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ABSTRACT OF THE THESIS

Modeling Site-Site Dependency in DNA Methylation Sequencing data

by

Wenbin Guo

Masters of Science in Statistics

University of California, Los Angeles, 2024

Professor Jingyi Li, Chair

DNA methylation is a crucial epigenetic modification on CpG sites, influencing gene

expression and cellular function. Conventional analyses often neglect the intrinsic depen-

dencies between adjacent CpG sites, limiting insights into underlying biological mechanisms

and constraining their broader applicability. This thesis aims to model the site-site de-

pendency in DNA methylation sequencing data using two complementary methodologies:

a statistical approach using heterogeneous Hidden Markov Models (HMMs) and a machine

learning approach employing Bidirectional Long Short-Term Memory (BiLSTM) networks.

The heterogeneous HMM extends the classical homogeneous HMM by incorporating ge-

nomic distance into transition probabilities, reflecting the biological intuition that adjacent

CpG sites with closer proximity exhibit stronger dependencies. A parameter estimation pro-

cedure utilizing the Expectation-Maximization algorithm is derived to handle this extension.

Simulation studies demonstrate that the heterogeneous HMM outperforms the homogeneous

HMM in model fitting, parameter estimation accuracy, and capturing distance-related de-

pendency patterns. When applied to whole-genome bisulfite sequencing (WGBS) data, the

heterogeneous HMM provides a more accurate representation of methylation patterns, effec-

tively capturing the diminishing dependency as genomic distance increases.
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To address the limitations of HMMs in capturing complex and long-range dependen-

cies, the thesis also introduces a deep-learning approach using BiLSTM networks. This

model leverages the recurrent neural network architecture to implicitly learn sequential

dependencies in both forward and backward directions. By incorporating a rich set of

features—including methylation levels, genomic distances, and sequence context embed-

dings—the BiLSTM simultaneously captures marginal methylation probabilities and pre-

serves site-site dependencies. Simulation studies and WGBS data analyses demonstrate its

superiority over both homogeneous and heterogeneous HMMs in accurately aligning with

marginal methylation levels and effectively preserving the intricate dependency patterns.

These two complementary approaches enhance the ability to characterize methylation

pattern dynamics observed in real data. The heterogeneous HMM offers interpretability in

modeling distance-dependent dependencies, while the BiLSTM provides flexibility to incor-

porate various features and capture complex dependency patterns. The thesis also outlines

future directions to enhance these methodologies, including applying the frameworks to di-

verse datasets for broader generalizability, improving the computational scalability of the

heterogeneous HMM for large-scale datasets, leveraging explainable machine learning tech-

niques to identify key features driving methylation concordance, and exploring advanced

generative models such as transformers and diffusion models for methylation pattern model-

ing. By effectively capturing site-site dependencies, these methods show promise for practical

applications, such as imputing missing values in sparse datasets and improving the detec-

tion of differentially methylated regions, ultimately advancing biological understanding and

translational potential of epigenetics.
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Chapter 1

Introduction

1.1 Background

1.1.1 DNA methylation

DNA methylation is a fundamental epigenetic modification involving the addition of a methyl

group to the fifth carbon of the cytosine base, forming 5-methylcytosine (5-mC)(Figure 1.1).

In mammals, this modification primarily occurs at CpG sites [1], where a cytosine is imme-

diately followed by a guanine in the DNA sequence. The methylation states at these sites

collectively define DNA methylation patterns, which are established and maintained by a

family of enzymes known as DNA methyltransferases (DNMTs) [2]. While generally stable,

these patterns can undergo dynamic changes, enabling DNA methylation to regulate gene

expression and modulate diverse biological processes without altering the underlying DNA

sequence [3].

t the molecular level, DNA methylation can suppress gene expression by blocking tran-

scription factor binding and modifying chromatin structure, particularly when it occurs in

gene promoter regions [4]. At the cellular level, methylation patterns play a critical role in

cell differentiation and development, regulating gene activity in a controllable manner across

different cell types and developmental stages [5]. At the systemic level, aberrant methylation

patterns are implicated in various diseases, including cancer [6], metabolic syndromes [7],

and neurological disorders [8]. Understanding the role of DNA methylation in these processes

and diseases is crucial for advancing our knowledge of fundamental biological mechanisms,

as well as improving disease diagnosis and therapeutic interventions.
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Figure 1.1: DNA methylation overview.
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1.1.2 Bisulfite sequencing

Currently, the gold standard technology for DNA methylation profiling is bisulfite sequenc-

ing [9]. In this process, DNA fragments undergo bisulfite treatment, where unmethylated

cytosines (C) are converted to uracil (U) and subsequently read as thymine (T) during se-

quencing. In contrast, methylated cytosines (mC) remain unchanged and are still read as

cytosine (C) (Figure 1.2). The basic unit of bisulfite sequencing data is called a sequenc-

ing read, which is a readout of a short DNA fragment sequence, typically several hundred

base pairs long. After aligning the observed reads to the reference genome, the methylation

states of the cytosines can be determined by comparing the observed base on the read to
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the reference base on the genome, where a C to T base change1 indicates no methylation,

while C remaining as C indicates methylation. This approach allows for precisely measuring

methylation states at single-base resolution across the genome.

Figure 1.2: Bisulfite sequencing for DNA methylation detection. The left panel shows a
DNA fragment with methylated cytosine (mC, blue color) and unmethylated cytosine (C,
red color). The right panel shows the readout of the DNA fragment in bisulfite sequencing,
with the reference genome shown at the bottom for comparison and base changes highlighted
in red.

A C G G T C G T A +FW
T G C AC A TG C +RC

A C G A T C G C A -RC
T G T AC G TG C -FW

A C G G T C G C A Ref

Watson (+)

5` 3`A C
m

G G T G C AC
m

Crick (-)

3` 5`T G C A G TGC
m

C
m

At the per-read level, each methylable site has two states: unmethylated (encoded as

0) or methylated (encoded as 1). At the population level, where multiple cells and copies

of chromosomes are sequenced, each methylable site t has a methylation level mt, which

measures the methylation rate of site t in the cell population and takes a continuous value

from 0 to 1. A value of 0 means no cell is methylated at site t, and a value of 1 means every

cell is methylated at site t (see Figure 1.3). By calculating the ratio of reads supporting

methylation (i.e., reads with no base change at site t) to the total number of reads covering

the site, the methylation level mt can be estimated by:

m̂t =
# methylated reads covering site t

# total reads covering site t
∈ [0, 1] (1.1)

1or G to A base change if the read maps to the reverse complementary strand. For illustration convenience,
we only discuss the forward strand and C to T base change; the reverse complementary strand and G to A
base change can be solved in a similar fashion.
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Figure 1.3: Methylation level quantification. In conventional DNA methylation analysis,
bisulfite sequencing reads (blue arrows) are aligned to the reference genome (grey segment).
Vertical dashed boxes show the read count summary for each methylable site on the genome,
with their methylation levels annotated at the bottom.
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This data summary can be viewed as a form of data compression, where hundreds of

millions of sequencing reads from a biological sample are represented as a long numerical

vector named the methylation profile. Each element of this vector is a methylable site on

the genome, with the corresponding value indicating its estimated methylation level. Since

DNA methylation records environmental exposures and plays a crucial role in disease pro-

gression, current research on DNA methylation biomarkers primarily focuses on associating

methylation profiles with various physiological traits and diseases. Such profiles are also

widely used as features to predict individual traits and health outcomes, such as aging [10],

disease status [7], and patient survival [11].

1.2 Motivation

While the data summary procedure is simple and efficient, it treats each site as an inde-

pendent feature and considers only the first-order statistic (mean). In contrast, higher-order

statistics, such as interactions between sites (site-site dependencies), are ignored. As illus-

trated in the toy example (Figure 1.4), Pattern 1 and Pattern 2 display distinct methylation

patterns across sequencing reads; however, their summarized methylation levels appear iden-
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tical. The site-site dependency ignored by the data summary procedure in Pattern 2 is also

known as co-methylation, where methylable sites proximal in genome locations are more

likely to share the same methylation state. Such dependency has been demonstrated in

previous studies [12, 13] and validated in real WGBS data analysis (Figure 2.1).

Figure 1.4: Methylation pattern on sequencing reads. The horizontal solid box shows the
methylation pattern on a sequencing read; the vertical dashed box shows the methylation
level quantification for each site. This toy example highlights the information loss in conven-
tional data summary procedures where distinct methylation patterns yield identical summa-
rized methylation levels.

Pattern2Pattern1

Reads

Methylation level 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

 methylated

 unmethylated

In the past few years, there has been an interest in reversing the data compression pro-

cess for synthetic data generation, where the read-level methylation patterns are generated

in silico using the site-level methylation profile. This interest leads to a handful of synthetic

data generation tools named bisulfite sequencing simulators such as Sherman [14], BSSim

[15], MethylFastQ [16], BSBolt [17] (Table 1.1). These simulators generate synthetic bisulfite

sequencing reads with known ground truth, such as reads’ origin and sites’ true methylation

levels, thus serving as an important approach for both new bioinformatics tool development

and existing tools benchmark, such as bisulfite read aligners, SNP callers, etc. However,

almost all simulators generate methylation patterns on a read using independent Bernoulli

models (section 2.2) where each site is treated independently, neglecting their coordination.

WGBSSuit [18] claimed the ability to simulate dependency in methylation levels and gener-

5



ate read summary counts for each site. However, it focuses on site-level summary statistics

and does not account for generating the detailed methylation patterns or site-site depen-

dencies within individual reads. To this end, accurately modeling site-site dependency and

generating realistic methylation patterns at the read level remains an open challenge, which

this thesis seeks to address.

Table 1.1: Summary of existing bisulfite sequencing simulator

Simulator Year Generative model Output Link

Sherman 2011 Independent Bernoulli Reads [14]

BSSim 2014 Independent Bernoulli Reads [15]

MethylFASTQ 2019 Independent Bernoulli Reads [16]

BSBolt 2020 Independent Bernoulli Reads [17]

WGBSSuit 2015 Binomial Read counts [18]

pWGBSimla 2020 Binomial Read counts [19]

1.3 Relevance/Impact

Modeling site-site dependencies has multiple benefits and significant implications. First, after

modeling the site-site dependency, it can be seamlessly integrated into bisulfite sequencing

simulators to generate realistic synthetic data, allowing bioinformatics tools to be evaluated

under more representative and practical conditions. Additionally, it holds the potential to

deepen our understanding of methylation mechanisms by investigating the factors driving

the dependencies captured by the model. Furthermore, modeling site-site dependencies

can support a variety of applications in DNA methylome analysis, including missing value

imputation, differential methylated region detection, and cellular composition deconvolution.

Advancements in these areas will enhance analytical precision, ultimately leading to more

reliable and insightful interpretations of methylation data.
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1. Missing value imputation

Assuming site t has a true methylation level mt and reads are independently sampled from

this level, the total methylation count follows a binomial distribution with probability mt.

The methylation level estimate, m̂t, defined as the ratio of methylated counts to total counts

Nt, is an unbiased estimator of mt with variance:

Var(m̂t) =
mt(1−mt)

Nt

For sites with low sequencing depth (Nt is small), the estimate suffers from high un-

certainty due to sampling randomness. Conventional methylation analyses often exclude

low-depth sites, treating them as missing. This approach reduces sampling noise at the cost

of introducing missing data. Most missing value imputation methods, such as blocked k-

nearest-neighbor (KNN), typically disregard site-site dependencies and assign equal weights

to all sites. However, adjacent sites often provide more relevant information about the miss-

ing values due to local dependency, which suggests an opportunity for improvement. By

incorporating spatial dependencies, weighted imputation methods can leverage information

from neighboring sites more effectively, enhancing imputation accuracy.

