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ARTICLE

Integrating transcriptomics, metabolomics,
and GWAS helps reveal molecular mechanisms
for metabolite levels and disease risk

Xianyong Yin,1 Debraj Bose,1 Annie Kwon,1 Sarah C. Hanks,1 Anne U. Jackson,1

Heather M. Stringham,1 Ryan Welch,1 Anniina Oravilahti,2 Lilian Fernandes Silva,2 FinnGen,
Adam E. Locke,3 Christian Fuchsberger,1,4 Susan K. Service,5 Michael R. Erdos,6 Lori L. Bonnycastle,6

Johanna Kuusisto,2,7 Nathan O. Stitziel,3,8,9 Ira M. Hall,10 Jean Morrison,1 Samuli Ripatti,11,12,13

Aarno Palotie,11,12,14 Nelson B. Freimer,5 Francis S. Collins,6 Karen L. Mohlke,15 Laura J. Scott,1

Eric B. Fauman,16 Charles Burant,17 Michael Boehnke,1,18 Markku Laakso,2,18,* and Xiaoquan Wen1,18,*
Summary
Transcriptomics data have been integrated with genome-wide association studies (GWASs) to help understand disease/trait molecular

mechanisms. The utility of metabolomics, integrated with transcriptomics and disease GWASs, to understand molecular mechanisms

for metabolite levels or diseases has not been thoroughly evaluated. We performed probabilistic transcriptome-wide association and lo-

cus-level colocalization analyses to integrate transcriptomics results for 49 tissues in 706 individuals from the GTEx project, metabolo-

mics results for 1,391 plasma metabolites in 6,136 Finnish men from the METSIM study, and GWAS results for 2,861 disease traits in

260,405 Finnish individuals from the FinnGen study. We found that genetic variants that regulate metabolite levels were more likely

to influence gene expression and disease risk compared to the ones that do not. Integrating transcriptomics with metabolomics results

prioritized 397 genes for 521 metabolites, including 496 previously identified gene-metabolite pairs with strong functional connections

and suggested 33.3% of such gene-metabolite pairs shared the same causal variants with genetic associations of gene expression. Inte-

grating transcriptomics and metabolomics individually with FinnGen GWAS results identified 1,597 genes for 790 disease traits. Inte-

grating transcriptomics and metabolomics jointly with FinnGen GWAS results helped pinpoint metabolic pathways from genes to

diseases. We identified putative causal effects of UGT1A1/UGT1A4 expression on gallbladder disorders through regulating plasma

(E,E)-bilirubin levels, of SLC22A5 expression on nasal polyps and plasma carnitine levels through distinct pathways, and of LIPC expres-

sion on age-related macular degeneration through glycerophospholipid metabolic pathways. Our study highlights the power of inte-

grating multiple sets of molecular traits and GWAS results to deepen understanding of disease pathophysiology.
Introduction

Genome-wide association studies (GWASs) have identified

hundreds of thousands of genetic variants robustly associ-

ated with human diseases and traits.1 However, the under-

lying molecular mechanisms for most associations remain

unclear. Many recent studies have investigated the molecu-

lar mechanisms through integrative analysis of GWAS and

omics data.2 These integrative studies have helped prioritize

genes3 and putative causal variants4 and tissues and cell

types of action5 for GWAS associations. Most of these inte-

grative studies have used only transcriptomics data and

typically have provided few clues into disease metabolic
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pathways. The recent advent of high-throughput technol-

ogy makes large-scale metabolomics profiling feasible and

affordable,6 opening an avenue for integrating metabolo-

mics data with disease GWAS and transcriptomics data.

Metabolomics analysis comprehensively profiles small

molecules (i.e., metabolites) in biosamples. Many metabo-

lites are associated with human diseases.7 Studies have

used metabolomics data to identify disease biomarkers

and to investigate disease metabolic pathways.8 Disease

GWASs are usually carried out in much larger cohorts

with little or no transcriptomics or metabolomics data.

To help understand molecular mechanisms for disease

GWAS associations, current studies often integrate disease
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GWASs with external transcriptomics or metabolomics

data that are measured in individuals different from the

GWAS samples,3,9 but seldom have all three data types

been integrated jointly. Compared with transcriptomics,

large-scale metabolomics data have become widely avail-

able only more recently and have been integrated with dis-

ease GWASs in only a few studies.9–12 The extent to which

metabolomics data in large cohorts improve our under-

standing of disease molecular mechanisms beyond the

integration of transcriptomics and GWAS results has not

been systematically investigated.

Metabolite levels are biological readouts of age, environ-

ment, lifestyle, and the genome.13 Understanding genetic

mechanisms underlying the variation in metabolite levels

benefits the investigation of disease molecular mechanisms

when integrating metabolomics with disease GWASs.

GWASs have discovered thousands of genetic associations

(metabQTLs) with many metabolite levels.14 However, the

underlying mechanisms for many metabQTLs are un-

known. Most metabQTLs fall in non-coding genomic re-

gions but the extent towhich gene expression is responsible

for these metabQTLs has not been fully characterized. Tran-

scriptomics data have been integrated withmetabQTLs, but

integration was limited to transcriptomics data of lympho-

blastoid cell lines or to only 64 blood metabolites.15,16

Transcriptome-wide association studies (TWASs) inte-

grate GWAS and transcriptomics datasets to identify

gene-trait associations.17–21 Colocalization analysis evalu-

ates the probability that two or more traits share the

same causal variant(s).22–24 Additionally, enrichment anal-

ysis can evaluate the overall over-representation of colocal-

ized sites by assessing whether genetic variants associated

with one trait are more likely to be associated with another

trait.25–27 TWASs and colocalization analysis are statistical

methods used to integrate omics and GWAS data.

Combining TWASs and colocalization analysis increases

the positive predictive value for gene association discovery

compared to TWASs alone.15 Probabilistic TWASs

(PTWASs), which implement TWASs in an instrument var-

iable framework, facilitate the testing and estimation of

causal effects for genes.28 Compared with variant-level co-

localization analysis, locus-level colocalization increases

statistical power to identify colocalization.27

We profiled plasma metabolites in 6,136 Finnish men

from the Metabolic Syndrome in Men (METSIM) study

by using the Metabolon mass spectrometry platform. We

recently performed GWASs for 1,391 metabolites, identi-

fying 2,030 independent metabolite genetic associations

(metabQTLs) at experiment-wide significance.29 Through

statistical fine-mapping analysis and linking metabolite

biochemical features with functions for genes near the

metabQTLs, we nominated 290 genes underlying 1,427

of the 2,030 metabQTLs, comprising 1,495 gene-metabo-

lite pairs between the 290 genes and 631 metabolites.

Here, we apply state-of-the-art PTWASs and locus-level

colocalization to systematically integrate Genotype-

Tissue Expression (GTEx) transcriptomics and METSIM
1728 The American Journal of Human Genetics 109, 1727–1741, Oct
metabolomics data to improve our mechanistic under-

standing of metabQTLs and disease GWAS associations.

