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ABSTRACT OF THE THESIS

Industrial Data Reduction, Aggregation and Machine Learning-Based Soft Sensing for Etching

and Slider Production Tools

by

Julius Owen Suherman

Master of Science in Chemical Engineering

University of California, Los Angeles, 2025

Professor Panagiotis D. Christofides, Chair

Smart Manufacturing (SM), which is short for “Smart (Predictive, Preventive, Proactive)

zero incident, zero emissions Manufacturing,” describes manufacturing’s digital transformation

in which factories, supply chains and ecosystems are integrated, interoperable, and interconnected.

Smart Manufacturing is rooted in AI, Machine Learned (ML), and Data Synchronized (DS) model-

ing to tap into invaluable operating data. By making data actionable at larger scales, SM opens new

ways to increase productivity, precision, and process performance. Smart Manufacturing applied

to front-end wafer manufacturing in the semiconductor industry offers significant opportunity to

increase production throughput and ensure precision by increasing staff and operational productiv-

ity. Front-end wafer manufacturing involves multi tool operations for complex material processing

that requires a high degree of precision and extensive product qualification. There is a high de-

gree of commonality with semiconductor manufacturing tools, for example etching, that are well

instrumented. Companies are already collecting large amounts of operational data from these tools
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that can be aggregated and leveraged for virtual metrology and other control, diagnostic, and man-

agement solutions. AI/ML/DS modeling involves monitoring the state of an operation in real-time

to continuously learn and improve on human centered, automated, and autonomous actions. This

operational data are embedded in invaluable machine, process, product, and material behaviors as

interaction complexities, linearities/non-linearities, and dimensional effects. Because of machine

commonalities, data can be selected to draw out operational value across machines. Today’s data

science offers considerable capability for qualifying, assessing alignment and contribution, aggre-

gating, and engineering data for more robust modeling. We refer to this as a Data-first strategy to

process, engineer and model with AI-Ready data. In this paper, we address AI-Ready data for a

virtual metrology solution focused on etching measurement PASS/FAIL classification and milling

depth prediction regression tasks using operational data from production machine tools. If the

quality of the product can be predicted, the productivity of the metrology process can be increased,

which in turn increases the productivity of the overall operation. In a previous paper, we con-

sidered how to aggregate data from different etch tools in the same processes at different factories

within Seagate Technology and proposed a method for data aggregation and demonstrated its value

[1]. The present paper considers how to process and engineer datasets from two different etch tool

processes: wafer and slider production. The data processing approaches when used systematically

with appropriate ML algorithms demonstrate the potential for reducing metrological interventions

in semiconductor manufacturing. Advanced machine learning techniques are used to tackle the

modeling challenges of a low failure rate and limited operational variability. XGBoost, a gradi-

ent descent-based tree algorithm, outperforms the commonly used Feedforward Neural Networks

(FNN) in terms of training speed and resource utilization for binary-classifications. Principal Com-

ponent Analysis (PCA) effectively reduces the dimensionality of the data and overfitting, while

retaining vital variances and significantly reducing noise. Data aggregation with separated scal-

ing harmonizes inputs from diverse manufacturing tools and significantly improves the efficacy

and versatility of combining multiple datasets to improve model performance. A live updating
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transfer learning approach, that periodically updates the FNN models in real-time using Stochastic

Gradient Descent (SGD) with individual data points, addresses process drift, and markedly im-

proves predictive accuracy. For the slider production tools, data augmentation with linear Mixup,

overcomes a short recording period, enriches the training dataset, and significantly reduces error

metrics.

iv



The thesis of Julius Owen Suherman is approved.

Dante A. Simonetti

Philippe Sautet

Panagiotis D. Christofides, Committee Chair

University of California, Los Angeles

2025

v



Contents

1 Introduction 1

2 Data Preprocessing and Modeling 6

2.1 Data Generation and Preprocessing for Etching and Slider Tools . . . . . . . . . . 7

2.1.1 Wafer Production Etch Tools . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.2 Slider Production Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Introduction to Machine Learning Models . . . . . . . . . . . . . . . . . . 19

2.2.2 Model Training on Etching and Slider Tools . . . . . . . . . . . . . . . . . 21

3 Results and Discussion 28

3.1 Etching Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.1 Single and Dual Tool Training . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Slider Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Single and Dual Tool Training . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Linear Mixup Data Augmentation . . . . . . . . . . . . . . . . . . . . . . 41

4 Conclusion 49

vi



List of Figures

2.1 The industrial etching equipment’s manufacturing system consists of multiple etch-

ing reactors, each equipped with several modules capable of running different pro-

cesses. The production begins with pure silicon wafers, which undergo a series of

processing steps before transforming into the final product. . . . . . . . . . . . . . 8

2.2 This figure illustrates the input data preprocessing workflow for etching tools and

slider production tools. Common steps include invalid data removal, normaliza-

tion, and dimension reduction. Etching tools incorporate encoders for categorical

data management, whereas slider tools utilize Mixup to mitigate data scarcity. . . . 10

2.3 This figure illustrates the output data preprocessing workflow for etching tools and

slider production tools. Common steps include invalid data removal, etching tools

requires 0/1 encoding, and slider tools requires separate scaling. . . . . . . . . . . 11

2.4 Scatter plot of T15-PM1 output, illustrating how data points are primarily grouped

into several clusters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 This figure shows the AUC scores for the FNN and XGBoost models applied to

etching tool data using single tool and dual tool training. . . . . . . . . . . . . . . 31

3.2 Single tool transfer learning results in heat map form. The performance difference

in the same row is minimal (different train/test length ratio), but the performance

difference in the same column (different train data length) is significant. . . . . . . 34

vii



3.3 Dual tool transfer learning results in heat map form. The performance shows slight

improvements compared to single-tool training and follows similar trends observed

in single-tool training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 This figure shows the MAE and R2 scores for the FNN model applied to slider tool

data. MAE generally decreases when training data is aggregated with another tool.

R2 generally increase with this aggregation as well. . . . . . . . . . . . . . . . . . 38

3.5 This figure shows the MAE and R2 scores for the XGBoost model applied to slider

tool data. MAE generally decreases when training data is aggregated with another

tool, but not as much as seen in the FNN model. R2 generally increase with this

aggregation as well. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 MAE and R2 scores for the FNN model trained with data from a single slider tool

using linear Mixup. In general, there is a decrease in MAE and an increase in R2

scores across most slider tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.7 MAE and R2 scores for the XGBoost model trained with data from a single slider

tool using linear Mixup. Similar trends of decreased MAE and increased R2 scores

are observed for most tools, except for T05-PM2 where we saw a marked decrease

in R2 scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.8 MAE and R2 scores for the FNN model trained with data from two slider tools

using linear Mixup. There is a decrease in MAE in 5 tools and an increase in 2

tools for both schemes. R2 scores decreased in 5 tools for both schemes, with a

slight increase in two tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 MAE and R2 scores for the XGBoost model trained with data from two slider tools

using linear Mixup. MAE generally decreased across most tools, with increases

being very slight. R2 scores saw a mixed pattern of increasing and decreasing scores. 45

viii



List of Tables

2.1 Mean Percentage Difference of Average Value of All Features . . . . . . . . . . . 13

2.2 Data Distribution Across Different Ranges . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Hyperparameters for FNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Hyperparameters for XGBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Hyperparameters for Transfer Learning Model Training . . . . . . . . . . . . . . . 26

2.6 Hyperparameters for FNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 MAE Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 R2 Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

ix



ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Panagiotis D. Christofides, for his guidance and

support during the course of my research.

I would like to thank Professors Philippe Sautet and Dante Simonetti for reviewing my thesis

and contributing to my Master’s thesis committee.

I would like to gratefully acknowledge financial support from the U.S. Department of En-

ergy, through the Office of Energy Efficiency and Renewable Energy (EERE), under the Advanced

Manufacturing Office Award Number DE-EE0007613.

I would like to thank Henrik Wang and Feiyang Ou for their guidance, comments, and support

toward this research.

I would like to thank Seagate Technology and CESMII for providing the industrial data uti-

lized in this project.

Lastly, I would like to thank my father, Sukiman Suherman, mother, Grace Munando, and

brother, Basilio Suherman, along with all my friends who have given me tremendous support.

x



Chapter 1

Introduction

As the transition to the digital era accelerates and the Internet of Things (IoT) grows, the de-

mand for microelectronic devices is skyrocketing. The Semiconductor Industry Association (SIA)

announced that global semiconductor industry sales totaled $574.1 billion in 2022, the highest ever

annual total and an increase of 3.3% compared to the 2021 total of $555.9 billion. The industry

shipped a record 1.15 trillion semiconductor units in 2021, as chip companies ramped up produc-

tion to address high demand amid the global chip shortage [2]. These are devices equipped with

integrated circuits such as central processing units (CPUs), graphics processing units (GPUs), hard

drives, and solid state drives [3]. Demand for these devices has long driven the need for higher

transistor densities and narrower gate widths to improve computing performance and reduce power

consumption rates [4]. Today, the increase in demand has led to recurring shortages [5], negatively

affecting global economies in various sectors, for example, the automotive industry [6]. There

is a substantial incentive in semiconductor manufacturing to increase production volume, increase

product quality and precision, and increase productivity without only increasing operational equip-

ment and personnel. Digital transformation and leveraging Industry 4.0 for Smart Manufacturing

are pivotal with how to take advantage of operational data, AI/ML, IoT, information technology,

and interconnectedness at greater scales to open new avenues of increased productivity, perfor-

1



mance and precision [7]. Smart manufacturing is, by definition, about using real-time data and

modeling at scale. It is the intersection of plant-wide agility and optimization, sustainable pro-

duction and resilient demand-driven supply chains made interoperable through interconnectedness

with trust and meaningfully shared data and tools [8].