2. Differential methylated region analysis

Differentially methylated region (DMR) analysis is a critical approach for studying DNA

methylome variations across conditions, such as health versus disease. The goal is to identify

genomic regions with significant methylation differences between target and background

groups. Typically, the genome is divided into short windows, and statistical tests (e.g., t-

test, Mann-Whitney U test, Kolmogorov-Smirnov test) are applied to compare methylation

levels between groups. However, these methods often treat individual sites and regions as

independent features, disregarding their dependencies. By modeling site-site dependencies,

joint probabilities across sites can be derived, enabling more sophisticated modeling and
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hypothesis-testing strategies. Incorporating these dependencies has the potential to improve

the power and accuracy of DMR analyses, facilitating the detection of biologically meaningful

signals.

3. Cellular composition deconvolution

Due to the high cost and low coverage of current single-cell bisulfite sequencing technologies,

most data are generated from bulk samples, where mixed cell populations are sequenced

together. Consequently, DNA methylation measurements represent composite signals, ob-

scuring specific cell-type information critical for disease diagnosis and mechanistic studies.

Inferring cell-type abundance from the composite measurement is a central task in DNA

methylome analysis. Most existing deconvolution methods rely on first-order summary statis-

tics, such as site-level methylation levels. However, recent studies have demonstrated that

methylation patterns across sequencing reads also contain valuable information about cell

type and clonal identity [13, 20]. Incorporating site-site patterns into deconvolution methods

can improve accuracy by leveraging additional cell-type-specific features, particularly under

low sequencing depth where the first-order summary statistics are noisy. Furthermore, un-

derstanding these dependencies could shed light on epigenetic regulatory mechanisms and

aid in identifying novel cell types or subtypes.

1.4 Structure of the thesis

This thesis aims to model site-site dependencies in DNA methylation patterns of sequencing

reads using two complementary approaches: probabilistic modeling with heterogeneous Hid-

den Markov Models (HMM) and deep learning-based sequence modeling with bidirectional

Long Short-Term Memory (LSTM) networks. The thesis is organized into the following

chapters:

• chapter 1: Introduction
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Chapter 1 provides an overview of DNA methylation and bisulfite sequencing tech-

nologies, summarizes current analytical approaches, and highlights the motivation for

modeling site-site dependencies.

• chapter 2: Problem formulation

Chapter 2 introduces the mathematical notations for the problem setting, describes the

commonly used independent Bernoulli model that overlooks site-site dependencies, and

explores site-site dependency in real WGBS data, setting the stage for the subsequent

chapters.

• chapter 3: Modeling site-site dependency using heterogeneous HMM:

Chapter 3 presents an explicit modeling approach for site-site dependencies using het-

erogeneous Hidden Markov Model (HMM). It provides a detailed overview of the model

framework, its implementation, and its connections to alternative approaches. The

chapter evaluates the performance of the heterogeneous HMM on both simulated and

real data, comparing it to the classical homogeneous HMM.

• chapter 4: Modeling site-site dependency using bidirectional LSTM

Chapter 4 investigates an implicit modeling approach using bidirectional Long Short-

Term Memory (BiLSTM) networks. It details the neural network architecture and how

it captures site-site dependencies without explicitly defining interaction rules. The

chapter compares the performance of BiLSTM to the HMM approaches, emphasiz-

ing the strengths and flexibilities of neural networks in capturing complex, non-linear

dependencies and preserving target marginal distributions.

• chapter 5: Conclusion and Discussion

Chapter 5 summarizes the key findings from the two modeling approaches. It also

outlines future work directions and provides an outlook for potential epigenetic research

applications.

9



Chapter 2

Problem Formulation

2.1 Notations

First, Let the genome length be L, the total number of methylable sites on the genome be

K, and the total number of sequencing reads be N . We define

{Ss}Ks=1 : the collection of methylable sites on the genome

{Rr}Nr=1 : the collection of bisulfite sequencing reads

Due to the short length of sequencing reads, each read Rr only spans a small subset of

consecutive methylable sites on the genome. Let Tr represent the total number of methylable

sites covered by Rr; the methylable sites on the read can be represented as:

Yr = (y[r,1], y[r,2], . . . , y[r,Tr]) : observed methylation states on read Rr where y[r,t] ∈ {0, 1}

Cr = (c[r,1], c[r,2], . . . , c[r,Tr]) : genomic coordinates of sites where c[r,t] ∈ {1, . . . , L}

Mr = (m[r,1],m[r,1], . . . ,m[r,Tr]) : true methylation levels of sites where m[r,t] ∈ [0, 1]

Dr = (d[r,1], d[r,1], . . . , d[r,Tr]) : genomic distance between the current site t and last site t− 1

Hr = (h[r,1], h[r,1], . . . , h[r,Tr]) : genomic context embedding of each methylable sites

where t = 1, . . . , Tr, indexing the t-th methylable site (also referred to as site t) on the read.

For illustration convenience, we will drop subscript r when analyzing a single read.

10



2.2 Independent Bernoulli model

The problem we aim to address is to generate a realistic methylation pattern Y of a read based

on available features. Pioneering work predominantly utilized the independent Bernoulli

model where the sites are treated as independent from each other (Figure 2.3, Model 1), and

the methylation state of site t, as denoted by yt, is modeled as a random variable drawn

from a site-specific Bernoulli distribution.

yt ∼ Bern(mt) (2.1)

or

P (yt) = myt
t (1−mt)

1−yt for yt ∈ {0, 1} (2.2)

For a read consisting of T consecutive methylable sites, the methylation pattern is rep-

resented as Y = (y1, y2, . . . , yT ) ∈ {0, 1}T . Under the site independence assumption, the

probability of observing such a methylation pattern is the product of observing each site.

P (Y = (y1, y2, . . . , yT )) =
T∏
t=1

myt
t (1−mt)

1−yt (2.3)

In practice, the true methylation level mt is plugged in by the methylation level estimates

m̂t. Such a generative model ignores the higher-order relationship among sites (site-site

dependency). As a result, the generated methylation patterns are more randomized and

exhibit reduced concordance between adjacent sites compared to real data, as indicated by

the preliminary analysis (Figure 2.2); This reduced realism arises because neglecting site-site

dependency effectively decouples adjacent sites, diminishing the spatial correlation inherent

in the actual data, ultimately making the synthetic data less realistic.
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2.3 Site-site dependency in WGBS data

To demonstrate site-site dependency in real bisulfite sequencing data, we utilized Whole

Genome Bisulfite Sequencing (WGBS) data from the PGP-UK project [21]. This dataset pro-

vides high-depth DNA methylation measurement at single-base resolution across the genome,

enabling the study of dependencies between adjacent CpG sites. By analyzing sequencing

reads covering consecutive CpG sites, we investigated whether methylation states of nearby

sites are correlated and quantified the extent of this dependency.

2.3.1 Data collection and processing

Data collection

The WGBS data used in this study originates from a human blood sample in the PGP-

UK project and is publicly available through the European Nucleotide Archive (Project ID:

PRJEB17529, Sample Accession ID: ERR2359938). The raw sequencing data consists of

approximately 660 million paired-end reads, each 150 bp in length. We downloaded this

data to the UCLA IDRE hoffman2 cluster, where subsequent data processing and analysis

steps were performed.

Data processing

The raw sequencing data underwent quality control, including adapter trimming and removal

of low-quality bases, using fastp (version 0.23.2) [22]. The processed reads were aligned to the

high coverage GRCh38 reference genome, obtained from the 1000 Genomes Project [23], using

BSBolt (version 1.5.0) [17]. Methylation levels for each CpG site were calculated following

BSBolt’s standard pipeline, which includes extracting methylation calls from aligned reads

and summarizing methylation proportions at each CpG position. All software parameters

were set to their default values unless otherwise specified.
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Methylation pattern extraction

The methylation patterns of individual reads were determined by comparing the read se-

quences to the reference genome at the aligned positions. To ensure robust measurements,

we focused on regions with at least 20 read counts spanning over 500 bp. Only reads mapped

to chromosome 21 on the Watson strand and covering at least four CpG sites were included

for further analysis. After filtering, approximately 16,000 reads were retained for modeling

and analysis. The processed data and analysis pipeline are publicly available on GitHub:

https://github.com/wbvguo/Site-site_dependency.

2.3.2 Dependency metrics

After extracting the methylation patterns of individual reads, site-site dependency between

adjacent sites can be quantified by summarizing the methylation states from reads spanning

both sites. Consider two adjacent sites St and St+1 on the genome, the observed methylation

states for each site on a given read are denoted as yt, yt+1 ∈ {0, 1}. The possible methylation

state combination ytyt+1 ∈ {00, 01, 10, 11} are then summarized and counted across all reads

covering both sites, resulting in the contingency table shown in Table 2.1.

Table 2.1: Contingency table summarizing methylation state pairs for adjacent sites across
reads.

yt+1

0 1 Sum

yt
0 n00 n01 n0·

1 n10 n11 n1·

Sum n·0 n·1 n

The joint probability of observing methylation state pairs can be estimated as

P(yt = i, yt+1 = j) =
nij

n
= p̂ij for i, j ∈ {0, 1}
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where n = n00 + n01 + n10 + n11 is the total number of reads covering both sites. And the

marginal probabilities of methylation state for each site are:

P(yt = i) =

∑1
j=0 nij

n
and P(yt+1 = j) =

∑1
i=0 nij

n

Using these probabilities, we define the following metrics to assess site-site dependency:

1. Probability of Same States

The probability of adjacent sites sharing the same state is given by:

P(yt = yt+1) =
n00 + n11

n
= p̂00 + p̂11 (2.4)

This metric quantifies the state concordance of adjacent sites being either both unmethy-

lated (00) or both methylated (11).

2. Entropy

Entropy measures the randomness of the methylation patterns across reads:

H = −
∑

yt,yt+1∈{0,1}

P(yt, yt+1) logP(yt, yt+1). (2.5)

Lower entropy indicates stronger site-site dependency, as fewer patterns dominate the

distribution.

3. Mutual Information

Mutual information (MI) quantifies the dependency between two random variables. In

our case, we used it to evaluate how much information about one site’s state is gained by

knowing the state of the other:
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MI(yt, yt+1) =
∑

yt,yt+1∈{0,1}

P(yt, yt+1) log

(
P(yt, yt+1)

P(yt)P(yt+1)

)
. (2.6)

Particularly, when the sites are independent, MI is zero.

4. State Correlation

State correlation provides a normalized measure of the linear relationship between adja-

cent sites’ states. It is calculated as:

Corr(yt, yt+1) =
P(yt = 1, yt+1 = 1)− P(yt = 1) · P(yt+1 = 1)√

P(yt = 1)(1− P(yt = 1)) · P(yt+1 = 1)(1− P(yt+1 = 1))
. (2.7)

These metrics enable the quantitative evaluation of site-site dependency across reads and

provide a framework for comparing real and simulated data. Models that do not account

for site-site dependency, such as the Bernoulli model, typically exhibit higher entropy, lower

mutual information, and reduced state correlation compared to data with inherent site-site

dependency, such as real WGBS data.

2.3.3 Dependency examination in WGBS data

As an example of dependency examination in WGBS data, Figure 2.1 illustrates how site-

site dependency varies with genomic distance. By summarizing read counts of state pairs

for adjacent sites and calculating dependency metrics, we observed that closer adjacent

sites exhibit stronger dependency, evidenced by higher probabilities of sharing the same

state (e.g., 0.70 vs. 0.39) and lower entropy (e.g., 1.30 vs. 1.73). In contrast, longer

distances correspond to weaker dependencies, characterized by increased entropy and reduced

probabilities of shared states. Mutual information and state correlation also decline with

increasing distance, reflecting a loss of dependency, though their values may vary due to

sparse state configurations. These findings suggest that spatial proximity influences the
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methylation patterns observed in sequencing reads from WGBS data.