We investigated three interrelated scientific questions. (1)

To what extent is the genetic basis shared between gene

expression and metabolite levels? (2) Does integrating

two types of omics data (here, metabolomics and transcrip-

tomics) with disease GWASs identify gene-disease associa-

tions that were not identified in studies integrating only

one type of omics data (here metabolomics or transcrip-

tomics alone)? (3) Does integrating transcriptomics and

metabolomics data simultaneously with disease GWASs

identify disease molecular mechanisms that were not iden-

tified in studies integrating a single type of omics data? Our

study provides a strategy for integrating two types of omics

data simultaneously with GWAS results. The findings shed

metabolic insights into disease molecular mechanisms.
Material and Methods

GTEx
The GTEx project aims to build a catalog of genetic regulatory sites

and their effects on gene expression across a variety of human tis-

sues and to elucidate the molecular mechanisms of disease genetic

associations.30 GTEx determined genotypes at 46.5M variants

through genome and exome sequencing and assayed gene expres-

sion and splicing levels in 54 tissues by using RNA sequencing. Ge-

netic regulatory effects on gene expression and splicing were

investigated in expression (eQTL) and splicing (sQTL) quantitative

trait locus analysis.

For each cis-eQTL (%1megabase [Mb]),GTExanalyzed individual-

level expression and genotype data by using deterministic approxi-

mationofposteriors (DAP-g)26 tofinemapcausal variants anddistin-

guish them from their linkage disequilibrium (LD) proxies.30 DAP-g

seeks to identify all independent association signals for each cis-

eQTL. For each such signal,DAP-g computes (1) a posterior inclusion

probability (SPIP) to quantify the probability of at least one causal

variant and (2) a variant posterior inclusion probability (VPIP) to

quantify the probability that the variant is causal for the signal.

GTEx data processing, eQTL, and DAP-g fine-mapping analyses

were previously described.30 For this integrative study, we used cis-

eQTL and DAP-g fine-mapping results in all 49 tissues with 73 to

706 individuals fromGTEx version 8 (hereafter transcriptomics re-

sults). We complied with the GTEx data use agreement.
METSIM metabolomics study
METSIM is a single-site study of 10,197 Finnish men aged 45 to 74

years at baseline from Kuopio, Finland, designed to investigate risk

factors for type 2 diabetes and cardiovascular diseases.31 All

METSIM participants provided written informed consent. We per-

formed non-targeted metabolomics profiling in 6,136 randomly

selected non-diabetics by using the Metabolon DiscoveryHD4mass

spectrometry platform (Durham, North Carolina, USA) on EDTA-

plasma samples obtained afterR10 h overnight fast during baseline

visits from 2005 to 2010. The ethics committee at the University of

Eastern Finland and the institutional review board at the University

of Michigan approved the METSIMmetabolomics study.

We previously performed single-variant GWASs for 1,391metab-

olites, identifying 2,030 independent associations (metabQTLs).29

To identify the causal variants for these 2,030 associations, we
ober 6, 2022



created 1,501 genomic regions of�2Mb centered on the index var-

iants and performed fine-mapping analysis in each region by using

DAP-g.26Within the 1,501 regions, DAP-g analysis identified 1,952

signals with SPIP R 0.95.29 For this integrative study, we used

GWAS summary statistics at 16.2M genetic variants for the 1,391

metabolites and theDAP-g fine-mapping results (hereaftermetabo-

lomics results).
FinnGen study
The FinnGen study is designed to collect and analyze genome and

digital healthcare data from 500,000 Finnish participants to iden-

tify new therapeutic and diagnostic targets for diseases.32 Partici-

pants in FinnGen provided informed consent for biobank research

on the basis of the Finnish Biobank Act. Alternatively, separate

research cohorts, collected prior to when the Finnish Biobank

Act came into effect (in September 2013) and the start of

FinnGen (August 2017), were collected on the basis of study-

specific consents and later transferred to the Finnish biobanks

after approval by Fimea, the National Supervisory Authority for

Welfare and Health. Recruitment protocols followed biobank

protocols approved by Fimea. The Coordinating Ethics

Committee of the Hospital District of Helsinki and Uusimaa

(HUS) approved the FinnGen study protocol Nr HUS/990/2017.

The FinnGen study is approved by Finnish Institute for

Health and Welfare (permit numbers: THL/2031/6.02.00/2017,

THL/1101/5.05.00/2017, THL/341/6.02.00/2018, THL/2222/

6.02.00/2018, THL/283/6.02.00/2019, THL/1721/5.05.00/2019,

THL/1524/5.05.00/2020, and THL/2364/14.02/2020), Digital

and Population Data Service Agency (permit numbers:

VRK43431/2017-3, VRK/6909/2018-3, and VRK/4415/2019-3),

Social Insurance Institution (permit numbers: KELA 58/522/2017,

KELA 131/522/2018, KELA 70/522/2019, KELA 98/522/

2019, KELA 138/522/2019, KELA 2/522/2020, and KELA 16/522/

2020), and Statistics Finland (permit numbers: TK-53-1041-17

and TK-53-90-20).

FinnGen identified disease status (hereafter disease trait) with

the following Finnish national registries: Drug Purchase and

Drug Reimbursement and Digital and Population Data Services

Agency; Digital and Population Data Services Agency; Statistics

Finland; Register of Primary Health Care Visits (AVOHILMO);

Care Register for Health Care (HILMO); and Finnish Cancer Regis-

try. For each participant, these registries recorded disease-relevant

codes of the International Classification of Diseases (ICD) revi-

sions 8, 9, and 10, cancer-specific ICD-O-3, Nordic Medico-

Statistical Committee (NOMESCO) procedure, Finnish-specific

Social Insurance Institute (KELA) drug reimbursement, and

Anatomical Therapeutic Chemical (ATC). FinnGen genotyped

each participant with an Illumina or Affymetrix array, followed

by genotype imputation with the Finnish-specific Sequencing

Initiative Suomi (SISu) v3 reference panel.33

For each disease trait, a GWAS was carried out via mixed model

logistic regression in SAIGE.34 For each disease trait with an asso-

ciation at p < 10�6, FinnGen created a 3 Mb region (51.5 Mb)

around each lead variant and merged overlapping regions. They

performed statistical fine-mapping analysis within each region

by using FINEMAP v1.4_051035 and SuSiE 0.8.1.0545.36

For this integrative study, we used the GWAS summary statistics

at 16.96M genetic variants (imputation quality info score > 0.9)

and FINEMAP fine-mapping analysis results for all 2,861 disease

traits in up to 260,405 individuals from FinnGen release 6 (here-

after FinnGen disease trait GWAS results).
The American Jo
Enrichment of eQTLs in metabQTLs and enrichment of

molecular QTLs in FinnGen disease trait GWASs
We applied enrichment analysis to test for greater overlap than

expected by chance between causal genetic associations for

two traits by using the statistical procedure implemented in

fastENLOC v2.0.27 FastENLOC explicitly models the latent

causal associations (denoted by Ɣ and d) for the two traits and ac-

counts for the uncertainty of inferring unobserved Ɣ and d values

in genetic association analysis. The enrichment level is quanti-

fied by

logodds ratio ¼ log
Pr ð g ¼ 1; d ¼ 1Þ 3 Prðg ¼ 0; d ¼ 0Þ
Pr ðg ¼ 1; d ¼ 0Þ 3 Prðg ¼ 0; d ¼ 1Þ;

where each probability represents the frequency of a possible

causal association scenario. Note that log odds ratio (OR) ¼ 0 indi-

cates no enrichment and Pr(g, d) ¼ Pr(g)3Pr(d).