Smart Manufacturing at scale depends on operating sensor data collected, contextualized, and

aggregated from sensors on factory floor operations. Specifically, sensors are installed on each ma-

chine for each process operation, and they process and/or collect data in real time. These data are

used to manage, control, and optimize the performance of each individual machine tool and pro-

cess operation. They are useful for multiple management objectives such as monitoring, diagnosis,

operational health, preventive maintenance, faster changeovers and quality assurance [9]. These

data are critical to automation and autonomous operations. When used across line and factory

operations, the data are used to address interoperability, agility, and higher-level key performance

indicators in combination. Line operation and factory interoperability extend into supply chain

interoperability. Cross company data that provide visibility into supply chain material and product

flows and product demands and capacities are needed for resilience. In addition to the benefits

of applying data and models to improve physical operations at all levels, these same data are also

valuable assets that can be aggregated to build richer data sets for model building [1]. The data can

be categorized, discovered and used to validate models and when synchronized with models, the

resulting digital twin systems can be used for real-time preventive, proactive, predictive control,

management and optimization [10].

In this paper we focus on data as valuable assets and demonstrate how data from multiple

similar machines can be aggregated into richer datasets for more robust machine learning (ML)

model building for all machines and/or how multiple machines can be optimized together. We

focus on method and demonstration of virtual metrology (a.k.a., soft sensing) as one important

application in semiconductor manufacturing. Unlike direct measurement methods, such as an of-

fline quartz microbalance to analyze layer thickness manufacturing [11], ML virtual metrology
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predicts product quality measurements or condition from operating sensor data by using these data

to train models that can, within the range of operating conditions experienced, associate operat-

ing conditions to quality measurement [12]. The advantage of soft sensing lies in its ability to

overcome the drawbacks of direct sensing, which can be expensive, time-consuming, untimely

and/or labor-intensive [13]. There can be situations in which the measurement costs more than the

product. There are also situations in which technical measurement complexity, product conditions,

and or measurement objectives make physically impossible to do a direct measurement, e.g., key

performance indicators (KPIs).

In contrast, virtual metrology uses data generated during production processes. These are data

that embed operational effects for the range of operations experienced. The data, collected from

widely available sensors are relatively inexpensive. The engineering of the data and the modeling

process, if done systematically and carefully, has been shown to be highly effective in measuring

physical parameters that are difficult to directly assess [14]. Benefits from these models can accrue

quickly. However, these ML models are limited to operating range experienced. It is therefore

crucial to pay close attention to the operating conditions within which the reliability of the model

is high. Modern manufacturing processes have become increasingly complex, generating vast

amounts of data from dozens or even hundreds of sensors [15]. There can be data volumes and

operational complexities that exceed human assimilation. Machine learning and deep learning

techniques have emerged as promising methods. They perform well in capturing complex non-

linear correlations between inputs and outputs, and it has been demonstrated that neural networks

of sufficient scale can approximate any non-linear functions [16].

Several types of neural networks have been successfully implemented in production set-

tings: for example, Convolutional Neural Networks (CNNs) [17] and Recurrent Neural Networks

(RNNs) [18]. Transformer networks have been used by companies including Seagate Technology

for fault detection in etch tools [19]. Although recent advancements in ML have prompted exten-

sive research into the application of soft sensing across various industries, challenges such as data
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insufficiency, sensor noise, and the presence of redundant sensors remain significant problems.

Furthermore, the issue of process drift over time complicates the effectiveness and reliability of

models built on historical data.

In this paper, ML virtual metrology is tailored for both plasma etching and slider produc-

tion. Specifically, datasets from multiple plasma etching and slider production tools were con-

sistently collected and contextualized by applying CESMII’s Data Information Model structure,

called a Profile [8]. The Profile ensures that the measurements from each of the machines could

be concatenated for further cross-machine analyses and uses of the data. Importantly, the paper

recognizes that these AI/ML/DS models depend on, in fact thrive on the “right” data when there

is enough that is engineered appropriately to build, train, test, and validate the AI/ML models. A

“Data-First” strategy emphasizes the importance of data available in the amounts, forms, scale, and

access necessary to achieve benefits in productivity, jobs, market share, sustainability, and growth.

A Data-First strategy emphasizes engineering AI-Ready data that is consistently, collected, in-

gested, contextualized, cleaned, normalized, protected, aggregated, assessed, and selected to draw

out the operational value that has been refined from years of experience even when the physics may

not be fully understood. Data-First also addresses the primacy of data access in implementing af-

fordable AI/ML solutions including how to obtain, categorize, scale, and use AI-Ready data. This

includes how to validate, learn, unlearn, and adjust models when using and reusing this invaluable

data.

This paper explores the impact of data modification and manipulation techniques, including

dimension reduction, data aggregation, and data augmentation, on model performance to address

these challenges. Principal Component Analysis (PCA) is employed as a dimension reduction

technique to eliminate redundant features and reduce noise. Building upon a prior work [1], this

study introduces a separate scaling method designed to normalize input datasets more effectively,

thereby enhancing model performance. Despite the common use of Feedforward Neural Networks

(FNN) in such applications, decision tree methods based on gradient descent boosting, which
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are well-suited for handling large feature sets with lower computational training costs, have rarely

been explored in this context. To address the issue of process drift, a live-updating transfer learning

approach is implemented with FNN models. This approach periodically updates the model using

up-to-date data to reduce the need for physical measurements, leveraging a base model trained

on historical data. Additionally, this paper discusses and applies a data augmentation method,

linear Mixup, to mitigate commonly encountered data insufficiency issues, which may arise from

sensor failures or pre-mature process lines. The Mixup method has been shown to significantly

improve model performance as data-adaptive regularization, offering a promising solution to these

pervasive challenges [20].

This work is organized as follows: Chapter 2 provides an overview of the datasets with Chap-

ter 2.1 going more in depth on the preprocessing procedures for both etching and slider production

tools, Chapter 2.2 presents the machine learning model construction for both classification and re-

gression tasks, Chapter 3.1 and Chapter 3.2 demonstrate and discuss the model performance results

on both tools, and Chapter 4 summarizes the findings of this work.

5



Chapter 2

Data Preprocessing and Modeling

This section provides an overview of the solution objective, data collection, physical functionality,

and specific machine tools for the use case used in this study. As mentioned, the use case encom-

passes five plasma etching machines at various Seagate factories used in wafer production distinct

from those examined in previous research [1], and an additional seven slider tools from the pro-

duction of the slider component used in hard disk drives (HDD). The 12 datasets, one from each

machine, made it possible to extend the prior study on data aggregation on similar machines and

processes to a study on similar machines but different processes. The solution objective remained

the same as the previous study [1], in which the model was constructed to use machine tool data to

determine (predict, before metrology) if the final thickness of the deposited layer PASS or FAIL.

PASS refers to if the wafer is expected with high probability to fall within a specified quality range,

and FAIL is if it does not. As in the previous study, a classification model was applied. In addition,

a regression model was also developed for the slider production process to quantitatively predict

the depth of the milling process. Both models aim to determine whether the output products of

these tools are expected to meet specific metrological standards. If the performance of these mod-

els is sufficiently high, this virtual metrology application can increase the machine and staffing

productivity of the physical metrology quality assurance process.
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The datasets produced by the etching process facilitate the development of a binary classifi-

cation model to perform fault detection. This model classifies the final thickness of the deposited

layer as PASS if it falls within a predefined range and FAIL if it does not. For the slider production

process, a regression model is developed to predict the depth of the milling process. This model

aims to determine whether the outputs of these tools meet specific metrological standards, thus

serving as an effective soft sensor for quality assurance for multiple products in manufacturing

processes.

The details of the data collection and description of the tools and modules of datasets were

elaborated in a prior work [1] and demonstrated in Figure 2.1. In summary, the manufacturing

process requires raw wafers to undergo a sequence of process steps to transform into complete

products. Due to the repetitiveness of these processes, a wafer may interact with the same kind of

tool multiple times at different processes. This work analyzes etching and slider production tools,

where each tool functions as a reactor and contains modules that operate as nearly independent

reaction chambers to conduct specific processes. Tool-module combinations are designated in the

T-PM format; for instance, ‘T1-PM1’ refers to module 1 in tool 1. For the rest of the paper, a data

point is defined as a data vector of all features after averaging across the duration of the batch. A

dataset is the collection of data points obtained from a specific tool-module combination.

2.1 Data Generation and Preprocessing for Etching and Slider

Tools

2.1.1 Wafer Production Etch Tools

Operational data from each wafer production etch tool was collected and consistently organized

by the CESMII Information Model or Profile pictured in Figure 2.1. The data from each machine

comprised two data types: 32 streamed, time-based numerical sensor measurements and 2 cate-
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Figure 2.1: The industrial etching equipment’s manufacturing system consists of multiple etching

reactors, each equipped with several modules capable of running different processes. The produc-

tion begins with pure silicon wafers, which undergo a series of processing steps before transform-

ing into the final product.

gorical features. The streamed, numerical data, sourced from various physical sensors, include

operational measurements such as pressure and gas flow, i.e., state variables that can be measured

directly and in real-time. Categorical features describe process and material specifics that are de-

cisions about the use of the machine. The two features included are an alphanumeric process ID

that captures the “recipe” of machine functions for a particular product and the substrate family

ID. Each family is a finite set of classes. The steamed operational data was averaged for each

variable over duration of a batch run which is typically on the order of 20 minutes. Data collected

cover five years of operation, from February 2018 to December 2022. The five etch tool datasets

are categorized by machine number and process module (single machines that have parallel etch

modules) as T51-PM1, T52-PM1, T52-PM2, T53-PM1, and T53-PM2.