Figure 2.1: Distance-related site-site dependency in WGBS data.
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The observed methylation pattern on a read, where proximal sites tend to share the

same methylation state, could partially be explained by the similarity of marginal methyla-

tion propensities. This phenomenon arises when closely located genomic sites exhibit similar

inherent methylation potentials, resulting in state similarity driven by individual site charac-

teristics rather than genuine site-site dependency. To disentangle these factors, we conducted

a simulation using the independent Bernoulli model that preserves the marginal methylation

levels of each site but assumes no dependency between adjacent sites. Dependency metrics of

16



adjacent sites, including entropy, mutual information, state correlation, and the probability

of the same state, were calculated and compared between the simulated and real WGBS

data. As shown in Figure 2.2, the Bernoulli model exhibits significantly higher entropy,

lower mutual information, and reduced state correlation compared to the real data, indicat-

ing weaker dependency. This discrepancy provides compelling evidence that the observed

methylation patterns in real data are not solely driven by local methylation propensities but

reflect genuine site-site dependency, which the Bernoulli model fails to capture.

Figure 2.2: Comparison of dependency metrics between real WGBS data and the indepen-
dent Bernoulli model predictions.
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2.4 Site-site dependency modeling strategies

To address the limitations of site-independent models, we proposed two distinct approaches

to capture site-site dependency, shown as model 2 and model 3 in Figure 2.3. These methods

aim to generate more realistic methylation patterns by incorporating other genomic features,

which are ignored in simplified models like the independent Bernoulli model. By exploring

both statistical and machine learning paradigms, we provide complementary strategies for

addressing the complexity of site-site relationships.
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Figure 2.3: Three strategies for DNA methylation pattern modeling on sequencing reads.
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chapter 3 introduces a statistical modeling approach, where we develop an explicit para-

metric model to directly quantify and account for site-site dependency. This method em-

phasizes interpretability, enabling a clear view of the underlying dependency structure. In

chapter 4, we shift focus to a neural network-based approach, leveraging recurrent neural

networks to implicitly learn site-site dependency patterns from data. Unlike the paramet-

ric model, this approach does not require predefined assumptions and instead relies on the

network’s capacity to uncover dependencies during training. Through simulations and real

data analyses, we evaluate the effectiveness of these approaches, demonstrating their ability

to generate biologically meaningful methylation patterns while addressing the shortcomings

of simplified, site-independent models.
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Chapter 3

Heterogeneous Hidden Markov Model

Markov models, particularly Hidden Markov Models (HMMs), have long been integral to

statistical modeling in bioinformatics. Their applications span a broad spectrum of tasks,

including multiple sequence alignment [24], gene discovery [25], epigenome segmentation [26],

regulatory motif and binding site prediction [27], among others. Traditional (or classical)

Markov models typically assume homogeneous state transition probabilities, meaning that

the system’s dynamics remain constant over time and that the transition probabilities be-

tween states are fixed. While this assumption simplifies the modeling process, it may fail

to capture the time-varying nature of certain real-world processes. In terms of modeling

site-to-site dependencies in genomic sequences, such an assumption can be overly restrictive

because state dependencies between adjacent sites may vary due to external factors such as

base context, genomic distance, etc.

In this chapter, we introduce the heterogeneous Hidden Markov Model (heterogeneous

HMM), an extension of the classical HMM framework that allows transition probabilities

to vary as a function of genomic distance between adjacent sites. This extension provides

a more flexible approach to modeling site-to-site dependencies, effectively addressing the

inherent heterogeneity found in epigenomic data [28]. By accommodating variable state

transitions, the heterogeneous HMM can capture more complex dependency structures than

those possible with classical HMMs (also referred to as homogeneous HMM in the following

context).

We begin by introducing the structure of heterogeneous HMM and discussing its re-

lationship to other statistical models. We then derive the parameter estimation procedure

based on the maximum likelihood approach and solve it using the Expectation-Maximization
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(EM) algorithm. Through simulation studies, we assess the performance of the heteroge-

neous HMM compared to the homogeneous HMM. Finally, we apply our model to real data,

demonstrating its practical utility in capturing complex dependency structures in biological

sequences.

3.1 Model setup

Similar to homogeneous HMM, the heterogeneous HMM consists of two major parts: the

state transition model (subsection 3.1.1) and the emission model (subsection 3.1.2).

3.1.1 State transition model

Figure 3.1: Schematic of the state transition model.
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Consider a pair of adjacent sites St−1 and St with genomic distance dt (Figure 3.1), the

transition probability from last state zt−1 = i to current state zt = j is defined as aij(dt).

Due to that each site on a read can take two states: unmethylated (0) and methylated (1);

the transition probability matrix A(dt) is a 2× 2 matrix and can be written as
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A(dt) =
[
aij(dt)

]
2×2

=

a00(dt) a01(dt)

a10(dt) a11(dt)

 (3.1)

Here, the rows stand for the states of site St−1, and columns are the states of site St.

Inspired by previous work in genome segmentation [29], we hypothesized the transition

matrix can be partitioned into two parts: the distance-irrelevant part and the distance-

dependent part. The former is a constant matrix, while the latter takes the form of a constant

matrix times a decay factor controlled by the genomic distance dt. The decomposition

formula is given by:

A(dt) = A1 + ϕ(dt)A2 (3.2)

where

A1 =


0 1

0 1− p1 p1

1 p2 1− p2

 and A2 =


0 1

0 p1 −p1

1 −p2 p2

 (3.3)

with rows and columns representing the states of site St−1 and site St, respectively, and the

decay factor ϕ(dt) ∈ [0, 1] is a monotonic decreasing function of dt. For simplicity, we model

this decay factor using a generalized sigmoid function1, where ϕ(dt) = sigmoid(w0 + w1dt),

with unknown parameters w0 ∈ R and w1 ∈ R−. Thus,



a00(dt) = 1− p1 + ϕ(dt)p1 = 1− p1 · sigmoid(−w0 − w1dt)

a01(dt) = p1 − ϕ(dt)p1 = p1 · sigmoid(−w0 − w1dt)

a10(dt) = p2 − ϕ(dt)p2 = p2 · sigmoid(−w0 − w1dt)

a11(dt) = 1− p2 + ϕ(dt)p2 = 1− p2 · sigmoid(−w0 − w1dt)

(3.4)

1We also tested the truncated exponential function ϕ(dt) = min(ew0+w1dt , 1), which yielded less accurate
parameter estimates in simulation. Thus, we chose the generalized sigmoid function throughout this work.
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From Equation 3.2, it’s easy to notice that when

ϕ(dt)→ 1,

ϕ(dt)→ 0,

A(dt)→ I2×2

A(dt)→ A1

(3.5)

Specifically, when ϕ(dt) → 1, the transition matrix will approximate to a 2 × 2 identity

matrix which makes the methylation state to be consecutive, aligning with previous obser-

vations of co-methylation in closely-located adjacent sites [12]. On the other hand, when

dt > 0 is large, ϕ(dt) → 0, the contribution of A2 to the transition matrix can be ignored,

making the adjacent states to be less concordant. This numerical property makes biological

sense where the longer the distance between two sites, the less dependency two sites will

have as the increased distance changes the biophysical and thermodynamic landscape of the

surrounding microenvironment, therefore decoupling the sites.

3.1.2 Emission model

To determine the methylation state at each site on a DNA fragment, the fragment undergoes

bisulfite conversion followed by sequencing, allowing the methylation state to be read from

the sequencing output (namely the sequencing reads). Bisulfite conversion typically converts

unmethylated cytosines (C) into uracil (U), which are subsequently replaced and read as

thymine (T) during sequencing, while methylated cytosines remain unchanged. However,

due to the stochastic nature of the molecular processes involved, each process may introduce

errors. Specifically, two types of bisulfite conversion errors can occur [30] (Figure 3.2).

• Incomplete conversion: unmethylated C fails to convert to U.

• Inappropriate conversion: methylated C is erroneously converted to T.
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Figure 3.2: Two types of bisulfite conversion errors.
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Beyond bisulfite conversion errors, additional errors can arise during the sequencing pro-

cess. These errors occur when the sequencing system incorrectly identifies a base, commonly

referred to as sequencing errors [31]. With advancements in sequencing technologies, the

error rates have become remarkably low and can generally be assumed as uniform across

different nucleotide types. Given the characteristics of DNA methylation and bisulfite se-

quencing, we consider three typical sequencing error scenarios for methylable sites, assuming

a uniform sequencing error rate of ϵ

• C is observed as C with probability 1− ϵ.

• C is observed as T with probability 1
3
ϵ.

• C is observed as other bases (A or G) with probability 2
3
ϵ.

The second point arises because when a sequencing error occurs at base C, there are

three possible incorrect observations (A, G, or T), each equally likely. In data collection and

processing, observations corresponding to non-T bases (A or G) can be easily recognized
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as sequencing errors and typically filtered out. Consequently, the third scenario is excluded

from the analysis data. After normalization to ensure the probabilities sum to 1, the effective

error rate for observing C as T, denoted as ϵ′ is

ϵ′ =
1
3
ϵ

1
3
ϵ+ 1− ϵ

=
ϵ

3− 2ϵ
(3.6)

Collectively, let α represent the bisulfite conversion success rate, where unmethylated

cytosine is converted to T (also referred to as the conversion rate in some literature), λ

the inappropriate conversion rate, and ϵ′ the effective sequencing error rate. These three

parameters can be treated as constants for a given experiment with consistent physicochem-

ical conditions. Since the chemical processes (conversion and sequencing) are independent

from the biological process (methylation), each step can be modeled as an independent sam-

pling from a Bernoulli distribution. Given the stepwise nature of these processes, the entire

emission process can be described using a hierarchical model, as shown in Figure 3.3.

Figure 3.3: Schematic of the emission model.
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Let yt denote the observed methylation state at site t, and let zt represent the corre-
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sponding true but unobserved methylation state. The emission probability bj(k) is defined

as the probability of observing yt = k given that the true hidden state is zt = j. Given the

binary nature of the hidden states—unmethylated (0) and methylated (1)—and the observed

symbols—C-to-T change (0) and C remains unchanged (1)—the emission probability matrix

B =
[
bj(k)

]
is a 2× 2 matrix, which can be written as:

B =


0 1

0 b0(0) b0(1)

1 b1(0) b1(1)

 where



b0(0) = α(1− ϵ′) + (1− α)ϵ′ = 1− p3

b0(1) = αϵ′ + (1− α)(1− ϵ′) = p3

b1(0) = λ(1− ϵ′) + (1− λ)ϵ′ = p4

b1(1) = λϵ′ + (1− λ)(1− ϵ′) = 1− p4

(3.7)

Here the rows represent the hidden states, and the columns correspond to the observed

symbols. It is evident that when the parameters α, λ, and ϵ are held constant, the emission

probability matrix becomes fixed and can be reparameterized using two parameters p3, p4.

3.1.3 Connections to other models

Compared to homogeneous HMM, the heterogeneous HMM introduces a modified definition

of transition probabilities by allowing them to be modulated based on the genomic distance

between adjacent sites. This added flexibility enables the model to capture more complex

dependencies inherent in genomic data. Notably, the proposed heterogeneous HMM encom-

passes several well-known models as special cases, highlighting its versatility and connections

to existing methodologies. Recognizing these special cases is crucial for both theoretical un-

derstanding and practical implementation.

Reduction to the homogeneous HMM

Firstly, from the transition perspective, when the decay function ϕ(dt) is a constant and takes

value c (i.e., does not vary with genomic distance), the heterogeneous HMM degenerates to
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the homogeneous HMM. In this scenario, the transition probability matrix simplifies to:

A(dt) = A1 + ϕ(dt)A2 = A1 + cA2 = constant

As a result, the transition probabilities become independent from genomic distance, leading

to time-invariant system dynamics. Therefore, the homogeneous HMM can be viewed as a

specific instance within our more general heterogeneous HMM framework.

Approximation to a heterogeneous Markov Chain

Secondly, from the emission perspective, current experimental protocols exhibit very high

bisulfite conversion rates (α > 0.995) [32] and low inappropriate conversion rates λ < 0.01

[30]. Additionally, advanced sequencing technologies have very low sequencing error rates

(ϵ < 0.003) [31]. As a result, the emission probability matrix B is approximately an identity

matrix I2×2, implying that the observed data closely reflect the true underlying states.

