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Behavioral Economics Interventions to Improve Outpatient
Antibiotic Prescribing for Acute Respiratory Infections:
a Cost-Effectiveness Analysis
Cynthia L. Gong, Pharm.D.1, Kenneth M. Zangwill, M.D.2, Joel W. Hay, Ph.D.1,
Daniella Meeker, Ph.D.1,3, and Jason N. Doctor, Ph.D.1

1University of Southern California Leonard D. Schaeffer Center for Health Policy & Economics, Los Angeles, CA, USA; 2Los Angeles Biomedical
Research Institute at Harbor-UCLAMedical Center, Los Angeles, CA, USA; 3University of Southern California Keck School of Medicine, Los Angeles,
CA, USA.

BACKGROUND: Behavioral economics interventions
have been shown to effectively reduce the rates of inap-
propriate antibiotic prescriptions for acute respiratory in-
fections (ARIs).
OBJECTIVE: To determine the cost-effectiveness of three
behavioral economic interventions designed to reduce in-
appropriate antibiotic prescriptions for ARIs.
DESIGN: Thirty-year Markov model from the US societal
perspective with inputs derived from the literature and
CDC surveillance data.
SUBJECTS: Forty-five-year-old adults with signs and
symptoms of ARI presenting to a healthcare provider.
INTERVENTIONS: (1) Provider education on guidelines
for the appropriate treatment of ARIs; (2) Suggested Alter-
natives,whichutilizes computerized clinical decision sup-
port to suggest non-antibiotic treatment choices in lieu of
antibiotics; (3) Accountable Justification, which man-
dates free-text justification into the patient’s electronic
health record when antibiotics are prescribed; and (4)
Peer Comparison, which sends a periodic email to pre-
scribers about his/her rate of inappropriate antibiotic
prescribing relative to clinician colleagues.
MAIN MEASURES: Discounted costs, quality-adjusted
life years (QALYs), and incremental cost-effectiveness
ratios.
KEY RESULTS: Each intervention has lower costs but
higher QALYs compared to provider education. Total
costs for each intervention were $178.21, $173.22,
$172.82, and $172.52, and total QALYs were 14.68,
14.73, 14.74, and 14.74 for the control, Suggested
Alternatives, Accountable Justification, and Peer Com-
parison groups, respectively. Results were most sensi-
tive to the quality-of-life of the uninfected state, and the
likelihood and costs for antibiotic-associated adverse
events.
CONCLUSIONS: Behavioral economics interventions can
be cost-effective strategies for reducing inappropriate an-
tibiotic prescriptions by reducing healthcare resource
utilization.
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behavior; infectious disease.
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INTRODUCTION

In the USA, it is estimated that more than 50% of outpatient-
prescribed antibiotics are inappropriate, predominantly among
patients seeking treatment for acute respiratory infections
(ARIs) caused by viruses. Such unnecessary antibiotic use
leads to increased risk of adverse events and emergency de-
partment (ED) visits for such events and additional financial
costs to the healthcare system.1–3 Furthermore, excess antibi-
otic use contributes to the ever-increasing problem of antibiotic
resistance.4–6 The Centers for Disease Control and Prevention
(CDC) notes that the single most important action needed to
slow the spread of antibiotic-resistant infections is to reduce
the amount of inappropriate and unnecessary antibiotic use in
humans and animals.7 A large body of work describes various
attempts to curb inappropriate antibiotic prescribing through
traditional interventions such as physician and patient educa-
tion, electronic clinical decision support, and financial incen-
tives. These have only resulted in modest reductions in antibi-
otic prescribing rates for nonbacterial ARIs.8,9

