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SUMMARY

Chemotherapy of a combination of DNA alkylating agents, procarbazine and lomustine (CCNU), 

and a microtubule poison, vincristine, offers a significant benefit to a subset of glioma patients. 

The benefit of this regime, known as PCV, was recently linked to IDH mutation that occurs 

frequently in glioma and produces D-2-hydroxyglutarate (D-2-HG), a competitive inhibitor of α-

ketoglutarate (α-KG). We report here that D-2-HG inhibits the α-KG-dependent alkB homolog 

(ALKBH) DNA repair enzymes. Cells expressing mutant IDH display reduced repair kinetics, 

accumulate more DNA damages and are sensitized to alkylating agents. The observed 

sensitization to alkylating agents requires the catalytic activity of mutant IDH to produce D-2-HG 

and can be reversed by the deletion of mutant IDH allele or overexpression of ALKBH2 or 

*Correspondence should be addressed to K.L.G. at kuguan@ucsd.edu or D. Y. at yedan@fudan.edu.cn. 
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AKLBH3. Our results suggest that impairment of DNA repair may contribute to tumorigenesis 

driven by IDH mutations and that alkylating agents may merit exploration for treating IDH-

mutated cancer patients.

Graphical abstract

INTRODUCTION

Genes encoding for isocitrate dehydrogenases 1 and 2, IDH1 and IDH2, are frequently 

mutated in grade II and grade III anaplastic oligodendrogliomas (AO), mixed 

oligoastrocytomas and astrocytomas, and WHO grade IV secondary glioblastomas (GBM)

(>75%) (Parsons et al., 2008) as well as several other types of human cancer, including 

acute myeloid leukemia (AML, ~20%), cartilaginous tumors (75%), intrahepatic 

cholangiocarcinomas (10–23%), angioimmunoblastic T-cell lymphoma (AITLs, ~20%) and 

melanoma (~5%) [Reviewed by (Cairns and Mak, 2013; Yang et al., 2012)]. Tumor-derived 

IDH1 and IDH2 mutations simultaneously cause loss of its normal activity, the production 

of α-ketoglutarate (α-KG, also known as 2-oxoglutarate), and gain of a neomorphic activity, 

the reduction of α-KG to D-2-hydroxyglutarate (D-2-HG) (Dang et al., 2009; Yan et al., 

2009; Zhao et al., 2009). D-2-HG is structurally similar to α-KG and acts as an antagonist of 

α-KG to competitively inhibit multiple α-KG-dependent dioxygenases, including the JmjC 

domain-containing histone demethylases (KDMs) and the TET (ten-eleven translocation) 

family of DNA hydroxylases (Chowdhury et al., 2011; Xu et al., 2011). Altered epigenetic 

regulation is currently considered to be a major mechanism whereby IDH mutation and D-2-

HG exert their oncogenic effects.

The unique property of mutant IDH1/2 in producing an oncometabolite that has no known 

physiological function makes mutant IDH enzymes as obvious potential therapeutic targets 

for the treatment of IDH-mutated tumors (Rohle et al., 2013; Wang et al., 2013). Clinical 

studies have also suggested the presence of a sequela target(s) for treating IDH-mutated 
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gliomas. Following an early study showing successful chemotherapy for recurrent malignant 

oligodendroglioma (Cairncross and Macdonald, 1988), randomized controlled trials were 

carried out in both the North America (RTOG 9402) and Europe (EORTC 26951). These 

studies have shown clear benefits for both anaplastic oligodendroglioma (AO) and 

oligoastrocytoma (AOA) patients who in addition to radiation therapy received 

chemotherapy of procarbazine, CCNU/lomustine and vincristine (PCV) (Cairncross et al., 

2013; Cairncross et al., 2014; Erdem-Eraslan et al., 2013; van den Bent et al., 2013). PCV 

benefit was recently linked to IDH1 mutations with an overall survival of 9.4 years for IDH-

mutated patients vs. 5.7 years for patients with wild-type IDH (Cairncross et al., 2014). Of 

three agents in PCV regimen, vincristine inhibits microtubule assembly, and CCNU and 

procarbazine are DNA alkylating agents. The molecular mechanism(s) underlying the 

therapeutic benefits that are conferred by PCV is not known and is investigated in this study.

