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Abstract  7 

Terrain and landscape complexities can limit the accurate discrimination of land use 8 

categories with similar spectral signatures, as well as the accurate detection of land use 9 

change in temporal analyses of landscape dynamics. Studies based on misclassified land use 10 

data can generate biased parameter estimates and standard errors, inaccurate predictions, and 11 

incorrect policy recommendations. To address these challenges and improve the accuracy of 12 

land use analyses, we implement a post-classification strategy to detect misclassified land use 13 

observations using a latent multinomial logit model. This strategy is tested using both Monte 14 

Carlo simulations and a time series dataset based on supervised classification of remotely 15 

sensed data corresponding to land use decisions observed in a Mexican coffee growing region 16 

during the period 1984-2006. The results indicate that the strategy is useful for identifying 17 

land use observations with a high probability of being wrongly classified, even between 18 

categories with low discriminative spectral signatures. Reclassification of the land use data, 19 

based on the model results, increases the magnitudes of the marginal effects of the analyzed 20 

land use drivers in the theoretically expected directions, and in some cases improves the 21 

statistical significance of the parameter estimates.  22 

Keywords: Land use, misclassification, latent multinomial logit model, expectation 23 

maximization algorithm, transition rules, Landsat, agroforests, Monte Carlo simulation.  24 

25 
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1. Introduction 26 

Classification errors are an intrinsic component of spatially explicit land use models 27 

that impact the accuracy of parameter estimates, predictions, and derived policy 28 

recommendations. Inaccuracies in land use and land cover (LULC) classification have several 29 

sources. In some cases, the resolution or quality of the remotely sensed data complicates the 30 

classification process. For instance, when the image has a high percentage of cloud cover or 31 

when the pixel size is very large that only coarse land use classification can be implemented. 32 

In other cases, terrain or landscape complexities complicate the discrimination of classes with 33 

similar plant functional types or low discriminative spectral signatures. For example, it is 34 

difficult to identify shrub lands from herbaceous crops in sparsely vegetated areas, or 35 

different types of forests (Gao and Jia 2013; Fritz and See 2008; Steele, Chris Winne, and 36 

Redmond 1998). Furthermore,  LULC classification errors can propagate in temporal analysis 37 

thereby reducing the precision of land use change detection procedures, particularly when 38 

more than two periods are considered  (Yuan et al. 2005).  39 

Transition probability matrices, expert rules, and change detection algorithms have 40 

been implemented to improve the accuracy of multi-period LULC classifications. For 41 

example Lehmann et al. (2013) use transition probabilities and expert rules to improve the 42 

mapping of forested and non-forested areas in Australia for the period 1989-2006 using 43 

Landsat Thematic Mapper imagery. Kleynhans et al. (2010) tested a change detection 44 

procedure  based on an extended Kalman filter to detect new rural settlements in South 45 

African savannas, grasslands and shrub lands using time series Moderate Resolution Imaging 46 

Spectroradiometer (MODIS) data. Fraser et al. (2009) implemented change detection 47 

procedures, including expert rules constraining land cover transitions, to improve vegetation 48 

analysis in Canada’s national park system for the period 1985 to 2005.  49 

As an alternative approach to improving the accuracy of LULC datasets, in this paper 50 
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we implement a post-classification strategy that simultaneously detects misclassified land use 51 

observations and incorporates corrections into a latent multinomial logit (LMNL) land use 52 

model.  Because accurate classification of anthropogenic land uses is key for understanding 53 

landscape dynamics, we focus our analysis on land use classifications. Nevertheless, the 54 

method is also applicable to land cover classification.  55 

  A time series land use dataset based on supervised classification of remotely sensed 56 

data, controlled with transition rules to remove inter-temporal inconsistencies, is used to test 57 

the LMNL procedure. The dataset is derived from a Mexican coffee growing region in which 58 

the vegetation density of forested areas, agroforestry parcels, and abandoned lands produces 59 

similar spectral values that are difficult to discriminate even with state-of-the-art object-60 

oriented classifiers. The results from the empirical application indicate that the LMNL model 61 

can be used to detect misclassified observations and to replace subjectively determined 62 

transition rules. This is useful for improving the accuracy of land use datasets and the 63 

robustness of related analyses. In our empirical study, the reconfiguration of the original 64 

dataset also is used to quantify the impact of such inaccuracies on the estimated marginal 65 

effects of land use drivers. Additional validation of the LMNL algorithm through Monte 66 

Carlo simulations indicates that the approach is highly accurate for detecting misclassified 67 

land use data.  68 

2. Literature review 69 

Since the seminal work of Dempster et al. (1977),  the expectation maximization 70 

(EM) algorithm has been used to generate parameter estimates in probabilistic models with 71 

incomplete or misclassified data. This is typically done by associating an incomplete data 72 

problem with a complete-data problem for which maximum likelihood estimation is tractable 73 

(McLachlan and Krishnan 1997). An iterative process between the expectation step (E-step) 74 

and the maximization step (M-step) is the basis of the EM algorithm. The E-step computes 75 
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the expectation of the missing/misclassified data conditional on the given set of incomplete 76 

information and initial values of the parameters to be estimated. The M-step uses those 77 

conditional expectations in the place of the missing/misclassified information to “complete” 78 

the dataset and estimate the parameters that maximize the likelihood function for the 79 

“complete-data” problem. The parameter estimates produced in the M-step are used as 80 

updated initial values of the coefficients in the E-step and the process is repeated until the 81 

likelihood converges to a local maximum (McLachlan and Krishnan 1997; Zhai 2007).   82 

In the context of land use and land cover mapping the EM algorithm has been used to 83 

refine unsupervised classification methods (Chardin and Perez 1999; Yang et al. 2013); to 84 

estimate the pixel values of portions of remotely sensed imagery that are missing due to the 85 

presence of clouds during the time of data collection (Melgani 2006); and to improve the 86 

classification accuracy of pixels that include mixed information corresponding to more than 87 

one land use category (Susaki, Shibasaki, and Susaki, J., & Shibasaki 2000). To our 88 

knowledge the EM algorithm has not been used to analyze the impact of misclassified data on 89 

agent based land use analyses, a task that can be accomplished using a latent multinomial 90 

logit model. 91 

The LMNL model uses a nesting structure to represent the N discrete choices in a 92 

dataset with N branches. The structure is nested because each branch contains a sub-structure 93 

with one stem representing accurately classified observations, and up to N-1 stems containing 94 

misclassified observations that should be classified into the other N-1 branches. For instance, 95 

consider a land use dataset classified into Cereals, Grasslands, and Forests with potential 96 

misclassifications between the first two categories. In the LMNL context, such a dataset can 97 

be represented by three branches (Cereals, Grasslands, and Forests), with each branch 98 

containing one stem that accounts for observations that are correctly classified; and with the 99 
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Cereals and Grassland branches containing an additional stem that controls for misclassified 100 

[unknown] observations (Figure 1). 101 

 102 

Figure 1. Example of a latent multinomial logit nesting structure to control for 103 

misclassified observations in two out of three land use categories. 104 

Caudill  (2006), describes the methodology that can be used to produce parameter 105 

estimates with a dataset containing misclassified dependent variables, as is the case studied 106 

here. The procedure is based on a transformation of the standard multinomial logit likelihood 107 

function into a missing data formulation to which the EM algorithm can be applied. The 108 

methodology has been used to identify misleading response rates in a survey used to collect 109 

information on cheating behavior (Caudill and Mixon Jr. 2005); to estimate the proportion of 110 

fraudulent claims for car damage that are erroneously classified as honest by an insurance 111 

company (Caudill, Ayuso, and Guillen 2005); and to estimate the impact of misclassified 112 

observations on an analysis of hidden unemployment in six European economies (Caudill 113 