Tocharacterize the extent towhichmetabQTLsites aremore likely

to confer eQTL effects, we estimated the enrichment of eQTLs in

METSIM metabQTLs for each of the 49 GTEx tissues. We estimate

the enrichment level byusing thenatural logarithmodds ratio of be-

ing an eQTL in a specific tissue for a metabQTL versus a non-

metabQTL. We used a Bonferroni significance threshold of

p < 0.05/49 ¼ 1.03 10�3 to account for 49 GTEx tissues.

Similarly, to evaluate the extent to which eQTLs andmetabQTLs

influence the risk of human diseases, we estimated the enrichment

levels of molecular QTLs (i.e., eQTLs and metabQTLs) in causal

GWAS hits for the 2,861 FinnGen disease traits. We used a Bonfer-

roni significance threshold of p < 0.05/2,861 ¼ 1.7 3 10�5 to ac-

count for 2,861 disease traits.
PTWAS
To take advantage of the availability of GTEx eQTL DAP-g fine-

mapping results and identify genes associated with metabolites

and disease traits, we implemented a PTWAS for each METSIM

metabolite and FinnGen disease trait.28 PTWASs employ an instru-

ment variable framework to infer causal relationships and estimate

putative causal effects of gene expression on outcome traits (e.g.,

metabolites or disease traits). PTWASs use the signals identified

in GTEx eQTL DAP-g fine-mapping analysis as instrument vari-

ables. By using eQTL DAP-g probabilistic annotations, PTWASs

take advantage of widespread allelic heterogeneity and accounts

for LD.28 We used the PTWASs to estimate gene expression’s puta-

tive causal effects on metabolites and disease traits for each of the

corresponding eQTL DAP-g signals with SPIPR 0.5. We quantified

heterogeneity of gene expression’s putative causal effect sizes by

I2.37 We performed PTWASs in each of the 49 GTEx tissues and

limited our analysis to up to 19,988 protein-coding genes.38 Given

widespread eQTL sharing across tissues39 and pervasive pheno-

typic correlation between metabolites29 and FinnGen disease

traits,32 we followed the common practice of TWASs18 and applied

false discovery rate (FDR) < 5%, which can achieve a better trade-

off between type I and II errors,40 to claim significant gene associ-

ations. When an eQTL had R2 causal signals with SPIP R 0.5 in

the DAP-g fine-mapping analysis, we required heterogeneity

I2 < 0.15 to focus on genes with low heterogeneity of putative

causal effects across DAP-g signals.
Pairwise colocalization between GTEx eQTLs, METSIM

metabQTLs, and FinnGen disease trait GWAS loci
To identify whether pairs of eQTLs, metabQTLs, and disease trait

GWAS loci shared causal variants, we carried out pairwise Bayesian
urnal of Human Genetics 109, 1727–1741, October 6, 2022 1729



colocalization analysis by using fastENLOC v2.0.24,27 We avoided

using existing colocalization tools that allow simultaneous consid-

eration of >2 data types41,42 because certain assumptions (e.g., at

most a single causal variant in the region of interest) and the

required prior information cannot easily be justified. FinnGen

release 6 includes FINEMAP-based35 fine-mapping analysis results

of genetic variant posterior inclusion probabilities for GWAS loci

of 2,797 disease traits with at least one association at p < 10�6.

FastENLOC v2.0 allows multiple causal variants in colocalization

analysis and computes two probabilities by using these FinnGen

fine-mapping results and the DAP-g-based fine-mapping results

for GTEx eQTLs and METSIM metabQTLs.24,27 The locus-level co-

localization posterior probability (LCP) is the probability that the

same variant within the locus is causal for a pair of traits. The

variant-level colocalization posterior probability (SCP) is the prob-

ability that a specific variant is causal for both traits. We presented

colocalizations with LCPR 0.5. We used the enrichment estimate

(see enrichment of eQTLs in metabQTLs and enrichment of

molecular QTLs in FinnGen disease trait GWASs) as the prior for

Bayesian analysis in fastENLOC v2.0.24,26,27
Identification of gene-metabolite-disease trait

combinations
To leverage both transcriptomics and metabolomics results and

investigate molecular mechanisms for disease traits, we jointly

analyzed the results for the three pairwise integrative analyses

among transcriptomics, metabolomics, and disease trait GWAS re-

sults. In step 1, we identified gene-disease trait pairs with PTWAS

FDR< 5% and colocalization LCPR 0.5 in the integrative analysis

of GTEx transcriptomics results and FinnGen disease trait GWASs.

In step 2, we identified metabolite-disease trait pairs with colocal-

ization LCP R 0.5 in the integrative analysis of METSIM metabo-

lomics results and FinnGen disease trait GWASs. In step 3, we built

gene-metabolite-disease trait combinations bymatching the gene-

disease trait pairs identified in step 1 and the metabolite-disease

trait pairs identified in step 2 by disease trait. Last, we required

the resulting gene-metabolite-disease trait combinations to have

PTWAS for metabolites FDR< 5% and eQTL-metabQTL colocaliza-

tion LCP R 0.5.
Mendelian randomization
We used PTWASs to infer the putative causal effects of gene expres-

sion on both metabolites and disease traits (see PTWAS). To com-

plete the inference of causal relationships between gene expres-

sion, metabolite levels, and disease traits, we also examined the

putative causal effects of METSIM plasma metabolite levels on

FinnGen disease traits or vice versa by applying four two-sample

Mendelian randomization methods: inverse variance weighted,43

weighted median,44 Egger regression,45 and MR-PRESSO.46 These

methods make different assumptions and use different strategies

to account for horizontal pleiotropy to control false positive infer-

ence of causality. For each exposure, we identified nearly indepen-

dent genetic instrument variables (LD r2 < 0.1, distance R 500 ki-

lobases [kb]) with single-variant association p < 10�6. We

considered findings significant if they had consistent effect direc-

tion and p < 0.05 for all four Mendelian randomization methods.

We present MR-PRESSO effect sizes and p values in the main text.

