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QUANTUM NUMBERS OF BOSON RESONANCES

Gers...1 Goldhaber

lawrence Radiation Laboratory and Department of Physics
University of California, Berkeley, California

Lectere I THE ESTABLISHED BOSON NONE TS

During the past six years, three boson nonets have been clearly

9

established. These are the pseudoscalar octet and singlet, or nonet

- > -
(Jp = 0 ), the vector nonet (J] =1), and JP = 2+ nonet. The general
1)

features of these have been reviewed at the Berkeley Conference,

.:: )

Therefore I will be very brief here.
1. THE PSEUDOSCALAR OCTET AND SINGLET
The first eight pseudoscalar mesons w[I =1, (21 +1 = 3],

w[I=0, (2141 =1)], Kand K, I =1/2, 2(2L +1) = 4] fit the Gell-Mann~
Okubo (mass-squared) formula for an octet, MK = (3M1~| + ]\1")/4, fairly
well, Here Mi = (Mi)z. If we use M
(M'r])predicted exptl
only a 5,7% discrepancy (sce Fig, 1-1), There are at prescnt two candi-

and M, as inpul we find
"~

K 2
= 0.301 (GeV)--

?
= 0.318 (GeVY", comparcd with (Mn)

dates for the J' = 0™ unita ry singlet: the X°(960) (or v') and more
recently the E(1410)~ KKn nicson. The latter appears to be strongly
preferred as a 0 rather than a 1t particle. This "embarras de
richesse" of unitary singlets can be understood. On the quark model,
for example, we would have to assunme that one of these two is the 7'
with very little mixing between the m and n'. The other one can be the
singlet corresponding to the next radial excitation state, with principal
ciuantum number n = 2, We still have to learn, of course, how reliable

the spin determination for the E meson is!

*) In these lectures I concentrate on new data obtained since the 1966
Berkeley Conference. However, the selection is entirely on the basis
of data available to me, and no attempt at completeness has been made,
Much of the new data was presented at the April 1967 Washington Meet-
ing of the Amevrican Physical Society.



(GeV)2

1.0

Fig., 1-1,

J¥ =07 Nonet |
's,(aq) C=+1, §,= 10°

- n’
e 7
— — K

— —_—T

] o,
-

MU B 413907

The energy-level diagram for the pseudoscalar nonet,



9

~-3-

Again on the quark model, the unitary singlet is the completely

symmetric state:

D T SR T e
ny = aak—\/_s_ (pp + nn + A\).

N3

On removing this state we can express the ideal octet as the traceless

tensor,
0
8 R k'
NG NZ
; . 0
Pl=ala - & afa = R W
J jok | NG NZ
- =0 2
B SENEAY.
\

. where Ng = (1/N6) (pp + nn- Z—KX‘)\a_.nd ™ = (1/N2) (pp - nn).

The physical n is very close to Mg but contains a small admixture of
M . o |
The mixing angle 0p is about 10°. If it should turn out that the E
is the ' then the m1x1ng angle is even smaller. |

I find it a remarkable coincidence that the 6(964) and X°(960 should
both have very small decay w1dths and near mass degeneracy’ Perhaps

there is some correlatlon between them, a pmnt of view discussed by Tuan

~and Wu, for example. 2) If this were the case it would of course eliminate
the X° (960) as a member e'f the 0° nonet. Here we ought to remember,

~however, that ou‘rvaeceptance of the 6 as a particle relies 'heavily on the

mass coincidence between two distinct experiments (see Figs. I-2 and

"I-3). No direct indication of the & has been observed in any other ex-

periment. More work on this particle certainly appears very worthwhile,

2, THE VECTOR NONET

Here the situation is quite dlfferent from the pseudoscalar mesons,

The eight vector mesons'p, ¢, and K or p, w, and K are nowhere near to

_the octet mass relation (see_ Fig. I-4). Thus there is very strong ¢ w

mixing, with mixing angle 01 given by



Events / 5 MeV

1000

800

600

100

Fig. 1-2.