2006). More recently, the study by Caudill et al. (2011) uses an unconstrained version of the 114 

LMNL model to analyze hypothetical bias (the situation in which stated willingness to pay is 115 

higher than the actual willingness to pay) in a contingent valuation problem. The LMNL 116 

methodology offers a straightforward procedure to handle misclassified land use information 117 

as described in the following section.  118 
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3. Empirical application 119 

 Spatially explicit models of land use decisions in rural areas typically focus on how the 120 

driving forces of deforestation reconfigure pristine landscapes and affect the provision of 121 

environmental services (Geist and Lambin 2002; Andersen 1996; Chomitz and Gray 1996; 122 

Puri 2006). Nevertheless, the growing recognition that agroforestry production systems can 123 

provide forest-like services as well as biodiversity corridors between patches of forested or 124 

protected areas has highlighted the need for understanding land use decisions in agroforests 125 

(Kursten 2000; Ávalos-Sartorio and Blackman 2010; Bhagwat et al. 2008; Shanker and 126 

Solanki 2000; Dinata Putra, Verbist, and Budidarsono 2005; Swallow, Boffa, and Scherr 127 

2006; Huang et al. 2002; Schroth 2004).  Worldwide, shade-grown coffee plantations are one 128 

of the most important agroforestry production systems not only for their ability to provide 129 

livelihood opportunities to many farmers (Aoki and Suvedi 2012; Blackman, Ávalos-130 

Sartorio, and Chow 2012; Oxfam 2002; Jordan-Garcia et al. 2012; Albers et al. 2006), but 131 

also for their ecological services (Messer, Kotchen, and Moore 2000; Escamilla Prado 2007). 132 

In Mexico, small-scale farmers across the country depend upon shade grown crops, with 133 

coffee being the leader both in terms of cultivated land area and value of production. 134 

Escamilla-Prado (2007) reports that around 3 million people in Mexico depend on coffee-135 

related activities and that approximately 90% of the coffee-cultivated area lays under 136 

diversified shade. Unfortunately, the steady decline in the international coffee price during 137 

the 1990’s and first years of the 2000’s forced coffee farmers to find alternative sources of 138 

income. Some farmers opted for coffee certification schemes to obtain a price premium for 139 

implementing environmentally friendly production techniques, while others decided to clear 140 

their coffee plantations to transition to a different land use. In other cases, farmers abandoned 141 

their plantations to look for employment opportunities in other economic sectors and/or 142 

geographical locations (Nava-Tablada and Martínez-Camarillo 2012; Lewis and Runsten 143 
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2008; Blackman et al. 2008).  144 

In this paper, we utilize land use data from the low altitude zone of the municipality 145 

of Atzalan, Veracruz, Mexico (Figure 2). Landscape metric and econometric analyses 146 

implemented by Ellis et al. (2010) and Baerenklau et al. (2012) indicate that this region 147 

registered a significant loss of tree canopy during the 1990s, mainly in coffee growing areas  148 

in response to the decline in the profitability of coffee-based agroforests during that decade. 149 

The study area consists of around 25,500 hectares distributed across an altitudinal gradient 150 

that extends from 85 to 726 meters above sea level. The landscape in that region has 151 

gradually reconfigured from secondary forest and coffee parcels to grasslands, citrus groves 152 

and banana plantations. Information collected in 2006 by the Mexican government 153 

(SAGARPA 2006) indicates that, at the municipality level, citrus production was the main 154 

agricultural activity accounting for 68% of the agricultural GDP. Banana plantations 155 

contributed 12% of the production value; corn generated 9% and coffee production—after   156 

representing the main income source in the region during previous decades—only  157 

contributed 5% in that year. In aggregate around 89% of the agricultural GDP in the 158 

municipality is generated by agricultural systems that do not require tree canopy, which 159 

impacts the provision of environmental services.  160 

 161 

Figure 2. Location of the study area (Low altitude coffee growing region in Atzalan, 162 

Veracruz, Mexico). 163 

 164 
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3.1. Land use data 165 

Land use information was obtained for the study region by classifying one Landsat 166 

Multispectral Scanner (MSS) image collected in 1973, six Landsat Thematic Mapper (TM) 167 

images for the years 1984, 1989, 1993, 1996, 2000, 2003, and one image collected by the 168 

Satellite Pour l’Observation de la Terre (SPOT-5) High Resolution Geometric sensor in 169 

2006. All images were orthorectified and underwent radiometric calibration. Maximum 170 

likelihood supervised classification was applied using training samples to generate spectral 171 

signatures for each land use class. Training samples for the 2003 and 2006 images were 172 

produced using reference data. Mean values of the spectral signatures for the 2003 training 173 

samples estimated with the older images were computed, and their values compared with 174 

those obtained from the 2003 Landsat TM image. Training samples with similar signatures 175 

and located in visually similar and unchanged areas, relative to the 2003 image, were selected 176 

to classify the remaining Landsat MSS and TM imagery.  177 

This process allowed the classification of the satellite imagery into three general land 178 

use categories: agroforestry (AG) which is composed of shade grown coffee plantations and 179 

secondary forest; perennial crops (PC), composed of citrus and banana plantations; and 180 

grasslands and cornfields (GC). The main criteria to construct the aggregated land use 181 

categories are that their components share similar biomass density, profitability and 182 

conversion costs. To assess the accuracy of the 2003 and 2006 classifications we used 183 

reference data from 165 and 168 locations, respectively. The 2006 classification presents an 184 

overall accuracy of 72% (Kappa-Cohen statistic of 0.58), while the 2003 classification has an 185 

overall accuracy of 68% (Kappa statistic of 0.52). Those accuracy levels are comparable to 186 

other studies implemented in regions with similar land uses (Cayuela, Benayas, and 187 

Echeverría 2006; Muñoz-Villers and López-Blanco 2008; Ellis et al. 2010).   188 

 The small number of citrus and banana plantations present in the study region in 189 
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1973, and the quality and resolution of the spectral information contained in the Landsat MSS 190 

image collected in that year, limited our ability to generate an adequate set of training 191 

polygons for the PC category in that period. This in fact prevented the identification of PC 192 

land in that image restricting our analysis to the period 1984 – 2006. Nevertheless, we used 193 

the AG and GC classification from the 1973 image to identify pixels (of 30x30 meters) that 194 

maintained the same land use during the period 1973 – 1984. Those pixels correspond to AG 195 

and GC land uses with an age of at least 11 years at the beginning of 1984. We used this 196 

approach to filter out new plantations that were potentially “locked” in a particular land use 197 

until recovering establishment costs, and to focus our analysis on land that could transition to 198 

a different use at the beginning of the study period without restrictions.  Around 79% of the 199 

study area satisfied this criterion.   200 

Land use change in most cases is a costly action since it requires the removal of the 201 

current land use, an up-front investment to establish a new crop, and the financial resources 202 

to implement maintenance activities during the growing period of the newly planted crops. 203 

Under some circumstances agents would prefer to abandon their lands during some periods 204 

and pursue employment in other sectors of the economy instead of changing their land use. 205 