To account for the possible confounding effects of HDL-C,

LDL-C, and triglycerides on the putative causal effects of

ten plasma metabolites relevant to glycerophospholipid meta-

bolic pathways—i.e., 1-palmitoyl-GPE (16:0), 1-stearoyl-2-oleoyl-
1730 The American Journal of Human Genetics 109, 1727–1741, Oct
GPE (18:0/18:1), 1-palmitoyl-2-dihomo-linolenoyl-GPE (16:0/

20:3), 1-stearoyl-2-docosahexaenoyl-GPE (18:0/22:6), 1-oleoyl-2-

arachidonoyl-GPE (18:1/20:4), 1-palmitoyl-2-oleoyl-GPE (16:0/

18:1), 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4), 1-palmitoyl-2-

arachidonoyl-GPE (16:0/20:4), 1-oleoyl-2-docosahexaenoyl-GPE

(18:1/22:6), and 1-palmitoyl-2-docosahexaenoyl-GPE (16:0/

22:6)—on age-related macular degeneration, we repeated GWASs

for each metabolite after controlling for the effects of HDL-C,

LDL-C, and triglyceride levels inMETSIM and reran theMendelian

randomization analysis by using the resulting metabolite GWAS

summary statistics.
Results

We sought to elucidate disease molecular mechanisms by

integrating transcriptomics and metabolomics results

with disease GWAS results. To improve the mechanistic

understanding of metabQTLs before integrating METSIM

metabolomics with FinnGen disease trait GWAS results,

we integrated GTEx transcriptomics with METSIM metab-

olomics results in PTWASs and colocalization analysis

(Figure 1A). To identify gene-disease associations, we inte-

grated GTEx transcriptomics and METSIM metabolomics

separately with FinnGen disease trait GWAS results in

PTWASs and colocalization analysis (Figure 1B). We

showed that jointly analyzing the results for the aforemen-

tioned three sets of pairwise integrative analyses improved

the understanding of disease molecular mechanisms

(Figure 1C).
Relationship between eQTLs and metabQTLs

MetabQTL sites also likely confer eQTL effects

To evaluate the extent to whichmetabQTL sites also confer

eQTL effects, we estimated the enrichment of GTEx eQTLs

from 49 tissues in METSIM metabQTLs relative to non-

metabQTLs as quantified by log odds ratios (see material

and methods). We found eQTLs in all 49 tissues were

significantly enriched in plasma metabQTLs (enrichment

median ¼ 5.12; p < 0.05/49 ¼ 1.0 3 10�3 after Bonferroni

correction for the 49 tissues; Figure 2A and S1). This most

likely reflects eQTL sharing39 and the nature of plasma

metabolite levels as metabolite aggregate concentrations

across tissues.47 Of the 49 tissues, liver showed the stron-

gest enrichment (enrichment ¼ 5.98; 95% confidence in-

terval: 5.74–6.21; p ¼ 2.6 3 10�532), consistent with the

liver’s central role in regulating plasma metabolite levels.

Impact of gene expression on plasma metabolite levels

To identify the impact of gene expression on plasma

metabolite levels, we performed PTWASs28 for the 1,391

metabolites assayed in METSIM.29 For gene-metabolite

pairs identified in PTWASs, we subsequently performed a

Bayesian locus-level colocalization analysis27 to evaluate

whether the same causal variants were shared between

their genetic associations.

PTWASs identified 3,914 genes associated with 1,274 of

the 1,391 metabolites (FDR < 0.05) and estimated the

putative causal effects of gene expression on plasma
ober 6, 2022



Figure 1. Study design
(A) Integrative analysis of GTEx transcriptomics andMETSIMmetabolomics results helps identify the underlyingmolecularmechanisms
for metabQTLs by using PTWASs and colocalization analyses.
(B) Integrative analyses of one type of omics (transcriptomics or metabolomics) and FinnGen disease trait GWAS results helps identify
gene-disease associations by using PTWASs and colocalization analyses.
(C) Joint integrative analysis of transcriptomics, metabolomics, and disease trait GWAS results by intersecting three sets of pairwise inte-
grative analysis results improves understanding of disease molecular mechanisms compared with integrative analysis of a single type of
omics results. LCP, locus-level colocalization posterior probability.
metabolite levels (Figure S2 and Table S1). PTWASs identi-

fied 1 to 83 genes per metabolite (mean ¼ 9.9, median ¼
7.0), for a total of 12,575 gene-metabolite pairs. For 1,354

of the 12,575 gene-metabolite pairs (between 397 genes

and 521 metabolites), colocalization analysis suggested

that the causal variants for gene expression andmetabolite

level are the same (LCP R 0.5; Table S2).

Sensitivity and precision of metabQTL gene nominations

through integrating transcriptomics results with metabQTLs

For 1,427of the 2,030metabQTLs inMETSIM,wepreviously

identified 1,495 gene-metabolite pairs (between 290 genes

and 631 metabolites) by matching metabolite biochemical

activities and nearby gene functions of metabQTLs.29 To

evaluate the ability of our PTWAS and colocalization results

to identify genes underlying metabQTLs, we used these

1,495 gene-metabolite pairs as ground truths. Of these

1,495 pairs, 956 (63.9%; between 216 genes and 535metab-

olites) achieved significant association in PTWASs, consis-

tent with a previous study showing that TWASs have 67%

sensitivity for identifying true genes for metabQTLs.15 Of

the 956 pairs, 496 (between 125 genes and 355metabolites)
The American Jo
also showedsignificantcolocalization (LCPR0.5;FigureS3).

Combining PTWASs and colocalization analysis increased

the precision for assigning genes for metabQTLs to

36.6% ¼ 496/1,354 from 7.6% ¼ 956/12,575 when using

TWASs alone.

Our results suggest strong connections between gene

expression and metabolite abundance. Many metabQTLs

most likely share causal variantswith eQTLs. For the remain-

ing 539 (1,495 � 956) gene-metabolite pairs we previously

nominated29butPTWASs failed to identify,possible explana-

tions include insufficient statistical power in PTWASs or a

mechanism besides gene regulation underlying the corre-

sponding metabQTL. For example, our GWAS identified an

association at SLC22A16 deleterious missense variant

p.Met409Thr (rs12210538 [c.1226A>G]; b ¼ �0.44, p ¼
9.3 3 10�59) for arachidonoylcarnitine level in METSIM

and nominated SLC22A16 as the underlying gene.29 The

PTWAS failed to identify the causal role of SLC22A16 expres-

sion for arachidonoylcarnitine. GTEx showed p.Met409Thr

affects SLC22A16 alternative splicing (b ¼ �0.39, p ¼
2.7 3 10�5) rather than total expression,30 which might
urnal of Human Genetics 109, 1727–1741, October 6, 2022 1731



Figure 2. Enrichment levels of GTEx eQTLs inMETSIMmetabQTLs across 49 tissues and eQTLs andmetabQTLs in GWASs for FinnGen
disease traits
(A) Enrichment levels (natural logarithm of odds ratio 5 standard error) of GTEx eQTLs in METSIM metabQTLs across 49 tissues. The
sample size for eQTL analysis in each of the 49 tissues is included in parentheses.
(B) Enrichment levels of GTEx eQTLs (yellow) andMETSIMmetabQTLs (blue) in GWASs for all 2,861 FinnGen disease traits with overlap
(teal).
(C) Enrichment levels of GTEx eQTLs andMETSIMmetabQTLs in GWASs for the 246 FinnGen disease traits with significant enrichment
of both eQTLs and metabQTLs. lnOR, natural logarithm of odds ratio.
explain thenonsignificanceof SLC22A16 inPTWASs thatdid

not consider sQTLs.

Complementary metabQTL gene nominations through inte-

grating transcriptomics results with metabQTLs

Integrating transcriptomics results with metabQTLs

helps nominate genes underlying metabQTLs and facili-

tates gene effect estimation for metabolite levels.

In contrast to the 1,427 metabQTLs for which we previ-

ously nominated 290 genes through linking metabolite

biochemical activities with metabQTLs nearby genes’

functions or statistical fine-mapping,29 PTWASs and

colocalization analysis together nominated genes for
1732 The American Journal of Human Genetics 109, 1727–1741, Oct
1,059 metabQTLs including 283 without prior gene

nominations (Figure S4).

