fixed point set by Sdpc,s. When we wish to include specific reference to

the decreasing pseudocontractivity parameter ν , we write Sdpc,s (ν) to denote the class

of all operators that satisfy the ν-decreasing pseudocontractivity condition with respect

to their fixed point set.



182

Definition 122 (Displacement decreasing pseudocontractive (with parameter κ) with

respect to Fix T ). We say that an operator T (·) : Rn→Rn is κ-displacement decreasing

pseudocontractive with respect to its fixed point set Fix T (·), for some κ ∈ (0,+∞) ,

when

‖T x#−ΠF (x#)‖2
2 ≤ ‖Gx#‖2

2−κ ‖x#−ΠF (x#)‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are displacement decreasing pseudo-

contractive with respect to their fixed point set by Sddpc,s. When we wish to include

specific reference to the displacement decreasing pseudocontractivity parameter κ, we

write Sddpc,s (κ) to denote the class of all operators that satisfy the κ-displacement de-

creasing pseudocontractivity condition with respect to their fixed point set.

Definition 123 (Nonexpansive with respect to Fix T ). We say that operator T (·) : Rn→
Rn is nonexpansive with respect to its fixed point set Fix T (·) when

‖T x#−ΠF (x#)‖2 ≤ ‖x#−ΠF (x#)‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators that are nonexpansive with respect to their

fixed point set by Sne,s.

Definition 124 (Displacement nonexpansive with respect to Fix T ). We say that oper-

ator T (·) : Rn → Rn is displacement nonexpansive with respect to its fixed point set

Fix T (·) when

‖T x#−ΠF (x#)‖2 ≤ ‖Gx#‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators that are displacement nonexpansive with

respect to their fixed point set by Sdne,s.
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Definition 125 (Strictly pseudocontractive (with parameter p) with respect to Fix T ).

We say that an operator T (·) : Rn→ Rn is p-strictly pseudocontractive with respect to

its fixed point set Fix T (·), for some p ∈ (0,1) when

‖T x#−ΠF (x#)‖2
2 ≤ ‖x#−ΠF (x#)‖2

2 + p‖Gx#‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are strictly pseudocontractive with re-

spect to their fixed point set by Sspc,s. When we wish to include specific reference to the

strict pseudocontractivity parameter p, we write Sspc,s (p) to denote the class of all op-

erators that satisfy the p-strict pseudocontractivity condition with respect to their fixed

point set.

Definition 126 (Displacement strictly pseudocontractive (with parameter q) with respect

to Fix T ). We say that an operator T (·) : Rn→ Rn is q-displacement strictly pseudo-

contractive with respect to its fixed point set Fix T (·), for some q ∈ (0,1) when

‖T x#−ΠF (x#)‖2
2 ≤ ‖Gx#‖2

2 +q‖x#−ΠF (x#)‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.

We denote the class of all operators that are displacement strictly pseudocon-

tractive with respect to their fixed point set by Sdspc,s. When we wish to include specific

reference to the displacement strict pseudocontractivity parameter q, we write Sdspc,s (q)

to denote the class of all operators that satisfy the q-displacement strict pseudocontrac-

tivity condition with respect to their fixed point set.

Definition 127 (Pseudocontractive with respect to Fix T ). We say that an operator T (·) :

Rn→ Rn is pseudocontractive with respect to its fixed point set Fix T (·), when

‖T x#−ΠF (x#)‖2
2 ≤ ‖x#−ΠF (x#)‖2

2 +‖Gx#‖2
2

for all x# ∈Rn\Fix T (·) , where G set
= I−T is the displacement operator associated with

T.
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We denote the class of all operators that are pseudocontractive with respect to

their fixed point set by Spc,s.

Definition 128 (Lipschitz (with parameter L) with respect to Fix T ). We say that an

operator T (·) : Rn→ Rn is L-Lipschitz with respect to its fixed point set Fix T (·), for

some nonnegative L ∈ R+, when

‖T x#−ΠF (x#)‖2 ≤ L‖x#−ΠF (x#)‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators that are Lipschitz with respect to their fixed

point set by SLip,s. When we wish to include specific reference to the Lipschitz param-

eter L, we write SLip,s (L) to denote the class of all operators that satisfy the L-Lipschitz

condition with respect to their fixed point set.

Definition 129 (Displacement Lipschitz (with parameter Λ) with respect to Fix T ). We

say that an operator T (·) : Rn → Rn is Λ-displacement Lipschitz with respect to its

fixed point set Fix T (·), for some nonnegative Λ ∈ R+, when

‖T x#−ΠF (x#)‖2 ≤ Λ‖Gx#‖2

for all x# ∈ Rn\Fix T (·) .

We denote the class of all operators that are displacement Lipschitz with respect

to their fixed point set by SdLip,s. When we wish to include specific reference to the

displacement Lipschitz parameter Λ, we write SdLip,s (Λ) to denote the class of all oper-

ators that satisfy the Λ-displacement Lipschitz condition with respect to their fixed point

set.

We note the following inclusion relationships: Sdsc,s⊂Sddpc,s⊂Sdne,s⊂Sdspc,s⊂
Sdpc,s.

14.6 Monotonicity-type properties with respect to a zero

point set

When stated with respect to a point, contractivity properties are naturally con-

nected to elements of the fixed point set of the operator in question. For monotonicity-
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type properties stated with respect to a point, the natural point to consider is an element

of the set of zero points of the operator. This statement follows immediately from the

relationship between T and G, since G = I − T means that x ∈ Fix T if and only if

x ∈ Zeros G. In like fashion, for the analog of contractivity-type properties with respect

to the fixed point set we are led to monotonicity-type properties with respect to a zero

point set. For convenience, we introduce the notation Z set
= Zeros G.

As before, with the exception of strict monotonicity, all of the categories that we

consider can be described in terms of parameter value ranges associated with a single

inequality:

〈Gx#,x#−ΠZ (xzer)〉 ≥ σ ‖x#−ΠZ (xzer)‖2
2 +ρ ‖Gx#‖2

2 for all x# ∈ Rn\Zeros G.

We formally define these property classes below and display the classes in Table

14.6.

Definition 130 (Combined strongly monotone (with parameters σ ,ρ) with respect to

Zeros G). We say that an operator G(·) : Rn→ Rn is (σ ,ρ)-combined strongly mono-

tone with respect to its zero point set Zeros G, for some strictly positive σ ∈ R++ and

ρ ∈ R++when

〈Gx#,x#−ΠZ (xzer)〉 ≥ σ ‖x#−ΠZ (xzer)‖2
2 +ρ ‖Gx#‖2

2

for all x# ∈ Rn\Zeros G.

We denote the class of operators that are combined strongly monotone with re-

spect to their zero point set by Mcsm,s. When we wish to include specific reference

to the parameters σ and ρ, we writeMcsm,s (σ ,ρ) to denote the class of all operators

that satisfy the (σ ,ρ)-combined strong monotonicity condition with respect to their zero

point set.

Definition 131 (Strongly monotone (with parameter σ ) with respect to Zeros G). We

say that an operator G(·) : Rn → Rn is σ -strongly monotone with respect to its zero

point set Zeros G, for some strictly positive σ ∈ R++ when

〈Gx#,x#−ΠZ (xzer)〉 ≥ σ ‖x#−ΠZ (xzer)‖2
2

for all x# ∈ Rn\Zeros G.
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We denote the class of operators that are strongly monotone with respect to their

zero point set byMsm,s. When we wish to include specific reference to the parameter

σ , we write Msm,s (σ) to denote the class of all operators that satisfy the σ -strong

monotonicity condition with respect to their zero point set.

Definition 132 (Inverse strongly monotone (with parameter ρ) with respect to Zeros G).

We say that an operator G(·) : Rn→Rn is ρ-inverse strongly monotone with respect to

its zero point set Zeros G, for some strictly positive ρ ∈ R++ when

〈Gx#,x#−ΠZ (xzer)〉 ≥ ρ ‖Gx#‖2
2

for all x# ∈ Rn\Zeros G.

We denote the class of operators that are inverse strongly monotone with respect

to their zero point set by Mism,s. When we wish to include specific reference to the

parameter ρ , we write Mism,s (ρ) to denote the class of all operators that satisfy the

ρ-inverse strong monotonicity condition with respect to their zero point set.

Definition 133 (Strictly monotone with respect to Zeros G). We say that an operator

G(·) : Rn→ Rn is strictly monotone with respect to its zero point set Zeros G when

〈Gx#,x#−ΠZ (xzer)〉> 0

for all x# ∈ Rn\Zeros G.

We denote the class of operators that are strictly monotone with respect to their

zero point set byMms,s.

Definition 134 (Monotone with respect to Zeros G).

We say that an operator G : Rn→ Rn is monotone with respect to its zero point

set Zeros G when

〈Gx#,x#−ΠZ (xzer)〉 ≥ 0

for all x# ∈ Rn\Zeros G.

We denote the class of operators that are monotone with respect to their zero

point set byMm,s.

We note the following inclusion relationships: Mcsm,s ⊂Mism,s ⊂Mm,s and

Mcsm,s ⊂Msm,s ⊂Mm,s.



Chapter 15

Relationships between “contractivity”

properties of T and “monotonicity”

properties of G = I−T

15.1 Introduction

We will see here that there is a close relationship between the properties of an

operator T and the properties of the associated displacement operator G = I−T ; specif-

ically, we will see that contractivity-type properties of T correspond to monotonicity-

type properties of the associated displacement operator G = I−T (and vice versa).

These relationships all hinge on one central identity:

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉

or the equivalent re-expression

〈Gx#−Gx$,x#− x$〉=
1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 .

As previously noted, this identity can be described as (a vector form of) the law

of cosines; in other contexts, it is referred to as “polarization identity”.
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15.2 Starting from contractivity-type properties

When starting from contractivity-type properties, the most convenient form of

the central identity is

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 .

Proposition 5 (Strict contractivity and combined strong monotonicity). When T is c-

strictly contractive, G = I−T is
(

1−c2

2 ,1
)

-combined strongly monotone.

Proof. Recall that we say an operator T (·) : Rn → Rn is c-strictly contractive when

there exists a constant c ∈ [0,1) such that

‖T x#−T x$‖2 ≤ c · ‖x#− x$‖2

for all x#,x$ ∈ Rn.

From T being c-strictly contractive we have

‖T x#−T x$‖2 ≤ c · ‖x#− x$‖2 ;

combined with the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,

we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ c2 · ‖x#− x$‖2
2

from which

−2〈Gx#−Gx$,x#− x$〉 ≤ c2 · ‖x#− x$‖2
2−‖x#− x$‖2

2−‖Gx#−Gx$‖2
2

2〈Gx#−Gx$,x#− x$〉 ≥ −c2 · ‖x#− x$‖2
2 +‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2

〈Gx#−Gx$,x#− x$〉 ≥
(

1− c2

2

)
· ‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2 .

This establishes that when T is c-strictly contractive, G = I− T is
(

1−c2

2 , 1
2

)
-

combined strongly monotone (and thus
(

1−c2

2

)
-strongly monotone, 1

2 -inverse strongly

monotone, and monotone).
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Proposition 6 (Displacement strict contractivity and combined strong monotonicity).

When T is d-displacement strictly contractive, G= I−T is
(

1, 1−d2

2

)
-combined strongly

monotone.

Proof. Recall that we say an operator T (·) : Rn→ Rn is d-displacement strictly con-

tractive when there exists a constant d ∈ [0,1) such that

‖T x#−T x$‖2 ≤ d · ‖Gx#−Gx$‖2

for all x#,x$ ∈ Rn.

From T being d-displacement strictly contractive we have

‖T x#−T x$‖2
2 ≤ d2 · ‖Gx#−Gx$‖2

2 ;

combined with the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,

we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ d2 · ‖Gx#−Gx$‖2
2

from which

−2〈Gx#−Gx$,x#− x$〉 ≤ d2 · ‖Gx#−Gx$‖2
2−‖x#− x$‖2

2−‖Gx#−Gx$‖2
2

2〈Gx#−Gx$,x#− x$〉 ≥ −d2 · ‖Gx#−Gx$‖2
2 +‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2

〈Gx#−Gx$,x#− x$〉 ≥
(

1−d2

2

)
· ‖Gx#−Gx$‖2

2 +
1
2
‖x#− x$‖2

2 .

This establishes that when T is d-displacement strictly contractive, G = I− T

is
(

1
2 ,

1−d2

2

)
-combined strongly monotone (and thus 1

2 -strongly monotone,
(

1−d2

2

)
-

inverse strongly monotone, and monotone).

Proposition 7 (Firm nonexpansiveness and 1-inverse strong monotonicity). When T is

firmly nonexpansive, G = I−T is 1-inverse strongly monotone.

Proof. Recall that we say an operator T (·) : Rn→ Rn is firmly nonexpansive when

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2−‖Gx#−Gx$‖2
2
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for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

From T firmly nonexpansive

‖T x#−T x$‖2 ≤ ‖x#− x$‖2
2−‖Gx#−Gx$‖2

2 ,

and the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,

we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ ‖x#− x$‖2
2−‖Gx#−Gx$‖2

2

from which

−2〈Gx#−Gx$,x#− x$〉 ≤ −2‖Gx#−Gx$‖2
2

〈Gx#−Gx$,x#− x$〉 ≥ ‖Gx#−Gx$‖2
2 .

This establishes that when T is firmly nonexpansive, G = I − T is 1-inverse

strongly monotone (and thus monotone).

Proposition 8 (Displacement firm nonexpansiveness and 1-strong monotonicity). When

T is displacement firmly nonexpansive, G = I−T is 1-strongly monotone.

Proof. Recall that we say an operator T (·) : Rn→ Rn is displacement firmly nonex-

pansive when

‖T x#−T x$‖2
2 ≤ ‖Gx#−Gx$‖2

2−‖x#− x$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

From T displacement firmly nonexpansive

‖T x#−T x$‖2 ≤ ‖Gx#−Gx$‖2
2−‖x#− x$‖2

2 ,

and the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,
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we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ ‖Gx#−Gx$‖2
2−‖x#− x$‖2

2

from which

−2〈Gx#−Gx$,x#− x$〉 ≤ −2‖x#− x$‖2
2

〈Gx#−Gx$,x#− x$〉 ≥ ‖x#− x$‖2
2 .

This establishes that when T is displacement firmly nonexpansive, G = I−T is

1-strongly monotone.

Proposition 9 (Decreasing pseudocontractivity and inverse strong monotonicity). When

T is ν-decreasing pseudocontractive, G = I−T is
(1+ν

2

)
-inverse strongly monotone.

Proof. Recall that we say that an operator T (·) : Rn→Rn is ν-decreasing pseudocon-

tractive, for some ν ∈ (0,1) , when

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2−ν ‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

From T ν-decreasing pseudocontractive

‖T x#−T x$‖2 ≤ ‖x#− x$‖2
2−ν ‖Gx#−Gx$‖2

2 ,

and the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,

we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ ‖x#− x$‖2
2−ν ‖Gx#−Gx$‖2

2

from which

−2〈Gx#−Gx$,x#− x$〉 ≤ −ν ‖Gx#−Gx$‖2
2−‖Gx#−Gx$‖2

2

〈Gx#−Gx$,x#− x$〉 ≥
(

1+ν

2

)
‖Gx#−Gx$‖2

2 .