To control for this type of decision, we constructed an additional category composed of 206 

abandoned lands (AB). This land use type was assigned to some pixels using a transition rule 207 

after analyzing the sequence of land use decisions produced with the remotely sensed data 208 

and maximum likelihood supervised classification. We considered that a land use transition 209 

that lasts at most six years (roughly two observation intervals) from GC or PC to AG and 210 

then back to the previously observed land use indicates that that parcel was in fact abandoned 211 

during the period detected as AG. An example helps to clarify the procedure.  Consider that 212 

the land use in parcel s is identified as GC during 1996, AG during 2000, and again GC in 213 

2003. In general, this land use sequence is not logical either by economic or biological 214 
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reasoning. In cases like this we consider that parcel s was in fact abandoned during 2000 and 215 

that the classifier algorithm categorized the land use as AG after detecting an increase in 216 

biomass that was likely generated because the landowner forwent maintenance activities in 217 

that parcel. Note that the transition GC-AG-GC is possible if AG is composed of only 218 

secondary forest. Nevertheless, secondary forest have been significantly reduced in the study 219 

region and the remaining portions are located in areas of difficult access with high slope that 220 

are not commonly used for agricultural purposes. Because temporary land use transitions 221 

between PC and AG represent less than 0.15% of the land use changes detected in the 222 

dataset; and given that land abandonment of those type of plantations is not common in the 223 

study region due to its significant impact on yield productivity, we focus our analysis on 224 

identifying misclassified observations in the AG, GC, and AB categories, as in the example.   225 

To control for spatial autocorrelation, we generated a sample of spatially independent 226 

observations using a systematic random sampling procedure (see Dunn and Harrison 1993 for 227 

a description of the method). Under such an approach each sampling point corresponds to a 228 

parcel with a land use value determined by the majority of the k-nearest neighboring cells. 229 

This is common in the discrete choice land use literature to approximate parcel-level land use 230 

data when parcel boundaries are not available (see for instance Chomitz and Gray 1996; De 231 

Pinto and Nelson 2008; Blackman, Ávalos-Sartorio, and Chow 2012; Schmitt-Harsh 2013). 232 

Here we set the neighborhood size k equal to 25 given that most of the small-scale farmers in 233 

this region own 1-2 hectare parcels, and that the pixel size has a 30 m. resolution. This 234 

mechanism produced 210 sampling locations distributed across the study area. Figure 3 235 

shows the trends across the four land use categories in the sample data during the period 1984 236 

– 2006, which is consistent with the trends observed in the complete dataset. The figure 237 

shows the decline in land allocated to AG, the increased proportion of PC, a slight decrease in 238 

the GC category and a more or less stable percentage of the land in AB status observed 239 
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during the study period. The AG and PC proportions appear to follow complementary paths, 240 

i.e., at the time that one increases the other seems to decrease in a similar proportion. The 241 

same situation can be observed in trends corresponding to the GC and AB proportions. 242 

However, the data indicate that transitions occurred across all the land use categories and not 243 

exclusively within the classes with visually complementary paths.   244 

 245 

Figure 3. Land use proportions in the sample data (1984 – 2006) 246 

3.2. Model description. 247 

There are undeniable complications in the transition rules that we use to construct the 248 

AB category. On the one hand, the procedure cannot be used to detect AG parcels that are in 249 

fact abandoned plots during any period. This is potentially a relevant issue, since Albers et al. 250 

(2006) report that at least 75% of farmers in a coffee growing region in Oaxaca, Mexico 251 

forwent maintenance activities during the coffee crisis period (1990 – 2004).  On the other 252 

hand, the transition observed in some parcels between GC and AB may be part of a rotational 253 

production system used to recover soil productivity (Adiku et al. 2009; Tian et al. 1999; 254 

Kolawole et al. 2005).  This means that it is possible that some of the parcels classified as AB 255 

are in fact GC fallowed as part of a rotational scheme and that the land use of those parcels 256 

has not actually changed. Alternatively, it is also possible that grasslands or cornfields with a 257 

relative increase in biomass are in fact parcels that have not received maintenance activities 258 
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during the period in which the remotely sensed data was collected. Unfortunately, these types 259 

of misclassification problems cannot be addressed using algorithms based on spectral 260 

information or transition rules. Additionally, we cannot detect GC parcels that are AB in 261 

1984. Nevertheless, we can use the LMNL model to estimate the probability that an AG 262 

parcel is actually abandoned as well as the probability that a parcel classified as AB is in fact 263 

a rotational GC plot.  264 

The approach used to detect misclassified land use decisions is framed in the context 265 

of a discrete choice random utility model (see Ben-Akiva and Lerman 1985; and Train 2009, 266 

for an in-depth review of the methodology and assumptions). These models posit that 267 

variations in socioeconomic, cultural and ecological factors influence land use changes 268 

through their impacts on the expected payoffs that landowners use to determine land use 269 

decisions (Chomitz and Gray 1996; De Pinto and Nelson 2008; Ellis et al. 2010; Lubowski, 270 

Plantinga, and Stavins 2008). Let iX  represent a matrix of observable variables that 271 

determine the expected net revenue for each land use in the choice set  J AG, PC,GC, AB  272 

for agent i  with 1,...,i n ; 
jβ represent a vector of coefficients for the explanatory variables 273 

that affect the payoff of land use j; and 
j represent the constant term for alternative j; under 274 

the assumption that the unobservable components that determine land use j payoffs are 275 

independent extreme value type I (Gumbel) distributed variates, the probability of agent i 276 

selecting land use j, can be computed as 277 

 
'

'
Pr 1 , , ,

j j i

k k i
ij ij i j j

k J

e
d j k J

e












   



β X

β X
X β

 

278 

where 1ijd  if land use j is selected by agent i, and 0ijd   otherwise. 279 

Defining     Uj j   j Jβ , the log-likelihood function under the assumption that all 280 

land use decisions N are accurately classified can be represented as: 281 
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 
 

    
N

ij ij

i 1 j J

LogL( ) d ln Pr  j J AG, PC,GC, AB

 

282 

Considering that the set of parcels classified as AG may include a subset of 283 

misclassified AB parcels, and that this subset can have observations that should be in the GC 284 

category, following Caudill (2006) we can represent the log likelihood function using missing 285 

information indicators to represent the misclassification probabilities. Let 
*

i ,AG,ABd  indicate 286 

the probability that a land use observation in the AG category (branch) is actually a 287 

misclassified AB observation (stem), and 
*

i ,AG,AGd  represent the probability that it is 288 

accurately classified, thus satisfying the constraint  * *

i ,AG,AG i,AG,ABd d 1  ; and similarly for  289 

*

i ,AB,ABd  and 
*

i ,AB,GCd . We can represent the log likelihood function as, 290 



 
 
 

   
 
   



* *

i ,AG,AG i ,AG,AG i ,AG,AB i ,AG,AB

N
i ,PC i ,PC

i 1 i ,GC i ,GC

* *

i ,AB,AB i ,AB,AB i ,AB,GC i ,AB,GC

   d ln Pr d ln Pr

 d ln Pr
LogL( )

 d ln Pr

 d ln Pr d ln Pr

 291 

Because the probabilities of correct and incorrect classifications, 
*

i ,j,kd , are unknown 292 

we cannot identify the parameter estimates that maximize the log-likelihood function 293 

following the standard procedure. Nevertheless, we can replace the unknown probabilities by 294 

their conditional expectations (Caudill 2006): 295 

 
 

   

 


    

'

AG,AG AG,AG i* *

i ,AG,AG i ,AG ' '

