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ARTICLE

Selenide-catalyzed enantioselective synthesis of
trifluoromethylthiolated tetrahydronaphthalenes by
merging desymmetrization and
trifluoromethylthiolation
Jie Luo1, Qingxiang Cao1, Xiaohui Cao1 & Xiaodan Zhao 1

Trifluoromethylthiolated molecules are an important class of biologically active compounds

and potential drug candidates. Because of the lack of efficient synthetic methods, catalytic

enantioselective construction of these molecules is rare and remains a challenge. To expand

this field, we herein disclose a bifunctional selenide-catalyzed approach for the synthesis of

various chiral trifluoromethylthiolated tetrahydronaphthalenes bearing an all-carbon qua-

ternary stereocenter with gem-diaryl-tethered alkenes and alkynes by merging desymme-

trization and trifluoromethylthiolation strategy. The products are obtained in high yields with

excellent enantio- and diastereo-selectivities. This method can be applied to the desymme-

trization and sulfenylation of diols as well. Computational studies reveal that selenide can

activate the electrophilic reagent better than sulfide, confirming the higher efficiency of

selenide catalysis in these reactions. On the basis of the theoretical calculations, an acid-

derived anion-binding interaction is suggested to exist in the whole pathway and accounts for

the observed high selectivities.
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In recent years, many efforts have been devoted to the incor-
poration of fluorine atoms or fluorine-containing groups such
as trifluoromethyl (CF3), trifluoromethoxy (CF3O), and tri-

fluoromethanesulfenyl (CF3S) ones into the parent molecules for
various purposes because of the fluorine effect1–6. Among these
endeavors, strategic synthesis of CF3S molecules has been paid
special attention owing to the strong electron-withdrawing effect
and extremely high lipophilicity value (πR = 1.44) of CF3S group5–
12. However, little success has been achieved on enantioselective
trifluoromethylthiolation until now, although stereogenic CF3S
molecules warrant further studies considering the importance of
chiral centers in medicine13–20. Thus, developing new methods to
create versatile chiral CF3S molecules, especially those with an all-
carbon quaternary stereocenter through a novel and enantiose-
lective reaction mode, is highly desirable.

Catalytic enantioselective desymmetrization is an attractive
strategy for the construction of chiral all-carbon quaternary ste-
reocenters by the conversion of prochiral quaternary carbon
centers21–23. Using this strategy, numerous valuable, potentially
bioactive molecules having a chiral all-carbon quaternary center
can be quickly accessed from different functionlized starting
materials24–43. In particular, olefinic or alkynyl carboxylic
acids33,34, alcohols35–39, and amines40–43 were frequently
employed as the substrates to undergo enantioselective desym-
metrization and cyclization to generate heterocycles by metal- or
organocatalysis (Fig. 1a). In these transformations, the tethered
nucleophile played an important role that it could bind a catalyst
to guarantee an effective attack toward the multiple bond, which
led to the formation of chiral products with high enantioselec-
tivities. In contrast, enantioselective desymmetrization involving
the attack of aryl group toward a multiple bond that results in the
formation of multisubstituted tetrahydronaphthalene derivatives,
an important class of bioactive compounds44–46, has been far less
explored possibly because of the lack of the appropriate interac-
tion between the aryl moiety and catalyst47–49. Only a few rele-
vant examples have been reported by Chemler who utilized
amine- or hydroxy-tethered alkenes for carboamination and
etherification through a copper-catalyzed radical pathway
(Fig. 1b) 50–53.