Again, the solution objective is to build a binary prediction model by mapping these operating

data to PASS and FAIL outcomes. Data from 2018 through 2021 are allocated for training, vali-

dation and the tuning of the model hyperparameters. The 2022 data, the most recently collected,

8



were reserved for testing. Selecting data from the oldest rather than the newer sets and then testing

with the most recent data ensures that model effectiveness with respect to “normal” operational

shifts and machine changes over time are accounted for and evaluated in the context of current and

future production scenarios.

In addition to data selection, data preprocessing is also crucial for preparing datasets for model

training process. Prior studies [21, 22] have highlighted that preprocessing can significantly impact

model training performance, underscoring the importance of selecting those preprocessing meth-

ods that optimize model performance for an operational situation [23]. In this work, preprocessing

involves removing or padding invalid/null data points, encoding discrete variables, and normaliz-

ing numerical data points for maximum performance accurately. The workflows for preprocessing

inputs and outputs are graphically illustrated in Figure 2.2 (input data) and Figure 2.3 (outputs).

With reference to Figure 1, the first step is remove invalid data. An invalid data point is

defined when critical sensor data are absent, such as the output measurements of oxide thickness,

the pass/fail status, or when a substantial number of the input sensor data is missing. Missing data

points can be attributed to the temporary malfunction of sensors within a batch run, not uncommon

with industrial data. In scenarios where extensive numbers of sensor data are missing (usually over

half of the features), zeroing all missing features or feature paddings could detrimentally affect the

dataset’s integrity and, consequently, the model training performance. For sensor data points in

which a small number of the measurements (usually only one or two features) are missing, these

missing values are replaced by the average value of the remaining data points in the data set. This

imputation method helps maintain the consistency and reliability of the dataset, ensuring that the

training process is not skewed by gaps in the data. This strategy of handling missing data preserves

the underlying statistical relationships and prevents the introduction of bias that could mislead the

learning algorithm. We note that the sensor data is collected as time-series measurements and

averaged over the duration of each processing step to generate representative values for various

features. Once this data is properly recorded, it is treated as accurate and reliable, as the sensors
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Figure 2.2: This figure illustrates the input data preprocessing workflow for etching tools and

slider production tools. Common steps include invalid data removal, normalization, and dimension

reduction. Etching tools incorporate encoders for categorical data management, whereas slider

tools utilize Mixup to mitigate data scarcity.
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Figure 2.3: This figure illustrates the output data preprocessing workflow for etching tools and

slider production tools. Common steps include invalid data removal, etching tools requires 0/1

encoding, and slider tools requires separate scaling.
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on the machine have been qualified by operations to ensure proper functionality and measurement

accuracy.

Conversion of categorical features into numerical formats is essential for their integration

into numeric-based machine learning models. Each categorical feature, such as the process ID and

the substrate family ID, must be uniquely encoded using methods such as label encoding or one-

hot encoding. In this work, label encoding was used to convert process name IDs and substrate

family IDs into numerical values. To ensure consistency across different machines, substrates, and

production processes, the encoding was created using all available datasets combined, covering all

possible entries. This approach prevents issues that could arise if the encoder were trained on a

limited dataset. For example, if a tool or module only runs certain processes, an encoder trained

only on that data might fail when applied to another tool with different processes, leading to errors

due to missing values. By including all possible entries during encoding, we ensure that the data

remains compatible across different tools and processes. For the output variable, which is either

PASS or FAIL condition, binary encoding scheme is adopted, where ‘1’ represents a PASS and ‘0’

denotes a FAIL.

Normalization and scaling of data are critical for optimal training performance, when the input

features span wide numeric ranges and scales. For instance, in this use case some features might

range from 0 to 1, while others range from 0 to 100,000. Normalization was critical to avoiding

gradient vanishing or gradient explosion [24]. Although gradient-boosted, tree-based methods like

XGBoost and AdaBoost are inherently less sensitive to scale differences due to their reliance on

decision tree structures, normalization still plays a significant role. Unscaled data can introduce

inefficiencies in node splitting such that features with larger value ranges can dominate the feature

selection in split decisions, potentially leading to suboptimal splits that do not capture the true

underlying patterns in the data effectively.

To ensure all features are normalized consistently across different datasets, a standard scaler is

applied to each dataset independently, normalizing the features to a mean value of 0 and a standard
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deviation of 1. This scaling process adheres to the formula:

Z =
X − u

s
(2.1)

where Z is the output vector of a scaled numerical feature, X is the input vector of the original

feature, u is the average value of X, and s is the standard deviation of X. In the context of data

aggregation, a method detailed in a previous work [1], where model training involves combining

multiple datasets to improve the model performance by increasing data variability and data vol-

ume, it is found to be beneficial to scale each dataset separately prior to concatenating datasets.

In other words, the concatenations should happen between scaled datasets but not raw data. This

method is necessary because, within each module’s reaction chamber, the distribution of features

often varies significantly. For example, although the same feature across different datasets may

be similar in scale, direct scaling of the aggregated dataset could distort the inherent distributions

of each dataset if the differences in scale and standard deviation are substantial. As shown in Ta-

ble 2.1, the mean percentage difference of average values across all features exceeds 40% between

most tools, indicating significant distribution shifts between datasets. This distribution distortion

can mislead the model if the datasets are concatenated before normalization, then impacting its

performance. Consequently, separate scaling for each dual-tool combination is implemented to

maintain the integrity of their original distributions relative to the output. This approach preserves

crucial relationships within the data, ensuring more reliable and accurate model training outcomes.

Table 2.1: Mean Percentage Difference of Average Value of All Features

T51-PM1 T51-PM2 T51-PM3 T52-PM2 T53-PM2

T51-PM1 N/A 64% 14% 90% 43%
T51-PM2 77% N/A 75% 55% 46%
T51-PM3 20% 86% N/A 101% 66%
T52-PM2 5865% 3208% 5274% N/A 9932%
T53-PM2 47% 45% 45% 81% N/A

13



After the normalization and aggregation process, dimension reduction is facilitated using

Principal Component Analysis (PCA). It is worth noting that PCA requires the data to be normal-

ized before its application. Normalization standardizes the range of features, ensuring that each

feature contributes equally to the analysis and that features with larger scales do not dominate the

principal components. This prerequisite is crucial because PCA is sensitive to any variance in the

initial variables. The PCA process begins by calculating the covariance matrix for the data, which

identifies the directions in which the data varies the most. If the data are not normalized, features

with higher absolute values could disproportionately influence the covariance matrix, leading to

biased principal components that do not accurately reflect the underlying data structure. Subse-

quently, the eigenvalues and eigenvectors of this covariance matrix are computed. The eigenvalues

are sorted in descending order, and their corresponding eigenvectors are aligned accordingly. The

principal components are selected based on these sorted eigenvalues, those that explain the most

variance are retained (in this work 99.9% of variances are retained), discarding the less signifi-

cant components (non-contributing features, noise). This selection is critical because features that

exhibit higher variance are considered more influential for the model’s predictive accuracy. The

calculation process is shown below:

Q = XT X = WΛWT (2.2)

where X represents the data matrix with dimension (k × d), where k denotes the number of data

points and d represents dimensions of datasets. Q refers to the covariance matrix, which is a square

matrix of dimension (d × d). Λ is a diagonal matrix consisting of eigenvalues of Q arranged in

descending order. Correspondingly, W is a matrix of the eigenvectors of Q, aligned in the same

sequence as the eigenvalues in Λ. The linear transformation from the original data space to the
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principal components space is represented by equation below:

TL = XWL (2.3)

where L is the number of reduced dimensions determined by the proportion of variance to be

retained, TL represents the transformed data matrix with dimension (k × L), and WL is the first L

columns of W matrix.

Each principal component is a linear combination of the original features, representing a new

direction in the feature space. By focusing on these principal components, PCA effectively reduces

the dimensionality of the data. This reduction not only compresses the data with minimum loss

by emphasizing directions with most significant variations, but also helps in mitigating the risk of

overfitting by reducing feature numbers and noise in the data. In this work, 99.9% of variances are

retained, and the resulting feature space has dimension between 10-15, corresponding to 60% to

75% reduction in dimension.

2.1.2 Slider Production Tools

Slider tools are a different part of the manufacturing process from wafer production where machine

tools are used to make specific parts used in the production of data storage devices. For this study,

we focused on a milling machine step which is used to establish a critical surface depth for the

slider component. The modeling objective is the same virtual metrology solution for wafer produc-

tion in that milling machine sensor data were collected, contextualized, processed and engineered

for building a model to predict milling depth. In this study we have benchmarked data processing

methods and workflow, and we compare and contrast the approach to building the virtual metrology

solution for two different production applications. As with wafer production, modeling begins with

data analysis. Since the goal is to predict milling depth, a continuous variable, a regression model

is developed. This model leverages multiple features, approximately 20 in total, to estimate milling
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depth with precision. However, an important observation from the data is that milling depth values

tend to cluster into discrete ranges, corresponding to specific product specifications. Figure 2.4

illustrates these clusters, with milling depths predominantly falling within groups of 1450–1550,

1650–1850, and 2150–2350. These clusters reflect the limited variety of products, each with its

own depth requirement, and are an inherent characteristic of the manufacturing process.