In other words, the emission probabilities are nearly deterministic, allowing the hidden

states to be treated as directly observed. This simplification effectively reduces the hetero-

geneous HMM to a heterogeneous Markov chain, where the primary focus shifts to modeling

the variable transition probabilities between states rather than inferring unobserved states.

Consequently, the problem simplifies to estimate the parameters of a heterogeneous Markov

chain that maximize the likelihood of the observed state sequence.

3.2 Parameter estimation

Let us consider a collection of sequencing reads Rr for r = 1, . . . , N , each covering Tr

methylatable sites along the genome. For each read Rr, we denote the t-th methylable site

as site t and define:

• Observed methylation pattern Yr: a vector (y[r,1], y[r,2], . . . , y[r,Tr]), where y[r,t] represents

the observed methylation state at site t.
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• True methylation pattern Zr: a vector (z[r,1], z[r,2], . . . , z[r,Tr]), where z[r,t] denotes the

unobserved true methylation state at site t.

• Adjacent genomic distance Dr: a vector (d[r,1], d[r,2], . . . , d[r,Tr]), where d[r,t] is the ge-

nomic distance between site t and the preceding site t − 1 on read Rr. We set the

d[r,1] = 0 due to the lack of a preceding site for the initial site on the read.

The initial state probability πr = P
(
z[r,1]

)
for each read Rr is assumed to be known

and given by the methylation level of the first methylable site on the read, serving as the

starting point for the Markov process. By setting d[r,1] = 0, we allow the first site’s state

to be governed by πr, while subsequent states are determined by the heterogeneous Markov

Chain, which depends on the preceding states and the genomic distances.

3.2.1 Maximum likelihood estimate (MLE) framework

Our objective is to estimate the unknown parameters θ = (p1, p2, ω0, ω1, p3, p4) given the

observed reads data {Yr}Nr=1 and covariate data {Dr}Nr=1, while accounting for the unobserved

true methylation patterns {Zr}Nr=1. To achieve this, we employ the maximum likelihood

estimation approach. Since each read corresponds to a DNA fragment from a biological

specimen, the reads can be treated as independent and identically distributed(i.i.d.) samples.

Therefore, the likelihood of the entire dataset can be expressed as:

L(θ) = P({Yr}Nr=1 | {Dr}Nr=1,θ) =
N∏
r=1

P(Yr | Dr,θ) =
N∏
r=1

Lr(θ) (3.8)

where Lr(θ) = P(Yr | Dr,θ) represents the likelihood of the observed sequence Yr from

a single read Rr. Since the likelihood of the full dataset factorizes into the product of

individual likelihoods for each read (yielding an additive log-likelihood), we can streamline

the parameter estimation process by first analyzing a single read sequence, then extend the

procedure to the full dataset by aggregating the likelihoods across all reads. This approach

simplifies parameter estimation without sacrificing generality.
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For illustrative purposes, we omit the subscript r when analyzing a single read sequence.

Specifically, we can write the observation data likelihood of a single read as

P(Y | D,θ) =
∑
Z

P(Y, Z | D,θ) (3.9)

with the sum taken over all possible methylation patterns Z for the given read. This

marginalization step involves summing over an exponentially large number of possible hidden

state configurations, which can be computationally prohibitive. An alternative approach is

to assume that the hidden states are known and maximize the joint probability of Y and Z

given parameters θ and genomic distances D (also known as the complete data likelihood).

According to the Markov assumption, this complete data likelihood can be factorized as

follows:

P(Y, Z | D,θ) =P(y1, . . . , yT , z1, . . . , zT | d1, . . . , dT ,θ)

=P (z1)P (y1 | z1)P (z2 | z1, d2)P (y2 | z2) · · ·P (zT | zT−1, dT )P (yT | zT )

=P (z1)P (y1 | z1)
T∏
t=2

P (zt | zt−1, dt)P (yt | zt) (3.10)

Here, P(z1) is the initial distribution of z1, which is assumed to be known when the

starting site is given. The probability functions P (zt | zt−1, dt) and P (yt | zt) represent the

transition probability from state zt−1 to zt given genomic distance dt, and the emission

probability of observing yt given hidden state zt, respectively. Let us denote the previous

hidden state as zt−1 = i, the current hidden state as zt = j, and the current observation

as yt = k. Using the indicator variable ztj = I(zt = j), we can express the transition and

emission probability functions as:

P (zt | zt−1, dt) = {aij(dt)}z(t−1)iztj (3.11)

P (yt | zt) = {bj(k)}ztj (3.12)
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Thus, the complete data likelihood is

P(Y, Z | D,θ) ∝
1∏

i=0

1∏
j=0

T∏
t=2

{aij(dt)}z(t−1)iztj ×
1∏

j=0

1∏
k=0

∏
t:yt=k

{bj(k)}ztj (3.13)

Then

logP(Y, Z | D,θ) =
∑
i,j

T∑
t=2

z(t−1)iztj log aij(dt) +
∑
j,k

∑
t:yt=k

ztj︸ ︷︷ ︸
Djk

log bj(k)

=
∑
i,j

T∑
t=2

z(t−1)iztj log aij(dt) +
∑
j

[
1∑

k=0

Djk log bj(k)

]
(3.14)

It can be observed that the log of the complete data likelihood naturally decomposes into

two distinct components: a distance-dependent transition component, governed by the pa-

rameters p1, p2, ω0, ω1, and a distance-independent emission component, controlled by p3, p4.

Notably, when Y, Z is given, the sufficient statistics for the emission model parameters bj(k)

can be directly computed as:

Djk =
∑
t:yt=k

ztj (3.15)

which represents the number of times symbol k is emitted from state j. These sufficient

statistics can be used to derive the Maximum Likelihood Estimator (MLE) for the emission

model parameters. However, deriving an analytical MLE for the transition model parameters

directly from the complete data log-likelihood proves to be complex. Instead, we can seek a

numerical optimization approach to obtain a solution, as detailed in the subsequent section.
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3.2.2 Expectation-Maximization (EM) algorithm

Equation 3.14 provides a likelihood framework for parameter estimation. Specifically, when

Z is known, we seek to find θ̂ such that it maximizes the complete data log-likelihood:

θ̂ = argmax
θ

logP(Y, Z | D,θ) (3.16)

Because the true methylation states Z are unobserved, we employ the Expectation-

Maximization (EM) algorithm to iteratively estimate θ by maximizing the expected complete-

data log-likelihood.

E-Step: Calculate the expectation of complete-data log-likelihood

In the E-step, we compute the expectation of the complete data log-likelihood with respect

to the posterior distribution of the hidden states Z, condition on the observed data Y , the

distance D, and the current parameter estimates θ(m). The expected log complete data

likelihood is

Q(θ | θ(m)) =E
[
logP(Y, Z | D,θ) | Y,D,θ(m)

]
=
∑
i,j

T∑
t=2

E
[
z(t−1)iztj log aij(dt) | Y,D,θ(m)

]
+
∑
j,k

∑
t:yt=k

E
[
ztj log bj(k) | Y,D,θ(m)

]
=
∑
i,j

T∑
t=2

E
[
z(t−1)iztj | Y,D,θ(m)

]
log aij(dt) +

∑
j,k

∑
t:yt=k

E
(
ztj | Y,D,θ(m)

)
log bj(k)

(3.17)

Thus, given model parameters θ = θ(m) and genomic distance covariates D, for each t and

all i, j, we need to calculate:

P (zt−1 = i, zt = j | Y ) (3.18)

P (zt = j | Y ) (3.19)
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Based on the conditional independence assumption of the Markov chain

P (zt = j | Y ) ∝ P (Y, zt = j)

= P (y1:t, zt = j)︸ ︷︷ ︸
αt(j)

·P
(
y(t+1):T | zt = j

)︸ ︷︷ ︸
βt(j)

= αt(j) · βt(j) (3.20)

⇒ P (zt = j | Y ) =
αt(j) · βt(j)∑1
j=0 αt(j) · βt(j)

:= γt(j), j = 0, 1 (3.21)

On the other hand

P (zt−1 = i, zt = j | Y ) ∝ P (Y, zt−1 = i, zt = j)

= P
(
y1:(t−1), zt−1 = i

)︸ ︷︷ ︸
αt−1(i)

·P (zt = j | zt−1 = i)︸ ︷︷ ︸
aij(dt)

× P (yt | zt = j)︸ ︷︷ ︸
bj(yt)

·P
(
y(t+1):T | zt = j

)︸ ︷︷ ︸
βt(j)

= aij(dt) · bj (yt) · αt−1(i) · βt(j) (3.22)

By normalization, for all i, j,

P (zt−1 = i, zt = j | Y ) =
aij(dt) · bj (yt) · αt−1(i) · βt(j)∑1

i=0

∑1
j=0 aij(dt) · bj (yt) · αt−1(i) · βt(j)

:= ξt(i, j) (3.23)
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Recall that we denote αt−1(i) = P
(
y1:(t−1), zt−1 = i

)
and βt(j) = P

(
y(t+1):T | zt = j

)
, thus

αt(j) = P (y1:t, zt = j)

=
1∑

i=0

P (y1:t, zt = j, zt−1 = i)

=
1∑

i=0

P
(
y1:(t−1), yt, zt = j, zt−1 = i

)
=

1∑
i=0

P
(
y1:(t−1), zt−1 = i

)
· P (yt | zt = j) · P (zt = j | zt−1 = i)

=
1∑

i=0

αt−1(i) · bj(yt) · aij(dt) (3.24)

βt−1(i) = P (yt:T | zt−1 = i)

=
1∑

j=0

P (yt:T , zt = j | zt−1 = i)

=
1∑

j=0

P
(
y(t+1):T , yt, zt = j | zt−1 = i

)
=

1∑
j=0

P
(
y(t+1):T | zt = j

)
· P (yt | zt = j) · P (zt = j | zt−1 = i)

=
1∑

j=0

βt(j) · bj(yt) · aij(dt) (3.25)

The connection between αt−1(i) and αt(j), and βt−1(i) and βt(j) suggest we can calculate

the values efficiently via recursive computing. Specifically, we can use the following forward

algorithm (Algorithm 1) and backward algorithm (Algorithm 2) to compute both αt(j)

and βt(i) given θ(m) and D; Once the αt(j), βt(i) is calculated, the conditional probability

P (zt−1 = i, zt = j | Y ) and P (zt = j | Y ) can be obtained, so are their expectations.

32



Algorithm 1 Forward algorithm to calculate αt(j) for all j and t

1: Initialize α1(i) = πib
(m)
i (y1) for i = 0, 1.

2: for t = 2 to T do

3: αt(j) = b
(m)
j (yt) ·

∑1
i=0 αt−1(i) · a(m)

ij (dt), j = 0, 1

4: end for

Algorithm 2 Backward algorithm to calculate βt(i) for all i and t

1: Initialize βT (j) = 1 for j = 0, 1.