Our METSIM metabolomics GWAS previously identified

an association with pentose acid at rs705379 (b ¼ 0.13,

p ¼ 2.9 3 10�11).29 Because pentose acid, as measured in

the Metabolon panel, reflects the combined levels of mul-

tiple related metabolites, our knowledge-based approach

matchingmetabolite biochemical characteristics and func-

tions of nearby genes failed to nominate any genes for this

association.29 The PTWAS suggested a causal role of PON1

expression for this pentose association and that decreased

PON1 expression in the small intestine increased plasma
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pentose acid level (b ¼ �0.021, p ¼ 1.2 3 10�9). Colocali-

zation analysis suggested that genetic associations for

PON1 expression and pentose acid level most likely shared

putative causal variant rs705379 (SCP ¼ 0.40, LCP ¼ 0.79;

Figure 3A), which resides in gene regulatory elements in

the small intestine.48 PON1 encodes a paraoxonase

enzyme, which affects the component levels in the

pentose phosphate pathway that generates pentoses.49

Improved metabQTL fine-mapping via colocalizing

metabQTLs with eQTLs

Colocalizing metabQTLs with eQTLs improved metabQTL

fine-mapping resolution (VPIP median: 0.20 versus 0.11;

two-sided paired t-test p ¼ 1.83 10�94; Figure S5). This co-

localization analysis identified 173 genetic variants with

VPIP R 0.8 for metabQTLs.

AGA encodes a member of the N-terminal nucleophile

hydrolase cleaving asparagine from N-acetyl glucos-

amine.50OurmetabolomicsGWASpreviously identified in-

dependent association signals with aspartate at two AGA

variants.29 We had suggested AGA underlies the first signal

andprioritized p.Leu105Ile (rs76491548 [c.313C>T]) as the

putative causal variant for that signal (VPIP¼0.56).Howev-

er, we were unable to estimate AGA’s effect on regulating

plasma aspartate levels or to identify the putative causal

variant for the second signal (highest VPIP ¼ 0.16).29 The

PTWAS validated the potential causal role of AGA expres-

sion and suggested that elevated AGA expression results in

increased plasma aspartate levels (b ¼ 0.0070, p ¼
3.2 3 10�9). Colocalization analysis for AGA expression

and plasma aspartate level prioritized the lead variant

rs11131799 as the putative causal variant for the second

aspartate association signal (SCP ¼ LCP ¼ 0.89; Figure 3B).

Lead variant rs11131799 overlaps AGA gene enhancers

and promoters,48 making it a promising candidate causal

variant.

Metabolomics results complement transcriptomics results to

nominate gene-disease associations

Stronger enrichment for metabQTLs than eQTLs in disease

trait GWAS-associated variants. Compared with gene

expression, metabolites represent intermediate molecular

phenotypes more proximal to human diseases.51,52 To

examine and compare the extent to which eQTLs and

metabQTLs influence the risk of human diseases, we esti-

mated enrichment levels of GTEx eQTLs and METSIM

metabQTLs among GWAS associations for 2,861 disease

traits (Table S3) in up to 260,405 FinnGen participants.

Across the 2,861 disease traits, the enrichment levels

for metabQTLs showed a wider range compared with the

ones for eQTLs (Figure 2B). We detected significant GTEx

eQTL enrichment for 216 to 553 disease traits in the 49

tissues (mean ¼ 407; median ¼ 414; p < 0.05/

2,861 ¼ 1.7 3 10�5), significant METSIM metabQTL

enrichment for 328 disease traits, and significant enrich-

ment of both eQTLs and metabQTLs for 246 disease traits.

For these 246 disease traits, the metabQTL enrichment

level was generally greater than the greatest eQTL enrich-

ment level across the 49 GTEx tissues (mean ¼ 6.8 versus
The American Jo
5.3; two-sided paired t-test p ¼ 5.1 3 10�28; Figure 2C),

consistent with a more proximal impact of metabolite

levels than gene expression on human diseases.51,52

Integrating transcriptomics or metabolomics results with dis-

ease trait GWASs individually. To identify gene-disease asso-

ciations, we used PTWASs and colocalization analysis to

integrate (1) GTEx transcriptomics30 or (2) METSIMmetab-

olomics29 with GWAS results for the 2,861 FinnGen dis-

ease traits (Figure 1B).

Integrating GTEx transcriptomics with FinnGen GWAS

results via PTWASs identified 63,591 gene-disease trait

pairs between 9,443 genes and 2,754 disease traits

(FDR < 0.05; Figure S6 and Table S4) and estimated the

putative causal effects of gene expression on disease risk.

For 4,990 of the 63,591 gene-disease trait pairs between

1,539 genes and 721 disease traits, colocalization analysis

suggested shared causal variants (LCP R 0.5; Table S5). We

identified 1 to 78 genes per disease trait (mean ¼ 6.9,

median ¼ 3.0).

IntegratingMETSIMmetabolomics with FinnGenGWAS

results via colocalization analysis suggested shared causal

variants for 2,857 metabolite-disease trait pairs between

388 metabolites and 242 disease traits (LCP R 0.5;

Table S6). For colocalization between FinnGen disease trait

GWASs and metabQTLs with gene nominations from the

PTWASs and colocalization analyses between transcrip-

tomics and metabolomics results (see above results sec-

tion), we suggested 92 genes for 145 disease traits, which

comprised 388 gene-disease trait pairs (Table S6). We iden-

tified 1 to 20 genes per disease trait (mean ¼ 2.7, median ¼
2.0).

Together, these parallel pairwise integrative analyses

identified 5,378 pairs of 1,597 genes for 790 disease traits.

Of the 5,378 pairs, 188 (3.5%) of 34 genes and 76 disease

traits were identified in both analyses; 5,002 ¼ 4,990 �
188 þ 388 � 188 (93.0%) achieved significance only in

the integrative analysis of a single molecular type.

Jointly analyzing transcriptomics, metabolomics, and disease

trait GWAS results facilitates discovery of disease molecular

mechanisms

Integrating transcriptomics, metabolomics, and disease trait

GWAS results together. To investigate disease molecular

mechanisms by integrating transcriptomics and metabolo-

mics results with disease GWASs simultaneously, we inter-

sected the results for all three pairwise integrative analyses

(Figure 1C). For the 188 gene-disease trait pairs that were

identified in both of the integrative analyses of a single

type of omics results (i.e., transcriptomics or metabolomics)

and the FinnGen disease trait GWASs, we matched the two

sets of integrative results for the same disease trait (see

above) and intersected the resulting matches with the inte-

grative analysis of transcriptomics and metabolomics re-

sults (see above). This strategy identified 2,610 gene-metab-

olite-disease trait combinations (based on 29 genes, 169

metabolites, and 72 disease traits). In each combination,

the gene achieved significance for both metabolite and dis-

ease trait in PTWASs (FDR < 5%) and all three pairwise
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Figure 3. Colocalizations between eQTL
and metabQTL
(A and B) eQTL and metabQTL colocaliza-
tions between eQTLs for PON1 in the small
intestine and metabQTLs for plasma
pentose acid level (A) and between eQTLs
for AGA in the stomach and metabQTLs
for plasma aspartate level (B).
colocalizations between gene expression, metabolite level,

and disease trait GWAS showed significance (LCP R 0.5).