Given this natural grouping, the regression output can be easily mapped into predefined depth

ranges, allowing for a multi-class classification approach. Instead of building a separate classifi-

cation model, the regression predictions are assigned to the nearest cluster, effectively classifying

each wafer’s milling depth into a corresponding product category. Additionally, this classification

approach aids in identifying failures. Failures are defined as wafers whose milling depth deviates

significantly from the expected clusters for a given tool-module combination. For example, if a

particular tool is designed to produce only one type of product, any wafer with a milling depth

outside its designated range is considered a failure, even if its depth aligns with a valid range for

another product. In this context, failures indicate deviations in production quality, highlighting

potential process anomalies. This depth-failure classification enhances both the model’s practical

utility and its ability to detect defects in real-world manufacturing.

For classification, data points outside of the major depth ranges are flagged as failures, with

the distribution details of these principal ranges cataloged in Table 2.2. The datasets relevant to

slider production, namely T07-PM1, T07-PM2, T15-PM1, T02-PM1, T02-PM2, T01-PM1, and

T05-PM2, consist of 20 features each, similar to the datasets from etching tools but encompassing

fewer features and data points. The organization of data points within major depth categories

for each dataset is also documented in Table 2.2, where red numbers mean data points in outlier

regions.

Data preprocessing for these datasets follows a similar approach to that used for etching tools,

including the removal of null values, padding of missing data, normalization, aggregation, and

dimension reduction. However, since the slider production datasets do not contain categorical
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Figure 2.4: Scatter plot of T15-PM1 output, illustrating how data points are primarily grouped into

several clusters.

Table 2.2: Data Distribution Across Different Ranges

1450–1550 1650–1850 2150–2350 Others Total

T07-PM1 1 869 9 22 901
T07-PM2 7 992 4 11 1014
T15-PM1 518 943 530 15 2006
T01-PM1 98 198 158 11 465
T02-PM1 0 742 108 24 874
T02-PM2 1 685 18 24 728
T05-PM2 0 153 0 3 156

17



features, the encoding step is not required. As shown in Figure 2.2, unique to slider tools, however,

is the application of separate scaling on the output data during aggregation, as the outputs of

etching tools datasets are binary values. In this aggregation process, one dataset is designated as

the primary or ’major’ dataset aimed at performance enhancement, while other datasets serve as

supplementary or ’helper’ datasets. The output scaler is tailored to the distribution of the major

dataset before being applied to the combined dataset to preserve its integrity. This strategy is

crucial because using a universal scaler across the aggregated data could distort the distribution of

the major dataset of interest, such as the single-region T07-PM1 versus the three-region T15-PM1.

After normalization and aggregation, PCA is applied to the input data to retain at least 99.9%

of the original variance, significantly reducing dimensionality while preserving essential informa-

tion. The number of principal components retained varies by dataset, typically resulting in about

10 principal components, effectively halving the original feature set. This dimensionality reduction

is critical in managing the complexity and enhancing the interpretability of the models developed

from these high-variance datasets.

Due to the limited data availability for slider production tools as characterized by a shorter

data collection period of only one year compared to five years for etching tools and a lower fre-

quency of data recording, enhancements in model performance are necessary. To address this,

a data augmentation technique known as Mixup was employed to create artificial data points by

interpolation between existing data points.

However, given that the slider data belongs to several discrete regions, interpolating data

points between major regions was avoided since doing so could lead to non-existing milling depth.

For data aggregation, each dataset undergoes Mixup independently within its respective major

regions, and the resulting post-processed datasets are then concatenated. This ensures that the

augmented data remains representative of the true distribution patterns observed in the production

environment. To evaluate the impact of different interpolation strategies on model effectiveness,

two distinct Mixup schemes were tested. The first scheme is tri-point interpolation, which creates
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two artificial data points between each two data points. This scheme is formulated as follows:

xmix = 0.33xi + 0.67xi+1, xmix = 0.67xi + 0.33xi+1

ymix = 0.33yi + 0.67yi+1, ymix = 0.67yi + 0.33yi+1

(2.4)

The second scheme creates one data point directly in the middle of two data points as formulated

as follows:
xmix = 0.5xi + 0.5xi+1

ymix = 0.5yi + 0.5yi+1

(2.5)

Beyond data augmentation, Mixup also acts as a form of regularization, effectively smoothing

the decision boundaries of the model. This smoothing is achieved by encouraging the model to

perform linear interpolations between features and their associated targets in the input space, which

can reduce the model’s confidence in far-reaching predictions. Such a characteristic is particularly

useful in mitigating overfitting, as it prevents the model from learning overly complex patterns that

are heavily dependent on the specific training data distribution. Instead, Mixup encourages the

model to generalize better to new, unseen data by promoting a broader exploration of the feature

space and reducing the likelihood of drastic output changes in response to small variations in

input. This regularization effect makes Mixup a valuable technique in enhancing the robustness

and generalizability of machine learning models [20].

2.2 Model Training

2.2.1 Introduction to Machine Learning Models

Feedforward Neural Networks (FNNs) are widely used for modeling processes involving regres-

sion and classification under large amounts of data and features. However, tree-based ensemble

methods like Extreme Gradient Boosting (XGBoost) demonstrate advantages when dealing with
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high-dimensional feature spaces and significant noise levels. This is because:

• FNNs require careful normalization, can consume more computational resources, and may

suffer from overfitting in complex architectures.

• Tree-based approaches (like XGBoost) require less stringent normalization, often train faster

on moderate size dataset, and are generally robust to overfitting due to inherent regulariza-

tion.

In industrial applications, datasets often present challenges such as high-dimensional feature

spaces, missing values, class imbalance, and the presence of significant noise. These character-

istics make tree-based approaches particularly well-suited for industrial data modeling. The key

advantages include:

• Robustness to Noisy and Incomplete Data: Industrial datasets frequently contain sensor

readings, production metrics, and operational parameters that may be affected by measure-

ment errors, environmental conditions, or missing entries. Tree-based approaches handles

such inconsistencies effectively using its optimized split criteria and missing value handling

mechanisms, allowing it to make robust predictions despite imperfect data.

• Feature Selection and Interpretability: Unlike FNNs, which often require careful feature

engineering and are perceived as black-box models, tree-based approaches naturally identi-

fies the most important features during training. This ability is critical in industrial settings

where engineers and decision-makers need interpretable insights for process optimization,

fault diagnosis, and predictive maintenance.

• Computational Efficiency and Scalability: Industrial datasets in this study range from

10,000 to 30,000 data points. Training deep neural networks on such data is more compu-

tationally expensive than XGBoost, even with a GPU, and require extensive hyperparameter

tuning. Tree-based approaches, on the other hand, is optimized for speed and scalability for
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mid size datasets as in this work, leveraging parallel processing and tree-pruning techniques

to efficiently handle large datasets with minimal computational overhead.

• Regularization for Generalization: FNNs, particularly deep architectures, require care-

ful tuning of dropout rates and batch normalization to prevent overfitting. Tree-based ap-

proaches can incorporate built-in regularization techniques such as L1 (LASSO) and L2

(Ridge) penalties, along with shrinkage (learning rate adjustment), ensuring better general-

ization performance without extensive fine-tuning.

Given these advantages, tree-based approaches emerges as a highly effective tool for mod-

eling industrial processes, where robustness, interpretability, and computational efficiency are

paramount. XGBoost is one example of a tree-based ensemble method combining the predic-

tions of multiple decision trees in a gradient-boosted framework. The algorithm begins by training

a base tree, then computes the residual (the difference between the current prediction and the true

label). Subsequent trees are trained to optimize these residuals. The final prediction for sample xi

after t trees is:

ŷ(t)
i = ŷ(t−1)

i + η · ft(xi), (2.6)

where η is the learning rate and ft is the t-th decision tree. This iterative approach refines the model

incrementally, making XGBoost particularly effective in many structured data tasks, which are

tasks that involve datasets where features are well-defined, typically organized in tabular format,

and consist of numerical, categorical, or ordinal variables. These tasks are common in industrial

settings, where data is collected from sensors, production logs, and quality control systems.

2.2.2 Model Training on Etching and Slider Tools

Etch tool data are used to train a ML classification model to perform a binary prediction of PASS or

FAIL product at the completion of the machine tool process step. Because the FAIL rate from the
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process step is small(∼ 2%), the data are highly imbalanced between PASS and FAIL. We therefore

use a weighted cross entropy loss approach to emphasize FAIL conditions. Cross-entropy loss,

also known as log loss, is a commonly used loss function for classification tasks. It measures the

divergence between the true labels and the predicted probabilities, penalizing incorrect predictions

more heavily. In binary classification, it is defined as:

L(yi, ŷi) = −w0(1 − yi) log(1 − ŷi) − w1yi log(ŷi), (2.7)

where w0 and w1 are class weights set as:

w0 =
1
n0
, w1 =

1
n1
, (2.8)

and n0 and n1 denote the number of PASS and FAIL samples, respectively. It’s worth mention-

ing that in our datasets FAILs are usually represented as 1 instead of 0. This scheme emphasizes

the minority class to improve the detection of FAIL events.

80% of the etch tooling dataset (2018–2021) was used for training, while the remaining 20%

was separated out for validation. To systematically tune hyperparameters of the machine learning

model, we performed a 5-fold cross-validation on the training data. Cross-validation is a technique

used to assess the generalizability of a model by splitting the dataset into multiple subsets. In

5-fold cross-validation, the training set is divided into five equally sized folds, where the model

is trained on four folds and validated on the remaining fold. This process is repeated five times,

with each fold serving as the validation set once. The final model performance is averaged over all

iterations, reducing the risk of overfitting and improving robustness.