This establishes that when T is ν-decreasing pseudocontractive, G = I− T is(1+ν

2

)
-inverse strongly monotone.
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Proposition 10 (Displacement decreasing pseudocontractivity and strong monotonic-

ity). When T is µ-displacement decreasing pseudocontractive, G = I− T is
(

1+µ

2

)
-

strongly monotone.

Proof. Recall that we say that an operator T (·) : Rn→Rn is µ-displacement decreasing

pseudocontractive, for some µ ∈ (0,1) , when

‖T x#−T x$‖2
2 ≤ ‖Gx#−Gx$‖2

2−µ ‖x#− x$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

From T µ-displacement decreasing pseudocontractive

‖T x#−T x$‖2 ≤ ‖Gx#−Gx$‖2
2−µ ‖x#− x$‖2

2 ,

and the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,

we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ ‖Gx#−Gx$‖2
2−µ ‖x#− x$‖2

2

from which

−2〈Gx#−Gx$,x#− x$〉 ≤ −µ ‖x#− x$‖2
2−‖x#− x$‖2

2

〈Gx#−Gx$,x#− x$〉 ≥
(

1+µ

2

)
‖x#− x$‖2

2 .

This establishes that when T is µ-displacement decreasing pseudocontractive,

G = I−T is
(

1+µ

2

)
-strongly monotone.

Proposition 11 (Nonexpansiveness and 1
2 -inverse strong monotonicity). When T is non-

expansive, G = I−T is 1
2 -inverse strongly monotone.

Proof. Recall that we say that an operator T (·) : Rn→ Rn is nonexpansive when

‖T x#−T x$‖2 ≤ ‖x#− x$‖2

for all x#,x$ ∈ Rn.
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From T nonexpansive

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 ,

and the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,

we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ ‖x#− x$‖2
2

−2〈Gx#−Gx$,x#− x$〉 ≤ −‖Gx#−Gx$‖2
2

2〈Gx#−Gx$,x#− x$〉 ≥ ‖Gx#−Gx$‖2
2

〈Gx#−Gx$,x#− x$〉 ≥
1
2
‖Gx#−Gx$‖2

2 .

This establishes that when T is nonexpansive, G= I−T is 1
2 -inverse strongly monotone.

Proposition 12 (Displacement nonexpansiveness and 1
2 -strong monotonicity). When T

is displacement nonexpansive, G = I−T is 1
2 -strongly monotone.

Proof. Recall that we say that an operator T (·) : Rn→ Rn is displacement nonexpan-

sive when

‖T x#−T x$‖2 ≤ ‖Gx#−Gx$‖2

for all x#,x$ ∈ Rn.

From T displacement nonexpansive

‖T x#−T x$‖2
2 ≤ ‖Gx#−Gx$‖2

2 ,

and the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,

we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ ‖Gx#−Gx$‖2
2

−2〈Gx#−Gx$,x#− x$〉 ≤ −‖x#− x$‖2
2

2〈Gx#−Gx$,x#− x$〉 ≥ ‖x#− x$‖2
2

〈Gx#−Gx$,x#− x$〉 ≥
1
2
‖x#− x$‖2

2 .
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This establishes that when T is displacement nonexpansive, G = I− T is 1
2 -strongly

monotone.

Proposition 13 (Strict pseudocontractivity and inverse strong monotonicity). When T

is p-strictly pseudocontractive, G = I−T is
(

1−p
2

)
-inverse strongly monotone.

Proof. Recall that we say that an operator T (·) : Rn→Rn is p-strictly pseudocontrac-

tive, for some p ∈ (0,1) when

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 + p‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

From T p-strictly pseudocontractive

‖T x#−T x$‖2 ≤ ‖x#− x$‖2
2 + p‖Gx#−Gx$‖2

2 ,

and the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,

we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ ‖x#− x$‖2
2 + p‖Gx#−Gx$‖2

2 ,

from which

−2〈Gx#−Gx$,x#− x$〉 ≤ p‖Gx#−Gx$‖2
2−‖Gx#−Gx$‖2

2

〈Gx#−Gx$,x#− x$〉 ≥
(

1− p
2

)
‖Gx#−Gx$‖2

2 .

This establishes that when T is p-strictly pseudocontractive, G= I−T is
(

1−p
2

)
-inverse

strongly monotone.

Proposition 14 (Displacement strict pseudocontractivity and strong monotonicity). When

T is q-displacement strictly pseudocontractive, G = I−T is
(

1−q
2

)
-strongly monotone.

Proof. Recall that we say that an operator T (·) : Rn→ Rn is q-displacement strictly

pseudocontractive, for some q ∈ (0,1) when

‖T x#−T x$‖2
2 ≤ ‖Gx#−Gx$‖2

2 +q‖x#− x$‖2
2
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for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

From T q-displacement strictly pseudocontractive

‖T x#−T x$‖2 ≤ ‖Gx#−Gx$‖2
2 +q‖x#− x$‖2

2 ,

and the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,

we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ ‖Gx#−Gx$‖2
2 +q‖x#− x$‖2

2 ,

from which

−2〈Gx#−Gx$,x#− x$〉 ≤ q‖x#− x$‖2
2−‖x#− x$‖2

2

〈Gx#−Gx$,x#− x$〉 ≥
(

1−q
2

)
‖x#− x$‖2

2 .

This establishes that when T is q-displacement strictly pseudocontractive, G =

I−T is
(

1−q
2

)
-strongly monotone.

Proposition 15 (Pseudocontractivity and monotonicity). When T is pseudocontractive

(equivalent to displacement pseudocontractive), G = I−T is monotone.

Proof. Recall that we say that an operator T (·) : Rn→ Rn is pseudocontractive when

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn, where G set
= I−T is the displacement operator associated with T.

From T pseudocontractive

‖T x#−T x$‖2 ≤ ‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2 ,

and the central identity

‖T x#−T x$‖2
2 = ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2−2〈Gx#−Gx$,x#− x$〉 ,
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we get

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2−2〈Gx#−Gx$,x#− x$〉 ≤ ‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2 ,

−2〈Gx#−Gx$,x#− x$〉 ≤ 0

〈Gx#−Gx$,x#− x$〉 ≥ 0.

This establishes that when T is pseudocontractive (equivalent to displacement pseudo-

contractive), G = I−T is monotone.

Comparison of implications of contractivity conditions To get a clearer compari-

son, we re-write the implications together and in matching form. See Tables 15.1 and

15.2.

We note in particular a correspondence between some contractivity-type prop-

erties considered for T and inverse strong monotonicity on G = I−T. This provides us

with connections to, on one hand, the behavior of gradient-type methods when the only

assumption is a Lipschitz-type condition on the gradient; on the other hand, to a crucial

remark made by Nemirovskii and Yudin [NY83] in their motivation for mirror-descent

methods: “it is important to go over to the dual space”.

15.3 Starting from monotonicity-type properties

When starting from contractivity-type properties, the most convenient form of

the central identity is

〈Gx#−Gx$,x#− x$〉=
1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 .

Proposition 16 (Implication of combined strong monotonicity.). When G is (σ ,ρ)-

combined strongly monotone, T satisfies an inequality similar in form to pseudocon-

tractivity with constants (1−2σ ,1−2ρ).

Proof. Recall that we say an operator G : Rn→Rn is (σ ,ρ)-combined strongly mono-

tone for some strictly positive σ ∈ R++ and ρ ∈ R++when

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2 +ρ ‖Gx#−Gx$‖2

2
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x $
‖2 2

+
( 1−

d2

2

) ‖ G
x #
−

G
x $
‖2 2

( 1 2
,

1−
d2

2

)
( 1,

−
1
)

‖ T
x #
−

T
x $
‖2 2
≤

1
‖ x

#
−

x $
‖2 2
−

1
‖ G

x #
−

G
x $
‖2 2

=
⇒

〈 G
x #
−

G
x $
,x

#
−

x $
〉 ≥

1
‖ G

x #
−

G
x $
‖2 2

( 0,
1
)

( −
1,

1
)

‖ T
x #
−

T
x $
‖2 2
≤
−

1
‖ x

#
−

x $
‖2 2

+
1
‖ G

x #
−

G
x $
‖2 2

=
⇒

〈 G
x #
−

G
x $
,x

#
−

x $
〉 ≥

1
‖ x

#
−

x $
‖2 2

( 1,
0
)

( 1,
−

ν

)
‖ T

x #
−

T
x $
‖2 2
≤

1
‖ x

#
−

x $
‖2 2
−

ν
‖ G

x #
−

G
x $
‖2 2

=
⇒

〈 G
x #
−

G
x $
,x

#
−

x $
〉 ≥

( 1+ν 2

) ‖ Gx
#
−

G
x $
‖2 2

( 0,
1+

ν 2

)
( −

µ
,

1
)

‖ T
x #
−

T
x $
‖2 2
≤
−

µ
‖ x

#
−

x $
‖2 2

+
1
‖ G

x #
−

G
x $
‖2 2

=
⇒

〈 G
x #
−

G
x $
,x

#
−

x $
〉 ≥

( 1+
µ 2

) ‖ x #
−

x $
‖2 2

( 1+
µ 2
,

0
)

( 1,
0
)

‖ T
x #
−

T
x $
‖2 2
≤

1
‖ x

#
−

x $
‖2 2

=
⇒

〈 G
x #
−

G
x $
,x

#
−

x $
〉 ≥

1 2
‖ G

x #
−

G
x $
‖2 2

( 0,
1 2

)
( 0,

1
)

‖ T
x #
−

T
x $
‖2 2
≤

1
‖ G

x #
−

G
x $
‖2 2

=
⇒

〈 G
x #
−

G
x $
,x

#
−

x $
〉 ≥

1 2
‖ x

#
−

x $
‖2 2

( 1 2
,

0
)

( 1,
p
)

‖ T
x #
−

T
x $
‖2 2
≤

1
‖ x

#
−

x $
‖2 2

+
p
‖ G

x #
−

G
x $
‖2 2

=
⇒

〈 G
x #
−

G
x $
,x

#
−

x $
〉 ≥

( 1−
p

2

) ‖ G
x #
−

G
x $
‖2 2

( 0,
1−

p
2

)
( q,

1
)

‖ T
x #
−

T
x $
‖2 2
≤

q
‖ x

#
−

x $
‖2 2

+
‖ G

x #
−

G
x $
‖2 2

=
⇒

〈 G
x #
−

G
x $
,x

#
−

x $
〉 ≥

( 1−
q

2

) ‖ x #
−

x $
‖2 2

( 1−
q

2
,

0
)

( 1,
1
)

‖ T
x #
−

T
x $
‖2 2
≤

1
‖ x

#
−

x $
‖2 2

+
‖ G

x #
−

G
x $
‖2 2

=
⇒

〈 G
x #
−

G
x $
,x

#
−

x $
〉 ≥

0
( 0,

0
)
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for all x#,x$ ∈ Rn .

From G being (σ ,ρ)-combined strongly monotone

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2 +ρ ‖Gx#−Gx$‖2

2

and the central identity

〈Gx#−Gx$,x#− x$〉=
1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 ,

we get

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2 +ρ ‖Gx#−Gx$‖2

2

and so

1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 ≥ σ ‖x#− x$‖2
2 +ρ ‖Gx#−Gx$‖2

2(
1
2
−σ

)
‖x#− x$‖2

2 +

(
1
2
−ρ

)
‖Gx#−Gx$‖2

2 ≥
1
2
‖T x#−T x$‖2

2

so that

‖T x#−T x$‖2
2 ≤ (1−2σ)‖x#− x$‖2

2 +(1−2ρ)‖Gx#−Gx$‖2
2 .

This establishes that G = I−T being (σ ,ρ)-combined strongly monotone im-

plies that T satisfies an inequality similar in form to pseudocontractivity with constants

(1−2σ ,1−2ρ).

Proposition 17 (Implication of simultaneous application of separate strong monotonic-

ity.). When G : Rn→ Rn is (σ ,ρ)-separately strongly monotone for some(ρ,σ) satis-

fying ρ ∈
(1

2 ,∞
)

and
[
1− (2ρ−1)σ2] ∈ (0,1), the operator T satisfies something like

an improved strict contractivity result.

Proof. Recall that we say an operator G : Rn→Rn is (σ ,ρ)-separately strongly mono-

tone for some strictly positive σ ∈ R++ and ρ ∈ R++when both of the following ex-

pressions hold:

1
σ
‖Gx#−Gx$‖2

2 ≥ 〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

1
ρ
‖x#− x$‖2

2 ≥ 〈Gx#−Gx$,x#− x$〉 ≥ ρ ‖Gx#−Gx$‖2
2
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for all x#,x$ ∈ Rn .

Consider an operator S set
= G− σ I; with respect to this operator, observe that

G = S+σ I and note that

1
ρ
‖x#− x$‖2

2 ≥〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

1
ρ
‖x#− x$‖2

2 ≥〈[S+σ I]x#− [S+σ I]x$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

so that

1
ρ
‖x#− x$‖2

2 ≥〈[Sx# +σx#]+ [Sx$ +σx$] ,x#− x$〉 ≥ σ ‖x#− x$‖2
2

1
ρ
‖x#− x$‖2

2 ≥〈[Sx#−Sx$]+ [σx#−σx$] ,x#− x$〉 ≥ σ ‖x#− x$‖2
2

from which (
1
ρ
−σ

)
‖x#− x$‖2

2 ≥〈Sx#−Sx$,x#− x$〉 ≥ 0.

This is equivalent to

〈Sx#−Sx$,x#− x$〉 ≥
1(

1
ρ
−σ

) ‖Sx#−Sx$‖2
2

〈[G−σ I]x#− [G−σ I]x$,x#− x$〉 ≥
1(

1
ρ
−σ

) ‖[G−σ I]x#− [G−σ I]x$‖2
2

〈[Gx#−σx#]− [Gx$−σx$] ,x#− x$〉 ≥
1(

1
ρ
−σ

) ‖[Gx#−σx#]− [Gx$−σx$]‖2
2

〈[Gx#−Gx$]− [σx#−σx$] ,x#− x$〉 ≥
1(

1
ρ
−σ

) ‖[Gx#−Gx$]− [σx#−σx$]‖2
2 .

Continuing, we have

(
1
ρ
−σ

)
〈Gx#−Gx$,x#− x$〉−σ

(
1
ρ
−σ

)
‖x#− x$‖2

2

≥ ‖[Gx#−Gx$]− [σx#−σx$]‖2
2

and
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(
1
ρ
−σ

)
〈Gx#−Gx$,x#− x$〉−σ

(
1
ρ
−σ

)
‖x#− x$‖2

2

≥
{
‖Gx#−Gx$‖2

2 +‖σx#−σx$‖2
2−2σ 〈Gx#−Gx$,x#− x$〉

}
and (

1
ρ
−σ +2σ

)
〈Gx#−Gx$,x#− x$〉−σ

(
1
ρ
−σ

)
‖x#− x$‖2

2

≥ ‖Gx#−Gx$‖2
2 +σ

2 ‖x#− x$‖2
2 .