Kienzle et al.
Missing-mass spectrometer
962 MeV |

—(a)

Combined data,
no selection

| | l

(b) %

p—

Background

- e
i

| l |

900 950 1000
Missing mass, My (MeV)

. MUB 13436

The first evidence for the § particle, from CERN.,



5.
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3. THE JP-- 2t NONET

Here again the nonet form appears more approp1rate (see Fig, I- 5)

If we insert the experimental mass values in the Schwinger equation we
find J' ~ 1 within 15% in this case also. _ '
For this nonet all particles are reasonably well established, al-
‘ though a few questions remam '
i) the spin of the A2 is st1ll under discussion. The latest suggestwn
by Morrison is that a second partlcle w1th JP‘ = 2 or l is formed.-
.~ at higher bombarding momenta (p=8 CreV/c) |
_ 11) The remarkable splitting of the A, observed in the CERN rnlssmg- o
mass spectrometer experiment appears rec_onf1_rmed in more re-
.~ cent work. _ o | ‘
iii) The lesser decay modes for all these resonances, such es :
A2 - mm, are not yet well determlned '

Thus while the broad outlines appear established for th1s nonet,

many of the detailed questlons are yet unanswered.

4. GLASHOW'S UNIVERSAL MASS PLOT ,

: Glashow has noted an amusing empirical relat1on which is illus- ,
trated in Flg. I-6. He found that the masses of both the bosons and baryons
fell on a (n.ea.rly) straight line if one p_lotte_d J + (1/2) N+ M+ F versus

(mass) . _
Here J is the spin, . N 't_he number of nonstrange quarks in the
' particle M the number of stfehge quarks, and F  the orbital angular
- momentum or the number of ‘extra qq pairs needed to make up the particle.

As yet he has no explanatlon for this empirical relat1on
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Lecture II. HINTS OF OTHER BOSON NONETS

1. TWO 1T NONETS, € = 41 AND C = -1

If we interpret the 2* nonet on the quark model we can aséume that

it corresponds to the 3P2 state of the qq system, We can then expect that
3 0’ 3Pl’ and _IPl states should also exist. This is discussed in
greater detail in Lecture III, _
~ We have candidates for the I = ! members of the two axial vector
nonets: the A (1080), which decays into ™ + p and thus has G = =1 and

which from the relation G = C(- 1) must have C = +1; the B(1220), which

decays into m+w and thus has G = +1 and C = -1, We also have one candi-

date each for each nonet of the'I = 0 states: the D(1286) —~ KK, which is
probably a C = +1 state; and the H(970) - wp, which has C = -

A new and particularly interesting situation develops for the two

"K''s, The Y =1 states are not eigenstates of C The charge conjugation -

C = %] indicates the quark stlucture of the two K’ ‘s as P, or lPl.

Unless for some reason the total quark spin is a conserved quantum num-
+ % : - .

ber, the two 1 K 's may undergo mixing. Thus not only caun there be

mixing between the two sets of two singlets, but further mixing can occur

between the two K*'s, the I = 1/2 states. Furthermore, we might also

expect peculiar interference effects in the mass distributions for two adja- -

cent states with the same quantuin numbers.

2, IS THERE EVIDENCE FOR TWO l+ K 's? . -

If we look at the recent available data.on the Kmw system in the

1.1- to 1.5 GeV region we notice a rather peculiar behavior, which at first
glance gives the impression that the different experiments are not in agree-

ment with each other,

*) A w1der generalization of C, designated as unitary-parity, has been
introduced by Dothan, and is referred to as € in the literature, The pre-
cise definition and references are given by B, W, Lee in High Energy
Physics and Elementary Particles, 1965 Trieste Seminars (International
Atomic Energy Agency, Vienna, 1965) See also G, L, Kane, Some Con-
sequences of SU(3) and Charge Conjugation Invariance for K-Meson Res—
onances, University of Michigan preprint (unpublished),

v
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2.1 THE C MESON OBSERVED IN pp ANNIHILATIONS AT REST

It has been a mystery of long standing why the C meson, 'MC = 1220
1,2)

MéV, occurs only in the neutral form. -This situation was not helped -

by the fact'that a less pronounced enhancement occurred at= 1320 MeV in

the charged rn_odé (see Figs, II-1 and II-2). More recent results indicate

that the C mass is probably higher, namely 1240 to 1250 MeV.