To further optimize hyperparameters, we apply a grid search exploring various learning rates,

the number of estimators, and regularization strengths for both FNN and XGBoost. Grid search

systematically evaluates predefined combinations of hyperparameter values to identify the optimal

set that maximizes model performance. This approach ensures that different configurations are
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tested comprehensively, balancing model complexity and predictive accuracy. The final selected

hyperparameters are shown in table 2.3 and table 2.4, respectively, where the underlined parameters

represent the chosen optimal values.

Table 2.3: Hyperparameters for FNN

Hyperparameter Range/Candidate Values

Number of layers [1, 2, 3]

Number of neurons [16, 32, 64]

Activation function [’relu’, ’sigmoid’]

Dropout ratio [0.0, 0.2, 0.5]

L2 regularization [0, 10−4, 10−3, 10−2]

Training epochs [500, 1000, 2000]

Early stops [’Yes’, ’No’]

Table 2.4: Hyperparameters for XGBoost

Hyperparameter Range/Candidate Values

Learning Rate [0.1, 0.3, 0.5]

Max Tree Depth [6, 8, MAX*]

Subsample Rate [0, 0.5, 1]

L1 Regularization [0, 1, 10]

L2 Regularization [0, 1, 10, 100]
* Dimension after PCA

In all kinds of machine operation that run continuously over a long periods of time, process

drift poses a significant challenge to maintain accurate model performance over time, as even the

sensors themselves can drift and develop bias. Process drift occurs due to various factors such as

equipment aging, accumulation of unwanted deposits on machinery, and other operational changes

that alter system behavior with time. For example, in etch machines, process drift can manifest as
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a gradual reduction in etch rate due to the accumulation of impurities on chamber walls[25]. This

buildup alters plasma conditions, leading to deviations in feature dimensions and film thicknesses

over time. If not accounted for, such drift can degrade the predictive performance of machine

learning models trained on historical data, necessitating periodic model recalibration.

As a result, models trained on initial datasets may gradually lose accuracy. Transfer learning

addresses this by adapting existing models to new data without full retraining, preserving prior

knowledge while integrating new information. This is especially valuable in industrial settings,

where collecting sufficient data in different environments is costly due to the need for physical

measurements. Additionally, in scenarios such as data drift, continuous updates are required, but

new data may never be sufficient for training from scratch before being outdated.

Our implementation of transfer learning followed a three-step procedure designed to improve

model performance while minimizing the need for costly physical measurements:

1. Base Model Training: The procedure begins with developing a base model by training the

feedforward neural network (FNN) on old data, which in our case is the data from 2018-

2021, to establish foundational performance metrics. This base model serves as the starting

point for all subsequent updates and evaluations.

2. Incremental Model Updating with SGD: Once the base model is established, it is incre-

mentally retrained on new data using stochastic gradient descent (SGD). The training data

window size (i.e., mini-batch size) is a tunable hyperparameter, with examples including

mini-batches of 1 or 10 data points, referred to as ’train data length’ in Table 2.5. To prevent

data leakage, each new data point is first evaluated using the original, pre-updated model

before being used for training. Although the true label is available, the model is tested as if

it had not yet seen this data point. Only after recording this evaluation is the model updated

with the new data using SGD. This ensures an unbiased assessment of how well the model

adapts over time while accurately measuring the effectiveness of the updating algorithm.
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The use of SGD with a carefully selected learning rate enables efficient updates, striking a

balance between adapting to new information and preserving existing knowledge to prevent

model destabilization.

3. Model Evaluation on Test Data: After the model is updated in the previous stage, it is now

evaluated on new test data points. At this stage, the model is not updated—only its perfor-

mance is measured. The ratio between the number of test data points and the training data

points from the previous step is defined as the ’Test/Train Length Ratio’ in Table 2.5. This

evaluation step ensures that the model can make accurate predictions on new data without ad-

ditional retraining. The goal of transfer learning here is to improve model performance while

minimizing the need for physical measurements, which are costly and time-consuming. If

the model were retrained on every new data point, it would require collecting new labels

through physical measurements, defeating the purpose of transfer learning. Although all

data in this work are labeled through physical measurements, the labels are used solely to

evaluate the effectiveness of transfer learning. From the model’s perspective, it does not

have prior knowledge of the labels during training. By testing the transfer learning scheme

in this controlled setting, its effectiveness can be validated before future real-world applica-

tions. After completing this evaluation step, the process returns to the previous stage, where

the model is updated with the next batch of new data points, continuing the learning cycle.

After completing Step 3, the process returns to Step 2, where the model is updated with the

next batch of new data points. This continuous cycle of evaluation and updating is known as

real-time update, allowing the model to adapt dynamically to evolving data patterns.

Hyperparameters such as the learning rate, training data length, and test/train length ratio

are optimized to achieve robust model performance. This optimization is conducted through a

systematic grid search, as detailed in Table 2.5. For each tool, all combinations of train data length

and train/test length ratio are thoroughly tested to examine the effectiveness of transfer learning.
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Table 2.5: Hyperparameters for Transfer Learning Model Training

Parameter Hyperparameters

Learning Rate [0.0001, 0.001, 0.01]
Training Data Length [1, 10]
Test/Train Length Ratio [1, 2, 4]

In summary, transfer learning efficiently maintains model accuracy amid process drift by

leveraging knowledge from historical data and incorporating incremental updates. This approach

sustains performance while reducing the costs of full retraining, making it well suited for evolving

industrial processes and the practical constraints of manufacturing environments.

For the slider datasets, the task is a regression problem instead of binary classification. There-

fore, the Mean Squared Error (MSE) is employed as the primary loss function:

MSE =
1
N

N∑
i=1

(
ŷi − yi

)2
, (2.9)

where ŷi and yi are the predicted and actual values for sample i, and N is the total number of

samples.

Due to the limited dataset size (collected over a shorter time period), fewer layers and neu-

rons are used in the FNN to prevent overfitting. XGBoost, however, retains its standard set of

hyperparameters, exploiting its tree-based mechanism to handle even relatively small datasets. To

prevent overly small partitions, we use an 80%–20% train/validation split without a separate time-

based test set. Given the limited data volume and its confinement to a one-year range, time-based

prediction is less critical.

By applying FNN and XGBoost with these tailored hyperparameters and the MSE loss, we

achieve reliable regression performance within the constraints of a smaller dataset. Given the

limited data, the FNN architecture is kept simple with fewer neurons to avoid overfitting and reduce

computational costs.
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Table 2.6: Hyperparameters for FNN

Hyperparameter Range/Candidate Values

Number of layers [1*, 2, 3]

Number of neurons [8, 16, 32]

Activation function [’relu’, ’tanh’]

Dropout ratio [0.0, 0.2, 0.5]

L2 regularization [0, 10−4, 10−3, 10−2]

Training epochs [500, 1000, 2000]

Early stops [’Yes’, ’No’]
* Single Training
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Chapter 3

Results and Discussion

3.1 Etching Tools

The performance of the machine learning models introduced in Chapter 2.2.2 that were trained

on industrial data we received are best evaluated within the bounds of the specific machines, op-

erational environments, and conditions in which they will be applied. As discussed in a previous

study, the etch machines in this study perform well with low percentages of product FAIL rates;

therefore, the data distribution is highly imbalanced toward PASS vs. FAIL runs [1]. There are

four possible outcomes in a binary classification:

1. True Positive: Correctly identifying a PASS.

2. False Negative: Incorrectly labeling a PASS as a FAIL.

3. True Negative: Accurately detecting a FAIL.

4. False Positive: Incorrectly labeling a FAIL as a PASS.

True positives and true negatives indicate that the classification model is correctly qualifying

the product state. False negatives, though undesirable, can be mitigated since all flagged failures
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undergo an additional metrology inspection where false negatives can be corrected by manual

measurements. The larger concern in these operations are false positives, as they are a much more

expensive miscategorization compared to false negatives. False positives are more costly because

downstream operational resources continue to process the defective product, wasting resources and

time. In most cases, false positives will eventually be identified through later metrology steps or

final product reliability testing [26].

An acceptable classification model for this operating situation needs to have sufficient accu-

racy and precision in identifying true FAIL and PASS results but also in minimizing false positives

to reduce the cost of classification errors. In operational terms, this virtual metrology solution leads

to significant economic benefit by debottlenecking the physical metrology step and increasing pro-

duction volume.

The performance metrics for the classification models must reflect the ability of a model to

control its false positive rate. Performance is adjusted by modifying classification thresholds that

affect the balance among all four possible classifications. Increasing the sensitivity to misclassified

wafers reduces false positives but raises false negatives and vice versa. For this application there is

a need to demonstrate the ability to tune the model by considering performance across a range of

threshold settings. Confusion matrices, while commonly used to evaluate classifier performance,

only address results at a specific threshold [27]. They fail to capture overall model performance

for various settings. Accuracy evaluation is unsuitable because of the extreme PASS vs. FAIL im-

balance. For instance, a model that always predicts "PASS" may appears highly accurate because

the vast majority of classifications are PASS, but is functionally useless with a 100% false positive

rate.

Each model does not have a single, fixed false positive rate; rather, its performance can be

adjusted by modifying classification thresholds. Increasing sensitivity to misprocessed wafers re-

duces false positives but raises false negatives, whereas a more lenient approach does the opposite.

Confusion matrices, while commonly used to evaluate classifier performance, only depict results
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at a specific threshold and fail to capture overall model capability across various settings. Other

common evaluation metrics, like accuracy, are also unsuitable due to the extreme class imbalance

in manufacturing datasets. For instance, a model that always predicts "PASS" may appear highly

accurate but is functionally useless with a 100% false positive rate.