AG,AG AG,AG i AG,AB AG,AB i

exp
E d d

exp exp

β X

β X β X
 296 

 
 

   

 


    

'

AG,AB AG,AB i* *

i ,AG,AB i ,AG ' '

AG,AG AG,AG i AG,AB AG,AB i

exp
E d d

exp exp

β X

β X β X
 297 

 
 

   

 


    

'

AB,AB AB,AB i* *

i ,AB,AB i ,AB ' '

AB,AB AB,AB i AB,GC AB,GC i

exp
E d d

exp exp

β X

β X β X
 298 
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 
 

   

 


    

'

AB,GC AB,GC i* *

i ,AB,GC i ,AB ' '

AB,AB AB,AB i AB,GC AB,GC i

exp
E d d

exp exp

β X

β X β X
 299 

where  * *

i ,AG,AG i,AGE d d indicates the probability that parcel i classified as AG is actually an 300 

AG parcel, and   * *

i ,AG,AB i ,AGE d d represents the probability that a parcel classified as AG is 301 

in fact AB (the remaining conditional expectations have similar interpretations).  302 

Defining  303 

' ' '

, , , ,

' ' '

, , , ,

exp exp exp

exp exp exp

AG AG AG AG i AG AB AG AB i PC PC i

GC GC i AB AB AB AB i AB GC AB GC i

   

  

                

              

β X β X β X

β X β X β X

 304 

the probabilities that each observation is a member of each of the (now six) land use 305 

categories can be computed as 306 

 
'

, ,

, , , , ,Pr 1 , ,     ,  
AG j AG j i

i AG j i AG j i AG j

e
d for j AG AB






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β X

X β  307 

 
'

, ,

, , , , ,Pr 1 ,      ,  
AB k AB k i

i AB k i AB k i AB k

e
d for k AB GC






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β X

X β  308 

 
'

, ,Pr 1 ,      ,  
l l i

i l i l i l

e
d for l PC GC







  
β X

X β  309 

Under these modeling assumptions the log likelihood can be re-stated as, 310 

 
 

 
 

 

 

 
 

 
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

 
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'
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 
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 
 
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N

i 1

'

AB,AB i
 

β X

 311 

To avoid identification problems the parameters associated with the stems of the 312 

branches that contain misclassified information must be equivalent to the parameter estimates 313 

of the branches in which the parcels are accurately classified. Therefore we set 314 
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   AG,AG AG AG,AB AB AB,AB AB AB,GC GC;   ;  ;  and β β β β β β β β . Additionally, Caudill (2006) 315 

highlights the relevance of the intercepts in the model since as 
,  AG AB   the probability 316 

of identifying abandoned parcels that are misclassified as agroforestry goes to zero. Similar 317 

reasoning applies when 
,AB GC   . To test that the LMNL model can be used to detect 318 

misclassified observations, we estimate profile likelihood confidence intervals for those 319 

intercepts to check that they are statistically different from  . This also constitutes 320 

statistical evidence that the related branch has misclassified parcels. To compute profile 321 

likelihood confidence intervals for the intercepts 
,  AG AB  and 

,  AB GC we use a grid search 322 

procedure described by Stryhn and Christensen (2003). The lower and upper bounds of a 323 

profile likelihood confidence interval for a parameter 
,j k  satisfy the equation 324 

     * 2

1 0

1
ˆ ˆ0.95

2
LogL LogL    , where *ˆ is the maximum likelihood estimate of  , 325 

 2

1 0.95 indicates the 95% quantile of a chi-squared distribution with one degree of 326 

freedom, and 0̂  is a vector that contains the MLE of  obtained after setting the parameter 327 

of interest to a fixed value x  (i.e., 
,j k x  ), and treating the remaining parameters in the 328 

model as nuisance parameters.  329 

The procedure to determine the probabilities of misclassified data and to compute the 330 

parameter estimates that maximize the likelihood function follows these steps: 331 

1. Control for local maxima. 332 

Set a global solver or grid search algorithm to define vectors of initial values for 333 

the alternative specific parameters that will be estimated.  This step is necessary 334 

because this LMNL modeling approach is similar to a finite mixture model 335 

(Caudill, Groothuis, and Whitehead 2011), and thus during the computation of the 336 
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parameter estimates we need to control for multiple local maxima of the 337 

likelihood function.  338 

2. Expectation step. 339 

Use the observed data iX  and one of the vectors estimated in step 1 as initial 340 

values of the parameter estimates 
 
0ˆ to compute the conditional expectations of 341 

the misclassified and accurately classified land use proportions, *

i ,jkd  .  342 

3. Maximization step. 343 

Estimate the vector of parameters that maximize the likelihood function, *ˆ , and 344 

the corresponding value of the likelihood function at that point  *ˆLogL .  345 

4. Iterate between the expectation and maximization steps using *ˆ  to update the 346 

conditional expectation of *

i ,jkd  and utilizing those values to re-compute *ˆ  until 347 

the log-likelihood function convergences to a maximum value within a certain 348 

tolerance level. 349 

5. Return to step 1 and repeat the process for a different vector of initial values 
 
0ˆ  350 

until exhausting the set of defined vectors in step 1. 351 

6. Identify the *ˆ  that produces the global maximum from the set of evaluated 352 

starting values. 353 

3.3. Land use drivers 354 

Revenue  355 

Baerenklau et al. (2012) observe that a significant proportion of the agents in the 356 

study region replaced their coffee farms for citrus or banana plantations in response to low 357 

coffee prices. Given this evidence of price responsiveness, we use time series data on average 358 

market prices per ton of coffee, lemon, orange, tangerine, mandarin, grapefruit, banana, 359 

livestock, and corn received by farmers at the state level (SAGARPA 2012) to construct land 360 
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use-specific price indices. We also use historical productivity data (SAGARPA 2012) and 361 

information from agronomists working in the study region to estimate the average 362 

productivity per hectare of shade grown coffee, banana, citrus, pasture, and corn. Price and 363 

productivity data is then used together to generate weighted revenue indexes for the land use 364 

categories considered in this study. Given that there is not commercial use of forested lands 365 

in the study region, and that the main component of the agroforestry production system is 366 

coffee, for the AG category we use the yearly average rural price per-ton received by coffee 367 

growers multiplied by the average productivity per hectare in coffee plantations to estimate 368 

an annual revenue index for this category. On the other hand, since the PC category is 369 

comprised of different citrus varieties, as well as banana plantations, we followed a two-step 370 

procedure to construct a price index for this category. In the first step prices of citrus varieties 371 

harvested in the study region were used to construct a weighted average price per-ton, with 372 

weights set according to the area harvested for each citrus type. Similar to the procedure 373 

followed to generate the revenue index for the AG category, we multiplied the citrus price 374 

index by the average productivity per hectare observed in the study area for this type of 375 

plantation to obtain an estimate of the average revenue per hectare.  In the second step, a 376 

similar weighting process was implemented to merge this revenue index for citrus with time 377 

series data on yearly average revenue per hectare for banana plantations. 378 

A different procedure was used to construct the price index corresponding to the GC 379 

category. Agricultural activities in the study area are undertaken with labor –and land– 380 

intensive production technologies that have not been significantly modified in decades. This 381 

is particularly true for cornfields and grasslands in which it is fair to assume that on average 382 

farmers get the same amount of grain and weight gain of livestock per hectare independently 383 

of the age of the land use. Therefore we use the average productivity of corn plantations 384 