For these 2,610 combinations, we further tested

for possible causal relationships between metabolites

and disease traits through Mendelian randomization

(Table S8). We illustrate how integrating transcriptomics

and metabolomics results jointly with disease GWASs can

clarify disease molecular mechanisms through three

examples: (1) ametabolitemediating gene effects on disease

(vertical pleiotropy); (2) a gene influencing metabolite

level and disease risk through distinct pathways (horizontal

pleiotropy); and (3) a group of metabolites together

facilitating the discovery of unknown disease metabolic

pathways.

UGT1A1/UGT1A4 affects gallbladder disorders through regu-

lation of plasma (E,E)-bilirubin levels. FinnGen identified a

genome-wide significant association at rs1976391 for

disorders of the gallbladder, biliary tract, and pancreas

(gallbladder disorders; OR ¼ 1.08, p ¼ 1.5 3 10�15).

The identified genomic region contains ten paralogous

genes encoding UDP-glucuronosyltransferases, compli-

cating the identification of the underlying gene(s) and

genetic mechanism. The PTWAS integrating liver

eQTL results with this disease association suggested

a causal role of gene expression for two of the paralogs:

UGT1A1 and UGT1A4. However, the pathways medi-

ating gene expression’s putative causal effect remained

unclear.

In the same region, we identified a significant associa-

tion for (E,E)-bilirubin and identified UGT1A1 and

UGT1A4 underlying this metabQTL through linking

metabolite biochemical activities with the functions of

nearby genes.29 Colocalization analysis suggested a single

shared causal variant between genetic associations for

UGT1A1/UGT1A4 expression in the liver, plasma (E,E)-bili-

rubin level, and the risk of gallbladder disorders (all pair-

wise LCP > 0.86; Figure 4A). PTWASs showed that higher

UGT1A1 and lower UGT1A4 expression in the liver

reduced plasma (E,E)-bilirubin level (b ¼ �0.12 and 0.17,

p < 3.0 3 10�302) and risk of gallbladder disorders

(b ¼ �0.14 and 0.020, p < 6.0 3 10�13). Mendelian

randomization suggested elevated plasma (E,E)-bilirubin
1734 The American Journal of Human Genetics 109, 1727–1741, October 6, 2022
level increases risk of gallbladder dis-

orders (65 instrument variables, b ¼
0.10, p ¼ 3.2 3 10�17) (Figure 4B

and 4C).

These results together suggested the

causal variant in this region stimulated
UGT1A1 expressionand repressedUGT1A4 expression inthe

liver, resulting in decreased plasma (E,E)-bilirubin level and

decreased risk of gallbladder disorders. UDP-glucuronosyl-

transferases transform small lipophilic molecules into wa-

ter-soluble and excretable metabolites.53 Bilirubin is their

preferred substrate.Bilirubin levelhasbeen shownasa causal

factor for gallbladder disorders.54

SLC22A5 affects plasma carnitine levels and risk of nasal polyps

through distinct pathways. FinnGen discovered a genome-

wide significant association with risk of nasal polyps at

rs56399423 (OR¼ 0.86, p¼ 3.13 10�9). In the same region,

we identified an association with plasma carnitine level at

rs2073643 (LD r2 ¼ 0.60 with rs56399423; b ¼ �0.14, p ¼
2.4 3 10�13) and nominated SLC22A5 as the underlying

gene.29 PTWASs suggested a causal role of SLC22A5 expres-

sion for both associations and showed elevated SLC22A5

expression increased plasma carnitine level (b ¼ 0.030,

p ¼ 2.5 3 10�7) and risk of nasal polyps (b ¼ 0.035, p ¼
1.2 3 10�9). Pairwise colocalization analysis among eQTLs

for SLC22A5 in the coronary artery, metabQTLs for plasma

carnitine, and the GWAS for nasal polyps suggested a shared

causal variant in this region (all pairwise LCP > 0.51;

Figure 5). However, Mendelian randomization did not sup-

port a causal relationship between plasma carnitine level

and the risk of nasal polyps (46 and 44 instrument variables

for carnitine to nasal polyps and vice versa; p ¼ 0.52 and

0.51; Figure S7), suggesting SLC22A5 might affect plasma

carnitine level and nasal polyps risk through distinct path-

ways. SLC22A5 encodes a carnitine transporter that contrib-

utes to cellular uptake of carnitine and elimination of envi-

ronmental toxins. Mucosal inflammation caused by

allergies and infections results in nasal polyps.55 SLC22A5,

which has been implicated in risk of asthma,56 might

contribute to nasal polyps through transporting allergens

or modulating microbial interactions57 (Figure 6A).

A group of metabolites helps clarify glycerophospholipid

metabolic pathways for age-related macular degeneration.

Gene-metabolite-disease trait combinations without sig-

nificant pairwise colocalization can also help elucidate

disease mechanisms. GWASs provide strong association ev-

idence for LIPC with age-related macular degeneration

(AMD).58–60 PTWASs identified LIPC expression associated



Figure 4. Estimated putative causal effects ofUGT1A1/UGT1A4 expression on the risk of disorders of the gallbladder, biliary tract, and
pancreas through regulation of plasma (E,E)-bilirubin levels
(A) Colocalization of genetic associations for UGT1A1/UGT1A4 expression in the liver, plasma (E,E)-bilirubin, and disorders of the gall-
bladder, biliary tract, and pancreas.
(B) Comparison of effect sizes of 65 instrument variables in the genome used in the Mendelian randomization analysis between (E,E)-
bilirubin and gallbladder disorders. The slope of the blue dashed line depicts the estimated putative causal effect of (E,E)-bilirubin on
gallbladder disorders in Mendelian randomization analysis.
(C) Effects (b) on gallbladder disorders of 65 instrument variables used in the Mendelian randomization analysis. Each point in (B) and
(C) represents an instrument variable. The vertical and horizontal dashed lines depict b ¼ 0 on disorders of the gallbladder, biliary tract,
and pancreas and plasma (E,E)-bilirubin. The error bars in (B) indicate 5 standard error of the association effect of the instrument var-
iable on (E,E)-bilirubin and disorders of the gallbladder, biliary tract, and pancreas. The error bar in (C) shows 95% confidence interval of
the association effect of the instrument variable on disorders of the gallbladder, biliary tract, and pancreas.
with the risk of AMD and ten plasma glycerophospholipid

levels. Increased LIPC expression in the pancreas decreased

metabolite levels (b < �0.043, p < 2.0 3 10�20) and

increased AMD risk (b ¼ 0.021, p ¼ 5.4 3 10�6;
The American Jo
Figure 6B). These ten metabolites are highly correlated and

relevant to the glycerophospholipid metabolic pathways

(Figure S8). Mendelian randomization showed that higher

levels of each of the ten metabolites protect against AMD
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Figure 5. Colocalization of genetic asso-
ciations for SLC22A5 expression in the cor-
onary artery, plasma carnitine levels, and
risk of nasal polyps
(b < �0.21, p < 6.0 3 10�7) (Figure S9). LIPC, hepatic tri-

glyceride lipase, is a key enzyme for HDL metabolism

and catalyzes hydrolysis of phospholipids, mono-, di-,

and triglycerides, and acyl-CoA thioesters.61 In METSIM,

controlling for blood HDL, LDL, and triglyceride levels did

not alter substantially the estimated putative causal effects

or significance of the ten metabolites on AMD risk in Men-

delian randomization analysis (Figure S10). A recent study

identified LIPC polymorphisms associated with phosphati-
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dylethanolamine metabolites in

AMD case-control populations, sug-

gesting that glycerophospholipid

metabolic pathways play a role in

AMD.62 Our findings suggest LIPC

expression exerts its putative causal ef-

fect on AMD through glycerophos-

pholipid metabolic pathways, and

this putative causal effect is indepen-

dent of HDL, LDL, and triglyceride

levels.