The Receiver Operating Characteristic (ROC) analysis is a better analysis tool for this use

case because it directly plots the true positive rate (TPR) and false positive rate (FPR) across the

entire span of thresholds. The output of the classifier produces continuous scores in the range [0,1]

of the classification threshold. The default threshold is of 0.5, which is equivalent to guessing an

outcome. We therefore want to be able to adjust this threshold to get an acceptable performance.

Setting the threshold to 0 results in a TPR of 100% and an FPR of 100% (always PASS), while a

threshold set at 1 results in TPR and FPR rates of 0% (always FAIL). The optimal threshold there-

fore requires balancing sensitivity (TPR) angainst false alarms (FPR). To objectively compare the

performance of models, the Area Under the ROC Curve (AUC) is used since it is a metric that quan-

tifies overall performance across all threshold settings when plotting TPR against FPR. A perfect

model would achieve an AUC of 1, meaning 100% sensitivity with no false positives. In contrast,

a model making random predictions would yield an AUC of 0.5. Since manufacturing data is

typically imbalanced, ROC-AUC provides a reliable measure of classification effectiveness [28].

3.1.1 Single and Dual Tool Training

The AUC scores of the FNN and XGBoost models on each of the five etching machine datasets with

single-tool (trained only on one dataset) and dual-tool (trained on the aggregation of two unique

datasets, the aggregated dataset is picked by best available score) training are shown in Figure 3.1:

For single-tool training, we observed an increase in AUC scores for 3 out of the 5 tools when

using the XGBoost model compared to the FNN model. The largest increase was 0.09 in T53-PM1,

while the largest decrease was 0.13 in T52-PM2. In dual-tool training, XGBoost demonstrated
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Figure 3.1: This figure shows the AUC scores for the FNN and XGBoost models applied to etching

tool data using single tool and dual tool training.
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better or similar performance compared to FNN across all tools. The largest AUC increase was

0.13 in T52-PM2 and 0.05 in T53-PM1, with the largest decrease being minimal at 0.02 in T52-

PM1. An improvement in the ROC-AUC score indicates a better ability to distinguish between

PASS and FAIL classifications. For instance, an AUC increase of 0.13 can suggest that under

controlled 80% true positive rate (TPR) the false positive rate (FPR) has decreased at least 10%

(the actual level depends on the specific behavior, the AUC score does not have a fixed relationship

with TPR/FPR improvement) at various classification thresholds. In practical terms, this means

that XGBoost reduces misclassifications that fewer failed cases are incorrectly predicted as pass, or

more true failures are correctly identified. Conversely, the AUC drop of 0.13 in T52-PM2 indicates

a decline in this ability, likely due to the dataset’s small size. To illustrate the practical implications,

an AUC score of 0.8 on T53-PM2 typically enables detection of over 90% of defective products

(i.e., fulfilling the <10% FPR requirement) and reduces more than half of the associated physical

measurements needed for further inspection (False negative predictions). In general, every 0.1

increment in the ROC-AUC score yields approximately 10% reduction in the required physical

measurements. However, these improvements are not uniformly distributed; gains realized closer

to the ideal AUC of 1.0 tend to be both more significant and more difficult to achieve.

Despite some decreases in single-tool training, the reductions were negligible in dual-tool

training, and AUC scores either improved or remained stable for all datasets. This confirms that

XGBoost is a competitive classifier for PASS/FAIL classification in industrial datasets. The notable

fluctuations in T52-PM2 are likely due to its limited dataset size—only 863 data points compared

to over 10,000 in other datasets. This small sample results in a very limited test set with just 5 fail

data points, introducing bias and randomness that undermine the reliability of performance metrics

for this tool. Furthermore, aggregating data across tools continues to be valuable. The dual-tool

training advantage observed in prior work with FNN remains valid for XGBoost, with dual-training

AUC scores consistently outperforming single-tool training across all five tools. Coupled with

its superior or comparable performance, significantly lower computational resource requirements,
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and easier hyperparameter tuning compared to FNN, XGBoost, along with other boosted decision

tree models, emerges as a highly competitive candidate for PASS/FAIL classification in industrial

applications.

3.1.2 Transfer Learning

The transfer learning results for three different train/test ratios in single-tool training are presented

in Figure 3.2. As stated in Chapter 2.2, the train/test ratios (row) indicates the proportion of data

points used for model updates within a given time period, the train data length (column) indicates

the frequency of model updating. The heat maps for each tool are generated by plotting AUC

scores for each Test/Train Ration and Train Data Length pair. A darker shade of blue indicates a

higher AUC score, meaning better model performance. The heat map indicates that in most cases,

variations in the train/test ratio, ranging from 1:1 to 1:4, do not significantly affect the AUC score

when the train data length remains constant. The performance differences between frequent model

updates (small train/test ratio) and less frequent updates (large train/test ratio) are minimal. This

indicates that the model does not require persistent updates to maintain its predictive accuracy. It

can be trained on a subset of the data at periodic intervals and then applied over extended periods

without substantial performance degradation. This finding has practical implications. In settings

where labeled data collection requires physical measurements, a reduced train/test ratio translates

to fewer necessary measurements in a given time period. For example, in a 1:4 train/test ratio

scenario, only 20% of the available data is used for model updates within an update period. This

implies that if physical measurements are required for labeling, the measurement workload can

be significantly reduced, as labeling is only needed during model training. In contrast, during the

prediction phase, which accounts for 80% of the time, no physical measurements are required. In

addition, in semiconductor manufacturing, where data collection is automated and continuous, an

important takeaway is that effective model updates do not require all collected data. Instead, only

a small subset is sufficient to maintain optimal model performance within a given time period.
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Figure 3.2: Single tool transfer learning results in heat map form. The performance difference in

the same row is minimal (different train/test length ratio), but the performance difference in the

same column (different train data length) is significant.

This insight allows for optimizing data usage, focusing computational resources on periodic model

retraining rather than continuously processing every newly collected data point.

However, when comparing different training data lengths, a clear trend emerges: models

trained with shorter datasets, which require more frequent updates in a time-series context, consis-

tently outperform those with longer training datasets. This suggests that frequent adaptation of the

model to recent data improves performance, likely because it enables the model to better capture

the dynamics of the evolving system and mitigate temporal variations in the data distribution. In

contrast, when the training data length is large, the model updates occur less frequently, potentially

making it less responsive to shifts in the underlying data patterns. In particular, when the training

data length is set to 1000 (excluding T52-PM2, which lacks sufficient data points), the performance

closely resembles that of regular single tool training, indicating that transfer learning provides little

to no benefit. In conclusion, the model should be updated frequently but in a low-density manner

to improve the performance under process drift with maximum savings computational resources

for retraining the model.

The results of transfer learning for dual tool training are presented in Figure 3.3 in the form

of a heat map. Overall, the trends observed in single-tool training are largely retained, and while

dual-tool training leads to slight performance improvements in certain cases, such as for T52-PM1
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Figure 3.3: Dual tool transfer learning results in heat map form. The performance shows slight

improvements compared to single-tool training and follows similar trends observed in single-tool

training.

and T52-PM2, the results for most other tools remain comparable to single-tool training. This

suggests that although data aggregation can enhance model robustness by exposing it to a broader

range of conditions, its impact under transfer learning is limited.

One key reason for this is that transfer learning inherently allows the model to dynamically

adjust to shifts in the data distribution over time. This continuous adaptation reduces the effec-

tiveness of the generalization from aggregating because the model is already evolving to capture

new patterns. Additionally, while data aggregation improves generalization across different tools,

transfer learning, particularly through fine-tuning, has the opposite effect by making the model

more specialized for a specific tool on the most recent dataset. As a result, the benefit of model

generalization due to aggregated data may be overridden by the model’s progressive adaptation

to recent data. Furthermore, transfer learning itself tends to be biased towards recent data, as it

incrementally modifies the model to fit the latest available information. Systematic application

of transfer learning to the model is arguably the most significant reason why data aggregation is

less effective .In short,since the model is continuously optimized for the most recent dataset, the

contribution of earlier aggregated data diminishes over time. Consequently, while dual-tool train-

ing offers advantages in other cases, the overall benefits of data aggregation in a transfer learning

framework remains negligible.
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3.2 Slider Tools

The FNN and XGBoost regression models for the seven slider milling tools introduced in Chap-

ter 2.2.2 are evaluated with two metrics: Median Absolute Error (MAE), measures the magnitude

of prediction error, and median value is applied to remove the influence from outliers; and Coef-

ficient of determination score (R2), evaluates how model explains the variance of original dataset.

Minimizing MAE and maximizing R2 are essential for improving model performance.

The Median Absolute Error (MAE) measures the average absolute difference between the

predicted and actual values. It is mathematically defined as:

MAE = MED(|yi − ŷi|)

where yi is the true value vector and ŷi is the predicted value vector, MED is the operator that

calculates the median value of a vector. Minimizing median absolute error is desirable because,

unlike mean absolute error, the median is less affected by large deviations. Also, MAE can be

beneficial over Mean Squared Error (MSE) because it is more robust to outliers, as it measures the

median deviation rather than squaring all errors, which reduces the impact of extreme values. A

smaller MAE indicates that the model’s predictions are closer to the actual values on average.

The R2 score, also known as the coefficient of determination, indicates how well a model

explains the variance in the target variable. It is calculated using the following formula:

R2 = 1 −
∑n

i=1(yi − ŷi)2∑n
i=1(yi − ȳ)2

Here, ȳ represents the mean of the actual values. The numerator is the sum of the squared errors,

while the denominator is the total variance in the data. A higher R2 score, approaching 1, suggests

that the model accounts for a significant portion of the data’s variance and it has a strong fit. R2

is often used to compare the performance of different models, where a positive R2 implies that
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the model performs better than a model that simply predicts the mean value. Achieving a high R2

score alone is not sufficient, because there may still be large individual prediction errors, or the

model may overfit the data. Cross-validation is critical for confirming generalization capability of

the model.