Continuing our interest in Lewis basic selenium54–62-catalyzed
trifluoromethylthiolation19,20,63–65, we intended to produce chiral
CF3S molecules with an all-carbon quaternary stereocenter
through an enantioselective, electrophilic desymmetrization, and
trifluoromethylthiolation mode. We envisioned that when gem-
diaryl-tethered alkenes were employed as the substrates, the aryl
group on substrate could act as a nucleophile to attack chiral
selenide-captured trifluoromethylthiiranium moiety to directly
afford chiral CF3S tetrahydronaphthalenes (Fig. 1c). To cope with

the main difficulty in this transformation, a proper chiral catalyst
is essential that can control the attacking environment of the aryl
group and thus induce the enantioselectivity of multiprochiral
centers. Herein, we report our effort that gem-diaryl-tethered
alkenes can undergo enantioselective desymmetrization
and difunctionalization to efficiently afford CF3S-
tetrahydronaphthalene derivatives with bifunctional selenide
catalyst. The generated products contain one chiral quaternary
carbon center and other two stereocenters. The developed
method can be applied to enantioselective desymmetrization and
sulfenylation of diols as well.

Results
Initial Attempts and Optimization of Reaction Conditions. We
began our study of the electrophilic desymmetrization with 2,2-
diphenyl olefinic benzamide 1a as the model substrate. It could be
easily synthesized from diphenylacetonitrile, and possesses two
phenyl groups as a nucleophile and an extra benzamide group. To
test the desymmetrization of 1a, highly reactive electrophilic
(PhSO2)2NSCF3 as the CF3S source and bifunctional catalyst C1
based on indane scaffold were utilized (Table 1). Based on our
former observations20, selenide C1 with a triflic amide group was
quite efficient for the trifluoromethylthiolation with the aid of
acid. Pleasingly, at room temperature, the corresponding product
2a was smoothly formed rather than amination product from
benzamide group in 94% nuclear magnetic resonance (NMR)
yield with 89% ee and 5:1 dr using trimethylsilyl tri-
fluoromethylsulfonate (TMSOTf) as the acid. Lowering the
reaction temperature to −78 °C could quickly improve the
enantioselectivity to 97% ee with unchanged diastereoselectivity
(Table 1, entry 2). It is noted that sulfide catalyst C2 was not
effective for this transformation at all under the similar condi-
tions (Table 1, entry 3). To improve the diastereoselectivity of 2a,
various aryl selenides based on C1 were tested for the reaction.
While para-substituted phenyl group and meta-substituted phe-
nyl group on the selenide had little influence, ortho-substituent
on the phenyl ring largely enhanced the selectivity (Table 1,
entries 5–8). To our delight, catalyst C7 bearing both ortho-
methyl and methoxy groups was highly efficient to afford 2a in
99% yield with 99% ee and 50:1 dr. Using the mixed solvents of
CH2Cl2 and (CH2Cl)2, the enantioselectivity of product 2a could
be improved to> 99% (Table 1, entry 9). In addition, other acids
including both Lewis acid or BrØnsted acid gave slightly lower
enantioselectivity (Table 1, entries 10–12). It is noteworthy that
the reaction could not go to completion and the corresponding
product was formed in moderate selectivity under the optimal
conditions when the substrate derived from 1a by further
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Fig. 1 Enantioselective construction of all-carbon quaternary center-containing molecules via desymmetrization. a Known strategies for enantioselective
desymmetrization. b Desymmetrization through copper-catalyzed radical pathway. c Enantioselective desymmetrization and trifluoromethylthiolation using
aryl group as a nucleophile
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protecting nitrogen with methyl group was used (63% ee, see
Supplementary Table 3 for details).