2.2 THE K'p AND K p REACTIONS AT VARIOUS MOMENTA

We can next consider the behavior of the large Knm enhancement ob-

served in various experiments as a function of incident momentum,
i) The work on K p - ROn® T pat 2.6 and 2.7 GeV/c at Lawrence
Radiation Laboratory3) shows a clear separation between the 1400-
MeV peak and a lower-mass peak. The lower peak appears
centered at 1280 MeV. No evidence for a 1320-MeV peak is ob-
served (see Fig. II-3). A
ii) ‘Our_data4') for 4,6-GeV/c K+p show a clear separation between the
'1430-MeV peak énd a narrow lower peak--which, however, occurs
at 1320 MeV, I'= 80 MeV. The peaks are superimposed on a con-
siderable background about equal in height to that of the peaks (see
. Fig. II-4).
ii1) . The recent Bruxelles—CERN datas) for 5-GeVc K+p represent a
very considerable increase in statistics.” Here they now obtain a
clear separation between the 1420-MeV peak and the lower peak,
just as in our data at 4.6 GeV/c. The lower-mass peak is, how-
ever, much broader now (see Flg II-.5).
iv) As we continue to higher-momenta K p at 4.6 a;nd 5 GeV/cQ
| (Figs. II-6 and II-7) and at 5.5 GeV/c7) (Fig. II-8), and 'K+p at
5.58) (Fig. II-9) and 7.3 GeV/cC)) (Fig. II-10), we nb‘ce the same
general features--the broad Knw peak either is not resolved or
shows slight indications of structure,.
- v) In our new datalo) for 9-GeV/c K+p we note that the 1420 peak is‘
‘no longer clearly resolved. On the other'hand, there appears
evidence for a resolved 1250-MeV peak as well as an enhancement
in the 1340-MeV region (see Figs, II-11 and II-12),
vi) The work of the ABCLV collaboration, 10-GeV/c K p, indicates

a large peak centered at 1320 MeV which is, however, not
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The curve corresponds to the computed contribution from the Deck

" mechanism normalized to the experimental height at 1.2 GeV. The
shaded portion corresponds to the contribution from K*(1430) decay
as estimated from the three-particle in the final-state reactions.
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resolved. 11) (see Fig. I1-13). These data.also showed the first
* bubble chaimber evidence for the L meson at 1790 MeV. This I
will discﬁss later. The data also indicate clearly that only the
1420-MeV peak remains when p.to n charge exchange occurs at’
the nucleon vertex. This same feature is stressed in the Argonne-
_ " Northwestern-Illinois data (see Fig. II- 8), also by Dornan etal.
vii)  The highest momentum studied to date is represented by the K p
data fronl'Yal'ela.) and the- K""p'data from Rochester, 14) both at
12,6 GeV/c. Here the K'p data show a peak at 1250 MeV-—p0531bly
resolved from some effect at 1420 MeV--while the K p data show
an unresolved peak at 1320 MeV (see Figs. II-14 and II-15).

2.3 THE REACTION 7" p — A (Krr)° -

Very recently the group at Brookhaven 15) has observed aA.K1T1r

enhancement in a 6-GeV/c ™ p expenment. In this reaction one does not -
: expec.t complicationé due to the Deck e_ffect,'va_s‘ the ‘barJyOn vertex involves
a strangeness c'hange.A They observe two distinct peak"é in the KT mass
‘distribution at 1300 and 1440 MeV (see Flg 1I-16). '.
3. VARIATIONS OF THE CROSS SECTION WITH MOMENTUM .
The 1420-MeV peak is of course well known and has the feature

that its cross sectionvdecreases'v'vith increésing momentum, as can be

. ascertained most readlly from the Km decay rnodes In Fig. II-17 I give
a compllauon by Morrlson16') of this. cross section, which indicates that
0 2 const X (pin)-%rl holds with n =2.240.2, According to Morrison, the

‘above relation, with various values for n;, holds for all two-body or qu"asi-

two-body process for incident laboratory—systefn momenta p, sufficiently

high above threshold. In particular for reactions corresponding to pome-

‘ron exchange; or what has alternatively been described as ''diffraction

‘ dissociation, ' the cross sections remain essentially constant with Pin’
i.e., n=0, 'ForlPorne'ron exchange to occur theé incident particle an_d

outgoing resonance must be "similar'" in the sense that AQ = 0, AI =0,

AS =0, AG =0, and thus presumably AC = 0 also., On the other hand,

angular momentum £ together with the corresponding parity P = (-1} can

be tran%fcu red to the resonance.