2: for t = T − 1 to 1 do

3: βt(i) =
∑1

j=0 βt+1(j) · b(m)
j (yt+1) · a(m)

ij (dt), j = 0, 1

4: end for

M-Step: find θ(m+1) by maximizing Q(θ | θ(m))

After calculating the expectations in the E-step, we can write function Q(θ | θ(m)) as

Q(θ | θ(m)) =
∑
i,j

T∑
t=2

E
[
z(t−1)iztj | Y,D, θ(m)

]
︸ ︷︷ ︸

c
(m)
ij (t)

log aij(dt) +
∑
j,k

∑
t:yt=k

E
(
ztj | Y,D,θ(m)

)
︸ ︷︷ ︸

D
(m)
jk

log bj(k)

=
∑
i,j

T∑
t=2

c
(m)
ij (t) log aij(dt)︸ ︷︷ ︸

Q1

+
∑
j,k

D
(m)
jk log bj(k)︸ ︷︷ ︸

Q2

(3.26)

where c
(m)
ij (t), D

(m)
jk are constants, and Q(θ | θ(m)) can be decomposed into 2 parts with

Q1 corresponds to the transition model and Q2 corresponds to the emission model. Since

these 2 models are independent in parameter space (Q1 is controlled by p1, p2, w0, w1, Q2 is

controlled by p3, p4), to maximize Q(θ | θ(m)), we can maximize Q1 and Q2 separately

33



As

Q2 =
∑
j,k

D
(m)
jk log bj(k)

=D
(m)
00 log b0(0) +D

(m)
01 log b0(1) +D

(m)
10 log b1(0) +D

(m)
11 log b1(1)

=D
(m)
00 log(1− p3) +D

(m)
01 log p3 +D

(m)
10 log p4 +D

(m)
11 log(1− p4) (3.27)

To maximize Q2, we can take the partial derivative of Q2 with respect to p3 and p4 and

set it to 0; the resulting equation yields the Maximum likelihood estimator (MLE) for p3, p4

as

p
(m+1)
3 =

D
(m)
01

D
(m)
00 +D

(m)
01

p
(m+1)
4 =

D
(m)
10

D
(m)
10 +D

(m)
11

(3.28)

more generally,

bj(k)
(m+1) =

D
(m)
jk

D
(m)
j•

(3.29)

On the other hand, an analytical form of the estimates for p1, p2, w0, w1 are hard to derive.

Q1 =
T∑
t=2

c
(m)
00 (t) log a00(dt) +

T∑
t=2

c
(m)
01 (t) log a01(dt) +

T∑
t=2

c
(m)
10 (t) log a10(dt) +

T∑
t=2

c
(m)
11 (t) log a11(dt)

=
T∑
t=2

c
(m)
00 (t) log (1− p1sigmoid(−w0 − w1dt)) +

T∑
t=2

c
(m)
01 (t) log (p1sigmoid(−w0 − w1dt))

+
T∑
t=2

c
(m)
10 (t) log (p2sigmoid(−w0 − w1dt)) +

T∑
t=2

c
(m)
11 (t) log (1− p2sigmoid(−w0 − w1dt))

=f(p1, p2, w0, w1) (3.30)

Actually, the sufficient statistics for p1, p2, w0, and w1 are difficult to obtain, and maximiz-

ing Q1 is a more challenging problem as the transition probability is varying given genomic
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distance dt. Therefore, we used a numerical optimization approach to obtain a solution

p
(m+1)
1 , p

(m+1)
2 , w

(m+1)
0 , w

(m+1)
1 = arg max

p1,p2∈[0,1]
w0∈R,w1∈R−

f(p1, p2, w0, w1) (3.31)

In practice, We used the ‘L-BFGS-B‘ algorithm, a quasi-Newton method suitable for

problems with bound constraints, to optimize the transition probabilities and decay param-

eters during the M-step. To speed up the convergence step of the M-step, we use the current

estimate (p
(m)
1 , p

(m)
2 , w

(m)
0 , w

(m)
1 ) of as the initial starting point for the optimization algorithm,

which yields faster convergence speed during testing.

3.2.3 Algorithm summary

By combining the E-step and M-step, we can summarize the EM-algorithm as the following:
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Algorithm 3 EM algorithm for heterogeneous HMM parameter estimation

1: Initialize parameters θ
(0)

= (p
(0)
1 , p

(0)
2 , w

(0)
0 , w

(0)
1 , p

(0)
3 , p

(0)
4 ) and construct A

(0)
1 ,A

(0)
2 ,B

(0)

2: for m = 1 to max iter do

3: E-step:

4: for each observation sequence Rr with data Yr, Dr, πr do

5: Compute decay factors ϕ(dt)
(m)

for t = 2, . . . , T using the current θ
(m−1)

.

6: Compute transition probabilities A
(m)

(dt)

7: Compute forward probabilities αt(i).

8: Compute backward probabilities βt(i).

9: Compute γt(i) and ξt(i, j).

10: end for

11: M-step:

12: Update emission probabilities B(k).

13: Optimize A
(k)
1 , A

(k)
2 , and w(k) by maximizing Q(θ,θ(m−1)).

14: Check for convergence:

15: if converged then

16: break

17: end if

18: end for

19: Return θ
(m)

3.2.4 Implementation considerations

Convergence criteria

We implemented two types of convergence criteria based on the changes in (1) log-likelihood,

or (2) parameter estimates between iterations. Specifically, the algorithm is considered to
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have converged if:

|L(θ(m)
)− L(θ(m−1)

)| < δ or ∥θ(m) − θ
(m−1)∥∞ < δ (3.32)

where δ are small positive constants (default value: 10−5). Through simulations, we found

that the two criteria yield similar results. For consistency, the parameter convergence cri-

terion was used throughout this thesis. Due to the non-convex nature of the optimization

problem, the algorithm may converge to a local minimum. To mitigate this, we implemented

a random start strategy, running the algorithm multiple times with different initializations

and selecting the result with the highest likelihood. By default, we set n starts= 20 for

model training.

Numerical operations

We utilize numerical computing libraries such as NumPy and SciPy for optimized mathe-

matical operations and numerical optimization routines. Besides, since the decay function

involves the exponential functions, to prevent numerical underflow or overflow during com-

putations, we apply clipping and add small constants where necessary. For example, we clip

the input to the exponential function:

λt = max(−κ,min(w1dt + w0, κ)) (3.33)

where κ is a large positive constant (e.g., 709 for double-precision floating-point numbers).

Code availability

A Python implementation of the heterogeneous HMM, heterogeneous Markov Chain, and ho-

mogeneous HMM can be accessed at the Github repository: https://github.com/wbvguo/

Site-site_dependency.git
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3.3 Model prediction and evaluation

3.3.1 Prediction

With predefined or estimated model parameters, the model can be used to generate new

sequence predictions. Given an initial state distribution π and a sequence of distances D,

the hidden and observed states can be generated using the following algorithm:

Algorithm 4 Sequence prediction using heterogeneous HMM

1: Initialize z1 based on π

2: for t = 2 to T do

3: Compute At = A1 + ϕ(dt)A2

4: Sample zt from P (zt | zt−1,At).

5: Sample yt from P (yt | zt,B).

6: end for

7: Return predicted sequence Y = (y1, ..., yT ) and hidden states Z = (z1, ..., zT )

3.3.2 Evaluation

We consider the following metrics to assess the model’s performance in capturing the site-site

dependency:

Root Mean Square Error

For synthetic data generated using a heterogeneous HMM with predefined parameters, we

compute the Root Mean Square Error (RMSE) to quantify the deviation between the es-

timated parameters and the ground truth. This metric provides the parameter estimation

accuracy, reflecting how closely the model captures the underlying generative process. The

RMSE is given by:
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RMSE = ∥θ̂ − θ∥2 =

√√√√ 1

n

n∑
i=1

(
θ̂i − θi

)2
(3.34)

where θ̂i represents the estimated parameter, θi is the corresponding true parameter, and n

is the total number of parameters being evaluated.

Distance-related site-site dependency

After training the model, we also analyze the relationship between inter-site distance and

various dependency measures, calculated based on the model’s predicted sequences. Specif-

ically, we compute the metrics defined in subsection 2.3.2 and evaluate how they vary with

the distance between adjacent sites. This approach enables a detailed assessment of how

well the model preserves the dependency structure presented in the synthetic or real-world

WGBS data.

3.4 Simulation study

3.4.1 Synthetic data generation

To evaluate the performance of the heterogeneous HMM in parameter estimation, we con-

ducted simulations based on Algorithm 4. With the given true model parameters θ, we

generated synthetic datasets, each consisting of 100 observations (unless stated otherwise).

Each observation consists of observed states Y , initial state probabilities π, and distances

between adjacent sites D. The data generation details are outlined below:

1. Initial State Probabilities: For each observation sequence, the initial state prob-

abilities π were sampled from a Dirichlet distribution π ∼ Dirichlet(α = [0.5, 0.5]),

ensuring a diverse range of initial state distributions across sequences.
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2. Distance sequence: The length of each sequence was randomly determined to range

between 5 and 10 sites, and the distances between adjacent sites were sampled from

a Uniform distribution dt ∼ Uniform(1, 200), reflecting variability similar to the real-

world data.

After generating the synthetic datasets, the heterogeneous HMM was fitted to each

dataset to estimate the parameters. The model’s performance in terms of fitting and param-

eter estimation accuracy was evaluated across various simulation settings.

3.4.2 Model performance evaluation

1. Parameter estimation accuracy

The parameter estimation performance of the heterogeneous HMM was evaluated by compar-

ing the true and estimated model parameters under different simulation scenarios, as shown

in Figure 3.4. In these simulations, we systematically varied three pairs of parameters: tran-

sition probabilities (p1, p2), emission probabilities (p3, p4), and decay parameters (w0, w1).

For each scenario, one pair of parameters was varied while the remaining parameters were

fixed for simulation to isolate their effects on estimation accuracy. We set p1 = p2 = 0.5,

p3 = p4 = 0.1 and w0 = 5, w1 = −0.05 when they are not varied. After synthetic data

generation and model fitting, we computed the RMSE for each parameter and parameter

pair.
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Figure 3.4: Parameter estimation accuracy of heterogeneous HMM in simulation. (A) RMSE
for p1, p2 when varying the transition probabilities; (B) RMSE for p3 and p4 when varying
the emission probabilities; (C) RMSE for the model parameters when the decay parameters;
(D) RMSE as a function of the sample size.

A

B

C D

Panel A illustrates the RMSE for transition probabilities when these parameters are var-

ied. While the estimates of p1 and p2 are generally accurate, high RMSE is occasionally

observed, likely due to convergence issues during optimization. Panel B shows the RMSE
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for emission probabilities, which denotes p3 and p4 have smaller and less variable RMSE

compared to that of p1 and p2, indicating they are easier to estimate. Moreover, the esti-

mation accuracy of p3 and p4 slightly decreases when these probabilities greater than 0.25,

meaning the emission model is less deterministic and functions more like a noise source in

those cases. The overall trend reflects the model’s robustness in estimating transition and

emission probabilities.

Panel C provides additional insights into the challenges of estimating decay parameters.

In this simulation, we randomly sampled the decay parameter w0 from a Gaussian distribu-

tion N (5, 1) and w1 from a half-normal distribution (w1 = −|w| where w ∼ N(0, 0.1)). We

repeated the sampling 500 times and generated a synthetic dataset for each pair of them.

The parameter estimation results showed that w0 and w1 are harder to estimate, with sig-

nificantly higher RMSE and greater variability than transition and emission probabilities,

suggesting a potential lack of fitting with the current sample size. Panel D highlights that

increasing the number of sequences reduces RMSE across all parameter categories, though

the decay parameters improve more slowly. Overall, these findings suggest that the hetero-

geneous HMM is generally effective at accurately estimating model parameters.

2. Heterogeneous and homogeneous HMM comparison

To emphasize the advantages of the heterogeneous HMM in capturing distance-related depen-

dencies, we conducted a simulation, and compared its model fitting and parameter estimation

performance to that of the homogeneous HMM. As shown in Figure 3.5, the heterogeneous

HMM achieves a higher log-likelihood than the homogeneous HMM (Panel A), demonstrating

its ability to capture the variability introduced by distance-dependent state transitions. In

contrast, the homogeneous HMM, constrained by its assumption of constant transition proba-

bilities, fails to account for this variability and converges to lower log-likelihood values. Panel

B further illustrates that the heterogeneous HMM accurately estimates distance-dependent

transition and emission probabilities, closely matching the true parameter values. While
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the homogeneous HMM estimates emission probabilities reasonably well, it systematically

underestimates transition probabilities due to its inability to model distance dependency.

These results underscore the heterogeneous HMM’s superiority as a more flexible model for

applications with varying transition probabilities.