Further, we have(
1
ρ
+σ

)
〈Gx#−Gx$,x#− x$〉

≥ ‖Gx#−Gx$‖2
2 +

[
σ

(
1
ρ
−σ

)
+σ

2
]
‖x#− x$‖2

2

and

(
1
ρ
+σ

)
〈Gx#−Gx$,x#− x$〉

≥ ‖Gx#−Gx$‖2
2 +

[
σ

1
ρ
−σ

2 +σ
2
]
‖x#− x$‖2

2

and

(
1
ρ
+σ

)
〈Gx#−Gx$,x#− x$〉

≥ ‖Gx#−Gx$‖2
2 +σ

1
ρ
‖x#− x$‖2

2

and so

〈Gx#−Gx$,x#− x$〉 ≥
1(

1
ρ
+σ

) ‖Gx#−Gx$‖2
2 +

σ
1
ρ(

1
ρ
+σ

) ‖x#− x$‖2
2 .

This together with the central identity

〈Gx#−Gx$,x#− x$〉=
1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 ,
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yields

1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2

≥ 1(
1
ρ
+σ

) ‖Gx#−Gx$‖2
2 +

σ
1
ρ(

1
ρ
+σ

) ‖x#− x$‖2
2

from which

1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2

≥ 1(
1
ρ
+σ

) ‖Gx#−Gx$‖2
2 +

σ
1
ρ(

1
ρ
+σ

) ‖x#− x$‖2
2 +

1
2
‖T x#−T x$‖2

2

and

‖x#− x$‖2
2 +‖Gx#−Gx$‖2

2

≥ 2(
1
ρ
+σ

) ‖Gx#−Gx$‖2
2 +

2σ
1
ρ(

1
ρ
+σ

) ‖x#− x$‖2
2 +‖T x#−T x$‖2

2

so that

‖T x#−T x$‖2
2 ≤

1−
2σ

1
ρ(

1
ρ
+σ

)
‖x#− x$‖2

2 +

1− 2(
1
ρ
+σ

)
‖Gx#−Gx$‖2

2

‖T x#−T x$‖2
2 ≤

1−
2σ

1
ρ(

1
ρ
+σ

)
‖x#− x$‖2

2−

 2(
1
ρ
+σ

) −1

‖Gx#−Gx$‖2
2

We have not discussed step factors in iterative methods; if step factors are consid-

ered, it is typical to restrict attention to the setting in which the expression−

[
2(

1
ρ
+σ

) −1

]
multiplying the term ‖Gx#−Gx$‖2

2 is nonpositive. In this setting, one approach is to

drop the ‖Gx#−Gx$‖2
2 term and only consider the relationship between ‖T x#−T x$‖2

2

and ‖x#− x$‖2
2 ; this relationship turns out to correspond to strict contractivity.

This result corresponds to a more general perspective on a result used in [Nes04].
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Proposition 18 (Strong monotonicity and either displacement decreasing pseudocon-

tractivity or displacement strict pseudocontractivity.). When G = I − T is σ -strongly

monotone the operator T is either (1−2σ)-displacement decreasing pseudocontrac-

tive or (1−2σ)-displacement strictly pseudocontractive; which of these depends the

specific value of σ , since that determines whether 1− 2σ is, for example, negative or

positive).

Proof. Recall that we say an operator G : Rn→ Rn is σ -strongly monotone for some

strictly positive σ ∈ R++ when

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

for all x#,x$ ∈ Rn .

From G = I−T being σ -strongly monotone

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

and the central identity

〈Gx#−Gx$,x#− x$〉=
1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 ,

we get

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

from which

1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 ≥ σ ‖x#− x$‖2
2(

1
2
−σ

)
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2 ≥
1
2
‖T x#−T x$‖2

2

so that

‖T x#−T x$‖2
2 ≤ (1−2σ)‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2 .

This establishes that G = I − T being σ -strongly monotone implies that T is

either (1−2σ)-displacement decreasing pseudocontractive or (1−2σ)-displacement

strictly pseudocontractive (depending the specific value of σ , since that determines

whether 1−2σ is, for example, negative or positive).
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Proposition 19 (Inverse strong monotonicity and either decreasing pseudocontractivity

or strict pseudocontractivity.). When G = I−T is ρ-strongly monotone the operator T

is either (1−2ρ)-displacement decreasing pseudocontractive or (1−2ρ)-displacement

strictly pseudocontractive; which of these T is depends the specific value of ρ , since that

determines whether 1−2ρ is, for example, negative or positive).

Proof. Recall that we say an operator G : Rn→Rn is ρ-inverse strongly monotone for

some strictly positive ρ ∈ R++ when

〈Gx#−Gx$,x#− x$〉 ≥ ρ ‖Gx#−Gx$‖2
2

for all x#,x$ ∈ Rn .

From G = I−T being ρ-inverse strongly monotone

〈Gx#−Gx$,x#− x$〉 ≥ ρ ‖Gx#−Gx$‖2
2

and the central identity

〈Gx#−Gx$,x#− x$〉=
1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 ,

we get

〈Gx#−Gx$,x#− x$〉 ≥ ρ ‖Gx#−Gx$‖2
2

from which

1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 ≥ ρ ‖Gx#−Gx$‖2
2

1
2
‖x#− x$‖2

2 +

(
1
2
−ρ

)
‖Gx#−Gx$‖2

2 ≥
1
2
‖T x#−T x$‖2

2

so that

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 +(1−2ρ)‖Gx#−Gx$‖2
2 .

This establishes that G = I−T being ρ-inverse strongly monotone implies that

T is either (1−2ρ)-decreasing pseudocontractive or (1−2ρ)-strictly pseudocontractive

(depending the specific value of ρ , since that determines whether 1−2ρ is, for example,

negative or positive).
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Proposition 20 (Monotonicity and pseudocontractivity.). When G = I−T is monotone,

T is pseudocontractive.

Proof. Recall that we say an operator G : Rn→ Rn is monotone when

〈Gx#−Gx$,x#− x$〉 ≥ 0

for all x#,x$ ∈ Rn.

From G = I−T being monotone

〈Gx#−Gx$,x#− x$〉 ≥ 0

and the central identity

〈Gx#−Gx$,x#− x$〉=
1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 ,

we get

〈Gx#−Gx$,x#− x$〉 ≥ 0
1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 ≥ 0

from which

1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2 ≥
1
2
‖T x#−T x$‖2

2

so that

‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2 .

This establishes that G = I−T being monotone implies that T is pseudocontrac-

tive.

The relationship between convexity and monotonicity and between monotonic-

ity of G = I− T and pseudocontractivity of T provides a strong impetus to consider

pseudocontractivity rather than only paying attention to decreasing pseudocontractivity

(or “averaged nonexpansiveness”).
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σ
‖ x

#
−
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σ
∈
( 0,

1 2

)
M

sm
( σ
∈
( 0,

1 2

))
S p

c
‖ T

x #
−

T
x $
‖2 2
≤
‖ x

#
−

x $
‖2 2
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‖ G

x #
−
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=
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Comparison of implications of monotonicity conditions To get a clearer compari-

son, we re-write the implications together and in matching form.

Proposition 21 (Strict monotonicity and strict pseudocontractivity.). When G = I−T

is strictly monotone, T is strictly pseudocontractive (without specifying a parameter

value).

Proof. Recall that we say an operator G : Rn→ Rn is strictly monotone when

〈Gx#−Gx$,x#− x$〉> 0

for all x#,x$ ∈ Rn such that x# 6= x$ and Gx# 6= Gx$.

From G = I−T being strictly monotone

〈Gx#−Gx$,x#− x$〉> 0

and the central identity

〈Gx#−Gx$,x#− x$〉=
1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 ,

we get

〈Gx#−Gx$,x#− x$〉> 0

from which

1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2−
1
2
‖T x#−T x$‖2

2 > 0

so that

1
2
‖x#− x$‖2

2 +
1
2
‖Gx#−Gx$‖2

2 >
1
2
‖T x#−T x$‖2

2

‖T x#−T x$‖2
2 < ‖x#− x$‖2

2 +‖Gx#−Gx$‖2
2 .

This establishes that G = I−T being strictly monotone implies that T is “strictly

pseudocontractive” (without specifying a parameter value).



Chapter 16

Operator scaling, transformation,

combination, and composition

16.1 Introduction

Now that we have considered the most prominent collections of operator prop-

erties, we move on to consider how those properties are affected by various processes

performed on those operators. In particular, we will consider scaling, “rays”, combina-

tion, and composition.

16.2 Monotonicity properties under scaling

Here we consider scaling by a strictly positive scalar γ ∈ R++; in particular, we

consider monotonicity properties under scaling by examining F set
= γG.

16.2.1 Scaling an operator G that is strongly monotone

When G is σ -strongly monotone, F set
= γG is γσ strongly monotone:

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

γ 〈Gx#−Gx$,x#− x$〉 ≥ γσ ‖x#− x$‖2
2

〈Fx#−Fx$,x#− x$〉 ≥ γσ ‖x#− x$‖2
2 .

210
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We interpret this in the light of the previously-established implications from σ -

strong monotonicity of G = I−T to contractivity properties of T. We first recall that

• when σ ∈
(
0, 1

2

)
, we have T ∈ Sdspc (1−2σ);

– as σ increases from 0 to 1
2 , 1−2σ decreases from 1 to 0

– ‖T x#−T x$‖2
2 ≤ ‖Gx#−Gx$‖2

2 +(1−2σ)‖x#− x$‖2
2

• when σ = 1
2 , we have T ∈ Sdspc (0) = Sdne;

– with σ at 1
2 , 1−2σ is 0

– ‖T x#−T x$‖2
2 ≤ ‖Gx#−Gx$‖2

2

• when σ ∈
(1

2 ,+∞
)
, we have T ∈ Sdspc (1−2σ) = Sddpc (2σ −1);

– as σ increases from 1
2 to +∞, 1−2σ decreases from 0 to −∞

– as σ increases from 1
2 to +∞, 2σ −1 increases from 0 to +∞

– ‖T x#−T x$‖2
2 ≤ ‖Gx#−Gx$‖2

2 +(1−2σ)‖x#− x$‖2
2

– ‖T x#−T x$‖2
2 ≤ ‖Gx#−Gx$‖2

2− (2σ −1)‖x#− x$‖2
2

When we move to consider the scaling F set
= γG with G σ -strongly monotone, we thus

have the following implications for the contractivity properties of S = I−F = I− γG

• when γσ ∈
(
0, 1

2

)
, we have S ∈ Sdspc (1−2γσ);

– as γσ increases from 0 to 1
2 , 1−2γσ decreases from 1 to 0

– ‖Sx#−Sx$‖2
2 ≤ ‖Fx#−Fx$‖2

2 +(1−2γσ)‖x#− x$‖2
2

• when γσ = 1
2 , we have S ∈ Sdspc (0) = Sdne;

– with γσ at 1
2 , 1−2γσ is 0

– ‖Sx#−Sx$‖2
2 ≤ ‖Fx#−Fx$‖2

2

• when γσ ∈
(1

2 ,+∞
)
, we have S ∈ Sdspc (1−2γσ) = Sddpc (2γσ −1);
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– as γσ increases from 1
2 to +∞, 1−2γσ decreases from 0 to −∞

– as γσ increases from 1
2 to +∞, 2γσ −1 increases from 0 to +∞

– ‖Sx#−Sx$‖2
2 ≤ ‖Fx#−Fx$‖2

2 +(1−2γσ)‖x#− x$‖2
2

– ‖Sx#−Sx$‖2
2 ≤ ‖Fx#−Fx$‖2

2− (2γσ −1)‖x#− x$‖2
2

We may interpret the observations above as follows: if we know that G is strongly

monotone for some value σ , scaling by γ gives us the ability to shift F set
= γG into what-

ever parameter range we desire. Presumably one would usually choose γ so that we have

γσ ∈
(1

2 ,+∞
)
, so as to ensure that I−γG is displacement decreasing pseudocontractive.

16.2.2 Scaling an operator G that is inverse strongly monotone

When G is ρ-inverse strongly monotone, F set
= γG is 1

γ
ρ-inverse strongly mono-

tone.

〈Gx#−Gx$,x#− x$〉 ≥ ρ ‖Gx#−Gx$‖2
2

γ 〈Gx#−Gx$,x#− x$〉 ≥ γρ ‖Gx#−Gx$‖2
2

γ 〈Gx#−Gx$,x#− x$〉 ≥
1
γ2 γ

2 · γρ ‖Gx#−Gx$‖2
2

〈γGx#− γGx$,x#− x$〉 ≥
1
γ2 · γρ ‖γGx#− γGx$‖2

2

〈Fx#−Fx$,x#− x$〉 ≥
1
γ

ρ ‖Fx#−Fx$‖2
2 .

We interpret this in the light of the previously-established implications from ρ-

inverse strong monotonicity of G = I−T to contractivity properties of T. We first recall

that

• when ρ ∈
(
0, 1

2

)
, we have T ∈ Sspc (1−2ρ);

– as ρ increases from 0 to 1
2 , 1−2ρ decreases from 1 to 0

– ‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 +(1−2ρ)‖Gx#−Gx$‖2
2

• when ρ = 1
2 , we have T ∈ Sspc (0) = Sne;

– with ρ at 1
2 , 1−2ρ is 0
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– ‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2

• when ρ ∈
(1

2 ,+∞
)
, we have T ∈ Sspc (1−2ρ) = Sdpc (2ρ−1);

– as ρ increases from 1
2 to +∞, 1−2ρ decreases from 0 to −∞

– as ρ increases from 1
2 to +∞, 2ρ−1 increases from 0 to +∞

– ‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 +(1−2ρ)‖Gx#−Gx$‖2
2

– ‖T x#−T x$‖2
2 ≤ ‖x#− x$‖2

2 +(2ρ−1)‖Gx#−Gx$‖2
2

When we move to consider the scaling F set
= γG with G ρ strongly monotone, we thus

have the following implications for the contractivity properties of S = I−F = I− γG

• when 1
γ
ρ ∈

(
0, 1

2

)
, we have S ∈ Sspc

(
1−21

γ
ρ

)
;

– as 1
γ
ρ increases from 0 to 1

2 , 1−21
γ
ρ decreases from 1 to 0

– ‖Sx#−Sx$‖2
2 ≤ ‖x#− x$‖2

2 +
(

1−21
γ
ρ

)
‖Fx#−Fx$‖2

2

• when 1
γ
ρ = 1

2 , we have S ∈ Sspc (0) = Sne;

– with 1
γ
ρ at 1

2 , 1−21
γ
ρ is 0

– ‖Sx#−Sx$‖2
2 ≤ ‖x#− x$‖2

2

• when 1
γ
ρ ∈

(1
2 ,+∞

)
, we have S ∈ Sspc

(
1−21

γ
ρ

)
= Sdpc

(
21

γ
ρ−1

)
;

– as 1
γ
ρ increases from 1

2 to +∞, 1−21
γ
ρ decreases from 0 to −∞

– as 1
γ
ρ increases from 1

2 to +∞, 21
γ
ρ−1 increases from 0 to +∞

– ‖Sx#−Sx$‖2
2 ≤ ‖x#− x$‖2

2 +
(

1−21
γ
ρ

)
‖Fx#−Fx$‖2

2

– ‖Sx#−Sx$‖2
2 ≤ ‖x#− x$‖2

2−
(

21
γ
ρ−1

)
‖Fx#−Fx$‖2

2

We may interpret the observations above as follows: if we know that G is inverse

strongly monotone for some value ρ, scaling by γ gives us the ability to shift F set
= γG

into whatever parameter range we desire. Presumably one would usually choose γ so

that we have 1
γ
ρ ∈

(1
2 ,+∞

)
, so as to ensure that S set

= I−F = I− γG is decreasing pseu-

docontractive.