(SAGARPA 2012) and the average livestock weight gain per hectare observed in unfertilized 385 
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grasslands in the state of Veracruz, Mexico (Tergas and Sanchez 1979) to construct a per 386 

hectare weighted yearly revenue index for the GC category.  Furthermore, considering that in 387 

the study area one person can complete all the required maintenance activities for a 2-hectare 388 

parcel without needing to hire additional labor, we homogenize the revenue indexes across all 389 

land use categories by assuming that each parcel in the sample data measures 2 hectares. 390 

Given the low educational level of farmers in the study region, few off-parcel 391 

employment options are available. Besides working land owned by other people, the most 392 

common alternative is to look for employment opportunities in Mexico City or as an illegal 393 

worker in the United States (Nava-Tablada and Martínez-Camarillo 2012). Since the AB 394 

category does not involve crop production, to account for the monetary reward received by a 395 

farmer who decides to abandon his land we use the yearly minimum wage for construction 396 

workers.   397 

Transportation costs  398 

There are three main regional market centers in the proximity of the study area at 399 

which farmers can sell their products. Those three markets have similar prices for the produce 400 

generated from the land use categories under analysis. To compute the distance from each 401 

parcel to the nearest market we followed a three-stage process. First, the Euclidean distance 402 

from each sample parcel to the nearest road was computed using vector data (INEGI 1999). 403 

Second, by using the network analysis ArcGIS extension and vector data of the road network 404 

in the area, we computed the most efficient route (in terms of distance) from each parcel’s 405 

nearest road to each market center. Finally, the distances to each market were compared and 406 

the shortest was selected.  This variable is assumed to be constant since the road network was 407 

not significantly changed during the period of analysis, despite improvements to the 408 

conditions of some of the main roads (e.g., changing from dirt roads to paved roads) that 409 

potentially reduced driving time but not driving distance to each market.  410 
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Socioeconomic land use drivers  411 

Starting in 1995, every five years the Mexican Government computes a poverty index 412 

that uses data on education accessibility, housing conditions and monetary income at the 413 

community level. This index in general ranges from -2.37 to 4.49, with lower values 414 

corresponding to a better welfare status (CONAPO 2006). A review of the statistics generated 415 

by CONAPO (2011; 2006; 1998) indicates that the poverty level in the 104 communities 416 

located either within the study area or up to 500 meters outside its boundary, has not 417 

fluctuated significantly during the period 1995-2010. Considering the apparent static 418 

behavior of such variables, and given that data is unavailable for all the observation years, we 419 

used the 2005 version of the index to generate an interpolated surface using the Inverse 420 

Distance Weighting (IDW) method. This approach captures the effect of spatial differences in 421 

poverty on land use decisions. Statistics from CONAPO (2011; 2006; 1998) also are used to 422 

generate a population index because human settlements tend to generate more pressure on 423 

their surrounding environment and at the same time provide more labor to harvest the land. 424 

This index also is treated as static for each location (again using 2005 data) because the data 425 

indicate that the number of inhabitants in most of the communities has not significantly 426 

changed during the study window. Since population pressures diminish as the distance to the 427 

settlement increases we again use IDW interpolation to estimate values at the sample parcels. 428 

Topographic land use drivers  429 

To account for the effects of topographic variables in the land use decision process we 430 

use vector data of elevation level curves obtained from INEGI (1998) to construct a digital 431 

elevation model that was used to generate slope and elevation information. Finally, soil 432 

texture information from SEMARNAP (1998) was used as a proxy of soil quality. Table 1 433 

presents a summary of the mean, minimum and maximum values of the land use drivers 434 

considered in the analysis.  435 
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 436 

Table 1. Summary statistics for the parcel specific variables  437 

Variable Description Mean Min Max 

AG Revenue 

Mexican pesos (base 2000) 

 

13,392 4,999 22,521 

PC Revenue 26,376 12,825 57,645 

GC Revenue 12,580 8,506 19,337 

AB Revenue 16,020 10,730 33,552 

Elevation Meters above sea level 354 85 726 

Slope Degrees  10.49 0 60.09 

Poverty Index that uses education accessibility, 

housing conditions and monetary income 

data to measure the degree of poverty 

with lower values corresponding to a 

better welfare status 

0.316 -0.798 2.109 

Population Index to measure labor availability  263 30 793 

Soil texture Soil texture of parcel (1 = fine,  2 = 

medium, 3 = coarse) 

1.34 1.00 3.00 

Distance to road Euclidean distance from each parcel to 

the nearest road (m) 

389 0 1,779 

Distance to nearest 

market 

Distance from each parcel to nearest 

market (km) 

14.36 2.93 35.52 

 438 

4. Results and discussion 439 

The model was implemented within the Matlab environment setting the coefficients 440 

of the PC category equal to zero for identification purposes. Table 2 shows the parameter 441 

estimates ordered by branches and stems as well as the sum of the probabilities in each stem 442 

that indicates the estimated number of observations accurately and inaccurately classified 443 

within each branch. For the AG and AB branches, the first (second) stem shows the number 444 

of observations and parameters estimates for the accurately classified (misclassified) 445 

observations. Recall that the coefficient estimates for the AB and GC stems are invariant to 446 

classification errors, as displayed in the table.  447 
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Table 2 Latent multinomial logit model parameter estimates. 448 

Branch Agroforestry Abandoned 
Grass and 

Corn 

Stem Agroforestry Abandoned Abandoned 
Grass 

and corn 

Grass   

and corn 

Land use 

observations 547 52 0 108 536 

Revenue   0.1184 *** 0.1549   ***     0.1002 *** 

  (9.01)   (5.05)     (5.22) 

Slope 0.3549 *** 9.2943   ***     -0.2077 

  (4.14)   (5.30)       (-2.14) 

Distance to 

market 

0.3760 ** 66.6943   *** 0.9913 *** 

(1.93)   (5.51)             (5.74) 

Distance to 

nearest road 

1.3163 *** 46.7071   ***   1.2370 *** 

(4.07)   (5.49)        (3.94) 

Poverty 0.0835    -156.9003  -0.1447  

  (0.44)           (-4.89)          (-0.70) 

Soil texture 0.0875   -180.2229        -0.5086 

  (0.48)           (-6.12)          (-3.18) 

Elevation 5.1065 *** -221.7704        -2.4227 

  (7.12)           (-4.87)          (-3.50) 

Population -0.2368   25.3460        -0.4954 

  (-3.34)   (4.78)          (-6.84) 

Constant -3.3241   -9.0654  0.9822 ** 

  (-5.97)           (-0.11)           (1.84) 

 

Notes: The parameter estimates are shown in bold numbers; the t-ratios are 

shown in parentheses. Significance codes:   ‘***’ significant at the 1% 

level; ‘**’ significant at the 5% level; ‘*’ Significant at the 10%. For model 

identification the coefficients of stems with potential misclassified 

observations are equal to the coefficients of the branch-stem in which those 

observations should be classified.  