An alternative approach to changing prescribing behavior
applies ideas from the behavioral sciences, using social cues
and subtle changes in the clinic environment to influence
clinical decision making.10,11 Efforts to change antibiotic pre-
scribing through the use of behavioral insights have been
implemented recently in the USA and also in the UK.12,13 In
the USA, a multi-site cluster randomized clinical trial, the
BEARI study, evaluated the effectiveness of behavioral inter-
ventions on the rates of inappropriate antibiotic prescribing in
primary care practices with existing electronic health records
systems in Boston and Los Angeles.12 The interventions im-
plemented were the following: (1) Suggested Alternatives,
which utilizes computerized clinical decision support to sug-
gest non-antibiotic treatment choices in lieu of antibiotics; (2)
Accountable Justification, which prompts entry of free-text
justification that become part of the patient’s electronic health
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record when antibiotics are prescribed; and 3) Peer Compari-
son, which sends a periodic email to prescribers about his/her
rate of inappropriate antibiotic prescribing relative to col-
leagues. The study found that all three interventions led to
absolute reductions of 16–18% in inappropriate antibiotic use
over an 18-month period.
Previous cost-effectiveness analyses on reducing inappro-

priate outpatient antibiotic prescriptions among outpatients
have focused on the cost impact of using biomarker point-of-
care tests (C-reactive protein (CRP), procalcitonin) to identify
patients with possible bacterial lower respiratory tract infec-
tion.14–16 These models have shown that such tests do not
significantly increase costs nor impact patients, while having a
significant effect on reducing inappropriate antibiotic prescrip-
tions, and are thus cost-effective. No other cost-effectiveness
models have assessed other interventions to reduce outpatient
antibiotic prescribing. To assess the tradeoffs between costs
and benefits and inform public policy, we conducted a cost-
utility analysis from the US societal perspective to determine
the BEARI interventions’ value in reducing inappropriate
antibiotic prescriptions.

Methods
Model Background. Each of the interventions was compared
to a control of no intervention, based on the assumption that in
clinical practice, the baseline standard of care is the lack of
targeted interventions to reduce inappropriate antibiotic use.
Because the BEARI interventions focused on reducing
inappropriate antibiotic use for nonspecific upper respiratory
tract infections commonly caused by viruses, we included the
following primary ARIs that could result in justifiable
antibiotic use in adults: acute otitis media, sinusitis, and
pharyngitis.17 Statistics and model parameters for these
infections and resistance rates were based on data for
Streptococcus pneumoniae, as this is the most common
causative bacterial pathogen for community-acquired respira-
tory tract infections.18 We assumed that an individual could be
infected with either susceptible bacterial strains, i.e., likely to
clinically resolve with just one course of antibiotics, or resis-
tant ones that may require multiple courses of antibiotic
treatment.

Model Structure. We constructed a Markov model with
annual cycles to simulate utilization of antibiotics, cost of
care, and health outcomes for a 45-year-old adult presenting
to a healthcare provider with signs and symptoms of ARI
potentially with complications, as this was the approximate
average age of the population in the BEARI trial, and for
which age-specific data on inappropriate antibiotic prescribing
rates were available (Fig. 1). The model framework was
identical for each treatment arm (control, Suggested Alterna-
tives, Accountable Justification, and Peer Comparison), with
treatment-specific model inputs. We used this model to esti-
mate the cumulative costs, quality-adjusted life years
(QALYs), and incremental cost-effectiveness ratios (ICERs)

of three interventions relative to the control of no intervention
over a 30-year period and from the US societal perspective.
This time horizon was used as the estimated duration for
amortization of any costs associated with the initial implemen-
tation of the interventions. Model computation was done in R
version 3.3.1 using the markovchain package.19