Desymmetrization and Trifluoromethylthiolation. With the
optimal conditions in hand, we began to explore the substrate
scope (Table 2). To ensure the full consumption of starting
materials, 20 mol% of the catalyst loading was utilized for the
transformations. Various aryl substituted olefins were first tested.
All of them gave the corresponding products in good to excellent
yields with excellent enantio- and diastereoselectivities (2a-h,
74–99% yields, 98–99% ees). Moreover, modified conditions were
required for some substrates to give better yields or slightly better
enantioselectivities. For example, the reactions could not go to
completion under the optimal conditions for the formation of
2b–2d most likely because the weakly electron-withdrawing aryl
group on the double bond eroded its reactivity toward CF3S
cation. When the reaction temperature was raised to −60 °C, all
these substrates were fully converted. Besides, low catalyst loading
(10 mol%) and low concentration were appropriate for the gen-
eration of 2e and 2h to suppress the possible attack of the
electron-rich aryl group of catalyst toward the iranium ion. It was
worthy to mention that a substrate bearing ortho-methyl-sub-
stituted phenyl group still gave the desired product in excellent
yield with excellent enantioselectivity in spite of the steric hin-
drance around the double bond (2f, 94% yield, >99% ee).
Enantioselective desymmetrizaiton of alkyl-substituted olefins
was carried out under the similar conditions. Substrates bearing
methyl or phenylethyl group gave the corresponding products in
good yields with excellent ees (2i, 97% ee; 2j, 97% ee). To our
surprise, gem-dialkyl-substituted olefins could efficiently afford
the products bearing another achiral quaternary carbon center
with excellent enantioselectivities (2k, 92% ee; 2l, 97% ee),
although large steric hindrance might affect the cyclization.

Moreover, the developed method was also suitable for alkyne-
derived compounds. Olefinic products were obtained in good
yields. When phenyl-substituted substrate was utilized in the
reaction, product 2m was formed with excellent ee (95% ee). The
ethyl-substituted substrate gave 2n with a little lower ee (87%).
These products contain a double bond, which can provide an
opportunity for their further transformations. The absolute con-
figuration of products was assigned to be 1R, 3S, 4S based on the
X-ray crystallographic study of 2a.

The effect of functional groups attached to the quaternary
carbon center on substrates was investigated (Table 2). When
substrate 1o with more acidic proton was used, the reaction
proceeded efficiently to afford the carbocyclization product 2o. In
contrast, when the nitrogen of 1o was protected by methyl group,
the corresponding substrate 1o′ gave product 2o′ with lower
enantioselectivity (85% ee). It was noted that when the phenyl
group attached to the double bond on 1o was replaced by an alkyl
group, CF3S-amination product was observed along with the
formation of carbocyclization product. Free hydroxyl group on
substrate had an impact on the enantioselectivity (2p, 81% ee).
Compared to the reaction of 4-nitro-benzenesulfonamide
(NsNH)-functionalized substrate, the decrease of enantioselec-
tivity might attribute to OH-induced inappropriate H-bonding
interaction between substrate and catalyst. When the hydroxyl
group was protected by benzoyl or acyl group, the cyclization
proceeded efficiently to produce the products with excellent ees
(2q–s, 94–97% ees). It was noteworthy that the reaction of 1q was
incomplete and afforded product 2q with 96% ee at −78 °C.
Unexpectedly, when R′ group was hydrogen, the desired product
2t was still generated in 81% yield with 86% ee.

We then turned our attention to the desymmetrization with
different gem-diaryl-tethered alkenes. Substrates with para- or
ortho-substituted phenyl group at the quaternary carbon center
gave the products in high yields with >99% ees under the similar

Table 1 Screening of reaction conditions

Bz C6H5CO, Tf CF3SO2, TMSOTf Me3SiOSO2CF3, HPLC high-performance liquid chromatography, NMR nuclear magnetic resonance. Conditions: 1a (0.05mmol), (PhSO2)2NSCF3 (1.5 equiv), catalyst (20
mol%), TMSOTf (1.0 equiv), CH2Cl2 (2.0 ml), 12 h. Yield refers to NMR yield using trifluoromethylbenzene as the internal standard. The ee value was determined by HPLC analysis on a chiral stationary
phase. The dr value was determined by crude 19F NMR. *Mixed solvents of 1 ml CH2Cl2 and 1 ml (CH2Cl)2 were used. †BF3.OEt2 (1.0 equiv) as the acid. ‡TfOH (1.0 equiv) as the acid. §Tf2NH (1.0 equiv) as
the acid
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conditions (2u, 2v, and 2y). When substrates with meta-
substituted phenyl group at the quaternary carbon center were
utilized, regioisomeric products were formed because of the site
selectivity. The major isomer could be isolated with extremely
high ees (2w, >99% ee; 2x, >99% ee). Fluorene-derived alkene
underwent desymmetrization and cyclization to generate product
2z efficiently as well.