Figure 3.5: Comparison of model fitting and parameter estimation between homogeneous
and heterogeneous HMM in simulation.

A B

Besides evaluating parameter estimation performance, we also assessed the ability of ho-

mogeneous and heterogeneous Hidden Markov Models (HMMs) to preserve distance-related

dependencies in their predictions. For each adjacent site pair, the models generated 100

state predictions, and the correlation between distance and various site-site dependency

measures—such as entropy, mutual information, state correlation, and the probability of

sharing the same state—was analyzed. Figure 3.6 highlights the differences between the two

models. Panel A demonstrates that the heterogeneous HMM consistently outperforms homo-

geneous HMM in preserving distance-related dependencies. Panel B further highlights this

distinction through scatter plots. For the heterogeneous HMM, all measures show strong

and consistent trends with distance, such as a significant negative correlation for mutual

information and state correlation, indicating that the model correctly reflects decreasing

similarity between adjacent sites as distance increases. Conversely, the homogeneous HMM

exhibits weaker correlations, confirming that it fails to account for the effect of distance on

state dependencies. These results reinforce the superiority of the heterogeneous HMM in
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modeling site-site dependencies, particularly in applications where distance plays a critical

role in state transitions.

Figure 3.6: Comparison of distance-related dependency in homogeneous and heterogeneous
HMM predictions.

A

B

3. Computational efficiency

To evaluate the computational speed of each method, we generated 1000 synthetic sequences

and downsampled the sequence to construct observation datasets with sample sizes 5, 10, 50,

100, 200, 500, and 1000. For each dataset, we measured the computational time needed to fit

the model on a PC with the following specifications (Intel 14700K, 64 GB RAM). The results
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show that the heterogeneous HMM requires more computation time than the homogeneous

HMM (Figure 3.7). This difference is primarily due to the additional computations needed

to calculate the distance-related transition probabilities and to perform the more complex

M-step in the Expectation-Maximization (EM) algorithm for the heterogeneous model. In

contrast, the homogeneous HMM achieves much faster execution times because its EM al-

gorithm has a closed-form solution, which avoids iterative optimization during the M-step.

Despite these differences in computational complexity, both methods exhibit a linear increase

in execution time as the sample size grows, reflecting their scalability.

Figure 3.7: Comparison of computational efficiency for heterogeneous and homogeneous
HMM.
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3.5 Application to WGBS data

To assess the utility of heterogeneous HMM in modeling site-site dependencies in real WGBS

data, we fitted both the heterogeneous and homogeneous HMM to WGBS data. Figure 3.8 il-

lustrates the log-likelihood curves for both models, showing consistent increases as iterations

progress. While the homogeneous HMM, which assumes uniform transition probabilities,
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converges more quickly, the heterogeneous HMM achieves slightly higher log-likelihood val-

ues, reflecting its flexibility in modeling distance-related transitions.

Figure 3.8: Comparison of model fitting for heterogeneous and homogeneous HMM in WGBS
data.
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We further assessed the heterogeneous HMM’s ability to capture distance-related site-site

dependencies by examining the relationships between the dependency metrics and distance,

comparing it with the homogeneous HMM. As shown in Figure 3.9, the heterogeneous HMM

demonstrates stronger associations between these metrics and distance. For example, entropy

significantly increases with distance (r = 0.33), while mutual information, state correlation,

and the probability of the same state decrease, reflecting the expected decay in dependency

over larger distances. The homogeneous HMM, while capturing some dependency patterns,

shows weaker correlations. These results highlight the superior capability of the heteroge-

neous HMM to model distance-related site-site dependencies, offering greater flexibility and

accuracy compared to the homogeneous HMM in capturing the spatial variability inherent

in WGBS data.
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Figure 3.9: Comparison of dependency metrics for heterogeneous and homogeneous HMM
data. Scatter plots showing the relationship between dependency metrics (Entropy, Mutual
Information, State Correlation, and Probability of Same State) and genomic distance for
the heterogeneous HMM (top) and homogeneous HMM (bottom). Red lines indicate fitted
trends with correlation coefficients and p-values. The heterogeneous HMM captures stronger
distance-related patterns, while the homogeneous HMM shows weaker associations.
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Chapter 4

Bidirectional Long Short Term

Memory

The parametric model presented in chapter 3 provides a statistical framework for capturing

site-site dependencies in DNA methylation sequencing data. While simple and effective, it

relies on assumptions that can be overly restrictive in certain contexts. Specifically, the

model assumes that the true methylation pattern of a read is determined solely by initial

state and transition probabilities, with dependencies varying only as a function of genomic

distance. This assumption ignores other critical factors, such as the methylation potential of

other sites on the read, sequence context, or motif pattern, which play key roles in shaping

the methylation landscape [33]. Furthermore, the first-order Markov assumption—that each

site depends only on the immediately preceding site’s state—fails to account for long-range

and bidirectional interactions, oversimplifying the spatial dependency structure of CpG sites.

These limitations reduce the model’s capability to capture the complex dependencies pre-

sented in real-world biological data.

To bypass these limitations, we explored an alternative approach based on bidirectional

Long Short-Term Memory (BiLSTM) networks. Unlike the heterogeneous HMM, which

explicitly encodes dependencies in the parameterized transition probabilities, BiLSTM is

based on recurrent neural networks and implicitly learns sequential dependencies from the

data. This capability allows BiLSTM networks to capture both short- and long-range inter-

actions without relying on predefined, distance-based constraints, making them particularly

well-suited for the complex dependency structures characteristic of genomic and epigenomic
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datasets. Additionally, by leveraging bidirectional processing, BiLSTM can incorporate con-

textual information from both preceding and following sequence features, further enhancing

their ability to model intricate dependency patterns in genomic data.

4.1 Method introduction

4.1.1 Recurrent neural network overview

Recurrent Neural Networks (RNNs) are a class of neural networks designed for modeling

sequential data where each data point in the sequence is influenced by previous ones. They

are widely used in tasks involving time-series prediction and sequence analysis due to their

ability to capture temporal dependencies. However, standard RNNs struggle with long-range

dependencies due to the vanishing and exploding gradient problem, which limits their ability

to retain information over extended sequences.

To address these limitations, Hochreiter and Schmidhuber [34] introduced the Long Short-

Term Memory (LSTM) network, which incorporates memory cells and gating mechanisms

to effectively capture both short- and long-term dependencies. Each LSTM cell contains

three gates: the forget gate, the input gate, and the output gate (Figure 4.1). These

gates regulate the flow of information, controlling which information is retained, updated, or

discarded, thereby allowing the network to maintain relevant information over long periods.
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Figure 4.1: Long Short Term Memory (LSTM) architecture. This figure is adapted from
Wikipedia with modifications.
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Let’s denote that the cell state (ct) acts as the memory of the network, storing relevant

information as it processes the sequence at time step t. The operations within an LSTM cell

are mathematically defined as follows:

• Input gate (it): The input gate determines which new information will be added to

the cell state.

it = σ (Wixt + Uiht−1 + bi) (4.1)

c̃t = tanh (Wcxt + Ucht−1 + bc) (4.2)

Cell Candidate (c̃t): The candidate value for updating the cell state.

• Forget gate (ft): The forget gate decides what information should be retained or

discarded from the cell state.

ft = σ (Wfxt + Ufht−1 + bf ) (4.3)
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• Cell state update (ct): The cell state is updated by combining the previous cell state

and the candidate value, modulated by the forget and input gates.

ct = ft ⊙ ct−1 + it ⊙ c̃t (4.4)

• Output gate (ot): The output gate determines the output based on the updated cell

state.

ot = σ (Woxt + Uoht−1 + bo) (4.5)

ht = ot ⊙ tanh (ct) (4.6)

The hidden state (ht) is passed to the next time step.

Where:

• xt is the input at time t.

• ht−1 is the hidden state from the previous time step.

• ct−1 is the cell state from the previous time step.

• W∗, U∗, and b∗ are weight matrices and biases to be learned.

• σ is the sigmoid activation function.

• tanh is the hyperbolic tangent activation function.

• ⊙ denotes element-wise multiplication.

By incorporating these gating mechanisms and the cell state, LSTM networks effectively

preserve long-term dependencies in sequential data, making them suitable for complex se-

quence modeling tasks such as language processing, speech recognition, and genomic sequence

analysis.
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4.1.2 Bidirectional Long Short-Term Memory network

While Long Short-Term Memory (LSTM) networks effectively model sequential dependen-

cies, they process sequence information unidirectionally, typically from past to future. This

limitation can hinder tasks requiring context from both directions. Bidirectional LSTM

(BiLSTM) networks address this limitation by incorporating a second LSTM layer that pro-

cesses the input sequence in reverse order. In a BiLSTM, the forward LSTM processes the

input sequence [x1, x2, . . . , xT ], producing a sequence of hidden states {
−→
h1,
−→
h2, . . . ,

−→
hT}. Si-

multaneously, the backward LSTM processes the sequence in reverse order [xT , xT−1, . . . , x1],

producing {
←−
h1,
←−
h2, . . . ,

←−
hT}. The final hidden state at each time step is a concatenation of

the forward and backward states:

ht = [
−→
ht ,
←−
ht ]

This bidirectional structure allows BiLSTMs to capture dependencies from both preced-

ing and succeeding contexts, enabling a more comprehensive understanding of sequential

dependencies. The output of the BiLSTM at time t can be expressed as:

yt = g(Wy · ht + by)

where yt is the output at time t, Wy and by are the output weights and biases, and g is an

activation function, such as softmax or sigmoid, depending on the task.

In genomic and epigenomic applications, dependencies can span diverse scales, influenced

by cis and trans factors such as chromatin structure, sequence motifs, and regulatory ele-

ments. These dependencies are also often context-specific and bidirectional, as regulatory

sites can affect regions upstream and downstream. BiLSTMs are well-suited for model-

ing such interactions because they learn dependency structures directly from data without

relying on predefined distance-based assumptions. The neural network architecture also

supports integrating additional features, such as sequence embeddings, while effectively han-
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dling multi-dimensional features and non-linear relationships. By combining forward and

backward contexts, BiLSTMs provide a versatile framework for capturing the complex and

multidirectional interactions inherent in genomic sequences.

4.2 Model setup

In this section, we present the BiLSTM model to predict DNA methylation patterns on

sequencing read Rr. The target sequence Yr is a binary vector of length Tr, where each

element is denoted as y
(r)
t ∈ {0, 1} representing the methylation state of site t on sequence

Yr. Thus, this problem is a typical classification problem. Given the sequential nature of

the prediction target and input-out characteristics, a many-to-many BiLSTM network is

well-suited for this task.

4.2.1 Model structure

The model structure is listed as follows:

1. Input layer: The input layer accepts the feature vector x
(r)
t for each site t in Yr,

including methylation level, genomic distance, and other available features such as

genomic contexts. It also supports variable-length sequences by padding and masking.

2. Bidirectional LSTM layer:

• Processes input sequences simultaneously in both forward and backward direc-

tions to capture dependencies for both directions.

−→
h

(r)
t = LSTMforward(x

(r)
t ,
−→
h

(r)
t−1), (4.7)

←−
h

(r)
t = LSTMbackward(x

(r)
t ,
←−
h

(r)
t+1) (4.8)

53



• The hidden states from forward and backward LSTM layers are concatenated.

h
(r)
t = [

−→
h

(r)
t ;
←−
h

(r)
t ], (4.9)

3. Fully connected layer:

• Maps the concatenated hidden states to output logits and applies a sigmoid acti-

vation function to produce methylation probabilities.

o
(r)
t = σ(Wfch

(r)
t + bfc), (4.10)

where Wfc and bfc are the weights and biases of the fully connected layer, and σ

is the sigmoid activation function. The output o
(r)
t ∈ [0, 1] represents the predicted

probability of methylation.