RESULTS

D-2-HG inhibits ALKBH enzymes in vitro

Endogenous (e.g. S-adenosylmethionine, SAM) and environmental (e.g. nitrosoureas) 

alkylating agents cause methylated bases in DNA that can be mutagenic and cytotoxic if not 

repaired. The major enzymes repairing the methylated lesions such as 1-methyladenine 

(1meA) and 3-methylcytosine (3meC) are the AlkB proteins. Like the JmjC KDMs and TET 

proteins, AlkB belongs to the Fe(II)- and α-KG-dependent dioxygenases (Falnes et al., 

2002), and includes nine distinct genes in human cells (AlkB homolog ALKBH1 to 

ALKBH8 and FTO) (Sedgwick et al., 2007). The function in repairing DNA alkylation 

lesion has been demonstrated biochemically in vitro and supported by the genetic analysis of 

mutant mice for mammalian ALKBH2 and ALKBH3 (Aas et al., 2003; Dango et al., 2011; 

Duncan et al., 2002; Lee et al., 2005; Ringvoll et al., 2006). We therefore examined the 

effect of D-2-HG on the activity of ALKBH2 and ALKBH3 using purified recombinant 

ALKBH2 and ALKBH3 proteins and DNA oligo containing 1-methyldeoxyadenine 

(1MedA) (Figure S1A). We found that purified ALKBH2 and ALKBH3 rapidly (within 1 

min) demethylated (repaired) methylated adenine (Figure S1B). Addition of 0.5 mM D-2-

HG resulted in nearly 50% inhibition of ALKBH2 (Figure S1C). This is consistent with a 

previous observation, showing that D-2-HG inhibits DNA repair enzyme ALKBH2 in vitro, 

with an IC50 value of 0.424mM (Chowdhury et al., 2011). Similarly, ALKBH3 rapidly 

(within 1 min) repaired methyl-adenine, a reaction that was also inhibited by D-2-HG 

(Figure 1A). Although D-2-HG is a relatively weak inhibitor of ALKBH2 and ALKBH3 and 

may not have significant effect on ALKBH-mediated repair under normal physiological 

conditions, the high levels of D-2-HG that accumulate in IDH-mutated gliomas [i.e., 5–35 

mmol/L in glioma (Dang et al., 2009)] suggest that it could significantly impair the ALKBH 

function in IDH-mutated cells, like other α-KG-dependent dioxygenases reported to be 

inhibited by 2-HG (Table S1).

2-HG inhibits removal of alkylating agent induced DNA damages in glioma cells

To investigate whether ALKBH2 and ALKBH3 could be inhibited by 2-HG in cells, we 

established U87-MG glioma stable cell lines expressing wild-type or R132H mutant IDH1 at 

a level similar to that of endogenous IDH1 (Figure 1B). These stable cells were treated with 
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2 mM methyl methanesulfonate (MMS), which generates 1-methyldeoxyadenosine (1-

MedA). Expression of mutant IDH1 significantly delayed the repair kinetics, resulting a 

seven-fold increase in the half-life of 1-MedA in genomic DNA from 0.52 hr in cells 

expressing wild-type IDH1 to 3.67 hr in cells expressing R132H mutant IDH1. Unrepaired 

DNA adduct would cause DNA double-strand breaks (DSBs). Consistently, when compared 

with cells expressing wild-type IDH1, both U87-MG and U373-MG cells expressing R132H 

mutant IDH1 exhibited substantially increased DSBs after MMS treatment, as determined 

by both western blot and immunofluorescence using an antibody to phosphorylated histone 

variant H2A.X (γ-H2AX, Figures 1C, 1D and 1E, and Supplementary Figure S1D). 

Moreover, quantitative reverse transcription (qRT)-PCR analysis showed that multiple genes 

from different DNA repair pathways were significantly (p<0.05) up-regulated in cells 

expressing mutant IDH1 when compared to control cells expressing wild-type IDH1 (Figure 

S1E). The endogenous protein levels of neither ALKBH2 nor ALKBH3 were affected by 

the expression of either wild-type or mutant IDH1 (Figure S1F). Although IDH1 mutant 

sensitize cells to alkylating agents, cells expressing wild-type or mutant IDH1 responded to 

UV and IR similarly (Figure S1G). Together, these results demonstrate that tumor-derived 

mutant IDH1 inhibits the activity of ALKBH enzymes and results in the accumulation of 

DNA damages in cells exposure to alkylating agents.

