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On Rank of Block Hankel Matrix for 
2-D Frequency Detection and Estimation 

Howard Hua Yang and Yingbo Hua 

Abstract-For detection and estimation of 2-D frequencies from a 2- 
D array of data using a subspace decomposition method, one needs to 
construct a block Hankel matrix. For reliable detection and estimation, 
the rank of the block Hankel matrix should be made equal to the number 
of 2-D frequencies inherent in the data in the absence of noise. In this 
work, we provide the conditions for achieving the desired rank. 

I. INTRODUCTION 

It is well known that for detection and estimation of 1-D frequen- 
cies from a single sequence of data using a subspace decomposition 
method, one needs to form a Hankel matrix,(e.g., see [4]). The idea 
behind the Hankel matrix is also equivalent to the so-called moving- 
window-average in the context of array processing where multiple 
data sequences are available, (e.g., see [3]). Similarly, for detection 
and estimation of 2-D frequencies from a single 2-D array of data 
using a subspace decomposition method, one needs to form a block 
Hankel matrix where each block is a Hankel matrix. The block Hankel 
matrix is referred to as enhanced data matrix in [2]. An important 
property of the block Hankel matrix is that its rank can be equal to 
the number of 2-D frequencies inherent in the data in the absence 
of noise regardless of the distribution of the 2-D frequencies. This 
property clearly suggests that the number of the 2-D frequencies can 
be detected using the singular values of the block Hankel matrix. 
Furthermore, as shown in [2], if the rank of the block Hankel matrix 
is equal to the desired number (number of 2-D frequencies) in the 
absence of noise, the 2-D frequencies can be efficiently estimated 
from the principal subspace of the block Hankel matrix using a matrix 
pencil approach. A sufficient condition for the block Hankel matrix to 
achieve the desired rank was given in [2]. In this work, we provide 
a more complete and more rigorous analysis of the block Hankel 
matrix and show a number of possible (sufficient or/and necessary) 
conditions under which the block Hankel matrix has the desired rank. 

In Section 11, the block Hankel matrix is defined and decomposed 
in structure for later analysis. In Section 111, the sufficient or/and 
necessary conditions for the rank property are discussed in detail. 
The main contribution of this paper is illustrated in Fig. 1. 

11. THE BLOCK HANKEL MATRIX 
Consider a 2-D array of data defined by 

.vs 
s(m. n )  = 1 a t y ~ n z ~ ~  m = 0: 1, . . . ,  M - 1, 

Z = 1  

n = 0 , 1 , . . . , N - l  (1) 
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Fig. 1. Regions of window size parameters. For region G I ,  the block Hankel 
matrix is of the desired rank (the number of 2-D sinusoids). For region Go, 
the block Hankel matrix is of a rank less than the desired. Region G, is the 
uncertain region where the block Hankel matrix may or may not have its rank 
equal to the desired. M and N define the size of the original data set. my 
and m, denote the maximum multiplicities of poles in the first and second 
dimensions, respectively. d, and d, denote the numbers of distinct poles in 
the first and second dimensions, respectively. The sufficient condition given 
in [2] is a subset of G I .  

where a, is the rth complex amplitude (none zero); (yz, zt)  = 
(eJwiz,  e J w z 2 )  defines the ith 2-D frequency (wit, wiz); N ,  is the 
number of the 2-D frequencies. Naturally, {(y2, z z ) }  should be 
distinct. Let d, and d, be the numbers of distinct poles in {yz}  
and { z z } ,  respectively. Let 7n, and m, be the maximum multiplicity 
in {y t }  and the maximum multiplicity in { z z } ,  respectively. 

It follows from the definition that m, 5 d, and my 5 d,. 
The block Hankel matrix of z(m,  n)  is defined as 

x, = I x1 x2 ... Xn.I-r;+1 I . . . . . . . . . . . . 
LXKPl XI< " '  X.w-1 1 

where for m = 0. I, . . . ,  M - 1, 

1 t(m, 0) z(m. 1) " '  z(m,  llr - L )  

z(m.  L - 1) z(m.  L )  ... z (m,  N - 1) 
... . . .  ... . . .  

in which Ii and L are called the window-size parameters. 

follows. We define 
Based on (l), the block Hankel matrix X ,  can be decomposed as 

where v = (v1, vz, . . . , UN,)?' is a vector. Then we can write (also 
shown in [2]) 

where 

and 
A d ;  diag (0.1, . . . , a.v3 ). 