4.2.2 Loss function design

Our goal for model training is to achieve two objectives simultaneously. First, we aim to

capture site-site dependencies, which are implicitly addressed through the use of the LSTM

structure. Second, we seek to ensure that the expected predicted states of the read pattern

align with the input methylation levels. This alignment is crucial because it addresses

the inherent constraint in data summarization, enabling the model to recover the original

methylation patterns of individual reads from the summarized site-level methylation levels.

To meet these objectives, we propose the following loss function:

1. Binary Cross-Entropy loss (BCE): To ensure that the binary predictions closely

match the observed states, we employ the cross-entropy loss as a natural choice for

state prediction.
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LBCE = − 1

Nb

Nb∑
r=1

1

Tr

Tr∑
r=1

[
y
(r)
t log(o

(r)
t ) + (1− y

(r)
t ) log(1− o

(r)
t )
]
, (4.11)

where y
(r)
t is the true binary methylation state, o

(r)
t is the predicted probability, and

Nb is the batch size.

2. Score Alignment loss (Mean Squared Error): To preserve the marginal distribu-

tion, we aim to ensure that the predicted sequence states maintain the same methyla-

tion level for each site as specified in the input features. To achieve this, we define a

loss function that encourages alignment between the methylation levels derived from

the predictions and those provided in the input.

LMSE =
1

Nb

Nb∑
r=1

1

Tr

Tr∑
t=1

(
ō
(r)
t −m

(r)
t

)2
, (4.12)

where ō
(r)
t is the average prediction over multiple stochastic predictions, and m

(r)
t is

the target methylation score.

3. Total loss:

Ltotal = αLBCE + βLMSE (4.13)

where α and β are weights balancing the two components. By default, we set α =

β = 1. By integrating these two objectives, the model is designed to balance accurate

classification and preservation of marginal methylation alignment.
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4.2.3 Model training

Data splitting

The dataset was divided into training and testing subsets using an 80/20 split to evaluate

the model’s generalization capabilities.

Training configuration

The input dimension corresponded to the size of the feature vectors at each time step: 2

for synthetic data and 32 for real WGBS data. The hidden dimension was set to 8 for

synthetic data and 32 for real data. Two LSTM layers were stacked to capture complex

temporal patterns, and a dropout rate of 0.1 was applied to mitigate overfitting. The output

dimension was 1, corresponding to predicting the methylation probability at each genomic

site. The model was trained using the Adam optimizer with a learning rate of η = 0.0001,

utilizing mini-batches of size 64.

Training procedure

The model was trained over 50 epochs. In each epoch, the following steps were performed:

1. Mini-batch processing: The training data was shuffled and divided into mini-

batches. To handle sequences of varying lengths, input sequences were padded to

match the length of the longest sequence in each mini-batch, and masks were created

to indicate valid positions within sequences for loss calculation. Within each batch, se-

quences were sorted in descending order of length to improve computational efficiency

during training.

2. Forward pass: The model processed the input sequences to generate predictions of

methylation probabilities at each genomic site.
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3. Loss computation: The custom loss function, combining Binary Cross-Entropy loss

and Mean Squared Error loss, was calculated using the model’s predictions and the

true labels.

4. Backward pass and optimization: Gradients were computed via back-propagation.

Gradient clipping was applied with a threshold of 1.0 to prevent exploding gradients,

and the model parameters were updated using the Adam optimizer.

5. Evaluation: After each epoch, the model’s performance was evaluated on the test

dataset to monitor training progress and detect potential overfitting.

Training continued until the model converged or until the predefined number of epochs

was reached.

4.3 Model prediction and evaluation

4.3.1 Prediction

To create diverse predictions while preserving the desired properties, the model incorporates

stochasticity into its outputs. The aim is to ensure that, given the same set of features,

the model generates varied predictions that align with marginal expectations and captured

dependencies. This is achieved by integrating two techniques: temperature scaling and

Gumbel noise.

• Temperature scaling: The logits is adjusted by temperature parameter τ > 0 before

applying the sigmoid function.

õ
(r)
t =

o
(r)
t

τ
, (4.14)

This technique controls the randomness of predictions: A higher τ results in more
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randomized predictions, while lower values make predictions more deterministic. by

default, the τ is set to be 1.

• Gumbel noise: Stochastic noise is added to the logits to introduce variability:

g
(r)
t = − ln

(
− ln

(
u
(r)
t

))
, u

(r)
t ∼ Uniform(0, 1), (4.15)

ô
(r)
t = õ

(r)
t + γg

(r)
t , (4.16)

where γ is a scaling parameter that determines the noise level. Finally, the probabilities

are computed using the sigmoid function:

p
(r)
t = sigmoid

(
ô
(r)
t

)
. (4.17)

4.3.2 Evaluation

We use the following criteria to evaluate the model training and its ability to preserve both

the marginal methylation level for each site and the site-site dependency.

1. Loss over iterations: Tracks the total loss (Ltotal) over training epochs to assess

convergence and overfitting in model training.

2. Marginal methylation level alignment: Compares the predicted average methy-

lation levels ō
(r)
t with the target methylation level m

(r)
t .

3. Site-site dependency preservation: Computes the autocorrelation of predicted

methylation states across sites to evaluate how well the model captures spatial depen-

dencies.
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4.4 Simulation study

We conduct simulation studies to evaluate the performance of predictive models under con-

trolled conditions.

4.4.1 Synthetic data generation

Bidirectional generative model

First, we generate binary sequences that contain site-site dependencies with specific marginal

probabilities. To achieve this, we utilized a probabilistic generative model inspired by the

one-dimensional Ising model [35]. Specifically, this model contains two primary components:

1. External field et, which biases each site t towards its target marginal probability mt:

et = ln

(
mt

1−mt

)
(4.18)

2. Interaction strength Jt, which introduces dependencies between adjacent sites, with

the interaction strength decaying as the distance between adjacent sites dt increases:

Jt =
1

1 + exp(−(w0 + w1 · dt))
(4.19)

where w0 controls the base interaction strength and w1 modulates the decay rate,

ensuring closer sites are more likely to influence each other, creating stronger coupling.

Let σt ∈ {−1, 1} be the hypo-methylation and the hyper-methylation tendency state of

site t. The joint probability of observing a state sequence σ = (σ1, . . . , σT ) on a read is

defined as

P(σ1, σ2, . . . , σT ) =
1

Z
exp

(
T∑
t=1

etσt +
T−1∑
t=1

Jt+1σtσt+1

)
(4.20)
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where Z is the normalization constant (partition function). In this distribution, the external

field et anchors each site’s probability to its marginal mt, while the interaction terms Jt

modulate correlations between neighboring sites based on distance. By balancing the contri-

butions of the external field and the interaction terms to ensure the former term dominates

the probability, the model can effectively capture individual site probabilities and spatial

dependencies from both directions (Bidirectional generative model).

Sequence generation using Gibbs sampling

To sample a sequence from the joint distribution, we employed Gibbs sampling to iteratively

update the state of each site. Specifically, the Gibbs sampling process calculates the condi-

tional probability of each site given all other sites. For each site t, the total field µt acting

on it is computed by combining the external field and interactions with neighboring sites:

µt = et + Jt · σt−1 · I(t > 1) + Jt+1 · σt+1 · I(t < T ), (4.21)

where I(·) is an indicator function ensuring valid boundary conditions. The state σt is

then updated by

σt =


1 with probability 1

1+exp(−µt)

−1 otherwise

(4.22)

By iteratively updating each site over multiple iterations, the sequence converges to a

stationary distribution that balances external field and interaction terms. This approach

offers a controlled and flexible framework for generating synthetic binary data that preserves

the specified marginal probabilities while reflecting spatial dependencies between sites. The

full sequence generation procedure is detailed in Algorithm 5.
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Algorithm 5 Bidirectional generative model via Gibbs Sampling

Require:

1: M = (m1, . . . ,mT ) ∈ [0, 1]T : Marginal probabilities for T sites;

2: D = (d1, . . . , dT ) ∈ NT : Distances of adjacent sites, with d1 set to be 0;

3: n iter: Number of Gibbs sampling iterations;

4: w0, w1: Interaction strength parameters.

Ensure: : the generated binary sequence Y = (y1, . . . , yT ) ∈ {0, 1}T

5: Compute external field: et = log
(

mt

1−mt

)
for t = 1, . . . , T

6: Compute interaction strengths: Jt =
1

1+exp(−(w0+w1·dt)) for t = 1, . . . , T

7: Initialize σ = (σ1, . . . , σT ) ∈ {−1, 1}T randomly

8: for iter = 1, . . . , n iter do

9: for t = 1, . . . , T do

10: Compute total field:

µt = et + Jt · σt−1 · I(t > 1) + Jt+1 · σt+1 · I(t < T )

11: Update state:

σt =


1 with probability 1

1+exp(−µt)
,

−1 otherwise.

12: end for

13: end for

14: Convert σ to Y : yt =
σt+1
2

for all t = 1, . . . , T

15: return Y
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Simulation validation

To validate that the synthetic data has matched marginal probability and contains spatial

dependencies, we generated 100 synthetic sequences, each consisting of 100 sites. Distances

between adjacent sites were sampled from a uniform distribution between 1 and 200, while

methylation levels were drawn from a uniform distribution between 0.1 and 0.9. For the

bidirectional generative model, the interaction strength weights were set to w0 = 5 and

w1 = −0.05, and the number of Gibbs sampling iterations (n iter) was set to 100. We

also simulated sequences using the methylation level based on the independent Bernoulli

model for comparison. Both models were evaluated for their ability to preserve the marginal

distribution (methylation level estimates) and capture site-site dependencies in the synthetic

sequences.

Figure 4.2 demonstrates the key differences between these two data generation models.

Panel A shows both models accurately preserve the marginal methylation levels, with high

correlations between prediction average and true levels (r = 0.98 for the Bernoulli model

and r = 0.93 for the bidirectional model). Panel B evaluates site-site dependencies, showing

the probability of shared states as a function of distance by binning the distances. The

Bernoulli model exhibits no significant dependency (r = −0.41, p = 0.07), while the bidi-

rectional model captures a clear, negative correlation (r = −0.96, p = 2.27× 10−11). These

results validate the bidirectional generative model’s ability to generate sequences with spatial

dependencies with matched marginal distributions.
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Figure 4.2: Comparison of two synthetic data generation models. Both models can generate
sequences that have average methylation states match the marginal distribution, however,
only bidirectional generative model can introduce spatial dependency into the synthetic data.

A

B

4.4.2 Model performance evaluation

Loss curve over iteration

We trained and evaluated the BiLSTM model using a synthetic dataset of 10,000 sequences

generated by the bidirectional generative model, with methylation levels sampled in a manner

consistent with chapter 3. Of these, 8,000 sequences were used for training, and 2,000 were

reserved for testing. The training and testing loss curves, shown in Figure 4.3, indicate a

smooth convergence over 50 epochs. Both the training and test losses decrease rapidly in the
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initial epochs, followed by a gradual plateau and stabilization of around 0.4, suggesting that

the model successfully learns the underlying data patterns. The close alignment between the

training and test loss further suggests good model generalization.

Figure 4.3: Training and test loss convergence of the BiLSTM model on synthetic data.
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Marginal distribution preservation

To demonstrate that the BiLSTM effectively preserves the marginal distribution, we com-

pared the average predicted methylation states with the true methylation levels (Figure 4.4).

The BiLSTM achieved a strong correlation (r = 0.91) and a low mean absolute error (MAE

= 0.137). For comparison, we evaluated other models. The heterogeneous HMM (r = 0.34,

MAE = 0.280) and homogeneous HMM (r = 0.35, MAE = 0.280) performed significantly

worse in capturing the marginal distribution. Importantly, these models failed to produce

a bi-modal distribution of marginal methylation levels, as shown in the true methylation

levels. This limitation arises because they rely solely on the initial methylation state in their

models, which restricts their ability to capture the full distribution. While the Bernoulli

model achieved the best correlation (r = 1.00) and the lowest error (MAE = 0.025), it does
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not model dependencies between sites, which will be displayed in the next section.