Expression of tumor-derived IDH1 mutant sensitizes cells to alkylating agents

E.coli alkB mutants are sensitive to killing by alkylating agents such as MMS, especially 

during exponentially doubling (Dinglay et al., 2000; Kataoka et al., 1983). This defect can 

be rescued by the expression of human ALKBH2 and ALKBH3 (Dinglay et al., 2000; 

Duncan et al., 2002). The finding that D-2-HG inhibits ALKBH2 and ALKBH3 led us to 

test whether cultured human cells expressing mutant IDH are sensitized to alkylating agents. 

We exposed both U87-MG and U373-MG glioblastoma cells stably expressing wild-type or 

R132H mutant IDH1 to N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) or MMS. Cell 

death and viability were then assessed by flow cytometry analysis (Figure 2A), MTT (3-

(4,5-dimerthylthiazol-2,5- diphenyltetrazolium bromide) assay (Figure 2B), and trypan blue 

exclusion (Figure 2C). Consistently seen in all three assays, either MNNG or MMS 

treatment decreased cell viability in a dose-dependent manner in both cell lines, but had 

more significant (p<0.05) killing effects in cells expressing mutant IDH1 compared to cells 

expressing wild-type IDH1. FACS analysis revealed that treatments with 4 and 5 mM MMS 

resulted in 36.1% and 61.4% Annexin-PI double positive cells, respectively, in cells 

expressing R132H mutant, significantly higher than the cells expressing wild-type IDH1 

(20.9% and 42.3%, respectively, Figure S2). Knock down ALKBH2 with two different 

shRNAs in MMS-treated cells increased the death of U87-MG (wild-type IDH1) cells 

(Figure 2D), indicating a role of ALKBH2 in protecting U87-MG cells from MMS-induced 

death. In contrast, depletion of ALKBH2 did not synergistically increase MMS-induced cell 

death in U87-MG (IDH1R132H) cells. This result is consistent with the notion that the 

activity of ALKBH2 in protecting MMS-induced cell death requires the α-KG-dependent 

catalytic function that is inhibited by the high level of D-2-HG accumulated in the U87-MG 

(IDH1R132H) cells.
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Alkylating agents sensitizing effect of mutant IDH1 is dependent on 2-HG and can be 
partially reduced by overexpression of ALKBH2 and ALKBH3

To determine directly whether the sensitization to alkylating agents by IDH1 mutation is 

dependent on 2-HG, we introduced a second mutation into the D-2-HG-producing 

IDH1R132H mutant to disrupt its binding to α-KG, which is required for the production of 

D-2-HG through the NADPH-dependent reduction of α-KG (Dang et al., 2009). Six IDH1 

double mutants, R132H/T77A, R132H/S94A, R132H/N96A, R132H/Y139A, R132H/

K212Q and R132H/T214A were identified whose catalytic activity to produce D-2-HG was 

markedly reduced (Figure 3A, 3B). We then established U87-MG cells stably expressing 

IDH1, IDH1R132H, IDH1R132H/T77A, or IDH1R132H/S94A (Figure S3A) and exposed these 

stable cells to different concentrations of MMS or MMNG. We observed that the 

sensitization to MMS and MMNG, conferred by R132H mutant IDH1, was completely 

abolished by second mutations that eliminated 2-HG production (Figure 3C). Supporting 

this conclusion, disruption of 2HG-producing activity also hinders the activation of DNA 

repair genes by the mutant IDH1 (Figure S3B and Figure 3D).

HT1080 fibrosarcoma cells carry heterozygous R132C mutation in IDH1 (IDH1+/R132C) 

(Amary et al., 2011). We deleted the R132C mutant allele from HT1080 by TALEN 

technique and generated the IDH1+/− cell line (Ma et al., 2015). GC-MS analysis confirmed 

that 2-HG was produced in the parental IDH1+/R132C cells, but was not detectable in the 

IDH1+/− cells (Figure 3E). We found that deletion of the R132C mutant allele reduced the 

sensitivity of HT1080 cells to both MMS and MNNG alkylating agents (Figure 3F). We 

next stably overexpressed ALKBH2 or ALKBH3 in IDH1+/R132C and IDH1+/− HT1080 

cells by retrovirus transduction (Figure 3G). We found that over-expression of either 

ALKBH partially rescued the sensitivity in parental IDH1+/R132C cells, but not in the 

IDH1+/− cells, to MMS treatment (Figure 3H). Taken together, we conclude that the ability 

of mutant IDH1 to sensitize cells to DNA alkylating agents is dependent on its catalytic 

activity to produce 2-HG.