Note that while we want both 1
γ
ρ ∈

(1
2 ,+∞

)
and γσ ∈

(1
2 ,+∞

)
, the effect of the

scaling parameter γ is opposite between the two situations.
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16.2.3 Scaling an operator G that is both strongly monotone and

inverse strongly monotone

This immediately tells us that when G is both σ -strongly monotone and ρ-

inverse strongly monotone, F set
= γG is both γ · σ strongly monotone and 1

γ
ρ-inverse

strongly monotone; this in turn tells us

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

〈Gx#−Gx$,x#− x$〉 ≥ ρ ‖Gx#−Gx$‖2
2

imply

〈Fx#−Fx$,x#− x$〉 ≥ γσ ‖x#− x$‖2
2

〈Fx#−Fx$,x#− x$〉 ≥
1
γ

ρ ‖Fx#−Fx$‖2
2

and further,

〈Fx#−Fx$,x#− x$〉 ≥
(γσ) 1(

1
γ

ρ

)(
1(

1
γ

ρ

) +(γσ)

) ‖x#− x$‖2
2 +

1(
1(

1
γ

ρ

) +(γσ)

) ‖Fx#−Fx$‖2
2

〈Fx#−Fx$,x#− x$〉 ≥ γ
σ

1
ρ(

1
ρ
+σ

) ‖x#− x$‖2
2 +

1
γ

1(
1
ρ
+σ

) ‖Fx#−Fx$‖2
2 .

We can further observe that F set
= γG being both γσ strongly monotone and 1

γ
ρ-inverse

strongly monotone implies that S set
= I−F = I− γG will satisfy the contractivity condi-

tion

‖Sx#−Sx$‖2
2

≤

1−
2(γσ) 1(

1
γ

ρ

)(
1(

1
γ

ρ

) +(γσ)

)
‖x#− x$‖2

2 +

1− 2(
1(

1
γ

ρ

) +(γσ)

)
‖Fx#−Fx$‖2

2
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from which

‖Sx#−Sx$‖2
2 ≤

1− γ
2σ

1
ρ(

1
ρ
+σ

)
‖x#− x$‖2

2 +

1− 1
γ

2(
1
ρ
+σ

)
‖Fx#−Fx$‖2

2

‖Sx#−Sx$‖2
2 ≤

1− γ
2σ

1
ρ(

1
ρ
+σ

)
‖x#− x$‖2

2 +

1− 1
γ

2(
1
ρ
+σ

)
‖γGx#− γGx$‖2

2

‖Sx#−Sx$‖2
2 ≤

1− γ
2σ

1
ρ(

1
ρ
+σ

)
‖x#− x$‖2

2 +

1− 1
γ

2(
1
ρ
+σ

)
γ

2 ‖Gx#−Gx$‖2
2

‖Sx#−Sx$‖2
2 ≤

1− γ
2σ

1
ρ(

1
ρ
+σ

)
‖x#− x$‖2

2 + γ

γ− 2(
1
ρ
+σ

)
‖Gx#−Gx$‖2

2

so that

‖Sx#−Sx$‖2
2 ≤

1− γ
2σ

1
ρ(

1
ρ
+σ

)
‖x#− x$‖2

2− γ

 2(
1
ρ
+σ

) − γ

‖Gx#−Gx$‖2
2 .

We collect the relationships between scaled operator monotonicity-type condi-

tions and the corresponding contractivity conditions in Table 16.1.

16.2.4 Ray from the identity through an operator T

We can use a perspective from [BP67] to provide some additional interpretations

of the correspondences in Table 16.1.

We will now consider operators along the ray starting at I passing through T .

We denote the set of all such operators as Iray(T ) with definition

Iray(T ) set
= {W |W = I + t (T − I) for some t ∈ R++} .

We note that we can view an element of Iray(T ) from several perspectives:

W = I + t (T − I)

W = (1− t) I + tT

W = I− t (I−T ) = I− tG.

Each of these expressions emphasizes a different viewpoint:
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−
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)] ∥ ∥ F
x #
−

F
x $
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)∥ ∥ F
x #
−

F
x $
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∥ ∥ Fx #

−
F

x $
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∥ ∥2 2

w
ith

γ
σ
∈
( 1 2

,+
∞

)
∥ ∥ Sx #

−
Sx

$∥ ∥2 2
≤
∥ ∥ x #−

x $
∥ ∥2 2

⇐
=

〈 F
x #
−

F
x $
,x

#
−

x $
〉 ≥

1 γ
ρ
∥ ∥ Fx #

−
F

x $
∥ ∥2 2

w
ith

1 γ
ρ
=

1 2

∥ ∥ Sx #
−

Sx
$∥ ∥2 2
≤
∥ ∥ Fx #

−
F

x $
∥ ∥2 2

⇐
=

〈 F
x #
−

F
x $
,x

#
−

x $
〉 ≥γ

σ
∥ ∥ x #−

x $
∥ ∥2 2

w
ith

γ
σ
=

1 2

∥ ∥ Sx #
−

Sx
$∥ ∥2 2
≤
∥ ∥ x #−

x $
∥ ∥2 2

+
( 1
−

2
1 γ

ρ

) ∥ ∥ F
x #
−

F
x $
∥ ∥2 2

⇐
=

〈 F
x #
−

F
x $
,x

#
−

x $
〉 ≥

1 γ
ρ
∥ ∥ Fx #

−
F

x $
∥ ∥2 2

w
ith

1 γ
ρ
∈
( 0,

1 2

)
∥ ∥ Sx #

−
Sx

$∥ ∥2 2
≤
∥ ∥ Fx #

−
F

x $
∥ ∥2 2

+
(1
−

2γ
σ
)∥ ∥ x #

−
x $
∥ ∥2 2

⇐
=

〈 F
x #
−

F
x $
,x

#
−

x $
〉 ≥γ

σ
∥ ∥ x #−

x $
∥ ∥2 2

w
ith

γ
σ
∈
( 0,

1 2

)
∥ ∥ Sx #

−
Sx

$∥ ∥2 2
≤
∥ ∥ x #−

x $
∥ ∥2 2

+
∥ ∥ Fx #

−
F

x $
∥ ∥2 2

⇐
=

〈 F
x #
−

F
x $
,x

#
−

x $
〉 ≥0
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The form W = I + t (T − I) emphasizes that W is along the “ray of operators”

starting at I and passing through T.

The form W = (1− t) I + tT more closely resembles the standard expression

used in convex combinations.

Finally, the form W = I− t (I−T ) directs attention to an interpretation as the

displacement operator I− tG associated with tG, which is in turn a t-scaled version of

the displacement operator G = I−T .

Continuing, we note that an immediate consequence of W = I + t (T − I) is

Fix W = Fix T . We may describe this connection as follows:

Fix W = Fix(I− tG)

= Zeros(tG)

= Zeros(G)

= Fix(I−G)

= Fix T.

We can also “reverse” our perspective (from viewing W as constructed from T

to viewing T as constructed from W ) via the equivalence of the expressions

W = I + t (T − I)

T = I +
1
t
(W − I) .

A less explicit statement of the immediately preceding equivalence is W ∈ Iray(T )⇐⇒
T ∈ Iray(W ) .

Passing from T through G = I−T and tG to W = I− t (I−T )

We can now state three additional results, one neglecting parameter values and

two tracking parameter values.

Pseudocontractivity and monotonicity First, consider a pseudocontractive operator

T. Every W ∈ Iray(T ) is also pseudocontractive.
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Explicitly, we are saying: when W is of the form I + t (T − I) we have

‖T x−Ty‖2
2 ≤ ‖x− y‖2

2 +‖[I−T ]x− [I−T ]y‖2
2

implies

‖Wx−Wy‖2
2 ≤ ‖x− y‖2

2 +‖[I−W ]x− [I−W ]y‖2
2 .

This result provides an example of the convenience of using the correspondence be-

tween contractivity properties of an operator and monotonicity properties of the asso-

ciated displacement operator, since we can pass from a contractivity property of T to a

monotonicity property of G = I−T , to a monotonicity property of tG, to a contractivity

property of W = I− tG = I− tT.

More specifically, when T is pseudocontractive, G = I−T is monotone. When

G = I−T is monotone, so too is tG = t (I−T ) for any t ∈ R++. From tG monotone,

we observe that W = I− tG = I− t (I−T ) is pseudocontractive.

Thus, we pass from the contractivity properties of T to the contractivity proper-

ties of W = I− tG = I− t (I−T ) by means of the monotonicity properties of G = I−T

and tG.

p-strict pseudocontractivity and inverse strong monotonicity Consider a p-strictly

pseudocontractive operator T ; every W ∈ Iray(T ) is also strictly pseudocontractive, with

constant k set
= 1− 1

t (1− p).

Explicitly, we are saying that

‖T x−Ty‖2
2 ≤ ‖x− y‖2

2 + p‖[I−T ]x− [I−T ]y‖2
2

implies

‖Wx−Wy‖2
2 ≤ ‖x− y‖2

2 + k‖[I−W ]x− [I−W ]y‖2
2 ,

where k set
= 1− 1

t (1− p) . We note that this relationship mirrors the previously observed

relationship between T and W = I− tG = I− tT.

This result provides another example of the convenience of using the correspon-

dence between contractivity properties of an operator and monotonicity properties of the

associated displacement operator, since we can again pass from a contractivity property

of T to a monotonicity property of G = I−T , to a monotonicity property of tG, to a
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contractivity property of W = I− tG = I− tT ; in contrast to the previous discussion, in

which no specific parameter values were tracked, we will now be very specific about the

parameter values involved.

Specifically, we have seen that when T is p-strictly pseudocontractive, G= I−T

is
(

1−p
2

)
-inverse strongly monotone1. Further, our results on scaling and monotonicity

properties tell us that when G = I−T is
(

1−p
2

)
-inverse strongly monotone, the scaled

version tG = t (I−T ) = I−W is 1
t

(
1−p

2

)
-inverse strongly monotone. Finally, when

tG = t (I−T ) = I−W is 1
t

(
1−p

2

)
-inverse strongly monotone we have that W is k =(

1−2
(

1
t

(
1−p

2

)))
= 1− 1

t (1− p) strictly pseudocontractive. Just as we had several

views of the relationship between T and W = I + t (T − I), namely,

W = I + t (T − I)

W = (1− t) I + tT

W = I− t (I−T ) = I− tG,

we can have several views of the pseudocontractivity parameter k associated with W as

we alter t (recalling that p is strictly less than 1):

k = 1+
1
t
(p−1)

k =
(

1− 1
t

)
+

1
t

p

k = 1− 1
t
(1− p) .

We would argue that the third form is clearest: because p is strictly less than 1, we

know that 1− p is strictly greater than 0; in the limit of large t scaling, we have a k

near 1 (and a corresponding tG that is near to being only monotone); a t scaling of 1

leads to k coinciding with p (and a corresponding tG that is
(

1−p
2

)
-inverse strongly

monotone, observing that
(

1−p
2

)
< 1

2 ); a t scaling of (1− p) will yield a k of 0 (and a

corresponding tG that is 1
2 -inverse strongly monotone); a t scaling smaller than (1− p)

1The case p set
= 1 would correspond to 0-inverse strongly monotone (that is, to simply being monotone);

decreasing p from 1 to 0 would correspond to
(

1−p
2

)
increasing from 0 to 1

2 .
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will yield a k that is negative (and a corresponding tG that is inverse strongly monotone

with parameter in the range
(1

2 ,+∞
)
).

q-displacement strict pseudocontractivity and strong monotonicity We saw a rela-

tionship between strict pseudocontractivity and inverse strong monotonicity in the pre-

vious section; we now consider an analogous relationship between displacement strict

pseudocontractivity and strong monotonicity.

Consider a q-displacement strictly pseudocontractive operator T ; every W ∈
Iray(T ) is also displacement strictly pseudocontractive, with constant h set

= 1− 1
t (1−q).

Explicitly, we are saying that

‖T x−Ty‖2
2 ≤ ‖x− y‖2

2 +q‖[I−T ]x− [I−T ]y‖2
2

implies

‖Wx−Wy‖2
2 ≤ ‖x− y‖2

2 +h‖[I−W ]x− [I−W ]y‖2
2 ,

where h set
= 1− 1

t (1−q) . We note that this relationship again mirrors the previously

observed relationship between T and W = I− tG = I− tT.

This result provides a further example of the convenience of using the corre-

spondence between contractivity properties of an operator and monotonicity properties

of the associated displacement operator, since we can again pass from a contractivity

property of T to a monotonicity property of G = I−T , to a monotonicity property of

tG, to a contractivity property of W = I− tG = I− t (I−T ) .

Of particular relevance to the current discussion, we have seen that when T is q-

displacement strictly pseudocontractive, G = I−T is
(

1−q
2

)
-strongly monotone2. Fur-

ther, our results on scaling and monotonicity properties tell us that when G = I − T

is
(

1−q
2

)
-strongly monotone, the scaled version tG = t (I−T ) = I −W is 1

t

(
1−q

2

)
-

strongly monotone. Finally, when tG= t (I−T ) = I−W is 1
t

(
1−q

2

)
-strongly monotone

we have that W is h =
(

1−2
(

1
t

(
1−q

2

)))
= 1− 1

t (1−q) displacement strictly pseu-

docontractive. Again recalling the several views of the relationship between T and W =

I + t (T − I), namely,

2The case q set
= 1 would correspond to 0-strongly monotone (that is, to simply being monotone); de-

creasing q from 1 to 0 would correspond to
(

1−q
2

)
increasing from 0 to 1

2 -strongly monotone.
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W = I + t (T − I)

W = (1− t) I + tT

W = I− t (I−T ) = I− tG,

we again have several views of the displacement pseudocontractivity parameter h asso-

ciated with W as we alter t (recalling that p is strictly less than 1):

h = 1+
1
t
(q−1)

h =

(
1− 1

t

)
+

1
t

q

h = 1− 1
t
(1−q) .

Again, we feel that the third form is clearest: because q is strictly less than 1, we know

that 1− q is strictly greater than 0; in the limit of large t scaling, we have an h near 1

(and a corresponding tG that is near to being only monotone); a t scaling of 1 leads to h

coinciding with q (and a corresponding tG that is
(

1−q
2

)
-strongly monotone, observing

that
(

1−q
2

)
< 1

2 ); a t scaling of (1−q) will yield an h of 0 (and a corresponding tG

that is 1
2 -strongly monotone); a t scaling smaller than (1−q) will yield an h that is

negative (and a corresponding tG that is strongly monotone with parameter in the range(1
2 ,+∞

)
).