Overall the results indicate that an estimated 11% of the observations contained in the 449 

sample are misclassified. A total of 52 observations that are categorized as AG in the sample 450 

are more likely AB parcels. Those observations represent 8.7% of the parcels originally 451 

classified as AG during the study period. Similarly, the results indicate that the procedure 452 

used to construct the AB category is suspect because all the observations in the AB branch - 453 

AB stem are considered misclassified by the LMNL procedure.  In other words, the analysis 454 

provides evidence that parcels that appear to be AB are actually part of a GC rotational 455 

production system, or are parcels that continue under cultivation but that did not receive 456 

maintenance activities during the time of the remotely sensed data collection.  457 
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To test whether the classification errors are statistically significant we compute profile 458 

likelihood confidence intervals for the intercepts 
,  AG AB  and 

,  AB GC using the 459 

aforementioned Stryhn and Christensen (2003) grid search procedure. That procedure 460 

identifies the values of   for which the inequality      * 2

1 0

1
ˆ ˆ0.95

2
LogL LogL     holds. 461 

The profile likelihood confidence interval for 
,AG AB  is [-17.1, 15.2] and for  

,AB GC  is [-1.29, 462 

0.77]. Clearly these intervals are bounded away from  , which provides evidence that the 463 

number of misclassified observations is statistically greater than zero. Figure 4 shows the 464 

profile likelihood confidence intervals for both parameters of interest. 465 

 466 

Figure 4. Profile likelihood confidence intervals for 
,AG AB  and 

,AB GC . 467 
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A depiction of the differences between the land use proportions in the sample data and 468 

the percentages estimated with the LMNL model is presented in Figure 5. The results indicate 469 

that the AG category is overrepresented in the sample throughout the study period due to the 470 

presence of misclassified observations. On the other hand, the GC category is 471 

underrepresented in the sample since it should contain all the observations categorized as AB. 472 

 473 

Figure 5. Land use proportions in the sample data and estimated proportions using the LMNL 474 

model. 475 

For the same reason, the AB category appears to be overrepresented throughout the 476 

period of analysis. A potential explanation for this finding is that small-landowners that rely 477 

primarily on household labor are less likely to abandon their plantations (Albers et al. 2006) 478 

specially if the current land use provides means to satisfy household subsistence constraints. 479 

To analyze the impacts of misclassified observations on the magnitudes and directions of the 480 

parameter estimates we use the original sample dataset and the reconstructed (corrected) 481 

sample based on the LMNL analysis to estimate a standard multinomial logit model of land 482 
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use decisions. Table 3 shows the estimated coefficients, significance levels and standard 483 

errors. Overall the significance levels and values of the AG and GC parameter estimates are 484 

similar in the analysis of the two sample datasets. The values of the coefficients associated 485 

with the AB category appear to be significantly different in magnitude and in some cases the 486 

signs change using the LMNL-corrected sample.  Given the significant reconfiguration of the 487 

AB category the difference in the corresponding parameter estimates is expected. 488 

Furthermore, McFadden’s pseudo r-squared increases from 0.16 to 0.29, which is a 489 

significant improvement (McFadden 1978).  490 

Table 3. Multinomial logit parameter estimates using the original sample data and the 491 

reconstructed sample data generated with the LMNL model. 492 

  Original sample  Reconstructed sample  Difference 

  Estimate 

(A) 

Std. 

Error 
 Estimate 

(B) 

Std. Error  Estimate  

(A – B) 

Slope 

AG 0.3789 0.0841 *** 0.3505 0.0848 *** 0.0284 

GC -0.2557 0.0946 *** -0.1956 0.0937 ** -0.0601 

AB -0.1833 0.1389 
 

3.1100 0.6253 *** -3.2934 

Distance to 

market 

AG 0.5782 0.1685 *** 0.3214 0.1784 * 0.2567 

GC 0.8627 0.1713 *** 1.0540 0.1805 *** -0.1913 

AB 0.9732 0.2086 *** 21.1698 4.2179 *** -20.1966 

Distance to 

road 

AG 1.4016 0.3185 *** 1.3174 0.3267 *** 0.0841 

GC 1.2489 0.3119 *** 1.2305 0.3118 *** 0.0184 

AB 1.0312 0.3852 *** 16.1232 3.1221 *** -15.0920 

Poverty index 

AG -0.0154 0.2328 
 

0.1164 0.2320 
 

-0.1318 

GC -0.2802 0.2344 
 

-0.1733 0.2267 
 

-0.1069 

AB 0.7179 0.3157 ** -45.4773 9.7809 *** 46.1952 

Soil texture 

AG 0.0896 0.1642 
 

0.0728 0.1656 
 

0.0168 

GC -0.5437 0.1655 *** -0.5168 0.1610 *** -0.0268 

AB -0.3428 0.2533 
 

-62.3399 2366.38 
 

61.9971 

Elevation 

AG 4.6620 0.7143 *** 5.2670 0.7357 *** -0.6051 

GC -1.9084 0.7206 *** -2.6215 0.7295 *** 0.7130 

AB -2.7255 1.1215 ** -64.3404 14.3039 *** 61.6149 

Population 

AG -0.2124 0.0664 ** -0.2149 0.0674 *** 0.0025 

GC -0.4901 0.0739 *** -0.5067 0.0734 *** 0.0165 

AB -0.5253 0.1291 *** 6.7800 1.5575 *** -7.3054 

Revenue 

AG 0.1090 0.0127 *** 0.1196 0.0132 *** -0.0105 

GC 0.0852 0.0188 *** 0.1013 0.0192 *** -0.0161 

AB -0.0123 0.0114 
 

0.1846 0.0384 *** -0.1969 

Constant 

 

AG -3.3421 0.5539 *** -3.3805 0.5630 *** 0.0384 

GC 1.2527 0.5424 ** 1.1672 0.5365 ** 0.0855 

AB 0.5276 0.8060 
 

2.1882 2366.36 
 

-1.6605 

Log-likelihood:  -1492.4   -1187.4    

McFadden R^2: 0.16417   0.2939    

Notes: The coefficients of the Perennial Crops category were normalized to zero for 

model identification. Significance codes:   ‘***’ significant at the 1% level; ‘**’ 

significant at the 5% level; ‘*’ Significant at the 10%. 
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To understand how changes in the independent variables affect land use proportions, 493 

we compute the change in the probability of observing land use j at each parcel i resulting 494 

from a marginal change in the observed magnitude of each of the independent k variables. 495 

The individual calculations are averaged across parcels and land uses and the results are 496 

shown in Table 4. In general, most of the marginal effects estimated with the two datasets 497 

have the expected directions.  According to the analysis there is statistical evidence to argue 498 

that parcels with higher degrees of slope will be more likely to be used for agroforestry 499 

production, and areas with low slope are preferred for cornfields or grasslands. The average 500 

marginal effects of the distance from a parcel to the nearest markets are statistically 501 

significant and have the expected signs. The probability of observing cash crops (AG or PC) 502 

decreases as the distance to a market increases.  503 

504 
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Table 4. Average marginal effects. 505 

   Original sample  

(A) 

Reconstructed 

sample (B) 

Difference   

(A -B ) 

  Expected 

sign 

Estimate Standard 

error 

Estimate Standard 

error 

 