Discussion

Here, we systematically integrated

transcriptomics results for 49 tissues

and metabolomics results for 1,391

plasma metabolites with GWAS re-

sults for 2,861 disease traits. We iden-

tified 397 genes for 521 metabolites

and 1,597 genes for 790 disease

traits. Notably, we estimated that

gene expression impacts levels of

1,274 of the 1,391 (91.6%) measured

plasma metabolites and that 63.9%

of metabQTLs regulate metabolite

levels by influencing gene expres-

sion. We showed that enrichment

of metabQTLs is generally greater

than enrichment of eQTLs in disease

trait GWAS associations. We demon-

strated that parallel and joint ana-

lyses of transcriptomics and metabo-

lomics results facilitate discovery

of unknown disease molecular

mechanisms. These findings provide

insights into disease pathophysi-

ology and highlight the value of

combining transcriptomics and

metabolomics results to deepen our

understanding of disease molecular

mechanisms.
The relationship between gene expression andmetabolite

levels has been examined in humans,47 model organisms,63

and cell lines64 through simultaneous profiling of transcrip-

tomics andmetabolomicsdata in the same set of individuals.

Two recent studies integrated separate metabolomics and

transcriptomics datasets to test the associations betweenme-

tabolites and predicted gene expression but were limited to

only64bloodmetabolites15or a single typeof cell-line-based

transcriptomics data.16 Here, we systematically integrated



Figure 6. Genetic causal pathways
(A) Two potentially distinctmetabolic pathwaysmediate the effect
of SLC22A5 expression on the risk of nasal polyps and the level of
plasma carnitine level; (B) glycerophospholipid metabolic path-
ways mediate the effect of LIPC expression on the risk of age-
related macular degeneration (AMD). Blue circles represent the
shared putative causal genes between metabolites and diseases.
Yellow circles and rectangles represent metabolites. Gray circles
represent disease outcomes. Dashed rectangles and gray dashed
lines depict potential environmental risk factors that mediate
the effect of SLC22A5 expression levels on carnitine levels and
nasal polyps risk. The black dashed arrows depict the estimated ef-
fects of gene expression on metabolite levels or disease risk in
PTWASs. The black solid arrow denotes the putative causal effects
of the ten glycerophospholipids on the risk of AMD, which are
estimated in the Mendelian randomization analysis. The flash
symbol indicates that Mendelian randomization was unable to
detect significant causal relationship between nasal polyps risk
and plasma carnitine level.
transcriptomics results on 49 human tissues withmetabolo-

mics results on 1,391 plasma metabolites. Our results sug-

gested wide impact of the genome on regulating metabolite

levels.

GWASs have identified thousands of metabQTLs for

plasma metabolite levels,12,14 but the underlying genes

for many metabQTLs remain unclear. Our PTWAS analysis

showed that integrating transcriptomics results with

metabQTLs for the 1,391 metabolites recovered 63.9% of

prior gene findings with strong biochemical evidence,29

consistent with a previous study that showed TWASs had

67% sensitivity for metabQTL gene nominations.15 We

also estimated that 33.2% of metabQTLs, for which there

exists strong biochemical evidence linking target metabo-

lites to corresponding genes, shared causal variants with

eQTLs. Our results confirmed that combining TWASs
The American Jo
and colocalization analysis improved the precision of

metabQTL gene nominations.15

Omics data are often integrated with GWAS results to

help identify underlying disease mechanisms, but usually

only a single type of omics data are used.2,3 For example,

transcriptomics data are routinely integrated with disease

GWASs through TWASs or colocalization analysis.3 Here,

we integrated transcriptomics results of 49 human tissues

and metabolomics results of 1,391 plasma metabolites

together with GWAS associations for 2,861 disease traits.

Few approaches exist for integrating multiple molecular

traits with GWASs.41,42 They are either computationally

challenging or sensitive to prior settings. Instead,

we applied a straightforward approach to integrate tran-

scriptomics and metabolomics with GWAS results simulta-

neously through matching the results for the three sets of

pairwise integrative analyses. Our strategy can be easily

extended to up to �10 traits by integrating results from

all pairwise analyses. For even larger numbers of traits, alter-

native strategies will most likely be needed.We showed that

pairwise integration of transcriptomics, metabolomics, and

GWAS results facilitates uncovering unknown or more spe-

cific disease mechanisms compared to integration of a sin-

gle type ofmolecular data.Metabolomics data are becoming

available in increasingly large samples, for example the me-

tabolomics profiling of UK Biobank participants.65 We

anticipate that our study will encourage the integration of

transcriptomics, metabolomics, and disease GWASs in the

future both within and across studies.

Gallbladder disorders are common, having a combined

prevalence of 12.5% in US adults.66 A previous study iden-

tified a causal role of plasma bilirubin on symptomatic gall-

stone disease.54 GWASs for bilirubin levels have uncovered

an association of the UGT1A1 locus,67,68 at which a genetic

variant was associated with increased risk of gallstone

disease.54 However, the effect of UGT1A1 expression on

plasma bilirubin levels in gallstone disease has previously

been unclear. Here, we identified a putative causal effect

of UGT1A1/UGT1A4 expression on elevated plasma (E,E)-

bilirubin levels. We demonstrated that the elevated plasma

(E,E)-bilirubin levels increase risk of gallbladder disorders.

AMD is the major common cause of blindness in devel-

oped countries.69 The association of LIPCwith AMD is well

established.58–60 A recent study identified LIPC polymor-

phisms associated with phosphatidylethanolaminemetab-

olites in AMD case-control populations.62 Our study pro-

vides the evidence to support a putative causal role of

LIPC expression on AMD through glycerophospholipid

metabolic pathways.