The model was split into two major groups: those vaccinat-
ed against pneumococcal disease and those who are not. An
individual began as unvaccinated and transitioned to the vac-
cinated group at age 65 and older at a rate based on the overall
change in pneumococcal vaccination coverage per year. With-
in each group, the individual could contract either a viral ARI,
susceptible bacterial ARI (sinusitis, otitis media, pharyngitis),
or resistant bacterial ARI, due to the most common pathogens
associated with these diseases in adults including S. pyogenes
(pharyngitis), S. pneumoniae , H. influenzae , and
M. catarrhalis (otitis media, sinusitis) and S. aureus in some
cases of sinusitis.20,21 In all three clinical conditions, individ-
uals who received antibiotics were at risk for experiencing
drug-associated adverse reactions that either self-resolved or
resulted in an emergency department visit and very rarely,
death. Severe bacterial ARI was assumed to be one requiring
hospitalization regardless of organism susceptibility, with
complications such as mastoiditis and brain abscess (acute
otitis media), orbital infection (sinusitis), or rheumatic heart
disease, tonsillar/retropharyngeal abscess, and glomerulone-
phritis (pharyngitis).22,23

Probabilities. Annual transition probabilities for each state
were derived from available literature and information
regarding resistance patterns from CDC (Table 1). The
baseline probabilities of receiving an antibiotic for
undifferentiated viral infection, sinusitis, acute otitis media,
and pharyngitis were derived from a national study evaluating
antibiotic prescriptions dispensed in the ambulatory setting, as
well as the true prevalence of bacterial URI.24 Reductions in
antibiotic prescribing were as reported in the BEARI study.12

Rates of hospitalization for ARI and complications related to
these hospitalizations were based on the Agency for
Healthcare Research and Quality (AHRQ) National Inpatient
Stay (NIS) data on ED to hospital admissions for ARIs, as well
as expert opinion from infectious diseases clinicians.27,38

Rates of respiratory antibiotic-associated adverse drug reac-
tions (ADRs) and anaphylaxis were derived from several
national studies evaluating emergency department visits for
antibiotic-associated ADRs; these included skin reactions,
digestive effects, and central nervous system effects, among
others, ranging from 12 to 17% each for macrolides,
fluoroquinolones, and beta-lactams.1,2,26 Baseline rates of an-
tibiotic resistance, as well as rate of susceptible to resistant
strain conversion, were based on data from the CDC’s Active
Bacterial Core Surveillance Report.25 In addition, the rate of
pneumococcal vaccination was based on CDC Behavioral
Risk Factor Surveillance System (BRFSS) Reports.31 Finally,
baseline age-adjusted mortality based on actuarial life tables
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was incorporated to account for death from other causes in
addition to deaths resulting from hospitalization and/or com-
plications of S. pneumoniae infection.39

Costs.Costs were in 2016 US dollars (USD) and derived
from the literature and the Centers for Medicare and
Medicaid Services (CMS) reimbursement for outpatient
encounters based on Common Procedural Terminology
(CPT) codes. Costs included intervention implementation
costs, provider office visit for respiratory infection, av-
erage cost of over-the-counter and symptomatic treat-
ment for acute respiratory infections, and average anti-
biotic costs. Hospitalization and complication costs were
also included for susceptible vs. resistant infections.
Costs for the BEARI interventions were calculated
based on the Bureau of Labor Statistics compensation
rate for physicians, and the approximate amount of time
a clinician would spend on an encounter if a BEARI
alert or email was generated. Cost of an outpatient

encounter was based on the CMS Physician Fee Sched-
ule Healthcare Common Procedure Coding System
(HCPCS) code for a minor self-limiting problem. Aver-
age over-the-counter, symptomatic treatments and antibi-
otic costs for acute respiratory infections were based on
literature estimates, as well as hospitalization costs for
acute respiratory infections and related complications.2,27

All costs were adjusted to 2016 USD using the Medical
Consumer Price Index (CPI) as shown in Table 1. An annual
discount rate of 3% was applied to all costs.