Practicability of the Developed System. To test the generality of
the developed method, alkene 3 with more flexible benzyl groups
was examined under the similar conditions (Fig. 2a). Product 4
was formed in high yield with good enantioselectivity. When this
method was applied to the desymmetrization and sulfenylation of
1a with sulfenylating reagents, no reaction occurred. This result
was unexpected since the carbosulfenylation of alkenes has been
realized by chiral selenophosphoramide catalysis66–68. Moreover,
when olefinic diols were treated with sulfenylating reagent 6 in
the presence of catalyst C7, thioproduct 7 was obtained in 67%
with 92% ee and 9:1 dr via desymmetrization (Fig. 2b). The result
shows that the developed reaction system has great potential for

electrophilic functionalization of alkenes with different electro-
philic reagents, and thus will trigger more explorations using the
similar conditions.

To further test the practical utility of the method, the reaction
was scaled up with low catalyst loading. For example, desymme-
trization of 1a (1.0 g) afforded product 2a (1.23 g) in 99% yield
with excellent enantioselectivity (>99% ee) using 2 mol% C7
(Fig. 2c). This desymmetrization reaction could run at the room
temperature, and was rapidly completed within 5 min using
catalyst C7 to give product without much erosion of the
selecticity. This result enhances the practicability of the method
out of the lab. The recycle of the catalyst was also investigated.
Alkene 1r was chosen as the substrate because of its easy
separation from the catalyst (Fig. 2d). During the recycling, the
product was obtained in high yield for each time, and its
enantioselectivity remained unchanged. After being recycled five
times, 92% catalyst was still recovered.

The functional groups on substrates not only helped to
enhance the selectivity of the reaction, but also offered us a great
opportunity to pursue further transformations of products. Some
synthetic applications of 2a are depicted in Fig. 3 and all the

Table 2 Enantioselective desymmetrization and trifluoromethylthiolation of gem-diaryl tethered alkenes/alkynes

Bz C6H5CO, Ns 4-NO2C6H4SO2, Ac, CH3CO, Tf CF3SO2, TMSOTf Me3SiOSO2CF3, TIPSOTf iPr3SiOSO2CF3. Conditions: 1 (0.10 mmol), (PhSO2)2NSCF3 (1.5 equiv), TMSOTf (1.0 equiv), CH2Cl2 (2.0 ml) +
(CH2Cl)2 (2.0 mL), −78 °C, 12 h. Yield is isolated yield. Ratio of ee was determined by HPLC analysis on a chiral stationary phase. Ratio of dr was determined by crude 19F NMR. Without note,
diastereoselectivity is >99:1. *With 50:1 diastereoselectivity. †Reaction temperature: −60 °C. ‡CH2Cl2 (4.0ml) + (CH2Cl)2 (4.0ml) as the solvent; 10mol% catalyst was used. §TMSOTf (2.0 equiv) was
added. ∫With 8:1 diastereoselectivity. ǁTIPSOTf (1.0 equiv) instead of TMSOTf. ¶BF3.OEt2 (2.0 equiv) instead of TMSOTf
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derived compounds were isolated as single isomers. First,
deprotection of benzoyl group on product 2a gave a free amine
2ab in 96% yield. The SCF3 group could be oxidized to both
SOCF3 and SO2CF3 groups by the appropriate oxidative systems.
Compounds with SO2CF3 group could be further converted69–71.
The generated 2ad easily underwent the elimination of triflic
group to form alkene 2ae with Me3SiOK. This provides a new
route for the synthesis of valuable tetrahydronaphthalene
derivatives, and shows a good potential of SCF3 group in
synthetic utilities. Interestingly, 2af was formed as a diastereoi-
somer from 2ad when MeONa was used as the base.

Furthermore, a spiroindoline derivative could be generated with
2o by an intramolecular Pd-catalyzed C–H amination. In the
above-mentioned transformations, the erosion of enantioselec-
tivity was not observed.