Slope  

AG + 0.103 0.032 0.077 0.056 0.026 

GC - -0.085 0.028 -0.089 0.067 0.003 

AB + - -0.011 0.009 0.020 0.099 -0.031 

PC - -0.007 0.021 -0.009 0.021 0.002 

Distance to 

nearest market 

AG - -0.007 0.037 -0.116 0.275 0.109 

GC + 0.070 0.033 0.071 0.442 0.000 

AB + 0.021 0.015 0.132 0.647 -0.111 

PC - -0.084 0.051 -0.087 0.067 0.003 

Distance to 

nearest road 

AG - 0.103 0.063 0.049 0.216 0.054 

GC + 0.052 0.055 0.004 0.325 0.048 

AB + -0.005 0.012 0.097 0.473 -0.102 

PC - -0.150 0.089 -0.150 0.093 0.000 

Poverty index 

AG - 0.013 0.014 0.144 0.601 -0.131 

GC + -0.076 0.038 0.130 0.946 -0.207 

AB +- 0.056 0.044 -0.294 1.440 0.350 

PC - 0.008 0.008 0.020 0.098 -0.012 

Soil texture 

AG + 0.084 0.032 0.215 0.821 -0.131 

GC - -0.104 0.031 0.139 1.296 -0.242 

AB +- -0.006 0.009 -0.402 1.967 0.396 

PC + 0.025 0.025 0.048 0.135 -0.023 

Elevation 

AG + 1.140 0.354 1.378 0.936 -0.238 

GC +- -0.793 0.303 -0.846 1.490 0.053 

AB +- -0.208 0.137 -0.419 2.048 0.211 

PC - -0.140 0.239 -0.113 0.325 -0.027 

Population  

AG + 0.025 0.021 0.007 0.097 0.019 

GC - -0.054 0.020 -0.092 0.145 0.039 

AB - -0.013 0.009 0.046 0.227 -0.059 

PC + 0.041 0.026 0.039 0.033 0.002 

Revenue 

AG + 0.011 0.005 0.009 0.006 0.003 

GC + 0.005 0.006 0.003 0.006 0.001 

AB + -0.006 0.005 0.001 0.003 -0.006 

PC + -0.010 0.006 -0.013 0.008 0.002 

 

Expected sign codes: ‘ + ‘ indicates that a positive marginal effect is expected, ‘ – ‘ 

indicates that a negative marginal effect is expected, ‘ + - ’ indicates that the marginal 

effects can go in either direction. 

On the other hand, the likelihood of an agent selecting the GC or AB category 506 

increases as the distance to the nearest market increases, which is consistent with the intuition 507 

that if a parcel is located far away from a market, transportation costs may reduce the 508 

profitability of some of the land uses thus limiting the choice set to subsistence crops (such as 509 

corn), or to land uses that require a large contiguous area (such a cattle ranching activities), or 510 
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to land abandonment.  A similar explanation applies to the average marginal effects of the 511 

variable measuring the distance from a parcel to the nearest road. Notably, these marginal 512 

effects have the expected directions only for GC and PC in the original sample, but for GC, 513 

AB, and PC in the reconstructed dataset.  514 

The results corresponding to the poverty index are statistically significant only for the 515 

AB category.  We would expect that richer areas have higher probability of selecting cash 516 

crops although this is not reflected in the results from the LMNL dataset. None of the 517 

parameter estimates for soil texture are statistically significant, which may reflect the 518 

difficulty in determining expected signs for all but the GC category (which should correlate 519 

with finer soils). All the parameter estimates for the elevation variable are statistically 520 

significant and the directions of the marginal effects of the AG and PC categories are 521 

consistent with the agroecological requirements of the crops in those land use classes.   522 

Because corn and grass can be produced in parcels located at different elevation gradients, 523 

the direction of the marginal effects could go in either direction depending on the location of 524 

the parcels in the dataset. The results for the original and reconstructed sample data indicate 525 

an inverse relationship between elevation and the probability of observing GC and AB. The 526 

parameter estimates corresponding to the population variable are statistically significant and 527 

the marginal effects have the expected signs indicating that higher population density may 528 

increase the probability of observing labor intensive land uses and vice versa. 529 

Perhaps the most empirically relevant results are related to the statistical significance 530 

of the estimated coefficients of the revenue variables and the signs of the corresponding 531 

marginal effects across the two samples. The parameter estimates computed with the original 532 

dataset, that contains misclassified observations, are statistically significant at the 1% level 533 

for the AG and GC category and the marginal effects have theoretically consistent signs. 534 

However, the marginal effects of changes in revenue on the probability of an agent selecting 535 
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the AB or PC categories indicate a counterintuitive direction. Those inconsistencies appear to 536 

be partially corrected in the reconstructed dataset using the results of the LMNL model. 537 

Specifically, the sign of the revenue-related marginal effect for the AB category has the 538 

expected sign although the multinomial logit model still cannot produce theoretically 539 

consistent parameter estimates for the PC category. A possible though speculative 540 

explanation is that this could be related to the associated price index which includes a variety 541 

of different tree crops in the calculation. 542 

5. Model validation. 543 

The preceding are promising results but our empirical dataset does not allow us to 544 

validate the reconstructed sample due to lack of appropriate reference data. Therefore, to 545 

more rigorously test the performance of the LMNL model, we construct a simulated dataset. 546 

We simulate parcel specific characteristics and revenue data associated with four land use 547 

categories, and assume that unobservable land use drivers are independent and identically 548 

distributed extreme value type I variables. For consistency, our simulation uses the same land 549 

categories described in our empirical analysis, and the explanatory variables listed in table 1. 550 

We use mean and standard deviation values from those variables to simulate location-specific 551 

characteristics defining a set of 500 artificial parcels. We simulate elevation, slope, 552 

population pressure, poverty, distance to the nearest road, and distance to the nearest market 553 

using pseudo-random draws from normal distributions fitted to our empirical dataset. To 554 

simulate soil texture values we use a discrete pseudo-random number generator constrained 555 

to the interval 1-3. To simulate annual revenue data for each of the four land use categories 556 

we estimate  first-order autoregressive processes using our time series of revenue indices 557 

(results are shown in Table 5). For each land use category, the corresponding autoregressive 558 

equation is used to generate 100 revenue paths, each composed of 20 periods.  559 

 560 
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Table 5. First order autoregressive parameters used to estimate revenue paths. 561 

Parameter AG PC GC 

Unconditional mean 12058 4796 21480 

Autocorrelation coefficient 0.7183 0.8695 0.9602 

Standard deviation of the error 4439 1302 2146 

 562 

For each “parcel” 1,2,...,500i   and for each revenue path 1,2,...,100r  , land use is 563 

estimated in each period 1,2,...,20t   using a standard multinomial logit model with 564 

randomly generated parameter values (shown in Table 6) that produce theoretically consistent 565 

marginal effects and land use proportions that mimic our empirical data (on average 34% of 566 

the simulated parcels were classified as agroforest, 28% as tree crops, 22% as grass and corn, 567 

and 16% as abandoned lands). This produces 1 million simulated land use decisions. To 568 

simulate misclassified land use observations, we next create three new datasets by randomly 569 

reclassifying 25%, 60%, and 95% of the “true” abandoned lands as agroforests. The LMNL is 570 

then applied to each dataset to test its ability to identify the misclassified observations and 571 

reconstruct the original dataset. The LMNL model estimation required around 34 hours on a 572 

six-core 3.74 GHz Intel machine with 16 GB RAM, to complete the analysis at each 573 

misclassification level.   574 

575 
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Table 6. Parameter estimates used to simulate land use decisions. 576 

 