TWASs and colocalization are complementary ap-

proaches for integrating omics data with GWAS results.27

We applied state-of-the-art PTWASs,28 enabling simulta-

neous gene association screening and causal effect estima-

tion. We used the recently developed locus-level

colocalization method.27 Compared with variant-level co-

localization that was previously used,22,23,26 locus-level co-

localization27 provides greater sensitivity and power at the
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cost of lower genomic resolution. We evaluated the proba-

bility of sharing the same causal variant among eQTLs,

metabQTLs, and disease GWASs through running all three

pairwise colocalizations. We also ran moloc,61 a multi-trait

colocalization tool, with default priors and marginal

GWAS results in comparison to pairwise fastENLOC, which

estimated priors in the data and used Bayesian statistical

fine-mapping results. For the colocalization among genetic

associations for UGT1A1/UGT1A4 expression in the liver,

plasma (E,E)-bilirubin levels, and the risk of gallbladder dis-

order, moloc identified significant colocalization (posterior

probability [PPA] ¼ 0.98 and 0.88).61 In contrast, for the

colocalization among genetic associations for SLC22A5

expression in the coronary artery, plasma carnitine levels,

and the risk of nasal polyps, moloc did not find colocaliza-

tion (PPA ¼ 0.00). The lead variants of the genetic associa-

tions for SLC22A5 expression in the coronary artery,

plasma carnitine levels, and the risk of nasal polyps are

in high LD (r2 R 0.599 for all three pairs), suggesting these

three genetic associations share a single causal variant. Our

previous GWAS identified two independent association

signals for plasma carnitine level in this region.29 That

might explain the failure of moloc to identify the colocal-

ization. These results highlight the weakness of the moloc

method and the need for careful consideration and

method development in multi-trait colocalization anal-

ysis. Our study identified gene associations for bothmetab-

olites and diseases outside loci without conventional

GWAS significance, which highlights the value of

PTWASs and colocalization analysis that use multi-SNP

fine-mapping results for new discovery. These gene associ-

ations might provide clues for future investigations.

Notably, fine-mapping results used in both PTWASs and

colocalization analysis take allelic heterogeneity into

account and provide improved statistical power for both

analyses.27 We acknowledge that fine mapping was only

applied in genomic regions with prior GWAS associations.

Genetic variants affect disease risk likely in a tissue/cell-

type-specific manner. We ignored the exploration of tis-

sue-specific gene effects on disease mainly because of

incomparable statistical power in eQTLs across 49 GTEx

tissues. Wemight miss rare variants in the integrative anal-

ysis because of low statistical power for rare variants in the

original eQTLs and GWASs.

In summary, we performed an integrative study of tran-

scriptomics for 49 human tissues, metabolomics for 1,391

plasma metabolites, and GWAS results for 2,861 disease

traits. We found strong connections between gene expres-

sion and metabolite abundance. We demonstrated that

integrating transcriptomics with metabolomics results re-

veals regulatory mechanisms underlying metabQTLs. Inte-

grating transcriptomics and metabolomics results with dis-

ease GWASs individually complements the identification

of genes underlying disease GWAS associations. Our results

highlight that integrating transcriptomics and metabolo-

mics results together can help deepen our understanding

of disease molecular mechanisms.
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Data and code availability

GTEx genotype and gene expression data can be accessed at dbGaP

with accession number dbGaP: phs000424.v8.p2. FinnGen

genome-wide summary statistics and Bayesian statistical fine-

mapping results are available at https://r6.finngen.fi. Full sum-

mary statistics from the genome-wide association studies of the

1,391 plasma metabolites are available at https://pheweb.org/

metsim-metab/.

Each use of software tools has been clearly identified in the ma-

terial and methods section. Integrative analysis code and scripts

are available upon request from Dr. Xiaoquan Wen.
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Nightingale Health UK Biobank Initiative (2021). Metabolic
The American Jo
biomarker profiling for identification of susceptibility to se-

vere pneumonia and COVID-19 in the general population. El-

ife 10, e63033.

66. Everhart, J.E., Khare, M., Hill, M., and Maurer, K.R. (1999).

Prevalence and ethnic differences in gallbladder disease in

the United States. Gastroenterology 117, 632–639.

67. Johnson, A.D., Kavousi, M., Smith, A.V., Chen, M.H., Deh-

ghan, A., Aspelund, T., Lin, J.P., van Duijn, C.M., Harris,

T.B., Cupples, L.A., et al. (2009). Genome-wide association

meta-analysis for total serum bilirubin levels. Hum. Mol.

Genet. 18, 2700–2710.

68. Chen, G., Adeyemo, A., Zhou, J., Doumatey, A.P., Bentley,

A.R., Ekoru, K., Shriner, D., and Rotimi, C.N. (2021). A

UGT1A1 variant is associated with serum total bilirubin levels,

which are causal for hypertension in African-ancestry individ-

uals. NPJ Genom. Med. 6, 44.

69. Wong, W.L., Su, X., Li, X., Cheung, C.M.G., Klein, R., Cheng,

C.Y., and Wong, T.Y. (2014). Global prevalence of age-related

macular degeneration and disease burden projection for

2020 and 2040: a systematic review andmeta-analysis. Lancet.

Glob. Health 2. e106–116.
urnal of Human Genetics 109, 1727–1741, October 6, 2022 1741

http://refhub.elsevier.com/S0002-9297(22)00359-7/sref59
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref59
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref60
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref60
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref60
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref60
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref61
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref61
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref62
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref62
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref62
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref62
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref62
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref63
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref63
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref63
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref64
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref64
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref64
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref65
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref65
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref65
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref65
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref65
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref65
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref66
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref66
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref66
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref67
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref67
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref67
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref67
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref67
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref68
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref68
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref68
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref68
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref68
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref69
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref69
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref69
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref69
http://refhub.elsevier.com/S0002-9297(22)00359-7/sref69

	Integrating transcriptomics, metabolomics, and GWAS helps reveal molecular mechanisms for metabolite levels and disease risk
	Introduction
	Material and Methods
	GTEx
	METSIM metabolomics study
	FinnGen study
	Enrichment of eQTLs in metabQTLs and enrichment of molecular QTLs in FinnGen disease trait GWASs
	PTWAS
	Pairwise colocalization between GTEx eQTLs, METSIM metabQTLs, and FinnGen disease trait GWAS loci
	Identification of gene-metabolite-disease trait combinations
	Mendelian randomization

	Results
	Relationship between eQTLs and metabQTLs
	MetabQTL sites also likely confer eQTL effects
	Impact of gene expression on plasma metabolite levels
	Sensitivity and precision of metabQTL gene nominations through integrating transcriptomics results with metabQTLs
	Complementary metabQTL gene nominations through integrating transcriptomics results with metabQTLs
	Improved metabQTL fine-mapping via colocalizing metabQTLs with eQTLs
	Metabolomics results complement transcriptomics results to nominate gene-disease associations
	Stronger enrichment for metabQTLs than eQTLs in disease trait GWAS-associated variants
	Integrating transcriptomics or metabolomics results with disease trait GWASs individually

	Jointly analyzing transcriptomics, metabolomics, and disease trait GWAS results facilitates discovery of disease molecular  ...
	Integrating transcriptomics, metabolomics, and disease trait GWAS results together
	UGT1A1/UGT1A4 affects gallbladder disorders through regulation of plasma (E,E)-bilirubin levels
	SLC22A5 affects plasma carnitine levels and risk of nasal polyps through distinct pathways
	A group of metabolites helps clarify glycerophospholipid metabolic pathways for age-related macular degeneration



	Discussion
	Data and code availability
	Supplemental information
	Acknowledgments
	Declaration of interests
	Web resources
	References