Thus for 0  incident particles (TT or K) we get J =f and P = - 1)2
+
.. as the allowed states. In other words the serics of resonances JPC-—O -,

12)

L
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177,277, 37T, etc' can be produced by pomeron exchange.
Here agaln as the meaning of C and G are well defined for the 1=0
I =1 resonances, we expect, for example, Ay ploductlon (JPC IH) to

+ B3
occur with nearly constant cross section for reactlons such as m p—~ A1 P

PC_ :
) in a similar reaction

while the cross sections for B production (J
should decrease with inc rea51ng rnornentum There remains the interest-
ing question: How will the two 1 K''s behave" We might expect that the

PC_  ++

1 --i,e., 3P1 resonance-~- will stay constant,

cross section of the J
while the JPC 1 -- i,e., 1P1 resonance-~ will decrease in cross sec-
tion with incident momentum. In principle this gives us a means of dis-
tinguishing between therh.  However, all indications are that the cross
section of the entire 1250~ and 1320-MeV composite peaks (if this is the
correct interpretation‘vof the peak) changes very little with incident mo-
 mentum, This may mean either that the two phjsical particles afe mix-
tures of the two states or that the AC = 0 selection rule is not applicable
to K resonances. The quest1on, therefore, is now: Can all these diffex
ent experimental results be reconciled? | 5 | |
It appears to me that if we are indeed dealing with twov1+K*'s the
apparent dlscrepancy between varicus sets of data can be understood.
Namely two 1 K"<, both of Whlch are decaying into the Kwm decay mode,
will give rise to interference effects in the'mass distribution. Here we
. must remember that, in general,A if we consider a mass distribution it .
corresponds.to averaging over all angular distlibutions. Thus two
adjacent resonances with different JP values will just add mcoherently.
" This is not the case for two reéonances with the same JP values, how-
ever, For these the amphtudes add coeherently If one assumes an
-arbitrary phase angle & between the two amphtudes which can, for
instance, be a function of the incident momenium, then' we can g.eti'no—
rhentum'-dependent interference effects. Suclfl effects could perhaps ac-
count for the differences between the various experimental data.  Thus .
it is templing to ascribe all the data discussed primarily to three
~resonances—-naniely, “two 1t resonances at nominal mass values of 1250
' and 1320 MeV, which interfere with each other and possibly also w1th a
general "d1ff1act1on dissociation'' type of background and a 2
resonance, the K’ (1420) Here the '1250 MeV'' peak is probably the

same effect as the C0 meson,
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I should emphasize here that the suggested interpretation given
to the experimental data does-not necessarily reflect the opinion of the
various authors whose data are quoted. In fact a number of authors are
a’c’celfnptm<T to identify the general Kmm enhancement purely with klnen‘latlc
effects of one sort or another. In particular, in recent work, the

7)

talled discussion of the arguments for and against the kinematic enhance- .
18)

Brookhaven-Syracuse Crroup1 is emphasizing this point of view. A de--

ment effect has becn given by the author and Sulamith Goldhaber,
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Lecture III BOSON L, CLUSTEB__S_

N

The evidenc-:e that baryons lie on Regge trajectories is very good at
present, That the same is true for bosons is still not yet fully established,
However, the data from the missing-mass-spectrometer work at CERN,I--)
as well as from other experiments, ) suggests that bosons may also lie on
Regge trajectories. |