Quality of Life.Quality of life (QOL) utility weights were
based on literature related to acute respiratory infections.
For non-infected individuals, a baseline utility value of
0.87 was used across all groups.33 Acute respiratory
infections were assigned a utility of 0.684 (range
0.671–0.696).34,35 Treatment for acute respiratory infec-
tions was assigned a utility of 0.814 (range 0.801–
0.825) for over-the-counter and symptomatic treatment,
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Figure 1 Markov Model Structure. Figure 1 depicts the Markov framework. BU_^ and BV_^ designate unvaccinated (UNVACC) and
vaccinated (VACC) individuals, respectively, while Bs^ and Br^ subscripts represent carriers of susceptible or resistant bacterial strains. As
individuals get vaccinated over time, they move from the UNVACC to the VACC pool. An individual may contract one of three types of
infections: viral acute respiratory infection (VARI), susceptible bacterial acute respiratory infection (BARIs), or resistant bacterial acute

respiratory infection (BARIr). For VARI, treatment is either over-the-counter and symptomatic treatment (VOTC), or inappropriate antibiotics
(VABX), which may lead to an adverse drug reaction (VADR) and possible emergency department visit (VED) and/or anaphylactic death

(VDEATH). Otherwise, the infection will resolve (VRESOLVED) and patients return to the pool of unvaccinated/vaccinated individuals. For
BARI, all individuals should receive antibiotics (BABX), which may also lead to subsequent adverse drug reaction (ADR) and emergency visit
(BED). In addition, the infection may become severe requiring inpatient hospitalization (BHOSP) and possible infectious and hospitalization
complications (BCOMP). Not shown is background mortality, which assumes that individuals may exit the model at any state due to death from

natural causes.



and 0.806 (0.698–0.884) for antibiotic prescription treat-
ment.34 Emergency department visits were assigned a utility
of 0.622 (range 0.37–0.94). Hospitalization utility values were
0.53 (range 0.43–0.63) for severe infections, and 0.3 (range
0.237–0.363) for complications resulting from hospitaliza-
tion.37 Each utility value was then used to adjust for the time
spent in that health state per year to calculate an overall utility
value for that health state using the following formula:

QOLhealth state ¼ utilityhealth state �
Duration of health state
One year 365 daysð Þ

� �

þ utilitynon−infected � 1–
Duration of health state
One year 365 daysð Þ

� �

This calculated utility is shown for each health state in
Table 1. Quality-adjusted life years were discounted by an
annual rate of 3%.

Analyses. Outcome measures for this analysis included
QALYs and total costs. Treatment arms were compared to
the control group in terms of cost per QALY using ICERs.
The ICER is the ratio of the difference in costs to the difference
in effectiveness between two alternatives40:

ICER ¼ CostsIntervention−CostsControl
QALYsIntervention−CostsControl

The ICER allows different interventions to be compared
across a standard metric. In this analysis, all treatment arms
were compared to the control group. An annual discount rate
of 3% was applied to all costs and QALYs.
One-way sensitivity analyses were conducted to test the

effect of individual parameters on the results of the model.
Probabilities, costs, and utility values were varied per reported
ranges published in the literature. Incremental cost-
effectiveness ratios were recalculated accordingly.

Table 1 Model Inputs

Key transition probabilities Base case (range) Reference
Probability of inappropriate antibiotics, age 20–64*

Control 0.430 (0.367–0.495) 24

Suggested Alternatives 0.119 (0.101–0.137) 12

Accountable Justification 0.096 (0.082–0.111) 12

Peer Comparison 0.080 (0.068–0.092 12

Probability of inappropriate antibiotics, age ≥ 65*
Control 0.394 (0.272–0.531) 24

Suggested Alternatives 0.109 (0.075–0.147) 12

Accountable Justification 0.088 (0.061–0.119) 12

Peer Comparison 0.073 (0.051–0.099) 12

Prevalence of true bacterial infections, age 20–64 0.045 (0.029–0.051) 24

Prevalence of true bacterial infections, age ≥ 65 0.063 (0.051–0.75) 24

Baseline population resistance 0.163 (0–0.313) 25

Conversion of susceptible→ resistant strain 0.013 (0–0.143) 25

Likelihood of antibiotic adverse drug reaction (ADR) 0.15 (0.05–0.25) 1,2

Likelihood of ADR requiring ED visit 0.102 (0.034–0.17) 1,2

Likelihood of death due to anaphylaxis 0.003 (0–0.0084) 26

Likelihood of hospitalization for URI 0.004 (0.002–0.005) 27

Likelihood of complications 0.010 (0–0.020) expert opinion28–30;
Likelihood of pneumococcal vaccination† 0.033 (0–0.065) 31