Land 

use 

Data 

Generating 

Parameters 

 
Land 

use 

Data 

Generating 

Parameters 

Revenue AGF 5.2563 Distance to the 

nearest market 

AGF -1.2901 

 GC 2.0250  GC 0.6225 

 AB 1.3141  AB 1.0927 

Elevation AGF 4.1728 Poverty AGF -4.2513 

 GC 0.5218  GC 3.5240 

 AB -0.8536  AB -5.4651 

Slope AGF 0.8163 Population AGF -0.0250 

 GC -0.6246  GC -0.0540 

 AB 0.6486  AB 0.0380 

Soil Texture AGF 0.4176 Intercept AGF -11.7526 

 GC -1.9131  GC -8.6200 

 AB -6.1708  AB -20.296 

Distance to the 

nearest road 

AGF -1.6161    

 GC 5.0377    

 AB 0.6053    

A useful baseline for contrasting the performance of the LMNL model can be 577 

established by converting the category-specific misclassification levels into global 578 

misclassification levels. The 25% misclassification of abandoned lands represents a global 579 

error of 3.94%. This error rate increases to 9.39% when 60% of those observations are 580 

misclassified, and reaches 14.87% at the 95% misclassification level. On average across all 581 

the simulations, the LMNL algorithm reduced these global errors to 1.26%, 1.34% and 1.41% 582 

respectively. The overall accuracy, and the user’s and producer’s accuracy for the abandoned 583 

lands category, during each of the one-hundred revenue path simulations are shown in Figure 584 

6. At the 25% misclassification level, the overall accuracy values vary within the interval 585 

0.973-0.996 with a mean value of 0.987. The user’s accuracy range from 0.920 to 0.987 with 586 

a mean of 0.963. Producer’s accuracy values are observed in the interval 0.807-0.980 with an 587 

average of 0.923. The figure shows similar results for the 60% and 95% misclassification 588 

levels. 589 

 590 

 591 
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25% misclassified abandoned lands (AB) observations 

 
  

60% misclassified AB observations 

 
 

95% misclassified AB observations  

  

Figure 6. Aggregated user’s accuracy, producer’s accuracy and overall accuracy for 592 

abandoned lands. 593 

To further assess the performance of the LMNL model, the confusion matrices across 594 

all iterations were aggregated (Table 7).  With that information we estimate Cohen’s kappa 595 

values using only observations in the AG and AB categories. We exclude observations 596 

classified as TC and GC, since we assume that those categories are correctly classified. 597 

Inclusion of those observations would further increase the reported accuracy values. Similar 598 
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to the results in figure 6, the Kappa statistic is almost the same across all t misclassification 599 

levels.  600 

Table 7. Aggregated confusion matrices 601 

25% misclassified AB observations 602 

 AG TC GC AB User's Acc. 

AG 331874 0 0 12591 0.9634 

TC 0 279116 0 0 1 

GC 0 0 219864 0 1 

AB 5 0 0 156550 0.9999 

Prod.'s Acc. 0.9999 1 1 0.9256  

Observed accuracy: 0.9749 Expected accuracy: 0.5609 Kappa: 0.9427 603 

60% misclassified AB observations 604 

 AG TC GC AB User's Acc. 

AG 331106 0 0 13359 0.9612 

TC 0 279116 0 0 1 

GC 0 0 219864 0 1 

AB 13 0 0 156542 0.9999 

   Prod.'s Acc. 0.9999 1 1 0.9214  

Observed accuracy: 0.9733 Expected accuracy: 0.5660 Kappa: 0.9393 605 

95% misclassified AB observations 606 

 AG TC GC AB User's Acc. 

AG 330434 0 0 14031 0.9593 

TC 0 279116 0 0 1 

GC 0 0 219864 0 1 

AB 21 0 0 156534 0.9999 

   Prod.'s Acc. 0.9999 1 1 0.9177  

Observed accuracy: 0.972 Expected accuracy: 0.5598 Kappa: 0.9363 607 

Note: Since the TC and GC observations were not misclassified, 608 
accuracy indicators exclude those land uses.  609 

These results overwhelmingly validate the ability of the LMNL model to identify randomly 610 

misclassified parcels. Our modeling assumptions are standard for discrete choice land use 611 

models (Chomitz and Gray 1996; Ellis et al. 2010; Lubowski, Plantinga, and Stavins 2008; 612 

De Pinto and Nelson 2008), and the results are essentially independent of the error rate in the 613 

misclassified category.  614 

 615 
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6. Conclusions. 616 

Given the limited availability of historical high resolution remotely sensed data, land 617 

use change analyses are often restricted to the study of transitions between a reduced set of 618 

choices. In some cases coarse datasets are enough to accomplish relevant research objectives, 619 

for instance in the study of deforestation processes. Nevertheless, in most of the spatially 620 

explicit land use analyses coarse land use classifications are implemented as a mechanism to 621 

reduce classification errors. Unfortunately, even in land use datasets composed of a reduced 622 

number of categories, misclassifications are still a potential modeling problem. Consider for 623 

example an analysis that uses only two categories, forested and agricultural lands, to study 624 

deforestation drivers in a particular region. In this case it is possible that some of the 625 

observations classified as forested areas are in fact fallowed parcels devoted to agricultural 626 

production, or even grasslands that have not received weed control activities during the time 627 

of data collection of the remotely sensed data. Unfortunately, those types of classification 628 

errors are difficult to reduce using only pixel-based algorithms, particularly if the available 629 

land use information is part of a time series dataset with many years of separation between 630 

the observed periods.  631 

To reduce classification errors, this article implements a post-classification procedure 632 

to identify misclassified land use observations that cannot be detected using pixel-based 633 

classification algorithms. The Latent Multinomial Logit methodology has been implemented 634 

in several contexts to detect misclassified categorical data (Caudill, Groothuis, and 635 

Whitehead 2011; Caudill 2006; Caudill and Mixon Jr. 2005; Caudill, Ayuso, and Guillen 636 

2005) but to our knowledge it has not been applied in the land use change literature. The 637 

analysis implemented here is based on land use information generated with remotely sensed 638 

data collected during seven points in time throughout the period 1984-2006, with a maximum 639 

separation of five years between observations. The data correspond to land use transitions 640 
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observed in a Mexican coffee growing region in which relatively high rates of tree canopy 641 

removal were observed as a result of the clearing of shade-grown coffee plantations. We 642 

analyze land use dynamics between agroforestry parcels, perennial crops, grass and corn, and 643 

abandoned land. The category corresponding to abandoned lands was constructed analyzing 644 

the sequence of land use decisions observed in each parcel and assigning a parcel to the 645 

abandoned land category when the land use oscillated between grass and corn or perennial 646 

crops, and agroforests within a period of at most six years.  647 

The implementation of the LMNL model provides statistical evidence to argue that 648 

the procedure used to construct the abandoned land category, while reasonable and 649 

objectively defensible, fails to recognize that temporary increases in biomass that appear to 650 

indicate a  change in the corresponding land use classification to agroforestry may instead be 651 

the result of a production system that requires land fallowing as a mechanism to recover soil 652 

productivity; or simply an indication that the parcel has not been maintained during the time 653 

in which the remotely sensed data in that region were collected.  The results also indicate that 654 

the LMNL procedure can be used to identify parcels within the agroforestry category that 655 

have a high likelihood of being abandoned without making any assumptions about the land 656 

use sequence followed by each landowner. With regard to the impact on the values and 657 

magnitudes of the parameter estimates and marginal effects, we can observe that in general 658 

the reclassification of the parcels based on the LMNL model increases the magnitudes of the 659 

marginal effects in the theoretically expected direction. Particularly, the marginal effect of 660 

changes in revenue associated with the abandoned land category becomes statistically 661 

significant with the theoretically expected sign.   662 

Finally, the performance of the algorithm is assessed using artificially misclassified 663 

datasets generated through Monte Carlo simulations. The LMNL model is able to reconstruct 664 

the “true” dataset almost entirely, regardless of the error level in the misclassified category. 665 
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Overall these results strongly suggest that the LMNL approach is a highly effective and 666 

beneficial method for controlling for misclassified land use data.  667 
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