Balancing MAE and R2 ensures that the model maintains both low error magnitudes and

strong variance explanation. A model with low MAE and a low R2 may fail to capture underlying

patterns in the data, while a model with high R2 but large MAE can suffer from overfitting or

prediction instability.

3.2.1 Single and Dual Tool Training

Both the FNN and XGBoost models are trained similarly to the etch tools: single training, where

training data only comes from the tool it is being tested on, and dual training, where training data

comes from the tested tool and one of the other seven slider tools. Since the data range is primarily

between 1450 and 2350, the goal is to ensure predictions remain within the controlled range and

do not shift to another group. Therefore, an error below 20(∼ 1%) is considered small enough for

effective multi-class classification, and an error below 10 (approximately 0.5%) is regarded as a

near-perfect score. In the slider production tool, the mean absolute error (MAE) may be loosely

compared to that of an etching tool by treating predictions within the specified major ranges as

positive (true) and those outside as negative (false). Since this is a direct regression model, it is not

feasible to assign multiple thresholds for classification; consequently, only a single pair of TPR

and FPR can be produced, permitting indirect comparison with ROC results. In general, an MAE

of around 20 corresponds to an AUC of approximately 0.70–0.75, whereas an MAE below 10

indicates an AUC exceeding 0.85. In this work, the R2 score is less critical than the absolute error,

as the primary goal is to accurately predict the group to which each data point belongs. However,

R2 remains a useful metric for assessing how well the model captures the overall variance in the

dataset, providing insight into its explanatory power. The performances of both FNN and XGBoost
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Figure 3.4: This figure shows the MAE and R2 scores for the FNN model applied to slider tool

data. MAE generally decreases when training data is aggregated with another tool. R2 generally

increase with this aggregation as well.

models using single and dual training are shown in Figure 3.4 and Figure 3.5.

For the FNN model, MAE decreased for 5 tools and increased for 2 tools after aggregation.

The largest decrease was 32.85 (∼ 2%), while the largest increase was 2.36 (∼ 0.1%). In general,

the decreases in MAE were more significant than the increases. R2 scores increased for all 7 tools

in the FNN model, with the largest increase being 1.37, change from a score below baseline to a

score over 0.8.

For the XGB model, MAE decreased for 5 tools and increased for 2 tools. The decrease in

MAE is not as large as seen in the FNN model but the increases in MAE was less than the one

seen in the FNN model. The largest decrease in MAE was 3.86(∼ 0.2%) while the largest increase

was 1.54(∼ 0.07%). Significant increase in R2 scores are also seen in the XGB model. R2 scores

increased for 6 tools, the largest increase being 0.47 while the only decrease being -0.03. Although
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Figure 3.5: This figure shows the MAE and R2 scores for the XGBoost model applied to slider

tool data. MAE generally decreases when training data is aggregated with another tool, but not as

much as seen in the FNN model. R2 generally increase with this aggregation as well.
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the decrease in MAE from dual-tool training is small for XGBoost model, the MAE score predicted

by XGBoost is lower for 6 out of 7 tools than FNN.

The results demonstrate that aggregating training data from another tool improves the per-

formance of both models in terms of reducing MAE and increasing R2 scores. However, the

magnitude of improvement varies between the two models, with FNN showing more pronounced

changes in performance metrics. This indicates that FNN benefits significantly from data augmen-

tation in most cases, resulting in greater prediction accuracy across tools. Furthermore, the R2

scores for the FNN model improved for all seven tools, reflecting enhanced model fit and a better

ability to explain variance in the target variable. The large increases in R2, particularly for tools

with low single-tool training performance, suggest that the dual training approach helps the FNN

model capture important patterns that are not present when training on single-tool data alone. This

improvement can be attributed to FNN’s sensitivity to additional data, as the model’s continuous

learning structure allows it to better generalize and reduce overfitting when exposed to diverse

datasets.

The XGBoost model exhibited a similar trend, with MAE reductions observed for five tools

and increases for two tools, with a mean change of -1.20, which is a smaller average decrease

than observed in the FNN model. This smaller decrease may be due to several factors. Firstly,

XGBoost’s single-tool training performance was already high, leaving less room for noticeable

improvement through data aggregation. Additionally, XGBoost’s tree-based architecture, with its

strong regularization mechanisms and robust splitting criteria, inherently minimizes overfitting,

making it less sensitive to the benefits of additional synthetic or aggregated data. On the other

hand, the average increase in MAE for the two tools was 0.92, lower than that observed in the FNN

model, suggesting that while the gains from data augmentation were smaller, XGBoost maintained

more stable and consistent performance across different tools.

In terms of R2 scores, XGBoost showed strong overall improvements, with increases in six

out of seven tools. The only tool with a decrease experienced a minor drop of -0.03, indicating that
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dual training generally enhances the model’s ability to capture variance, although not as uniformly

improving as observed in the FNN model. The improvements in R2 suggest that data aggregation

still contributes to better generalization for XGBoost, even though its architecture limits the extent

of performance changes compared to FNN.

These findings highlight the importance of data aggregation in improving model performance

in regression tasks, particularly when single-tool training data is insufficient to capture underlying

patterns. While both models benefited from dual training, FNN exhibited greater performance

gains, particularly in reducing MAE and enhancing R2 scores. This difference can be attributed to

the models’ architectures: FNN models rely heavily on complex feature interactions and benefit

from additional data to reduce overfitting and improve generalization. In contrast, XGBoost’s tree-

based ensemble structure, with its inherent robustness to data variability and strong regularization,

makes it less sensitive to the size and diversity of the training data. Overall, FNN requires more

extensive data (through data aggregation) to fully extract meaningful patterns, while XGBoost

maintains stable performance even with limited data, explaining the more modest benefits from

data aggregation.

3.2.2 Linear Mixup Data Augmentation

The results for the slider datasets augmented by the two Mixup schemes previously discussed, one

with 100% augmentation and one with 200% augmentation, are presented in Figure 3.6 and Fig-

ure 3.7. The plots primarily illustrate the impact of Mixup: bars are green if the change is positive

(lower MAE, higher R2) and red if the change is negative (higher MAE, lower R2). The first scheme

creates two artificial data points between two real data points, and the second scheme creates one

data point between two real data points. Training remained as before with single-tool and dual-tool

training.

Because slider production datasets cluster into three major regions, the virtual metrology

function needs to classify each data point correctly into their major regions and detect FAILS (act
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Figure 3.6: MAE and R2 scores for the FNN model trained with data from a single slider tool

using linear Mixup. In general, there is a decrease in MAE and an increase in R2 scores across

most slider tools.

like outlier points in training data). Minimizing the median absolute error (MAE) is therefore

crucial to ensure predictions remain within the correct class region. Under the first Mixup scheme

for the FNN model, MAE decreased in five tools and increased slightly in two, resulting in an

average change of -4.13 (largest decrease: 16.2; largest increase: 2.06). In the second scheme,

MAE decreased for all but one tool (T01-PM1), with an average change of -2.73 (largest decrease:

12.7; largest increase: 3.27). The large decrease in MAE especially on T02-PM2 (close to -10) and

T05-PM2 (around -15) can significantly improve the multi-class classification accuracy. Although

R2 is less indicative in explaining performance of multi-class classification, it is still useful for

assessing the model’s ability to capture overall variance. Specifically, the first scheme yielded an

average R2 increase of 0.05 (largest increase: 0.54; largest decrease: 0.41), whereas the second

scheme produced an average change of -0.09. The relatively small changes in R2 suggest that the

original model may be adequately explain the variance in the target variable.
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Figure 3.7: MAE and R2 scores for the XGBoost model trained with data from a single slider tool

using linear Mixup. Similar trends of decreased MAE and increased R2 scores are observed for

most tools, except for T05-PM2 where we saw a marked decrease in R2 scores.

On the other hand, the greater variation in MAE suggests that the model’s absolute error is

still influenced by the specific conditions of each tool. A higher variation in MAE could indicate

that certain tools require additional data to improve prediction stability or that some regions in the

feature space are underrepresented. The observed reductions in MAE across most tools confirm

that the Mixup augmentation was generally beneficial, but the slight increases in MAE for a few

tools highlight areas where additional adjustments, such as targeted data augmentation or feature

refinement, may be needed. For the first Mixup scheme with XGBoost, MAE decreased in four

tools while increasing slightly in three, yielding an average change of -0.74 (largest decrease (posi-

tive): 3.54; largest increase (negative): 0.42). The second Mixup scheme showed a similar pattern,

with an average MAE change of 0.15 (largest decrease (negative): 2.27; largest increase (posi-

tive): 3.41, this scale of change in MAE won’t have a significant impact on the model performance

practically. In terms of R2, results were mixed: the first scheme improved scores for three tools
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(average change of -0.004), while the second scheme saw gains in four tools (average change of

0.03). Despite these outcomes, XGBoost benefits less from Mixup compared to FNN, primarily

because Mixup generates linearly interpolated data that complements FNNs’ continuous, gradient-

based learning, helping smooth decision boundaries. By contrast, XGBoost relies on discrete tree

splits, where such interpolations offer limited value for split decisions. Furthermore, XGBoost’s

strong built-in regularization reduces the added benefits of Mixup, while FNNs gain considerable

regularization advantages, mitigating overfitting more effectively.