It is clear from (2) that rank ( X , )  5 N, . What we need to address 
next is the conditions that should be satisfied by the window-size 
parameters IC and L such that rank(X,) is equal to the desired 
value N , .  The general results are shown in Fig. 1, and the detailed 
derivations are given in the next section. 

111. THE CONDITIONS ON THE WINDOW SIZE 

Note that the matrix El takes a form identical to that of the 
following matrix: 

Ok& 0 k ( C ,  A )  
r C i  

T A  CAk 1 I (3) 

where IC 2 1, and A and C are n x n and m x n matrices. When 
k = n, 0, i s  known as the observability matrix of the pair (C. ,4). 
Associated with the matrix Ok,  the following two lemmas will be 
useful. 

Lemma I :  Let nl be the order of the minimum polynomial of A. 
Then for n' 2 n1, rank(O,,) = ri iff rank(['-'gA]) = 7~ for all 
eigenvalues X of A. 

Proof: This lemma is a generalization of the Theorem 9 in [l] 
(p. 240). Q.E.D. 

Lemma 2: If rank ( ["GA]) < n for some eigenvalue of A, then 
rank(0k) < n for all k 2 1. 

Proof: Let X be the eigenvalue of A such that rank (["',-"]] < 
n. Then there is a vector x # 0 such that Ax = Ax and Cx = 0. So 
C A k z  = 0 for all IC 2 1. Hence, 01 ,x  = 0 for all k 2 1. Therefore, 
rank(&) < 71. for all k 2 1. Q.E.D. 

Now we are ready to provide the following. 
Theorem 1: 

If Ii 2 d,, then rank [Ei(l i ,  L ) ]  a) 
= N ,  iff L 2 m,; 

if L 2 d, , then rank [E/  (IC, L)]  

= Ai, iff Zi 2 m,. 

b) If Ii 5 M - d, + 1. thenrank[E,(Ii. L ) ]  

= N ,  iff L 5 K -  m, + 1; 

if L 5 N - d, + 1, then rank[S,(Ii, L ) ]  
= iV, i f f K  5 M - m ,  +1. 

c) rank [ X ,  (Ii .  A)]  = iV, if the conditions 

in a) and b) are met. 

Proof: First, we consider Ei(Ii, L) .  Let (C. A )  = [V(z .  L) .  
yd] .  Since A is a diagonal matrix, all eigenvalues of A are the 
elements on the diagonal. Let X = yt be an element in  { y k }  

with a multiplicity m, then we can transform, by a simple column 
permutation as follows: 
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w2 t 

Fig. 2. Constellation of 2-D frequencies that satisfy the condition of Corol- 
lary 1.  

and, hence, we have 

rank([A’,A])=rank([? 1.; T !]I) -2 

= rank (01) + rank (1’2) 

where D I  = diag(y, - y ; , . . . ? y ,  - ~ k - , - ~ ) ,  1; = 
v [ ( z : ,  . . . ,  z ; ) ~ ,  ~] ,noneof{y : ;  . . . .  yhT,-,} c { y l .  . . . .  Y. \ -~}  
is equal to yz, and the poles in { z : ,  . . ~ z i }  C { zl. . . . Z . Y ~  } 
are distinct. So the rank of DI is N ,  - m. The rank of 1; is ni 
iff L 2 m. Hence, rank([”FA]) = Ars for X = yt iff L 2 m. 
Therefore, rank([”GA]) = N ,  for all X E {yi} iff L 2 m y .  Since 
A has d, distinct diagonal elements, the order of the minimum 
polynomial of A is equal to d,. So, by Lemma 1, for I< 2 d9,  
rank[El(l i ,  I,)] = N, iff L 2 m y .  