Costs Base case cost (range, 2016 US Dollars) Reference
Implementation
Suggested Alternatives 1.91 (0–5.73) Expert Opinion

Bureau of Labor StatisticsAccountable Justification 3.82 (0–9.55)
Peer Comparison 0.95 (0–3.82)
MD Visit (HCPCS 99212) 35.06 (28.84–44.45) CMS Physician Fee Schedule
Antibiotics (susceptible infection) 8.65 (0.17–46.20) VA Federal Supply Schedule
Antibiotics (resistant infection) 11.11 (4.19–53.00) VA Federal Supply Schedule
OTC/symptomatic treatment 4.98 (0–10.31) VA Federal Supply Schedule
Complications‡ 17,313 (16,102–18,523) 27,32

Emergency department visit 4088 (3553–4632) 2

Health states Base case utility (range)¶ Reference
Non-infected (Bhealthy^) 0.8700 (0.8600–0.8800) 33

Upper respiratory infection 0.8649 (0.8645–0.8652) 34,35

Antibiotic treatment§ 0.8682 (0.8653–0.8704) 34,36

OTC/symptomatic treatment 0.8685 (0.8653–0.8704) 34

ED visit for infection 0.8693 (0.8686–0.8702) 34,35

Hospitalization for severe infection 0.8635 (0.8616–0.8654) 37

Inpatient complications 0.8591 (0.8544–0.8603) 37

*Probability of inappropriate antibiotics for BEARI interventions derived based on a reduction in antibiotic prescriptions relative to the rate of antibiotic prescribing reported in the study by Fleming-

Dutra et al.

†The probability of getting a vaccination from year to year. BRFSS data only report the total percentage of individuals who are vaccinated (vaccine coverage), not the percentage of new vaccinations

each year

‡Includes mastoiditis, intracranial abscess, orbital cellulitis, peritonsillar abscess, retropharyngeal abscess, glomerulonephritis, and Clostridium difficile

§Incorporates quality-of-life decrements for ADRs related to antibiotic treatment, such as C. difficile-associated diarrhea
¶Health state utilities are adjusted for time spent in each health state using the following equation: QOLhealth_state = utilityhealth_state × (Duration of health state

One year 365 daysð Þ ) + utilitynon-infected × (1− Duration of health state
One year 365 daysð Þ )

849Gong et al.: BEARI Cost-Effectiveness AnalysisJGIM



A net monetary benefit (NMB) analysis was conducted to
assess the cost-effectiveness of each therapy at varying
willingness-to-pay (WTP) thresholds.41 NMB is calculated
as follows:

NMB ¼ QALYs�WTPð Þ−Cost
The NMB is determined at each willingness-to-pay thresh-

old. The treatment with the highest NMB at a given WTP is
considered the most cost-effective at that WTP threshold. An
intervention is considered Bdominated^ if its NMB is always
lower than another intervention.
Finally, we calculated the total number of antibiotic pre-

scriptions, emergency department visits, hospitalizations, and
deaths under each intervention per 100,000 uninfected indi-
viduals. We also estimated the budgetary impact of adopting
these interventions by calculating the total cost to the
healthcare system, should the interventions be implemented,
per 100,000 individuals. The total budgetary impact for each
intervention was then compared to the control group.