Figure 4.4: Evaluation of marginal distribution preservation across models on synthetic data.

Site-site dependency capture

The ability to capture site-site dependency was evaluated by examining the probability of

adjacent sites sharing the same state as a function of distance, analyzed within binned win-

dows. The BiLSTM demonstrated strong performance, achieving a correlation of r = −0.92,

closely aligning with the synthetic data’s true correlation (r = −0.95), thereby effectively

modeling spatial dependencies in methylation levels.

Among the comparison models, the heterogeneous HMM performed comparably well

(r = −0.97), reflecting its ability to account for distance-dependent transitions. In contrast,

the homogeneous HMM (r = 0.04) and the Bernoulli model (r = −0.06) failed to capture

meaningful dependencies. This lack of correlation arises from two key factors: (1) methy-

lation levels within the window bins are not intrinsically correlated, and (2) neither model

successfully captures the relationship between distance and site similarity. Specifically, the

homogeneous HMM assumes uniform transition probabilities irrespective of distance, while

the Bernoulli model treats sites as entirely independent, disregarding spatial relationships.

As a result, neither model reproduces the correlation patterns inherent to the data. No-

tably, the Bernoulli model also exhibited the lowest probability of adjacent sites sharing the

same state. This outcome stems from its independence assumption, which underestimates

correlations and leads to a more dispersed state distribution.
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Figure 4.5: Evaluation of site-site dependency capturing across models on synthetic data.
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Collectively, the simulation demonstrates that the BiLSTM model strikes a balance be-

tween marginal distribution preservation and site-site dependency capturing, outperforming

HMM-based approaches in preserving the marginal distribution and competing closely with

the heterogeneous HMM in capturing spatial dependencies. Although the Bernoulli model

achieves near-perfect marginal accuracy, its inability to incorporate dependencies limits its

suitability for data with spatial relationships.

4.5 Application to WGBS data

To extend the model evaluation on the real whole-genome bisulfite sequencing (WGBS)

data, we applied it to predict methylation patterns at individual CpG sites. Each site

was represented by a 32-dimensional feature vector designed to comprehensively incorporate

methylation, spatial, and sequence-context information. The features included:

• Methylation Level: Summarized methylation status of each CpG site based on sequenc-

ing reads.

• Genomic Distance: The number of base pairs between consecutive CpG sites, pro-

viding spatial context to account for physical proximity and its influence on site-site

dependency.

• Nucleotide Identity: The base at the current position, encoded as 0 for all cytosines

(the focus of our analysis).
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• Sequence Context: The cytosine context (CG, CHG, or CHH), capturing sequence-level

variations known to influence methylation patterns.

• Flanking Sequence: One-hot encoded representations of the three nucleotides upstream

and downstream (forming a 7-mer) to represent the local genomic environment.

This feature set effectively integrates key biological and spatial characteristics to model

dependencies in methylation patterns.

Loss curve over iteration

Following model training, the loss curve for the BiLSTM model trained on WGBS data

demonstrates smooth convergence over 50 epochs (Figure 4.6). Both training and test losses

decrease rapidly during the initial epochs and stabilize in the following epochs, reflecting the

model’s effective learning of WGBS data patterns. The close alignment between training and

test losses further underscores the model’s strong generalization to unseen data, indicating

minimal overfitting.

Figure 4.6: Training and test loss convergence of the BiLSTM model on WGBS data.
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Marginal distribution preservation

The preservation of the marginal methylation distribution in WGBS data was evaluated by

comparing predicted methylation levels to true methylation levels across models (Figure 4.7).

The BiLSTM achieved a high correlation (r = 0.98) and a low mean absolute error (MAE

= 0.075), demonstrating its ability to balance accuracy with dependency modeling. In

comparison, the heterogeneous HMM (r = 0.88, MAE = 0.156) and homogeneous HMM

(r = 0.86, MAE = 0.166) exhibited lower performance in capturing the marginal distribution,

likely due to their limited utilization of methylation levels in the modeling process. Lastly,

the Bernoulli model achieved perfect correlation (r = 1.00) and the lowest MAE (0.018),

reflecting its precise preservation of marginal probabilities, albeit without accounting for

dependencies.

Figure 4.7: Evaluation of marginal distribution preservation across models on WGBS data.

Site-site dependency capture

Site-site dependencies were evaluated by examining the probability of adjacent sites sharing

the same state as a function of distance (Figure 4.8). The synthetic WGBS data exhibits a

strong negative correlation (r = −0.58), which the BiLSTM closely replicates (r = −0.55),

demonstrating its ability to capture spatial dependencies. Similarly, the heterogeneous HMM

performs well in modeling this relationship (r = −0.57). In contrast, the homogeneous

HMM (r = −0.30) fails to accurately capture this dependency. The Bernoulli model, with

a correlation of −0.65, likely reflects the coupling of methylation levels within the window
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bin. However, its correlation and regression slope deviate from those of the real WGBS

data, indicating that it does not intrinsically capture the site-site dependency. Collectively,

these results highlight the BiLSTM’s effectiveness in modeling spatial dependencies while

preserving marginal accuracy on the real WGBS data.

Figure 4.8: Evaluation of site-site dependency capturing across models on WGBS data.
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Chapter 5

Conclusion

5.1 Summary

DNA methylation patterns exhibit complex dependencies between adjacent sites, influenced

by factors such as genomic distance, chromatin structure, and enzymatic activity. Conven-

tional bisulfite sequencing data analysis often ignores these site-site dependencies, limiting

their potential in mechanistic studies and clinical applications. This thesis explored two

complementary methodologies for modeling the site-site dependencies: a statistical model-

ing approach using heterogeneous Hidden Markov Models (HMM), and a machine learning

approach employing Bidirectional Long Short-Term Memory (BiLSTM) networks.

In chapter 3, we introduced the heterogeneous HMM, an extension of the classical homo-

geneous HMM framework that incorporates genomic distance into transition probabilities.

This approach reflects the biological intuition that adjacent CpG sites exhibit stronger de-

pendencies due to their similar thermodynamic microenvironment. By explicitly modeling

the dependency structure as a function of the genomic distance between adjacent sites,

we derived a parameter estimation procedure utilizing the Expectation-Maximization (EM)

algorithm. Using synthetic data with site-site dependencies, we demonstrated that hetero-

geneous HMM has superior performance in model fitting, parameter estimation accuracy,

and capturing distance-related dependency patterns compared to homogeneous HMM, at

a cost of higher computational demand. When applied to real WGBS data, the heteroge-

neous HMM also outperformed the homogeneous HMM in both data fitting and dependency

preservation, effectively capturing the diminishing dependency as genomic distance increases.
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This model thus provides a more accurate representation of methylation patterns than its

homogeneous counterpart.

While effective in modeling distance-dependent methylation patterns, the heterogeneous

HMM’s reliance on a simplified parametric dependency structure and first-order Marko-

vian assumption limits its ability to capture complex and long-range dependencies. To

address these challenges, chapter 4 introduces a deep learning approach using the Bidi-

rectional Long Short-Term Memory (BiLSTM) network. This model leverages recurrent

neural network architecture to implicitly learn sequential dependencies from methylation

data, considering both forward and backward directions. By incorporating a rich set of

features—including methylation levels, genomic distances, and other available features such

as sequence context embeddings—the BiLSTM accurately matches marginal methylation

probabilities while effectively preserving site-site dependencies. Simulation studies and ap-

plications to WGBS data demonstrate that the BiLSTM outperforms both homogeneous and

heterogeneous HMMs in aligning with marginal methylation levels. While the independent

Bernoulli model excels in preserving marginal distributions, the BiLSTM’s strength lies in its

ability to capture intricate site-site dependencies. This deep learning approach thus provides

a powerful and flexible alternative, extending beyond the constraints of parametric models.

Together, these complementary approaches underscore the potential of employing statis-

tical modeling and machine learning to tackle the complexities of DNA methylation data.

The heterogeneous HMM offers interpretability and precision for modeling distance-related

dependencies. On the other hand, the BiLSTM network introduces the flexibility and ver-

satility to integrate diverse features and capture intricate patterns. Both approaches can

advance our ability to characterize the methylation pattern dynamics observed in real-world

data.
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5.2 Future directions

Despite these advancements, several improvements and extensions can be achieved to en-

hance the models further and broaden their applicability.

1. Extending the heterogeneous HMM From a modeling perspective, the current het-

erogeneous HMM assumes that the entire methylation pattern is determined solely by the

initial probability (at the first site) and the genomic distance between sites. This assumption

can be extended to incorporate the methylation levels of all sites as covariates, enabling a

more nuanced understanding of site-site interactions and enhancing the model’s ability to

capture true dependencies arising from genomic distances. Additionally, recent studies have

demonstrated the utility of prior information in enhancing the modeling of complex depen-

dencies [36]. For the heterogeneous HMM, priors derived from external datasets—such as

pre-estimated distributions of transition probabilities or emission parameters— can regular-

ize parameter estimation. This approach may facilitate faster convergence and yield more

robust results, particularly in sparse or noisy data scenarios.

On the computational side, scalability remains a significant challenge when handling

large datasets, such as the full WGBS data with hundreds of millions of observations. Dis-

tributed computing can address this challenge by parallelizing workloads across multiple

processors or nodes, reducing runtime and improving scalability. Additionally, frameworks

like Auto-Encoding Variational Bayes (AEVB)[37] offer a solution by leveraging stochastic

optimization and modern GPU hardware acceleration to enable faster and more efficient

inference [38] . Together, these strategies can enhance computational efficiency and make

the model more practical for high-throughput applications.

2. Enhancing Neural Network frameworks The BiLSTM framework focuses on pre-

dicting sequences that align with observed marginal distributions while introducing site-site

dependencies. While this thesis did not focus on exploring the factors contributing to methy-
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lation concordance, future work could incorporate explainable machine learning techniques

to identify key features driving such dependencies. This approach would provide valuable

insights into the biological mechanisms underlying DNA methylation, enhancing our under-

standing of the factors that regulate its patterns and dynamics.

Additionally, we recognize the potential of other advanced generative models for site-site

dependency modeling. Transformer architectures [39], with their attention mechanisms, are

well-suited for capturing complex dependencies across sites. Diffusion models [40], renowned

for generating realistic data, present another promising avenue for simulating realistic methy-

lation patterns while preserving marginal distributions and site-site dependencies. Exploring

these frameworks could significantly enhance the scope and precision of methylation pattern

analysis, paving the way for more advanced applications and discoveries.

3. Applications in genomic and epigenomic analysis Future work should also focus

on extending these models to broader applications in genomic and epigenomic research. The

presence of site-site dependencies underscores the potential to borrow information across

sites, enabling tasks such as missing value imputation in sparse datasets, including single-

cell methylation sequencing, where leveraging local dependencies can improve data quality

and enhance downstream analyses. Additionally, incorporating dependency structures could

refine the detection of differentially methylated regions (DMRs), increasing statistical power

and precision. However, to ensure the reliability of these applications, it is critical to prioritize

extending the models to more diverse datasets to validate their generalizability. Without

thorough testing, biases from the training data could propagate during tasks like imputation,

compromising the integrity of results. Addressing these challenges will expand the practical

applications of these models and strengthen the statistical rigor in epigenomic analyses.

In summary, this thesis introduced two novel methodologies for modeling site-site depen-

dencies in DNA methylation data using statistical and machine-learning approaches. The

heterogeneous HMM provides an interpretable framework for capturing distance-dependent
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dependencies, while the BiLSTM offers flexibility to integrate diverse features and model

complex patterns. Together, these methods enhance our ability to characterize methyla-

tion dynamics and support practical applications in epigenomic research, such as realistic

synthetic data generation and missing value imputation. Future work can build on these ap-

proaches by addressing current limitations and extending their application to new domains,

paving the way for deeper biological insights and translational advances in epigenomics.
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