Strictly pseudocontractive operators and decreasing pseudocontractive operators

We saw above that for a p-strictly pseudocontractive operator T , every W ∈ Iray(T ) is

also strictly pseudocontractive, with constant k set
= 1− 1

t (1− p). In particular, we note

that if we start with T a p-strictly pseudocontractive operator with p ∈ (0,1), forming

W = I + t (T − I) with any t smaller than (1− p) will yield a negative k value for W , so

that W will be decreasing pseudocontractive.

Displacement strictly pseudocontractive operators and displacement decreasing

pseudocontractive operators We saw above that for a q-strictly pseudocontractive

operator T , every W ∈ Iray(T ) is also displacement strictly pseudocontractive, with
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constant h set
= 1− 1

t (1−q). In particular, we note that if we start with T a q-strictly pseu-

docontractive operator with q∈ (0,1), forming W = I+ t (T − I) with any t smaller than

(1−q) will yield a negative h value for W , so that W will be displacement decreasing

pseudocontractive.

Remark. Our discussion has now equipped us with a perspective on the category of

“averaged nonexpansive” operators. If we restricted our attention to initial operators T

that were exactly nonexpansive (rather than considering the broader category of strictly

pseudocontractive operators) the reasoning used above would tell us that any t between

0 and 1 would yield a decreasing pseudocontractive operator. This path is a common

one in some portions of the literature; however, this starting point serves to obscure that

we could arrive at a decreasing pseudocontractive operator from any strictly pseudocon-

tractive operator, and not simply from a nonexpansive operator.

16.3 Operator addition with the identity

Here we consider F set
= G+ γI and D set

= G− γI, where G satisfies various proper-

ties and where we have a strictly positive scale parameter γ ∈ R++.

When G is σ -strongly monotone, F set
= G+ γI is σ + γ strongly monotone.

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

〈Gx#−Gx$,x#− x$〉+ γ ‖x#− x$‖2
2 ≥ σ ‖x#− x$‖2

2 + γ ‖x#− x$‖2
2

〈[G+ γI]x#− [G+ γI]x$,x#− x$〉 ≥ (σ + γ)‖x#− x$‖2
2

〈Fx#−Fx$,x#− x$〉 ≥ (σ + γ)‖x#− x$‖2
2 .

When G is σ -strongly monotone, D set
= G− γI is σ − γ strongly monotone; sup-

pose that σ > γ .

〈Gx#−Gx$,x#− x$〉 ≥ σ ‖x#− x$‖2
2

〈Gx#−Gx$,x#− x$〉− γ ‖x#− x$‖2
2 ≥ σ ‖x#− x$‖2

2− γ ‖x#− x$‖2
2

〈[G− γI]x#− [G− γI]x$,x#− x$〉 ≥ (σ − γ)‖x#− x$‖2
2

〈Dx#−Dx$,x#− x$〉 ≥ (σ − γ)‖x#− x$‖2
2 .
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When G is ρ-inverse strongly monotone, F set
= G+ γI is 1(

1
ρ
+γ

)-inverse strongly mono-

tone.

〈Gx#−Gx$,x#− x$〉 ≥ ρ ‖Gx#−Gx$‖2
2

1
ρ
‖x#− x$‖2

2 ≥ 〈Gx#−Gx$,x#− x$〉

1
ρ
‖x#− x$‖2

2 + γ ‖x#− x$‖2
2 ≥ 〈Gx#−Gx$,x#− x$〉+ γ ‖x#− x$‖2

2

1
ρ
‖x#− x$‖2

2 + γ ‖x#− x$‖2
2 ≥ 〈[G+ γI]x#− [G+ γI]x$,x#− x$〉(

1
ρ
+ γ

)
‖x#− x$‖2

2 ≥ 〈Fx#−Fx$,x#− x$〉

〈Fx#−Fx$,x#− x$〉 ≥
1(

1
ρ
+ γ

) ‖Fx#−Fx$‖2
2 .

When G is ρ-inverse strongly monotone, D set
= G− γI is 1(

1
ρ
−γ

) strongly mono-

tone; suppose that 1
ρ
> γ .

〈Gx#−Gx$,x#− x$〉 ≥ ρ ‖Gx#−Gx$‖2
2

1
ρ
‖x#− x$‖2

2 ≥ 〈Gx#−Gx$,x#− x$〉

1
ρ
‖x#− x$‖2

2− γ ‖x#− x$‖2
2 ≥ 〈Gx#−Gx$,x#− x$〉− γ ‖x#− x$‖2

2

1
ρ
‖x#− x$‖2

2− γ ‖x#− x$‖2
2 ≥ 〈[G− γI]x#− [G− γI]x$,x#− x$〉(

1
ρ
− γ

)
‖x#− x$‖2

2 ≥ 〈Dx#−Dx$,x#− x$〉

〈Dx#−Dx$,x#− x$〉 ≥
1(

1
ρ
− γ

) ‖Dx#−Dx$‖2
2 .

When G is both σ -strongly monotone and ρ-inverse strongly monotone, we have seen

that F set
= G+γI is σ +γ strongly monotone and 1(

1
ρ
+γ

)-inverse strongly monotone. This

corresponds to the combined expression

〈Fx#−Fx$,x#− x$〉

≥ 1((
1
ρ
+ γ

)
+(σ + γ)

) ‖Fx#−Fx$‖2
2 +

(σ + γ)
(

1
ρ
+ γ

)
((

1
ρ
+ γ

)
+(σ + γ)

) ‖x#− x$‖2
2
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or

〈Fx#−Fx$,x#− x$〉

≥ 1(
1
ρ
+σ +2γ

) ‖Fx#−Fx$‖2
2 +

(σ + γ)
(

1
ρ
+ γ

)
(

1
ρ
+σ +2γ

) ‖x#− x$‖2
2 .

Similarly, when G is both σ -strongly monotone and ρ-inverse strongly mono-

tone, we have seen that D set
= G− γI is σ − γ strongly monotone and 1(

1
ρ
−γ

)-inverse

strongly monotone.

This corresponds to the combined expression

〈Dx#−Dx$,x#− x$〉

≥ 1((
1
ρ
− γ

)
+(σ − γ)

) ‖Dx#−Dx$‖2
2 +

(σ − γ)
(

1
ρ
− γ

)
((

1
ρ
− γ

)
+(σ − γ)

) ‖x#− x$‖2
2

or

〈Dx#−Dx$,x#− x$〉

≥ 1(
1
ρ
+σ −2γ

) ‖Dx#−Dx$‖2
2 +

(σ − γ)
(

1
ρ
− γ

)
(

1
ρ
+σ −2γ

) ‖x#− x$‖2
2 .

16.4 Operator addition

When G1 is σ1-strongly monotone, and G2 is σ2-strongly monotone the sum

F set
= G1 +G2 is (σ1 +σ2)-strongly monotone.

〈G1x#−G1x$,x#− x$〉 ≥ σ1 ‖x#− x$‖2
2

〈G2x#−G2x$,x#− x$〉 ≥ σ2 ‖x#− x$‖2
2

〈G1x#−G1x$,x#− x$〉+ 〈G2x#−G2x$,x#− x$〉 ≥ σ1 ‖x#− x$‖2
2 +σ2 ‖x#− x$‖2

2

〈[G1 +G2]x#− [G1 +G2]x$,x#− x$〉 ≥ (σ1 +σ2)‖x#− x$‖2
2

〈Fx#−Fx$,x#− x$〉 ≥ (σ1 +σ2)‖x#− x$‖2
2 .



225

When G1 is ρ1-inverse strongly monotone, and G2 is ρ2-inverse strongly monotone the

sum F set
= G1 +G2 is

(
1

1
ρ1

+ 1
ρ2

)
-inverse strongly monotone3.

〈G1x#−G1x$,x#− x$〉 ≥ ρ1 ‖G1x#−G1x$‖2
2

1
ρ1
‖x#− x$‖2

2 ≥ 〈G1x#−G1x$,x#− x$〉

〈G2x#−G2x$,x#− x$〉 ≥ ρ2 ‖G2x#−G2x$‖2
2

1
ρ2
‖x#− x$‖2

2 ≥ 〈G2x#−G2x$,x#− x$〉

1
ρ1
‖x#− x$‖2

2 +
1
ρ2
‖x#− x$‖2

2 ≥ 〈G1x#−G1x$,x#− x$〉+ 〈G2x#−G2x$,x#− x$〉(
1
ρ1

+
1
ρ2

)
‖x#− x$‖2

2 ≥ 〈[G1 +G2]x#− [G1 +G2]x$,x#− x$〉(
1
ρ1

+
1
ρ2

)
‖x#− x$‖2

2 ≥ 〈Fx#−Fx$,x#− x$〉

〈Fx#−Fx$,x#− x$〉 ≥
1

1
ρ1
+ 1

ρ2

‖Fx#−Fx$‖2
2 .

When G1 is σ1-strongly monotone and ρ1-inverse strongly monotone, and G2 is σ2-

strongly monotone and ρ2-inverse strongly monotone, the sum F set
= G1 +G2 is both

(σ1 +σ2)-strongly monotone and
(

1
1

ρ1
+ 1

ρ2

)
-inverse strongly monotone. Thus we have

〈Fx#−Fx$,x#− x$〉

≥ 1([
1
ρ1
+ 1

ρ2

]
+[σ1 +σ2]

) ‖Fx#−Fx$‖2
2 +

[σ1 +σ2]
[

1
ρ1
+ 1

ρ2

]
([

1
ρ1
+ 1

ρ2

]
+[σ1 +σ2]

) ‖x#− x$‖2
2 .

16.5 Operator affine combination

We now show that the displacement operator of an affine combination is the

affine combination of the displacement operators.

The “line of operators” passing through T# and T$ can be written

T#$ [t]
set
= aff [T#,T$;(1− t) , t] = T# + t (T$−T#) = (1− t)T# + tT$.

3Compare to “parallel addition” of matrices [AD69], to “resistors in parallel”, and to the harmonic
mean.



226

The displacement operator, say G#$ [t]
set
= I−T#$ [t], associated with T#$ [t] then

has the form

G#$ [t]
set
= I−T#$ [t]

= I− [(1− t)T# + tT$]

= [(1− t) I + tI]− [(1− t)T# + tT$]

= (1− t) [I−T#]+ t [I−T$]

= (1− t)G# + tG$

= aff [G#,G$;(1− t) , t] .

We have not developed the machinery to properly describe situations where t /∈ [0,1]; in

particular, this would lead to a negative scaling for either G# or G$ (and thus to a change

in the sign of the characterizing inequality). This is a matter for further investigation.

16.6 Operator convex combination

We do have the machinery to more fully investigate the situations in which t ∈
(0,1) .

We will first consider a convex combination of operators considered from a

monotonicity perspective before moving on to consider a convex combination of op-

erators considered from a contractivity perspective.

16.6.1 Operator convex combination: monotonicity perspective

Convex combination of inverse strongly monotone operators

Our reasoning for the convex combination of inverse strongly monotone opera-

tors is as follows: we have seen that when G#
set
= I−T# is ρ#-inverse strongly monotone,

the strictly positively scaled version α#G# is 1
α#

ρ#-inverse strongly monotone; likewise

when G$
set
= I− T$ is ρ$-inverse strongly monotone, the nonnegatively scaled version

α$G$ is 1
α$

ρ$-inverse strongly monotone.
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We also have seen that when G1 is ρ1-inverse strongly monotone, and G2 is ρ2-

inverse strongly monotone, the sum F set
= G1 +G2 is

(
1

1
ρ1

+ 1
ρ2

)
-inverse strongly mono-

tone.

Thus, the sum of a ρ1
set
= 1

α#
ρ#-inverse strongly monotone operator and a ρ2

set
=

1
α$

ρ$-inverse strongly monotone operator is an operator that is inverse strongly mono-

tone with parameter (
1

1
ρ1
+ 1

ρ2

)
=

1
1(

1
α#

ρ#

) + 1(
1

α$
ρ$

)
=

1
α#

1
ρ#
+α$

1
ρ$

.

Note that we can view this as a “weighted harmonic mean” of the inverse strong mono-

tonicity parameters.

Convex combination of strongly monotone operators

Our reasoning for the convex combination of strongly monotone operators is

as follows: we have seen that when G#
set
= I−T# is σ#-strongly monotone, the strictly

positively scaled version α#G# is α#σ#-strongly monotone; likewise when G$
set
= I−T$

is σ$-strongly monotone, the strictly positively scaled version α$G$ is α$σ$-strongly

monotone.

We also have seen that when G1 is σ1-strongly monotone, and G2 is σ2-strongly

monotone, the sum F set
= G1 +G2 is (σ1 +σ2)-strongly monotone.

Thus, the sum of a σ1
set
= α#σ#-strongly monotone operator and a ρ2

set
= α$σ$-

strongly monotone operator is an operator that is strongly monotone with parameter

(σ1 +σ2) = α#σ# +α$σ$.

Note that we can view this as a “weighted mean” of the strong monotonicity parameters.
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16.6.2 Operator convex combination: contractivity perspective

Convex combination of pseudocontractive operators

We will now move on to consider a convex combination of pseudocontractive op-

erators; we will do this by leveraging our previous result from the convex combination

of inverse strongly monotone operators. Specifically, consider T# p#-strictly pseudo-

contractive and T$ p$-strictly pseudocontractive. We have seen that the corresponding

G#
set
= I−T# is 1−p#

2 inverse strongly monotone and G$
set
= I−T$ is 1−p$

2 inverse strongly

monotone.

The “line segment of operators” passing through T# and T$ (that is, the convex

combinations of T# and T$) can be written

T#$ [α]
set
= cvx [T#,T$;(1−α) ,α] = T# +α (T$−T#) = (1−α)T# +αT$,

where α ∈ (0,1).

In order to make clearer some subsequent results, we will re-express this in terms

that do not “privilege” the convex combination parameter associated with T$ : instead of

considering (1−α) and α we will consider convex combination parameters α# and α$

that are required to satisfy α#,α$ ∈ R+ and α# +α$ = 1. This leads us to

T#$ [α#,α$]
set
= cvx [T#,T$;α#,α$] = α#T# +α$T$,

where α#,α$ ∈ R+ and α# +α$ = 1.

The displacement operator, say G#$ [α#,α$]
set
= I− T#$ [α#,α$], associated with

T#$ [α] then has the form

G#$ [α#,α$]
set
= I−T#$ [α#,α$]

= I− [α#T# +α$T$]

= [α#I +α$I]− [α#T# +α$T$]

= α# [I−T#]+α$ [I−T$]

= α#G# +α$G$

= cvx [G#,G$;α#,α$] .

We have seen that when G#
set
= I−T# is 1−p#

2 -inverse strongly monotone, the nonnega-

tively scaled version α#G# is 1
α#

1−p#
2 -inverse strongly monotone; likewise when G$

set
=
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I − T$ is 1−p$
2 -inverse strongly monotone, the nonnegatively scaled version α$G$ is

1
α$

1−p$
2 -inverse strongly monotone.