Results

In the base case scenario, all three BEARI interventions
yielded more QALYs at a lower cost compared to the control.
The QALYs yielded were 14.68 for the control group, com-
pared to 14.73, 14.74, and 14.74 QALYs for Suggested Alter-
natives, Accountable Justification, and Peer Comparison, re-
spectively, while costs were $178.21 for the control group
compared to $173.22, $172.82, and $172.52 for each

intervention, respectively. The distribution of each interven-
tion is shown in the cost-effectiveness plane in Figure 2.
One-way sensitivity analyses revealed that the results

remained robust to changes in model parameters; the BEARI
interventions continued to yield more QALYs at a lower cost
compared to the control group despite parameter changes, and
sensitivity analysis results are thus shown as net monetary
benefits (Fig. 3). Results were most sensitive to the utility of
the uninfected health state, as most of the time in the model is
spent uninfected. Notably, results were sensitive to the prob-
ability of experiencing an adverse drug reaction to antibiotics,
and going to the emergency department for antibiotic-induced
adverse drug reactions, highlighting the significant impact the
interventions have on reducing exposure to adverse drug
effects. Nonetheless, the BEARI interventions remained dom-
inant over the control group. In addition, results were not
affected by changes in bacterial resistance patterns.
Net monetary benefit analysis showed that the BEARI

interventions all yielded marginally higher net monetary ben-
efits compared to the control group at very low willingness-to-
pay thresholds (Fig. 4). This effect remained consistent even at
higher willingness-to-pay thresholds (not displayed on the
graph for clarity).
In a population of 100,000 healthy individuals over

30 years, we expect to see a total of 160,744 antibiotic pre-
scriptions, 265 emergency department (ED) visits, 71 hospi-
talizations, and 0.84 deaths due to acute respiratory infection
without any intervention in place. In comparison, we expect
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Figure 2 Cost-Effectiveness Plane. The cost-effectiveness plane depicts the incremental costs and quality-adjusted life years of each intervention
relative to the control group. The further down the X and Y-axes the intervention is, the more cost-effective it is relative to the control.



just 63,830 antibiotic prescriptions, 105 ED visits, 76 hospital-
izations, and 0.33 deaths under Suggested Alternatives; 56,345
antibiotic prescriptions, 92 ED visits, 76 hospitalizations, and
0.29 deaths under Accountable Justification; and 50,828 anti-
biotic prescriptions, 83 ED visits, 76 hospitalizations, and 0.27
deaths under Peer Comparison. This represents an overall bud-
get impact of $17.82 million for control, $17.32 million for
Suggested Alternatives, $17.28 million for Accountable Justifi-
cation, and $17.25 million for Peer Comparison.

DISCUSSION

All the BEARI interventions are cost-effective, yielding lower
costs for more QALYs compared to no intervention. There were
also less antibiotic prescriptions, ED visits, and deaths under the
BEARI interventions. Model results were most sensitive to the
likelihood of ED visits and antibiotic-associated adverse events,
yet each intervention remained cost-effective even when these
probabilities were varied per reported ranges. This reduction in
costs highlights the significant impact that reducing ED visits
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Figure 3 One-Way Sensitivity Analysis, Suggested Alternatives. One-way sensitivity analyses yielded similar trends for each intervention, with
results most sensitive to the utility of the uninfected health state, followed by the likelihood and costs associated with adverse events due to
antibiotics. Therefore, we have not shown a tornado diagram for each intervention evaluated. Results have been transformed into net monetary
benefits as even in one-way sensitivity analyses, the interventions remained dominant over the control group, therefore yielding negative ICERs.

Ranges for each parameter varied in sensitivity analysis are shown in Table 1.
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and antibiotic-associated adverse events can have on reducing
overall healthcare costs. This suggests that reducing inappropri-
ate antibiotic prescriptions can substantially affect healthcare
resource utilization beyond simply improving clinical practice.
Overall, patient care would benefit from any intervention that
minimizes the likelihood of substandard clinical practice, patient-
level adverse drug events, and hospital and individual costs to
treat them. Furthermore, the cost effectiveness of these BEARI
interventions is consistent with evidence showing that behavioral
economics can and should be used to design effective policies
and programs to improve health, education, and the economy.42