The results for both Mixup schemes on the FNN and XGBoost models using dual training are

presented in Figure 3.8 and Figure 3.9. For both figures, each tool has two values for MAE and R2,

the darker hue being the first Mixup scheme and the second value being the second Mixup scheme.

A green color indicates a positive change (like a decrease in MAE or increase in R2) while a red

color indicates a negative change (like an increase in MAE or decrease in R2).

Figure 3.8: MAE and R2 scores for the FNN model trained with data from two slider tools using

linear Mixup. There is a decrease in MAE in 5 tools and an increase in 2 tools for both schemes.

R2 scores decreased in 5 tools for both schemes, with a slight increase in two tools.
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Figure 3.9: MAE and R2 scores for the XGBoost model trained with data from two slider tools

using linear Mixup. MAE generally decreased across most tools, with increases being very slight.

R2 scores saw a mixed pattern of increasing and decreasing scores.

In the first Mixup scheme for the FNN model, MAE decreased for five tools and increased

for two, averaging a change of -0.71 (largest decrease: 3.95; largest increase: 4.1). Under the

second scheme, MAE decreased in four tools and increased in three, yielding an average change

of -1.01 (largest decrease: 3.47; largest increase: 0.87). Although the change in MAE is not large

enough to significantly impact real-world model performance, it is still worth noting that Mixup in

data aggregation has strong potential for improving model performance. Meanwhile, R2 declined

in five tools and rose slightly in two for both schemes, with average changes of -0.19 and -0.14,

respectively, indicating that improvements in error reduction did not consistently translate into

higher overall variance capture.

Under the first Mixup scheme with XGBoost, MAE decreased in five tools while rising

slightly in two, averaging a change of -1.43 (largest drop: 6.26; largest increase: 0.44). In the

second scheme, MAE fell for two tools and rose for five, though some increases were under 1%.
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The largest decrease was 6.95, with an average change of –0.76. The decrease of MAE on T05-

PM2 is significant enough to improve the model performance, but the changes in other tools are

negligible. For R2, the first scheme raised scores in three tools, resulting in an average change of

-0.003, while the second scheme improved four tools with an average increase of 0.03. The largest

R2 gain was 0.28, and the largest decrease was 0.21.

The summary of the overall model performance change results of MAE and R2 above is

tabulated in table 3.1 and table 3.2. The first value in each cell is mean change, while the second

value (blue) is median change:

Table 3.1: MAE Change

FNN XGB

Scheme Single Dual Single Dual

Scheme 1 -4.13/-2 -0.71/-1.26 -0.74/-0.15 -1.43/-0.67
Scheme 2 -2.73/-1 -1.01/-0.12 0.15/-0.16 -0.76/0.18

Table 3.2: R2 Change

FNN XGB

Scheme Single Dual Single Dual

Scheme 1 0.05/0.08 -0.19/-0.13 -0.004/-0.01 -0.003/-0.05
Scheme 2 -0.09/0.04 -0.14/-0.17 0.03/0.01 0.03/0.01

These results demonstrate the varying impact of linear Mixup data augmentation across differ-

ent models and training schemes by demonstrating the mean and median value of change in MAE

and R2 after Mixup. While improvements are observed in both metric scores in many cases, the ef-

fectiveness of the Mixup technique appears to depend on both the model type and data aggregation

status.

In the FNN model, dual training with linear Mixup produced mixed results. For the first

scheme, MAE decreased across five tools with an average reduction of 17.0%, while increases
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were observed in two tools, averaging 23.6%. Similarly, for the second scheme, MAE decreased

by an average of 16.6% in five tools and increased by 4.4% in two tools. In terms of R2 scores,

the results were less favorable, with decreases in five tools and only slight increases in two tools

under both schemes. The largest increase of R2 score in both schemes was 0.03 while the largest

decrease was -0.68. These findings suggest that while Mixup can reduce errors, it may not always

lead to improved model fit, particularly when the models are trained on data from two tools.

In contrast, the XGBoost model demonstrated more stable performance with Mixup applied

under dual training. For the first scheme, MAE decreased across five tools by an average of 12.8%,

while the increases, observed in two tools, averaged only 2.6%. The second scheme showed a less

favorable balance, with MAE decreasing in two tools (average reduction of 11.4%) and increasing

in five tools, though some increases were minor (average increase of 3.8%). For R2, the results

showed mixed trends: under the first scheme, R2 increased for three tools and decreased for four

tools, whereas in the second scheme, four tools saw an increase and three tools experienced a

decrease. The largest increase of R2 score in both schemes was 0.28 while the largest decrease was

-0.21.

The differences between the FNN and XGBoost models highlight the role of model architec-

ture in how linear Mixup affects regression performance. FNN models appear to be more sensitive

to both improvements and degradations in MAE and R2, due to their reliance on complex feature

relationships that can be influenced by synthetic data interpolation. XGBoost, with its tree-based

architecture, shows smaller variations, due to its robust splitting criteria and regularization mecha-

nisms.

According to Table 3.1 and Table 3.2, the impact of linear Mixup on regression performance

differs significantly between FNN and XGBoost models. For XGBoost, the mean and median

differences in MAE is much smaller compared to FNN for single training, and slightly smaller

than FNN for dual training; the R2 value change is negligible. The small MAE and R2 changes

indicate that Mixup has little effect on its performance. This can be attributed to XGBoost’s tree-
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based architecture, which relies on robust splitting criteria and inherent regularization mechanisms

that make it less sensitive to interpolated synthetic data.

In contrast, the FNN model shows more pronounced effects from Mixup. In single-tool train-

ing, Mixup leads to notable improvements in both MAE and R2, with performance enhancing as

more synthetic data points are added (Scheme 1). This could be due to Mixup acting as an ef-

fective regularizer, improving generalization by encouraging the model to learn smoother decision

boundaries and reducing overfitting to noisy patterns in the original data. However, in dual-tool

training, Mixup with a smaller synthetic dataset (Scheme 2) yields better results. This could be

because Mixup operates directly at the data level, interpolating between samples from two poten-

tially different data distributions. When the distributions diverge significantly, excessive synthetic

data may introduce conflicting patterns, making it harder for the model to generalize effectively.

Thus, a smaller Mixup dataset can preserve the distinct characteristics of each tool’s data while

still providing regularization benefits to achieve lower MAE.
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Chapter 4

Conclusion

This paper presents an analysis of the data quality and engineering requirements for machine

learning-based virtual metrology for common machine tools in the semiconductor industry. The

virtual metrology application studied was the binary PASS/FAIL classification of the product qual-

ity at the end of a machine tool step. Two multi-line, multi-machine semiconductor manufacturing

operations were studied: five plasma etching tools used in separate wafer production lines and

seven milling tools used in separate slider production lines. The study focused on optimum pro-

cessing of the data by considering the conditions, functions, and data requirements of the machines

together and how to leverage commonality.

Feedforward Neural Network (FNN) and XGBoost algorithms were used and compared for

both the wafer and slider production machines. For wafer production the algorithms were ap-

plied directly for PASS/FAIL classification. For slider production the algorithms were formulated

as regression models to predict product thickness that stratified into three clusters for different

products. Outlier identification was used to then classify PASS or FAIL. The following data pro-

cessing/engineering approaches were examined:

• Data aggregation across one or more machines to increase variation and operational cover-

age.
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• Dimensionality reduction techniques were applied to reduce noise and enhance feature ex-

traction.

• A separate scaling approach was implemented during data aggregation to improve model

performance by aligning the feature distributions of different datasets and to mitigate dis-

crepancies caused by varying single-feature distributions despite similar feature dependen-

cies.

• Linear Mixup algorithm was applied to augment data and address the scarcity of collected

data from slider production tools

• FNN with transfer learning with live model update was used for plasma etching to address

process drift. Varying train/test and data length ratios were also tested.

For the wafer production machines, the XGBoost algorithm demonstrated better or compa-

rable performance to FNN in both single-tool and dual-tool training while requiring fewer com-

putational resources and offering greater robustness, making it the better choice for this solution

objective. Transfer learning significantly improved model performance across all tested datasets,

demonstrating the effectiveness of live updating. Notably, using only 20% of new online data

for updates led to substantial performance gains, reducing the need for frequent offline physical

measurements and associated costs. Transfer learning also overrode the advantages of data aggre-

gation. In general, given the operational drift with the wafer production tools, transfer learning

proved to be a fruitful endeavor.

For the slider tools, XGBoost consistently outperformed or matched FNN in regression tasks

in terms of Median Absolute Error (MAE) and R2. Given better performance for both slider and

wafer production, XGBoost demonstrated versatility for both classification and regression tasks.

Due to its tree-based structure and inherent regularization from ensemble learning, XGBoost was

less sensitive to data aggregation compared to the FNNs, though data aggregation still yielded pos-

itive effects across all datasets. Mixup strategies demonstrated notable performance improvements
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for the FNN models, particularly for single-tool training, due to its regularization effect which pro-

moted better generalization. In contrast, Mixup impact on XGBoost was minimal likely because of

XGBoost’s tree-based architecture and robust splitting criteria. With respect to dual-tool aggrega-

tion, FNN performed better with smaller synthetic datasets, possibly due to distribution differences

between datasets that can introduce conflicting patterns when overly mixed. For XGBoost, modest

MAE improvements were observed, indicating a resilience to data variations. Overall, the effec-

tiveness of Mixup depends on model architecture and data characteristics.

While no single method universally outperforms others, the combination of Mixup, data ag-

gregation, and transfer learning generally enhanced model performance. When systematically ap-

plied as a data engineering procedure, the combination of methods offered significant improvement

to this in industrial virtual metrology PASS/FAIL application.
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