Mutant IDH1 sensitizes cells to therapeutic alkylating drugs

To explore the potential clinical significance of sensitizing effects by mutant IDH to 

alkylating agents, we examined the responses of cells expressing either wild-type or mutant 

IDH1 to busulfan, an alkylator which has commonly been used to treat chronic myeloid 

leukemia (CML) before the advent of imatinib. We found that U87-MG cells expressing 

R132H mutant IDH1 were significantly more sensitive to busulfan than control cells 

expressing wild-type IDH1, and that the enhanced sensitivity was completely abolished by 

the mutations disrupting D-2-HG production (Figure 4A).

Of three agents in PCV regimen, vincristine inhibits microtubule assembly, and CCNU and 

procarbazine are DNA alkylating agents. We found that the expression of R132H mutant 

IDH1 in U87-MG cells caused significant sensitivity to CCNU compared with the 

expression of wild-type IDH1 (Figure 4B). In contrast, treatment of cell with vincristine, 

while effectively reduced cell viability, exhibited indistinguishable effect toward cells 

expressing either the wild-type or mutant IDH1. Moreover, compared to cells treated with 

CCNU alone, combined exposure to CCNU and procarbazine or CCNU and vincristine had 
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no additive or synergistic effect on the killing of cells expressing mutant or wild-type IDH1 

(Figure 4C). Furthermore, overexpression of either ALKBH2 or ALKBH3 partially reduced 

the death HT1080 cells exposed to CCNU (Figure 4D), supporting the notion that IDH1 

mutation and 2-HG accumulation sensitize HT1080 cells to CCNU by inhibiting the activity 

of ALKBH. The rescue by overexpressed ALKBH did not reach complete, likely due to the 

high levels of 2-HG accumulated in the cells. These results provide a plausible molecular 

explanation for the link between PCV benefit and IDH mutation observed the clinical trials. 

The interpretation of lack of sensitizing effect by IDH mutation to procarbazine needs to be 

cautious as procarbazine becomes active only after it is metabolized by cytochrome p450 

and monoamine oxidase, mainly in the liver (Weinkam and Shiba, 1978), and works poorly 

in non-hepatic cells lacking high oxidase activity (Swaffar et al., 1989).

DISCUSSION

This study provides two insights into the IDH mutation. First, our results suggest a 

mechanism by which IDH mutation contributes to tumorigenesis. There is strong evidence 

that IDH1/2 mutations alter epigenetic regulation in affected cells (Chowdhury et al., 2011; 

Figueroa et al., 2010; Noushmehr et al., 2010; Sasaki et al., 2012; Xu et al., 2011). We show 

in this study that in addition to altering epigenetic control, impairment of DNA repair may 

also contribute to tumorigenesis driven by IDH mutation. Second, the results presented here 

implicate a targeted therapy for treating patients with IDH1/2-mutated tumors. As 

demonstrated in this study, glioma cells engineered to or chondrosarcoma cells 

endogenously express mutant IDH1 are significantly more sensitive to MNNG, MMS, 

busulfan, and CCNU, compared to cells expressing only wild-type IDH1, suggesting that the 

classical alkylating agents may be an appropriate and ‘targeted’ therapy for patients with 

IDH1/2-mutated cancers. This hypothesis is supported by the results of the aforementioned 

trials showing that 4–6 cycles of PCV were sufficient with RT to double the survival of 

patients with AO and AOA (Cairncross et al., 2013; Erdem-Eraslan et al., 2013; van den 

Bent et al., 2013). The PCV benefit was recently linked to IDH mutation (Cairncross et al., 

2014). Our study provides a molecular basis for the PCV benefit linked to IDH mutation. 