Computational Studies. During the reaction for the formation of
2a, a complex containing a chalcogenide-captured CF3S cation
was considered as the intermediate according to the work in
which an active species was separated and could easily undergo
the following step to afford the desired product for
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enantioselective sulfenofunctionalization of alkenes61. The for-
mation of this intermediate is the commencement of the reaction
and can be affected by the used chalcogenide catalysts. On the
basis of the experimental results in Table 1 and our previous
studies20, selenide catalysts are generally superior to the corre-
sponding sulfide ones in promoting trifluoromethylthiolation,
which reflects that selenides may activate CF3S-reagent easier to
generate the ion pair intermediate than sulfides. To figure out the
difference between sulfide and selenide catalysts, the impact of
different catalysts on the formation of chalcogenide-captured
CF3S cation was investigated. Five models with different binding
interactions were proposed and the change of Gibbs free energy
reflecting the difference between selenide and sulfide catalysts was
calculated (Fig. 4). The results of ΔG clearly showed the huge
difference caused by different catalysts. With the aid of the
additive acid, the free energy for the activation of CF3S reagent by
selenide is +0.6 kcal/mol in an exothermic process, but +9.9 kcal/
mol is needed to promote such step using sulfide catalyst (Fig. 4i
and 4ii). When TfO− anion binds to the acidic proton of the
catalyst, the energy for the formation of cationic complex is lar-
gely lowered (Fig. 4ii vs. 4iii). Furthermore, when the optimal
catalyst C7 is utilized, the activation energy of the step is lowest
when the methyl and methoxy groups are at the appropriate
positions (Fig. 4v). These computational results match experi-
mental ones, and indicate that high-energy barrier is required for
sulfide catalysis in the initial activation step and selenide is better
than sulfide in the activation of the electrophilic reagent.

Proposed Mechanism. On the basis of the above results and DFT
calculations, a possible reaction pathway is proposed (Fig. 5a).
First, selenide catalyst activates CF3S reagent in the presence of
Lewis acid to form intermediate int-I. Then, it reacts with sub-
strate 1a to afford iranium ion int-III through transition state TS-
I, after which the phenyl ring on the chain attacks the iranium ion
to form the final product 2a. The reaction is spontaneous and
exothermic according to calculating energies, which reasonably
explains why the reaction is highly efficient under the optimal
conditions. Considering the role of TfO− anion in the formation
of int-I, an anion-binding interaction with a catalyst is proposed
through the entire pathway. For substrate 1a with an NHBz
group, an additional interaction between TfO− and the NHBz
group is suggested to construct an anion bridge in the transfor-
mation based on DFT calculations. Interestingly, the proposed
anion bridge can lower the energy of the intermediates. For
example, when int-I directly binds to substrate 1a by hydrogen
bonding, the formed intermediate has a higher energy of 2.3 kcal/
mol in comparison to int-II (for details, see Supplementary
Fig. 179). Moreover, it is noteworthy that the anion-binding
interaction with the catalyst may provide a good chance for acids
to participate in the construction of the chiral environment of

reaction. Especially, the effect may be more evident when the
substrates without H-bonding donor groups are utilized. Because
of the anion-binding interaction with catalyst, the spatial hin-
drance of catalytic system is modified to further fix the absolute
configuration of transition states. This can be the reason why
products, e.g., 2q, 2r, and 2s, without H-bonding donor groups
are generated in high enantioselectivities.