Our data extend the existing few data available on the cost-
effectiveness of active antimicrobial stewardship in the adult
primary care healthcare setting for URI. Previous studies
utilized models that did not capture the impact of changes in
antibiotic resistance resulting from the effects of an antibiotic
stewardship intervention,14–16 except for one model, which
attempted to quantify the cost of resistance associated with
each antibiotic prescription dispensed. However, these calcu-
lations were rough estimates that could not be verified for
accuracy and thus were not considered for use in our analysis.
Our model is also one of few cost-effectiveness analyses in
health information technology that includes a full accounting
of costs and outcomes of the intervention implemented; many
previous studies evaluating health information technology
have only provided cost data without a full economic evalua-
tion that includes outcomes, and particularly, standardized
outcomes (such as quality-adjusted life years).43,44 In contrast,
our model provides a full economic evaluation of the technol-
ogy used to implement the interventions.
There are some limitations to our analysis. We were forced

to make assumptions for which few or only non-robust data
are available. Nonetheless, the variables identified as the major
cost drivers were based on credible national datasets (ED visits
and ADR information). We also did not include children in
this analysis, as the referent BEARI trial included only those >
18 years of age. Children, however, represent a large propor-
tion of inappropriate antibiotic utilization in the USA. Their
inclusion in our analysis may have revealed an even larger
economic impact of the BEARI intervention. Although we did
not find that changes in drug resistance were an important
driver of costs, our model was unable to include the potential
effects of antibiotic use in animals, which has been shown to
contribute to resistance patterns in humans.45 Another limita-
tion is the assumption that resistance rates stay constant over
time. Per CDC’s Active Bacterial Core (ABC) Surveillance
Report, rates of bacterial resistance have fluctuated widely
over the past 10 years, but with a net increase of 1.2% resistant
isolates per year. One-way sensitivity analyses allowed testing
of resistance rates based on historical trends, and model results
remained robust. It is notable that improving prescribing be-
havior is highly successful in the control of antimicrobial
resistance in the hospital setting, but available data suggest
that the impact on reversing resistance in the community
setting is unlikely or at best, likely to occur at a very slow

rate.46,47 Only two studies have evaluated this issue and nei-
ther showed an impact on pneumococcal antimicrobial resis-
tance in the community.48,49 Regardless, appropriate antibiotic
prescribing can reduce healthcare costs by up to 20–30%.9

A practical concern is that the BEARI interventions will not
have persistent effects on decreasing antibiotic prescribing
rates or that they will be less effective in a non-experimental
setting. In our analysis, the rates of antibiotic prescribing were
varied based on confidence intervals reported in the random-
ized controlled trial to verify if improved rates of antibiotic
prescribing among the control group would affect the cost-
effectiveness of the other interventions. Even so, the interven-
tions continue to remain cost-effective primarily because of
the significant impact that even a small reduction in antibiotic
prescribing would have on adverse drug events and associated
emergency department visits.
A major benefit of the BEARI interventions is the ease of

implementation and the lack of a need for point-of-care blood
testing (e.g., procalcitonin, CRP) in patients who usually have
an uncomplicated ARI at presentation. While an underlying
assumption for this model is that an existing electronic health
record is already in place, thus making the implementation of
the interventions inexpensive with little overhead cost, 87% of
all office-based physicians and 96% of non-federal hospitals in
the USA had an electronic health record system in 2015.50 The
high adoption rate of electronic health record systems allows
any electronic interventions to be implemented with due dili-
gence and efficiency without the need to install a completely
new system simultaneously. The few remaining organizations
lacking electronic health records are likely to eventually con-
vert as the benefits may outweigh the upfront costs.51,52

Conclusion

In this cost-effectiveness analysis, the BEARI interventions
were all shown to be cost-effective relative to the control
group, assuming an existing electronic health record is in
place. We believe our data are robust and reveal the cost-
effectiveness of each BEARI intervention; a complement to
prior work noting its potential to facilitate improved patient
care for those with ARIs, minimize adverse outcomes associ-
ated with inappropriate antibiotic use, and potentially mitigate
against the development of drug resistance.
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