Our finding that IDH mutation and 2HG accumulation sensitize cells to CCNU also suggests 

that whether future inhibitor targeting mutant IDH and blocking the D-2HG production 

should be used in combination with PCV need to be investigated.

In addition to glioma, IDH1 and IDH2 mutations also occur at high frequency in several 

other types of human malignancies. There is no obvious reason that sensitization to DNA 

alkylating agents conferred by mutant IDH and D-2-HG is unique to glioma. We have 

demonstrated in this study that chondrosarcoma cells harboring IDH1 mutation are sensitive 

to alkylating agent in a manner that is dependent on the mutant IDH1. A number of FDA-

approved DNA alkylating agents, such as CCNU and busulfan, have long been used in 

clinical for cancer treatment. They may merit for further exploration for treatment of other 

IDH-mutated tumors.
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EXPERIMENTAL PROCEDURES

Please refer to “Supplemental Experimental Procedures” for more detailed information 

about procedures for protein expression and purification; In vitro ALKBH2 and ALKBH3 

activity assay; cell culture, treatment, transfection, viability assay; Metabolite extraction and 

LC-MS/MS analysis of nucleosides.

Antibodies, plasmids and chemicals

Antibodies against Flag (ShanghaiGenomics), β-actin (Genescript), H2AX (Sigma-Aldrich), 

IDH1, ALKBH2, ALKBH3 (Epitomics), and phosph-γ-H2AX (Santa Cruz) were purchased 

commercially. ALKBH2 and ALKBH3 cDNAs were kind gifts from the Han Jiahuai’s Lab, 

Xiamen University and subcloned into pSJ3 for the expression and purification in E.coli. 

Wild-type and mutant IDH1 was constructed into pcDNA3.1 for transient expression or 

pBABE-puro for stable transduction by retrovirus. ALKBH2 and ALKBH3 were 

constructed into pBABE-hygro for stable transduction. shRNAs targeting ALKBH2 are 

cloned into pLKO.1, and the sequence is listed in Table S2. MNNG (Tokyo Chemical 

Industry, TCI), MMS (Sigma-Aldrich), Temozolomide (TCI), busulfan (TCI), procarbazine/

CCNU (Selleckchem) and vincristine (Selleckchem) were purchased commercially.

RNA isolation and qRT-PCR analysis

Total RNA was isolated from cultured cells using Trizol reagent (Invitrogen) following the 

manufacturer’s instructions. RNA was reversely transcribed with oligo-dT primers and 

preceded to qRT-PCR with gene-specific primers in the presence of SYBR Premix Ex Taq 

(TaKaRa). β-actin was used as a housekeeping control. Primer sequences are listed in Table 

S2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 2-HG inhibits ALKBH2 and ALKBH3 and accumulates DNA damages
(A) D-2-HG inhibits the activity of ALKBH3 in vitro, with IC50 values being 3.09 mM. 

Shown are average values of triplicated results with standard deviation (S.D.).

(B) 2-HG accumulation causes decreased DNA adduct repair after MMS treatment. U87-

MG cells stably expressing the indicated proteins was treated with 2 mM MMS for 1 hr. 

After the treatment, the cells were cultured in fresh medium containing no MMS for the 

indicated time. Genomic DNA was hydrolyzed to nucleotide by enzyme digestion, and was 

then subjected to LC-MS/MS to determine the concentrations of deoxyadenosine (dA) and 

1-methyldeoxyadenosine (1MedA). Shown are average values of triplicated results with 

standard deviation (S.D.).

(C, D, E) 2-HG accumulation causes increased double strand breaks after MMS treatment. 

U87-MG and U-373 cells stably expressing the indicated proteins were exposed to 

increasing concentrations of MMS for 1 hr. After the treatment, the cells were cultured in 

fresh medium containing no MMS for another 10 hours, and the level of phosphorylated 

histone variant H2A.X (γ-H2AX) was determined by western blot (C) and 

immunofluorescence (D). Scale bar:100 μm. The number of γ-H2AX foci was counted from 