We can symmetrically get the other half conclusion of (a) by using 
the fact that there exists a permutation matrix P [2] such that 

answer is uncertain depending on the distribution of the signal poles. 
In other words, rank [X,(Iii; L ) ]  may be less than or equal to iV, for 
(Ii. L )  E G,. It should be noted that the sufficient condition.given 
in [2], i.e., .XTS 5 I<- 5 Rf - N ,  + 1 and N ,  5 L 5 N - N ,  + 1,  
is a subset of GI.  

When 177, = d z  and mi = d,, the set G, is empty. From 
Theorems 1 and 2, we have the following sufficient and necessary 
constraint on the window size under which the rank of the enhanced 
data matrix is equal to the desired number. 

Corollary 1: If m y  = d Z  and m, = d,, then 

rank[-YTi,(Ii. L ) ]  =N, iff d, 5 IC 5 M - d, + 1. 

d, 5 L 5 N - d, + 1. 

Note that the condition of Corollary 1 is satisfied when all 2- 
D frequencies are scattered on a rectangular grid (not necessarily 
uniform) and at least one straight line in each dimension on the grid 
is fully occupied by 2-D frequencies, which is illustrated in Fig. 2. 
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High-speed Systolic Ladder Structures for 
Multidimensional Recursive Digital Filters 

Xiaojian Liu and Leonard T. Bruton 

where yA(y1, ..., y ~ , ) ~  and zd = diag(zl: . . . .  2 . ~ ~ ) .  

Part (b) follows readily from part (a) since E,  = E:(df - Ii + 
From (2), we know that rank(X,) = A-s iff rank(Er) = 

rank (ET) = iVs. Combining (a) and (b), we have (c). Q.E.D. 
Theorem 2: 
1) rank [El (K,  L ) ]  < N ,  if L < my or K < m z .  
2) rank[E,(Ii, L)] < N, if L > N-m,+ l  or Ii > - V I - m Z + l .  
3) rank[X,(IC, L ) ]  < N ,  if L < my or IC7 < m ,  or L > 

Pro08 Following the first paragraph of the proof for Theorem 1, 
one can show that if X = y; that has the maximum multiplicity m y ,  
then rank(V2) < my if L < m y  and hence rank(”lA])  < ATs if 
L < my. Therefore, by Lemma 2, rank [El (X: L)] < .hrs if L < m y .  

Other proofs can be done similarly. Q.E.D. 
By Theorems 1 and 2, the whole window size set G = 

{(A-, L) :  1 5 Ii 5 M ,  1 5 L 5 N }  is divided into three sets 
G = GO U GI U G, (see Fig. 1). For the sets GO and GI,  we have 
definite answers: i.e., rank[X,(li-, L)] < N ,  when (A-, L )  E Go, 
and rank[X,(K, L)]  = N ,  when ( l i ,  L )  E GI. But for G,, the 

1, N - L + I). 

N - my + 1 or I< > M - m, + 1. 

Abstract-We propose a multilevel approach for designing high-speed 
systolic ladder structures for multidimensional (MD) recursive digital 
filters. Based on appropriately selected 1-D filter structures for each 
filter dimension (or level), a large variety of MD systolic filter structures 
may be derived. In particular, we introduce a new 1-D filter structure 
that proves the most suitable structure in terms of a systolic ladder 
implementation, because it leads to MD ladder filter structures possessing 
such important properties as the shortest critical path (for filters without 
order augmentation), the canonic number of high-level storage registers 
(e.g., line and frame registers of images), and local interconnectivity. 

I. INTRODUCTION 
High-speed multidimensional (MD) digital filtering i s  very useful 

for real-time video signal processing such as video image coding, 
bandwidth compression, sampling rate conversion and the enhance- 
ment of television signals. In this contribution, we are concerned 

Manuscript received March 16, 1993; revised August 22, 1995. The 
associate editor coordinating the review of this manuscript and approving 
it for publication was Prof. Russell M. Mersereau. 

The authors are with the Department of Electrical and Computer Engineer- 
ing, University of Calgary, Calgary, Alberta, Canada. 

Publisher Item Identifier S 1053-587X(96)02273-6. 

1053-587W96$05.00 0 1996 IEEE 