We have seen that when G1 is ρ1-inverse strongly monotone, and G2 is ρ2-

inverse strongly monotone, the sum F set
= G1 +G2 is

(
1

1
ρ1

+ 1
ρ2

)
-inverse strongly mono-

tone.

Thus, the sum of a 1
α#

1−p#
2 -inverse strongly monotone operator and a 1

α$

1−p$
2 -

inverse strongly monotone operator is an operator that is inverse strongly monotone

with parameter (
1

1
ρ1
+ 1

ρ2

)
=

1
1(

1
α#

1−p#
2

) + 1(
1

α$

1−p$
2

)
=

1
α#

1(
1−p#

2

) +α$
1( 1−p$
2

) .

We can use our previous results to see that the corresponding contractivity-type operator

will be of pseudocontractive type with parameter value

1−2
1

α#
1(

1−p#
2

) +α$
1( 1−p$
2

) = 1−2
1

α#
2

1−p#
+α$

2
1−p$

= 1− 1
α#

1
1−p#

+α$
1

1−p$

.

We note that this appears to provide a novel alternative proof of a result that includes

result (a) in Theorem 3 of [OY02] as a special case (when we restrict our attention only

to decreasing pseudocontractive operators). This result in turn is a strict improvement

of the result in part 2) of Theorem 1.8 of [VE09].

Convex combination of displacement pseudocontractive operators

We will now move on to consider a convex combination of displacement pseudo-

contractive operators; we will do this by leveraging our previous result from the convex

combination of strongly monotone operators. Specifically, consider T# q#-displacement

strictly pseudocontractive and T$ q$-displacement strictly pseudocontractive. We have

seen that the corresponding G#
set
= I−T# is 1−q#

2 -strongly monotone and G$
set
= I−T$ is

1−q$
2 -strongly monotone.
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The “line segment of operators” passing through T# and T$ (that is, the convex

combinations of T# and T$) can be written

T#$ [α]
set
= cvx [T#,T$;(1−α) ,α] = T# +α (T$−T#) = (1−α)T# +αT$,

where α ∈ (0,1).

In order to make clearer some subsequent results, we will re-express this in terms

that do not “privilege” the convex combination parameter associated with T$ : instead of

considering (1−α) and α we will consider convex combination parameters α# and α$

that are required to satisfy α#,α$ ∈ R+ and α# +α$ = 1. This leads us to

T#$ [α#,α$]
set
= cvx [T#,T$;α#,α$] = α#T# +α$T$,

where α#,α$ ∈ R+ and α# +α$ = 1.

The displacement operator, say G#$ [α#,α$]
set
= I− T#$ [α#,α$], associated with

T#$ [α] then has the form

G#$ [α#,α$]
set
= I−T#$ [α#,α$]

= I− [α#T# +α$T$]

= [α#I +α$I]− [α#T# +α$T$]

= α# [I−T#]+α$ [I−T$]

= α#G# +α$G$

= cvx [G#,G$;α#,α$] .

We have seen that when G#
set
= I−T# is 1−q#

2 -strongly monotone, the strictly positively

scaled version α#G# is α#
1−q#

2 -strongly monotone; likewise when G$
set
= I−T$ is 1−q$

2 -

strongly monotone, the strictly positively scaled version α$G$ is α$
1−q$

2 -strongly mono-

tone.

We have seen that when G1 is σ1-strongly monotone, and G2 is σ2-strongly

monotone, the sum F set
= G1 +G2 is (σ1 +σ2)-inverse strongly monotone.

Thus, the sum of an α#
1−q#

2 -strongly monotone operator and an α$
1−q$

2 -strongly

monotone operator is an operator that is strongly monotone with parameter

(σ1 +σ2) = α#
1−q#

2
+α$

1−q$

2
.
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We can use our previous results to see that the corresponding contractivity-type operator

will be displacement pseudocontractive with parameter value

1−2
[

α#
1−q#

2
+α$

1−q$

2

]
= 1− [α# (1−q#)+α$ (1−q$)]

= α#q# +α$q$.

16.7 Operator Composition

We cite the following results on composition of decreasing pseudocontractive

operators; one result is simple but loose, the other is more complicated but tight.

Theorem 1.8 from [VE09] tells us:

Theorem 1. Theorem 1.8 from [VE09]Consider a collection of m operators {T1, . . . ,Tm}.
Suppose that each operator Ti (·) : H→H satisfies pi-decreasing pseudocontractivity

with respect to its (nonempty) fixed point set Mi
set
= Fix Ti. Further, suppose that the

intersection of all of the fixed point sets is nonempty: M set
=
⋂

i∈{1,...,mMi 6= /0. In such

a setting, the composition operator Tcomp : H→H characterized via the expression

Tcomp
set
= Tm ◦Tm−1 ◦ · · · ◦T1

satisfies pcomp-decreasing pseudocontractivity (with respect to the intersection setM)

when pcomp
set
= 1

2m−1 minimum{p1, . . . , pm} .

Note that the result above is stated in terms of decreasing pseudocontractivity

parameters that are defined by convention to be nonnegative.

The more complicated (tight) result comes from [OY02]

Theorem 2. Theorem 3 part (b) from [OY02] Consider an α1-averaged operator T1 :

H→H and an α2-averaged operator T2 : H→H, where α1 ∈ [0,1) and α1 ∈ [0,1) .

In such a setting, we have T1T2 αcomp-averaged, with

αcomp
set
=

α1 +α2−2α1α2

1−α1α2
.

Note that αcomp ∈ [0,1) .
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A broader perspective on a result in Aubin [Aub98]

Consider a closed bounded convex set C in a Hilbert spaceH.
Consider a nonexpansive operator N (·) : C → C; explicitly, this means that

‖T (x#)−T (x$)‖2 ≤ ‖x#− x$‖2 for all x,y ∈ C.

Consider some specific (but otherwise arbitrary) element, say xc, of the set C.

We previously considered operators, denoted TI,t , along the ray from I to T, of

the form

TI,t
set
= I + t (T − I)

= (1− t) I + tT

= I− t (I−T ) .

We saw previously that for any strictly pseudocontractive T, there exists a range

of (sufficiently small) t values within which I−t (I−T ) is decreasing pseudocontractive

[[from C to C]].

We now consider operators, denoted TxC,t , along the ray from (the “constant

operator”) xc to T

TxC,t
set
= xc + t (T − I)

= (1− t)xc + tT

= xc− t (I−T ) .

We will see that for any p-strictly pseudocontractive T, there exists a range of (suffi-

ciently small) t values within which xc− t (I−T ) is a strict contraction from C to C.

Consider

‖TxC,t (x#)−TxC,t (x$)‖2
2 = ‖[(1− t)xc + tT x#]− [(1− t)xc + tT x$]‖2

2

= ‖[(1− t)xc + tT x#]− [(1− t)xc + tT x$]‖2
2

= ‖tT x#− tT x$‖2
2

= t2 ‖T x#−T x$‖2
2

= t2 ‖T x#−T x$‖2
2 ≤ t2

(
‖x#− x$‖2

2 + p‖Gx#−Gx$‖2
2

)
‖TxC,t (x#)−TxC,t (x$)‖2

2 ≤ t2 ‖x#− x$‖2
2 + t2 p‖Gx#−Gx$‖2

2 .
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The standard result involving this (for example, in [Aub98] or [VE09]) considers

the case in which T is nonexpansive, for which p = 0 and the expression above indicates

that TxC,t is a t strict contraction (when t ∈ (0,1)).

When T is in fact decreasing pseudocontractive (corresponding to a negative

value for p), this expression indicates that the update is “a little bit more than just con-

tractive” (again, when t ∈ (0,1)).



Chapter 17

Decreasing pseudocontractivity in

methods for convex optimization

17.1 Introduction

Optimization methods are traditionally viewed and analyzed largely separately

from one another. In this Chapter, we highlight a common feature, namely decreasing

pseudocontractivity, of the iterative updates of many methods, and we show how rec-

ognizing this commonality can lead to a unified analysis that can contribute to a deeper

understanding of a variety of prominent convex optimization methods.

We summarize this Chapter as follows: we first establish the (essentially unre-

marked) prevalence of decreasing pseudocontractive updates in many convex optimiza-

tion methods; we then prove a result (novel in its scope of application), Lemma 26,

establishing a bound on the decrease of the norm of the displacement operator associ-

ated with any decreasing pseudocontractive operator; we move on to use the Lemma 26

result on monotone norm decrease to prove a result (novel in its scope of application),

Theorem 5, establishing that the error criterion
∥∥xN−T xN

∥∥2
2 is o

( 1
N

)
for any method

involving decreasing pseudocontractive updates (where N is the number of iterations

and T is the iteration operator).

We continue with an extension of the initial result on the error criterion, indicat-

ing a setting where that error criterion bound can be used to establish to a bound on the

234
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objective function suboptimality. We then indicate a setting in which we can expect to

have updates that are strictly contractive rather than just decreasing pseudocontractive.

17.1.1 Preliminaries

We restrict our attention to the finite-dimensional case and to operators having

nonempty fixed point sets. When convenient, we switch freely between operator nota-

tion and relation notation; for example, we might state the operator inclusion y ∈ T (x)

equivalently in relation form as (x,y) ∈ T .

17.2 Classes of operators

We begin with a definition.

Definition 135. An operator T : Rn→ Rn is called α-averaged (or α-averaged nonex-

pansive) when it can be written in the form

T = (1−α)I +αN,

where N is a nonexpansive operator and α ∈ (0,1).

We note that we can write the characterization of α-averagedness in the equiva-

lent forms

T = (1−α)I +αN

= I +α (N− I)

= I−α (I−N) .

We thus recognize an averaged operator as “an operator that lies along the line

segment (of operators) from the identity to some nonexpansive operator”. This is there-

fore a restriction of a ray of strictly pseudocontractive operators, so that we may in

particular refer to the collection of α-averaged operators as a truncation of the cone

of strictly pseudocontractive operators. We note that this is the region of the cone of

strictly pseudocontractive operators that contains all of the decreasing pseudocontrac-

tive operators. This observation does not appear to be made anywhere in the contempo-

rary literature, and yet clearly more completely describes the situation. The description
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“averaged” does in some sense locate the “relative position” of these operators but fails

to concretely refer to either the contractivity-type or the monotonicity-type properties

that we have extensively discussed elsewhere.

We remark in passing that the use of the term averaged as defined above cor-

responds to the generalization from the special case in which the convex combination

parameter α
set
= 1

2 .

17.2.1 Decreasing pseudocontractive updates: Prevalence and com-

mon convergence rate analysis

We discuss the details in later sections after necessary theoretical developments;

for now we state the two main themes of this Chapter.

Proposition (Details in Section 17.3). The following prominent convex optimization

methods have decreasing pseudocontractive updates:

(1) Orthogonal projection onto a nonempty closed convex set is 1 decreasing

pseudocontractive.

(2) Over- or -under relaxed orthogonal projection methods are
(
2 1

ω
−1
)

de-

creasing pseudocontractive, where ω ∈ (0,2) is the relaxation parameter.

(3) For a convex function f (·) with an L Lipschitz gradient, the gradient descent

iterative update operator I−γ∇ f is
(

2
γL −1

)
decreasing pseudocontractive for any step

factor γ ∈
(
0, 2

L

)
.

(4) The proximal-point mapping, prox f ,λ (·), associated with a convex function

f (·) is 1 decreasing pseudocontractive for any λ > 0.

(5) The ω-relaxed proximal-point mapping, proxω (·), where ω ∈ (0,2), asso-

ciated with a convex function f (·) is
(
2 1

ω
−1
)

decreasing pseudocontractive for any

λ > 0.

(6) Projected gradient descent involving a convex function f (·) with an L Lip-

schitz gradient is decreasing pseudocontractive with parameter
(

1− γL
2

)
, where γ ∈(

0, 2
L

)
is the gradient descent step factor.

(7) Over- or -under-relaxed projected gradient descent is decreasing pseudocon-

tractive.
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(8) Forward-backward splitting in which the smooth convex function f (·) has an

L Lipschitz gradient is decreasing pseudocontractive with parameter
(

1− γL
2

)
, where

γ ∈
(
0, 2

L

)
is the gradient descent step factor.

(9) The most basic version of the alternating direction method of multipliers

update is 1 decreasing pseudocontractive.

In addition to highlighting the common role played by decreasing pseudocon-

tractive updates in all of the methods above, we also present a proof, novel in its scope

of application, establishing that the error criterion
∥∥xN−T xN

∥∥2
2 is o

( 1
N

)
for any method

with a decreasing pseudocontractive update.

Theorem (Details in Section 17.4). The error criterion
∥∥xN−T xN

∥∥2 is o( 1
N ) for any

method with a decreasing pseudocontractive iteration operator.

Having stated our primary results, we now begin introducing the background

concepts that we will use in establishing these results.

17.2.2 Relationships

We note that the following statements are equivalent:

• T is
( 1

α
−1
)
-decreasing pseudocontractive

• T is α-averaged

• I−T is 1
α

1
2 -inverse strongly monotone

These relationships correspond to restricted versions of the broader relationships es-

tablished in our previous discussions of operators. Since α ∈ (0,1) , we observe that( 1
α
−1
)
∈ (0,+∞) and 1

2α
∈
(1

2 ,+∞
)
.

The relationship between decreasing pseudocontractive and averaged can be

found in [VA95]. The inverse strong monotonicity property satisfied by an averaged

operator is discussed in [Byr04]. We also note an equivalence in a special case: when T

satisfies 1-decreasing pseudocontractivity, T also satisfies 1-inverse strong monotonic-

ity; see Corollary 1. As stated, this observation somewhat muddies our usual practice of

carefully distinguishing between contractivity-type properties of T and monotonicity-

type properties of I−T ; this is an issue that deserves fuller exploration subsequently.
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Over- or under-relaxation involving a firmly nonexpansive operator

Finally, we note that if we start with a firmly nonexpansive (or 1-decreasing

pseudocontractive in the language we have been using) operator F , the operator T =

I +ω (F− I) = I−ω (I−F) is decreasing pseudocontractive for any ω ∈ (0,2). We

can see this by using previously established relationships: when F is 1-decreasing pseu-

docontractive, G = I−F is 1-inverse strongly monotone; ωG is then 1
ω

-inverse strongly

monotone and I−ωG = I−ω (I−F) is
(
2 1

ω
−1
)
-decreasing pseudocontractive. When

ω
set
= 2 we get I−ω (I−F) = 2F−I is 0-decreasing pseudocontractive; more succinctly,

nonexpansive. This argument thus recovers as a special case the standard result that F

firmly nonexpansive implies that 2F− I is nonexpansive; the standard (shorter but much

more specialized) proof is Theorem 12.1 of [GK90].

We summarize this as: when F is firmly nonexpansive, its associated reflection1

operator R set
= 2F− I is nonexpansive.