When calculating the reaction pathway of 1a, it was found that
the the highest energy appeared in different transition states for
its four diastereomers. The highest energy is required for the
attack of the phenyl ring toward the iranium ion to generate
diastereomers (1R, 3S, 4S)-2a and (1R, 3R, 4R)-2a. For the
formation of the other two diastereomers, the highest energy
barrier lies in the step of the iranium ion formation (Fig. 5a). On
the basis of the Curtin-Hammett Principle72, the formation of
TS-I and TS-II involves in the enantiodetermination of chiral
centers. The energy for the formation of their possible transition
states is compared (Fig. 5b). A relative ΔΔG (5.2 kcal/mol) for TS-
I-SRR is obtained to predict the enantioselectivity of the major
product. The predicted value is 99.9%, which is close to the
experimental result (2a, > 99% ee). The energy discrepancy in
transition states mainly comes from the perturbance of interac-
tion and the distortion of catalyst and substrate (see the
distortion-interaction analysis in Supplementary Table 4). Such
two factors affect the energy of TS-II-RRR (ΔΔG = 1.4 kcal/mol)
and TS-I-SSS (ΔΔG = 3.3 kcal/mol) as well, which result in
different diastereomers of reaction (drpredicted = 37:1). Further-
more, DFT calculations for the formation of 2q without H-
bonding interaction between substrate and TfO− anion was also
conducted based on the similar model. Similar results were
obtained. By comparing the energy difference of the correspond-
ing two transition states, TS-II’-RSS and TS-I’-SRR, the
predicted enantioselectivity for the final product is 99.6% ee
which is a little higher than the experimental result of 96% ee
(ΔΔG = 3.6 kcal/mol, see Supplementary Fig. 176 for details).

Discussion
In summary, we have developed an efficient approach for enan-
tioselective desymmetrization and carbotrifluoromethylthiolation
of gem-diaryl-tethered alkenes and alkynes to form chiral tri-
fluoromethylthiolated tetrahydronaphthalenes by a bifunctional
selenide catalyst. The desired products were obtained with
excellent enantio- and diastereoselectivities. They could be further
converted under mild conditions, which provided new pathways
for the synthesis of various valuable tetrahydronaphthalene
derivatives. The developed reaction could be scaled up to gram-
scale and the catalytic system could also be used to the sulfeny-
lation and desymmetrization of diols. These facts indicate that
this method has great synthetic utility and practicality. Compu-
tational studies revealed the reason why selenide catalysis is more
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efficient than sulfide catalysis, and suggested an anion-binding
interaction in the whole pathway. This work constitutes an
additional strategy for the synthesis of chiral tri-
fluoromethylthiolated molecules, highlights the efficiency of
selenide catalysis, and is complementary to Lewis base catalysis.

Methods
Chiral Selenide-Catalyzed Desymmetrization. To a solution of olefin (0.1
mmol), (PhSO2)2N-SCF3 (59.8 mg, 0.15 mmol), and catalyst C7 (9.3 mg, 20 mol%)
in solvent (CH2Cl2 2 ml, (CH2Cl)2 2 ml) at −78 °C was added TMSOTf (18.0 µl, 0.1
mmol). The resultant mixture was stirred at −78 °C for 12 h, and then quenched
with MeOH (0.2 ml) and Et3N (0.2 ml), and concentrated in vacuo. The residue
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was purified by flash silica gel column chromatography to yield the corresponding
CF3S product.

Chiral Selenide-Catalyzed Sulfenocyclization. To a solution of olefin 5 (17.8 mg,
0.1 mmol), saccharin-S(p-Tol) (36.6 mg, 0.12 mmol) and catalyst C7 (9.3 mg, 20
mol%) in solvent (CH2Cl2 4 ml) at −78 °C was added TMSOTf (18.0 µl, 0.1 mmol).
The resultant mixture was stirred at −78 °C for 12 h, and then quenched by
saturated NaHCO3 (1 ml) and then extracted with dichloromethane (8 ml ×4). The
combined organic phases were concentrated in vacuo. The residue was purified by
flash silica gel column chromatography to yield the corresponding thioproduct 7
(67%, 92% ee, 9:1 dr).

For nuclear magnetic resonance and high-performance liquid chromatography
spectra, see Supplementary Figs 7–169.

Data Availability. The X-ray crystallographic coordinates for structures reported
in this article have been deposited at the Cambridge Crystallographic Data Centre
(CCDC), under deposition numbers CCDC 1523336, 1577179, 1532614, 1533403,
and 1540104. The data can be obtained free of charge from The Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif. Any
further relevant data are available from the authors upon reasonable request.
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