25 randomly selected cells (E). Shown are average values of triplicated results with standard 

error of means (SEM).
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Figure 2. Expression of tumor-derived mutant IDH1 sensitizes cells to alkylating agents
U87-MG and U373-MG cells stably expressing the indicated proteins were exposed to 

increasing concentrations of MNNG or MMS for 1 hour. The cells were cultured in fresh 

medium containing no alkylating agents for another 47 hours. After that, cell death was 

assessed by performing flow cytometry analysis (A), MTT assay (B), and trypan blue 

staining for viable cell counting (C). Shown are average values of triplicated results with 

standard deviation (S.D.). *denotes the p < 0.05 for cells expressing mutant IDH1 versus 

wild-type IDH1; n.s.= not significant. (D). Knockdown ALKBH2 sensitize U87-MG cells 

expressing wild-type, but not mutant IDH1 to MMS treatment. Cell death was assessed by 

flow cytometry analysis (right panel).
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Figure 3. Alkylating agents sensitizing effect of mutant IDH1 is dependent on 2-HG
(A, B) Characterization of 2-HG producing activity of IDH1 double mutants. The activity of 

various IDH1 double mutants in producing 2-HG was determined by both the rate of 

NADPH oxidation (A) and GC-MS analysis (B). Peaks at 19.6 min were identified as bis-

TBDMSD derived 2-HG by the mass fragment spectra. The bis-TBDMS 2-HG-specific 433-

m/z fragment is shown in the insert. Moreover, the peaks at 18.9 min and 20.3 min were 

identified as the derivatives of aspartate (Asp) and glutamate (Glu), respectively. ** 

indicates p < 0.01 by student’s t-test between IDH1R132H and IDH1.

(C) U87-MG cells stably expressing the indicated proteins were exposed to increasing 

concentrations of MNNG or MMS. Cell death was assessed by performing flow cytometry 

analysis and trypan blue staining for viable cell counting.

(D) The mRNA expression of selected DNA repair genes was tested in U87-MG cells stably 

expressing the indicated proteins, as determined by qRT-PCR analysis.

(E) HT1080 (IDH1+/−) cell line was generated by knocking-out the R132C allele in 

parental HT1080 (IDH1+/R132C) cells using TALEN technique. Metabolites extracted from 

HT1080 (IDH1+/−) and parental HT1080 (IDH1+/R132C) cells were subjected to GC-MS 

analysis, showing the loss of 2-HG accumulation in HT1080 (IDH1+/−) cells.

(F) HT1080 (IDH1+/−) and parental HT1080 (IDH1+/R132C) cells were exposed to 

increased concentrations of MNNG or MMS. Cell death was assessed by performing flow 

cytometry analysis and trypan blue staining for viable cell counting. Shown are average 

values of triplicated results with standard deviation (S.D.). *denotes the p < 0.05 for 

HT1080 (IDH1+/−) versus parental HT1080 (IDH1+/R132C) cells.
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(G, H) Parental HT1080 (IDH1+/R132C) and TALEN-edited HT1080 (IDH1+/−) cells stably 

expressing FLAG tagged ALKBH2 or ALKBH3 were established by retrovirus 

transduction. Expression of ALKBH was verified by western blot (G). The sensitivity of 

both IDH1+/R132C and IDH1+/− cells to MMS was determined by MTT assay (H).
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Figure 4. Expression of tumor-derived mutant IDH1 sensitizes cells to clinical alkylating agents
(A, B) U87-MG cells stably expressing the indicated proteins were exposed to different 

concentrations of busulfan(A), procabazine, CCNU or vincristine (B) for 48 hrs. Cell 

viability was assessed by flow cytometry analysis (left), and cells were also stained with 

trypan blue for viable cell counting (right).

(C) U87-MG cells stably expressing the indicated proteins were treated with different 

concentrations of CCNU, along with 1 mM procarbazine or 500 nM vincristine for 48 hours. 

Cell viability was assessed by flow cytometry analysis (upper) and trypan blue exclusion 

(lower). Shown are average values of triplicated results with standard deviation (S.D.). 

*denotes the p < 0.05 for cells expressing mutant IDH1 versus wild-type IDH1; n.s.= not 

significant.

(D) Parental HT1080 (IDH1+/R132C) and TALEN-edited HT1080 (IDH1+/−) cells stably 

expressing ALKBH2 or ALKBH3 were exposed to different concentrations of CCNU for 72 

hr. Cell viability was determined by MTT assay. *denotes the p < 0.05 for HT1080 (IDH1+/

−) versus parental HT1080 (IDH1+/R132C) cells.
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