We again call attention to the fact that the “relaxation” argument considered

above corresponds to a special case of the more general operator scaling relationships

that we have discussed previously. More specifically, we have seen how the decreasing

pseudocontractivity parameter for an operator T relates to the decreasing pseudocon-

tractivity parameter of I − t (I−T ) = (1− t) I + tT ; in particular, we have seen how

to do this no matter what decreasing pseudocontractivity parameter T possesses. We

have not seen this explicit observation elsewhere in the optimization or operator theory

literature.

Although relaxation is a special case of our more general results, we state the

result on relaxation as a Proposition for future reference anyway:

Proposition 22. For a firmly nonexpansive operator F, the ω-relaxed version of the

operator, denoted Fω

set
= (1−ω)I +ωF = I +ω (F− I) = I−ω (I−F), is

(
2 1

ω
−1
)
-

decreasing pseudocontractive for ω ∈ (0,2).

The significance of the result above is that iterations involving under- or over-

relaxation of a decreasing pseudocontractive update operator are also covered by our re-
1The use of the term reflection for this operator is most immediately clear when we consider the case of

projection onto a hyperplane H. Denoting projection onto the hyperplane H by PH and denoting reflection
across the hyperplane by RH , we observe that PH = 1

2 I + 1
2 RH . The usage in the case above is a natural

generalization.
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sults. Over-relaxation, in which ω ∈ (1,2), is a commonly-used technique to accelerate

convergence of iterative methods in numerical linear algebra [Var09]; the observation

that over-relaxation of a firmly nonexpansive operator yields a decreasing pseudocon-

tractive update thus connects our coverage to these approaches.

17.2.3 Closure properties

The convex combination of nonexpansive operators is a nonexpansive operator.

The composition of nonexpansive operators is a nonexpansive operator. The convex

combination of decreasing pseudocontractive operators is a decreasing pseudocontrac-

tive operator. The composition of decreasing pseudocontractive operators is a decreas-

ing pseudocontractive operator. These results can be found, for example, in [VA95] or

[Byr08]; however, we can in fact be even more specific:

Theorem 3 ([OY02] Theorem 3). When T1 is α1-averaged, where α1 ∈ [0,1), and T2 is

α2-averaged, where α2 ∈ [0,1), we have

(a) for t ∈ [0,1], the t-convex combination Tcc = (1− t)T1 + tT2 is αcc-averaged,

where αcc
set
= (1− t)α1 + tα2,

(b) the composition Tco = T1T2 is αco-averaged, where αco
set
= α1+α2−2α1α2

1−α1α2
.

Using the relationship between averaged and decreasing pseudocontractive, we

note that the convex combination Tcc is νcc-decreasing pseudocontractive, where νcc =

1
αcc
−1; similarly, the composition Tco is νco-decreasing pseudocontractive, where νco =

1−α1−α2+α1α2
α1+α2−2α1α2

.

Note that while this result establishes that both T1T2 and T2T1 are decreasing

pseudocontractive, the respective fixed point sets need not coincide2.

The significance of these closure properties is twofold: first, closure under com-

position and convex combination means that new algorithms can very naturally be con-

structed by using previous algorithms as building blocks; second, the resulting con-

structed algorithms will maintain the desirable properties that the individual building

2For example, consider the case of successive orthogonal projection onto two closed, convex,
nonempty sets A and B, with A∩B = /0. In this situation, PAPB and PBPA each have nonempty fixed
point sets, but Fix PAPB is the set of points in A that are at the minimal distance to B, whereas Fix PBPA
is the set of points in B that are at the minimal distance to A.
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block updates possessed (and using Theorem 3 we can track the associated decreas-

ing pseudocontractivity parameter values from the simple methods to the more complex

combined methods).

17.3 Methods with decreasing pseudocontractive updates

In this section we demonstrate that decreasing pseudocontractive updates are

widespread in many popular convex optimization methods.

17.3.1 Projection

Most discussions of projection methods only establish that projection is nonex-

pansive; the following known result demonstrates that projection is in fact 1-decreasing

pseudocontractive (i.e., firmly nonexpansive).

Proposition 23. Orthogonal projection PC onto a nonempty closed convex set C ⊂ Rn

is 1-decreasing pseudocontractive. For convenience we show the equivalent result that

projection is 1-inverse strongly monotone; that is,

〈PCx−PCy,x− y〉 ≥ ‖PCx−PCy‖2 ,

for all x,y ∈ Rn.

Proof. The variational characterization of projection is: z is the projection of x onto C if

and only if 〈c− z,x− z〉 ≤ 0 for every c ∈ C (see, e.g., [Rus06]); we will express this as

〈c−PCx,x−PCx〉 ≤ 0,

for every c ∈ C. From the preceding characterization, we have, for any x,y ∈ Rn

〈PCx−PCy,y−PCy〉 ≤ 0

〈PCy−PCx,x−PCx〉 ≤ 0,

yielding the immediate conclusion

‖PCx−PCy‖2 ≤ 〈PCx−PCy,x− y〉 ,

for any x,y ∈ Rn. The result immediately above establishes that PC is 1-inverse strongly

monotone, so that Corollary 1 implies that PC is 1-decreasing pseudocontractive.
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17.3.2 Over- or under-relaxed projection

Using the notation P for orthogonal projection onto the nonempty closed con-

vex set C, we introduce the ω-relaxed projection operator Pω = (1−ω) I +ωP = I−
ω (I−P), where ω ∈ (0,2). Since we just established that P is 1-decreasing pseu-

docontractive, our previous reasoning for 22 tells us that Pω is
(
2 1

ω
−1
)
-decreasing

pseudocontractive.

We note in passing that reasoning similar to the reasoning in the previous two

subsections can also be used to establish that cyclic subgradient projection (CSP) meth-

ods (in both their relaxed and unrelaxed forms) [CZ97] involve decreasing pseudocon-

tractive updates.

17.3.3 Gradient descent

Typical discussions of gradient descent do not make any reference to operator

theory, or, more specifically, to decreasing pseudocontractivity; the known result below

establishes conditions under which the gradient descent iterative update is decreasing

pseudocontractive. The explicit form of the gradient descent iterative update is

xk+1 = [I− γ∇ f ]
(

xk
)
.

Proposition 24. For a convex function f with an L-Lipschitz gradient, the gradient

descent iterative update operator I− γ∇ f is
(

2 1
γL −1

)
-decreasing pseudocontractive

for any step factor γ ∈
(
0, 2

L

)
.

Proof. We have assumed that ∇ f is L-Lipschitz, which implies that 1
L∇ f is nonexpan-

sive. Theorem 6.9 from Chapter 1 of [GT96] establishes that 1
L∇ f nonexpansive implies

that 1
L∇ f is 1-decreasing pseudocontractive.

Corollary 1 establishes that 1
L∇ f being 1-decreasing pseudocontractive is equiv-

alent to 1
L∇ f being 1-inverse strongly monotone. Lemma 3 establishes that 1

L∇ f being

1-inverse strongly monotone implies that γ∇ f is 1
γL -inverse strongly monotone, since

γL > 0. We have seen that γ∇ f being 1
γL -inverse strongly monotone corresponds to

I− γ∇ f being
(

1−2 1
γL

)
-strictly pseudocontractive. For decreasing pseudocontractiv-

ity, we want the value 1−2 1
γL to be strictly negative, which in turn means that we need

γ ∈
(
0, 2

L

)
.
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17.3.4 Proximal-point method

As is the case with projection, most discussions of proximal-point methods only

establish that the proximal-point mapping is nonexpansive; the following known result

demonstrates that the proximal-point mapping is more specifically 1-decreasing pseu-

docontractive (i.e., firmly nonexpansive). We note that the proximal-point mapping as-

sociated with f (·) can be written in either of the two equivalent forms

prox f ,λ (x#) = argmin
x∈Rn

{
f (x)+

1
λ

1
2
‖x− x#‖2

}
prox f ,λ (x#) = [I +λ∂ f ]−1 (x#) ,

where λ > 0; see, e.g., [Roc70]. The operator [I +λ∂ f ]−1 is called the λ -resolvent of

the subdifferential operator ∂ f (·).

Proposition 25. For a convex function f , the associated proximal-point update is 1-

decreasing pseudocontractive, for any λ > 0.

Proof. Consider x+ set
= prox f ,λ (x) and y+ set

= prox f ,λ (y). Lemma 2 tells us that(
x+,x− x+

)
∈ λ∂ f(

y+,y− y+
)
∈ λ∂ f .

The subdifferential mapping of a convex function is monotone [Roc70]; thus λ∂ f ,

where λ > 0, is also monotone. From this we have〈
x+− y+,

(
x− x+

)
−
(
y− y+

)〉
≥ 0〈

x+− y+,(x− y)−
(
x+− y+

)〉
≥ 0〈

x+− y+,x− y
〉
≥
∥∥x+− y+

∥∥2
2 .

This establishes that prox f ,λ (·) is 1-inverse strongly monotone; applying Corollary 1

then establishes that prox f ,λ (·) is 1-decreasing pseudocontractive for any λ > 0.

17.3.5 Relaxed proximal-point method

Lightening our notation and for the moment taking prox(·) to denote the λ -

proximal-point mapping associated with the convex function f (·), we introduce the ω-

relaxed proximal-point iteration operator proxω

set
= (1−ω) I+ωprox= I−ω (I−prox),
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where ω ∈ (0,2). Since we just established that prox(·) is 1-decreasing pseudocontrac-

tive, our previous reasoning for 22 tells us that proxω (·) is
(
2 1

ω
−1
)
-decreasing pseu-

docontractive.

17.3.6 Projected gradient descent

The iterative update for projected gradient descent involving a convex function

f (·) with an L-Lipschitz gradient and a nonempty closed convex constraint set C corre-

sponds to the composition PC ◦ [I− γ∇ f ]. We have established that the projection PC is

1-decreasing pseudocontractive and that the gradient descent update I−γ∇ f is ( 2
γL−1)-

decreasing pseudocontractive, when γ ∈
(
0, 2

L

)
. Since the composition of decreasing

pseudocontractive updates is decreasing pseudocontractive [VA95], we have thus estab-

lished that projected gradient descent is decreasing pseudocontractive. We also note that

under- or over-relaxation of the projection portion of the update still yields decreasing

pseudocontractivity.

We can use Theorem 3b to be more specific. Basic projected gradient descent is

the composition of the gradient descent step, which is γL
2 -averaged, and the projection

step, which is 1
2 -averaged; the composition thus is

(
1− γL

2

)
-decreasing pseudocontrac-

tive. Under- or over-relaxed projected gradient descent has the 1
2 -averaged projection

replaced with ω-relaxed projection, which we have seen is
(
2 1

ω
−1
)
-decreasing pseu-

docontractive.

17.3.7 Forward-backward splitting

Consider the optimization problem

minimize
x∈Rn

f (x)+g(x) ,

where f (·) and g(·) are each convex and f (·) has an L-Lipschitz gradient. The explicit

statement of the forward-backward splitting method is

xk+1 set
= proxg,λ ◦ [I− γ∇ f ]

(
xk
)
.
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When used as a gradient descent step followed by a proximal step, so long as

the gradient descent step factor is γ ∈
(
0, 2

L

)
, we have the composition of decreasing

pseudocontractive operators, which is in turn decreasing pseudocontractive.

We can again use Theorem 3b to be more specific. Basic forward-backward

splitting is the composition of the gradient descent step, which is γL
2 -averaged, and the

proximal step, which is 1
2 -averaged; the composition thus is

(
1− γL

2

)
-decreasing pseu-

docontractive. When we use under- or over-relaxation of the proximal step in forward-

backward splitting, the 1
2 -averaged proximal step is replaced with an ω-relaxed gener-

alized proximal step, which we have seen is
(
2 1

ω
−1
)
-decreasing pseudocontractive.

17.3.8 Alternating direction method of multipliers

Consider the optimization problem

minimize
x∈Rn

f (x)+g(x) ,

where f and g are each convex. Introducing the notation R f = 2prox f ,λ − I and Rg =

2proxg,λ − I, we can use an observation from [Boy11] to express the most basic version

of the alternating direction method of multipliers (ADMM) update in terms of operators

as

xk+1 set
=

[
1
2

I +
1
2

RgR f

](
xk
)
.

Proposition 25 establishes that prox f ,λ (·) and proxg,λ (·) are each 1-decreasing

pseudocontractive, for any λ > 0. Proposition 27 then establishes that the respective

reflection operators R f and Rg are each nonexpansive. The composition of nonexpansive

operators is nonexpansive, so RgR f is nonexpansive. We thus observe that the most basic

version of the ADMM update is 1
2 -averaged, and thus is 1-decreasing pseudocontractive.

We also immediately observe that the more general convex-combination ADMM-like

update

xk+1 set
=
[
(1−α) I +αRgR f

](
xk
)
,

where α ∈ (0,1), will be ( 1
α
−1)-decreasing pseudocontractive.
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17.4 Convergence rate of methods with ν-decreasing pseu-

docontractive updates

The worst-case convergence rate is well-known for each of the methods that we

discuss in Section 17.3. The standard approach generally requires separate arguments

to establish this rate for each method; in contrast, by leveraging the fact that the up-

dates in each of these methods are decreasing pseudocontractive (and making use of the

relationships between decreasing pseudocontractivity, averagedness, and inverse strong

monotonicity) we are able to use one argument for all of these methods.

Consider a method for which the iteration operator T is ν-decreasing pseudo-

contractive. We will establish

Proposition 26. For a ν-decreasing pseudocontractive iteration operator T , the norm

of the displacement operator G = I−T satisfies the expression∥∥∥Gxk+1
∥∥∥2

2
≤
∥∥∥Gxk

∥∥∥2

2
−ν

∥∥∥Gxk−Gxk+1
∥∥∥2

2

for k ∈ {0,1, . . .}.

Proof. From the relationship between decreasing pseudocontractivity and inverse strong

monotonicity, we note that when T is ν-decreasing pseudocontractive, we have that

G = I−T is 1+ν

2 -inverse strongly monotone. That is, we have

〈Gx−Gy,x− y〉 ≥
(

1+ν

2

)
‖Gx−Gy‖2 ,

for all x,y ∈ Rn. Thus,〈
Gxk−Gxk+1,xk− xk+1

〉
≥ 1+ν

2

∥∥∥Gxk−Gxk+1
∥∥∥2

2〈
Gxk−Gxk+1,Gxk

〉
≥ 1+ν

2

∥∥∥Gxk−Gxk+1
∥∥∥2

2∥∥∥Gxk
∥∥∥2

2
−
〈

Gxk+1,Gxk
〉
≥ 1+ν

2

∥∥∥Gxk−Gxk+1
∥∥∥2

2
,
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which yields

2
∥∥∥Gxk

∥∥∥2

2
−2
〈

Gxk+1,Gxk
〉
≥ (1+ν)

∥∥∥Gxk−Gxk+1
∥∥∥2

2

2
∥∥∥Gxk

∥∥∥2

2
−
(∥∥∥Gxk+1

∥∥∥2

2
+
∥∥∥Gxk

∥∥∥2

2
−
∥∥∥Gxk+1−Gxk

∥∥∥2

2

)
≥ (1+ν)

∥∥∥Gxk−Gxk+1
∥∥∥2

2∥∥∥Gxk
∥∥∥2

2
−
∥∥∥Gxk+1

∥∥∥2

2
+
∥∥∥Gxk+1−Gxk

∥∥∥2

2
≥ (1+ν)

∥∥∥Gxk−Gxk+1
∥∥∥2

2∥∥∥Gxk
∥∥∥2

2
−
∥∥∥Gxk+1

∥∥∥2

2
≥ ν

∥∥∥Gxk−Gxk+1
∥∥∥2

2

so that ∥∥∥Gxk+1
∥∥∥2
≤
∥∥∥Gxk

∥∥∥2

2
−ν

∥∥∥Gxk−Gxk+1
∥∥∥2

2
.

Using Lemma 26, we can now show that

Theorem 4. Any method with a ν-decreasing pseudocontractive iteration operator has

error criterion satisfying
∥∥xN−T xN

∥∥2
2 ≤

1
(N+1)ν

∥∥x0− x?
∥∥2

2 at iteration N.

Proof. An alternate expression of ν-decreasing pseudocontractivity with one argument,

x?, coming from the fixed point set is

ν

∥∥∥Gxk
∥∥∥2

2
≤
∥∥∥xk− x?

∥∥∥2

2
−
∥∥∥xk+1− x?

∥∥∥2

2
.

Summing over all the iterations from 0 to N yields

N

∑
k=0

∥∥∥Gxk
∥∥∥2

2
≤ 1

ν

∥∥x0− x?
∥∥2

2 .

Lemma 26 tells us that
∥∥Gxk+1

∥∥2
2 ≤

∥∥Gxk
∥∥2

2 for each k, so we conclude that

∥∥GxN∥∥2
2 ≤

1
(N +1)ν

∥∥x0− x?
∥∥2

2 .

We can establish a stronger result by leveraging a useful technical Lemma from

[Don13].
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Lemma 1 ([Don13]). Consider three sequences of strictly positive numbers {αk} ,{βk} ,
{γk}. When these sequences are such that {βk} is unsummable, {γk} is nonincreasing,

and the relationship α2
k+1 ≤ α2

k −βkγk holds for each k ∈ {0,1, . . .}, then it will also be

the case that there exists another sequence {εk} such that

εk ∈ (αk,α0) ,

limk→+∞ εk = limk→+∞ αk,

γk ·
[
∑

k
i=0 βi

]
≤ 2 ·α0 · εk.

We now use this Lemma to establish

Theorem 5. For any method with a ν-decreasing pseudocontractive iteration operator,

the error criterion
∥∥xN−T xN

∥∥2 is o
( 1

N

)
.

Proof. We will apply Lemma 1 with αk =
∥∥xk− x?

∥∥, βk = ν , and γk =
∥∥Gxk

∥∥2. An

infinite sequence of constants is clearly unsummable and Lemma 26 establishes that the

sequence
{∥∥Gxk

∥∥2
2

}
of squared norms of displacement mappings is nonincreasing.

Moreover, the definition of ν-decreasing pseudocontractivity when one argu-

ment, x?, comes from the fixed point set provides us with the necessary relationship∥∥∥xk+1− x?
∥∥∥2
≤
∥∥∥xk− x?

∥∥∥2
−ν

∥∥∥Gxk
∥∥∥2

for each k ∈ {0,1, . . .} .
Thus, Lemma 1 tells us that there exists a sequence {εk} such that

εk ∈
(∥∥xk− x?

∥∥ ,∥∥x0− x?
∥∥) ,

limk→+∞ εk = limk→+∞

∥∥xk− x?
∥∥

2 ,∥∥Gxk
∥∥2

2 ·
[
∑

k
i=0 ν

]
≤ 2 ·

∥∥x0− x?
∥∥

2 · εk.

Taking limsup on both sides of the preceding inequality and noting that limk→+∞ εk

exists and is equal to limk→+∞

∥∥xk− x?
∥∥

2 we have

limsup
k→∞

{∥∥∥Gxk
∥∥∥2

2

[
k

∑
i=0

ν

]}
≤ lim

k→∞

{
2
∥∥x0− x?

∥∥
2 εk
}

limsup
k→∞

{∥∥∥Gxk
∥∥∥2

2
[ν (k+1)]

}
≤ 2

∥∥x0− x?
∥∥

2 lim
k→∞

∥∥∥xk− x?
∥∥∥

2
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limsup
k→∞

{∥∥∥Gxk
∥∥∥2

2
[ν (k+1)]

}
≤ 0,

where we have used limk→+∞

∥∥xk− x?
∥∥

2 = 0 (for our finite dimensional setting, this

follows because, e.g., the Krasnoselskii-Mann Theorem [Man53] establishes weak con-

vergence of methods with averaged updates [and thus with decreasing pseudocontractive

updates] and weak convergence coincides with strong convergence in finite dimension).

The final inequality above establishes the desired result: in terms of iteration N,

we observe that
∥∥GxN

∥∥2
2 is o

( 1
N

)
.

17.5 An additional result on objective function subopti-

mality

The result above establishes o
( 1

N

)
convergence for

∥∥GxN
∥∥2

2, the squared norm

of displacement operator. When we are considering gradient descent for a closed proper

convex L-strongly smooth function f (·), a standard argument demonstrates that we can

also bound the objective function suboptimality. Specifically, from convexity of f (·) we

have

f (x)≥ f (x#)+ 〈∇ f (x#) ,x− x#〉 for any x,x# ∈ Rn.

In particular, consider this expression for the choices x set
= x? and x#

set
= xN , yielding

f (x?)≥ f
(
xN)+〈∇ f

(
xN) ,x?− xN〉

f
(
xN)− f (x?)≤

〈
∇ f
(
xN) ,xN− x?

〉
f
(
xN)− f (x?)≤

∥∥∇ f
(
xN)∥∥

2

∥∥xN− x?
∥∥

2 ≤
∥∥∇ f

(
xN)∥∥

2

∥∥x0− x?
∥∥

2 ,

where
∥∥xN− x?

∥∥
2 ≤

∥∥x0− x?
∥∥

2 holds because the updates are decreasing pseudocon-

tractive (and thus nonexpansive).

Our bound on the norm of the displacement operator thus implies a bound on

the objective function suboptimality. A standard example indicates that, in the absence

of additional assumptions, small objective function suboptimality need not imply small

norm of distance to an optimal argument. Consider two intersecting hyperplanes HA

andHB; suppose that our objective function is the sum of one-half the squared distance
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to each hyperplane. That is, f (x#)
set
= 1

2dist2HA
(x#)+

1
2dist2HB

(x#) . The respective gradi-

ents for each term of the objective are
[
I−ΠHA

]
(x#) and

[
I−ΠHB

]
(x#) . We observe

the following: we can have an argument, say x@, for which objective value f (x@) is ar-

bitrarily small and the associated sum of squared norms of gradients is arbitrarily small

while still being arbitrarily far from the intersection of the hyperplanes — in particular,

this is what can happen when the angle between the hyperplanes is allowed to be arbi-

trarily close to 0. In such a setting, it is possible to be very close to HA and very close

toHB while still being very far from their intersectionHA∩HB.

17.6 Strictly contractive updates

We now briefly touch on settings in which the updates will be strictly contrac-

tive. The most familiar example occurs when we have an objective function that is both

strongly convex and strongly smooth (either everywhere, or with respect to a minimizing

argument, or with respect to an entire set of minimizing arguments); more generally, we

have seen that if the displacement operator associated with the iterative update operator

is both strongly monotone and inverse strongly monotone, the corresponding iterative

update operator will be strictly contractive.

Another example is mentioned by [RW04, page 563]: if one starts with an itera-

tive update operator for which the associated displacement operator G is only known to

be strongly monotone, the iterative update operator I− τYG associated with the (scaled)

Yosida 1-regularization of G, YG
set
=
[
I +G−1]−1 is strictly contractive when τ ∈ (0,2).

We may intuitively say that this holds because we know that the Yosida regularization

of a (maximal) monotone operator will be inverse strongly monotone; since we started

with an operator that was strongly monotone, we thus end with an operator that is both

strongly monotone and inverse strongly monotone (and so the corresponding iterative

update operator will be a strict contraction).

One further example of a strictly contractive iterative update comes when we

consider a convex combination between a “constant operator” (that is, an operator that

returns the same vector output for every possible input) and a nonexpansive opera-

tor [Aub98, page 314]. This example differs from the previous two because here the
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contractive iterative update will not (except in unusual situations) have the same fixed

point(s) as the initial nonexpansive operator. In this setting, introducing a sequence of

iterations with an “appropriately chosen” sequence of convex combination parameters

(tending in the limit to a 0 parameter associated with the constant) recovers the element

of the fixed point set of the nonexpansive operator that is nearest to the constant with

which the convex combinations have been formed.

17.7 Necessary results

The following known results are necessary for establishing results elsewhere in

the chapter.

Lemma 2. For a convex function f (·), the proximal-point x+ set
= prox f ,λ (x) satisfies the

inclusion

x− x+ ∈ λ∂ f
(
x+
)
,

where λ > 0.

Proof. The resolvent statement of the proximal-point mapping is

prox f ,λ (x) = [I +λ∂ f ]−1 (x) .

From x+ set
= prox f ,λ (x), we thus have(

x,x+
)
∈ [I +λ∂ f ]−1(

x+,x
)
∈ I +λ∂ f

x− x+ ∈ λ∂ f
(
x+
)
,

where we have freely shifted our view from relation to operator as convenient.

Lemma 3. T being σ -inverse strongly monotone implies that, for γ > 0, the scaled

operator γT is σ

γ
-inverse strongly monotone.

Proof. Immediate from the definition of inverse strongly monotone.
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Proposition 27. [GK90], Theorem 12.1 For a firmly nonexpansive operator F, the as-

sociated reflection operator R set
= 2F− I is nonexpansive.

Proof. We have

‖Rx−Ry‖2 = 4‖Fx−Fy‖2 +‖x− y‖2−4〈Fx−Fy,x− y〉

≤ ‖x− y‖2 ,

for all x,y ∈ Rn, where we have used the fact that F firmly nonexpansive implies that

F is 1-inverse strongly monotone; that is, that 〈Fx−Fy,x− y〉 ≥ ‖Fx−Fy‖2, for all

x,y ∈ Rn.

Proposition 28. An operator F is 1-inverse strongly monotone if and only if the dis-

placement operator G = I−F is 1-inverse strongly monotone.

Proof. The relevant expressions for either direction are

‖Gx−Gy‖2 ≤ 〈Gx−Gy,x− y〉

‖(x− y)− (Fx−Fy)‖2 ≤ 〈x− y,x− y〉−〈Fx−Fy,x− y〉

‖Fx−Fy‖2 ≤ 〈x− y,Fx−Fy〉 .

Proposition 29. An operator F is 1-decreasing pseudocontractive if and only if the

displacement operator G = I−F is 1-decreasing pseudocontractive.

Proof. Immediate from the definition of 1-decreasing pseudocontractive.

Proposition 30. An operator F is 1-decreasing pseudocontractive if and only if the

displacement mapping G = I−F is 1-inverse strongly monotone.

Proof. The relevant expressions for either direction are

‖T x−Ty‖2 ≤ ‖x− y‖2−‖Gx−Gy‖2

‖T x−Ty‖2 +‖[x− y]− [T x−Ty]‖2 ≤ ‖x− y‖2

‖T x−Ty‖2 ≤ 〈x− y,T x−Ty〉 .
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Corollary 1. An operator F is 1-decreasing pseudocontractive if and only if F is 1-

inverse strongly monotone.

Proof. Proposition 30 shows that F is 1-decreasing pseudocontractive if and only if

G = I−F is 1-inverse strongly monotone. Proposition 28 shows that G = I−F is 1-

inverse strongly monotone if and only if F is 1-inverse strongly monotone. Together

these establish the result.

Chapter 17, in part, is currently being prepared for submission for publication of

the material. Gallagher, Patrick; Tu, Zhuowen. The dissertation author was the primary

author of this material.



Appendix A

Notation and conventions

• As much as possible, do not rely on “context makes clear”

• When considering multiple arguments coming from the same space/set use sub-

scripted symbols to distinguish arguments rather than expanding to other letters

or using subscripted numbers

– x#,x$,x%,x@ ∈ X instead of x,y,z,w ∈ X or x0,x1,x2,x3 ∈ X

– x#,x$,x%,x@ ∈ X immediately indicates that all of the arguments “play the

same role” use of x,y,z,w ∈ X requires looking elsewhere

– x0,x1,x2,x3 ∈ X could indicate that all of the arguments “play the same

role”, but in the context of machine learning applications it is arguably more

natural to use numeric indexes to refer to coordinates/position within a data

set

• Calligraphic fonts are used to denote sets or spaces

• Capital letters are used to denote operators/mappings

• A superscript “∗” Denotes dual or conjugate

– We explicitly distinguish between primal arguments and dual arguments at

all times

∗ For: getting the “units” right; as in examples from economics or physics

253
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∗ Against: Hilbert space isomorphism

• A superscript “?” denotes optimality

• A superscript “+” denotes subproblem/auxiliary problem optimality; “we solve

a subproblem for some specific parameter setting and get this as the minimizing

argument for the subproblem”

• Dependence on some other argument/parameter will be indicated via subscript or

[·]

• We seek to avoid adjacency of (·) or of {·} or of [·]

• We use “set
=” set equal to (for temporary assignment or informal convention)

• We use “def
=” defined equal to (for formal definition)

• We use “←” updated to be (in the context of iterative update of a parameter)

• Some variable naming conventions

• x generic primal argument

• s generic dual argument (s for “slope”)

• ei ith unit vector: the ith coordinate is equal to 1, every other coordinate is equal

to 0

• S generic set

• L subspace/vector space

• V subspace/vector space

• A affine subspace/affine set

• C convex set

• K cone

• X a space; typically either a Hilbert space or a Banach space



255

• X ∗ the dual space associated with the space X

• Generic norm ‖·‖� and associated dual norm ‖·‖∗

• M monotone operator

• F firmly nonexpansive operator

• N nonexpansive operator

• A averaged operator

• T generic operator; any special characteristics to be described at the time

• S generic operator; any special characteristics to be described at the time

• “mapping” when going from some element of one space to some element of not-

necessarily-the-same space

– for example X →Y or Rn→ Rm or Rn→ Rm∗

• “operator” when going from some element of the space to another element of the

same number of dimensions

– for example X →X or Rn→ Rn or Rn→ Rn∗

• “function” when going from some space to R

– for example X → R or Rn→ R

• whenever possible we prefer to use abbreviations of the descriptions in place of

additional symbology

– for example,

∗ the closure of a set S will be denoted cl S rather than S

∗ the boundary of a set S will be denoted bd S rather than ∂S

∗ the interior of a set S will be denoted int S rather than S0 or
◦
S
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• “Argmax” refers to the set of all maximum-attaining arguments; “Argmin” is anal-

ogous

• “argmax” refers to a single arbitrary element of the set of all maximum-attaining

arguments; “argmin” is analogous
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