It is particularly attractive to consider this phenomenon by looking
at the bosons as qq structures. To reproduce the Regge behavior we
introduce orbital angular momentum I. in the q’a system, This com-
bines with the total quark spin S to give the total angular momentum J
for the state. - We need not take the quarks literally--as real particles;‘
rather we can for the moment consider them as the basis for the simplest |
model that gives results in agreement with the experimental data, |

I intend in this lecture to explore the experlmcntal consequences of
th1s model!l in some detail. This will give us a basis to decide to what ex-
tent thc cxpenniental facts are in agrecement (or disagreement) with the

dnode]

1. SOME OF THE EXPERIMENTAL EVIDENCE

1.1 The CERN missing-mass-spectrometer experiment

A critical discussion of this experiment has been presented re-
cent]y3) and therefore I will be very brief, What is relevant here is that
- the experiment gives evidence for a series of ""Major" peaks, p, A,
R(R1R2R3), S, T, and U, wlzuich liec on a straight line when the order
number is plotted against M~ (see Figs. III-1 and III-2 and Table III-1,

If the order number is interpreted as .I the spin of the boson, the line
coincides in slope and intercept with the p trajectory of Re gge theory, It

is this feature, togethel with the known spin of the p (J =17) and

*) Various ideas on the classification of higher boson resonances have
been recently discussed by Sutherland and also by Cline, reporting on

work by Barger, These differ from my discussion here mainly in that
attempts have beeh made to predict definite mass values of the bosons in
the various L clusters. My point of view has been that we will be lucky to
identify the clusters first-the fine structure will come later. See D. G.
Sutherland, Some Remarks on Higher Mesons, CERN TH-768 (unpublished);
D. Cling, Classification of baryons and Mesons on Regge Trajectories,
appearing in Argonne Symposium on Regge Poles, 1966 (unpublished),
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Table III-1

Measurements on bosons with the CERN missing mass sPectrometei‘.

Column headings:

a. particle name,

central mass value, in MeV,

b.

c. experimental resolution (which changes with mass region studied),

d. physical width of resonance deduced from the observations,

e. incident ™ momentum; »p'l,

f. statistical significarice, stated either as number of standard deviations

or probability for the particular interpretation (such as the splitting or -
not splitting of the A, which is listed as equally probable),

g. number of events in peak above background and the statistical error
on this number,

h. the signal-to-background ratio,

i.  the intervals in mvomentum transfer squared, t, over which the phe-
nomenon was studied, ' '

Co. do

.'J. _EE’ .

k. the decay mode, expressed as the ratio ‘between the different numbers -

| of charged particles observed, namely 1C (single ‘charged'particle),
3C (three charged pé.rticl_es), aﬁd >3C (more than threc charged

particles),
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Tabie III-l

Measurements on bosons with the CERN missing mass spectrometer
a b c d [ f 8 h i i) k
— ; : —_ : oo
q o g 2
s - g 33 2
] g b 4 g Qe W
S .g o g~ o o0
] 4. & %0 g A
g as 3 3Y e Re 3.0 8
g a4y 4 38 e - 2.8 =] 3
ES o 3 N o R o
'] 14 g e R -~ - 3
] -1 o 8 E . ob» 0 W i ]
Pl a8 . 08 o3 8- w ko -~ k- -
] b= o a2 UE b a ¥ 90 £ o =
i 0§ F 2 iF j ST B 3
& ] b s &E 3 532 a8 - 3 <
. ’ 3.0 " 0,40-0,44 770%150%
P 768+ 5 285 1275 3.5 156004170 4.6:4  0,44-0,47 7702170  1c>97.4%
4.5 0,47-0.22 5804100
5.0 0.22-0.26 370%110
- 5 . ) y ic +0.9
6 962.5¢ 5 2424 €5 ;g 5.0 262 52 1:5 0.41<t<0.21 8.923Y _32-4.3707
4.5
5.0 .
6.0 . 0.34<¢<0.39 400£420 1c_
A, 1286+ 8 36%4 9825 om 17 12824 63 111,56 75=1.0520.4
A, 1260210 6.0 1 peak and A) 1:6 1c
7.0 2 peaks equally A=A 51
A3 1312210 probable: 2 ¢
P=5%1to0 10%
11.6 : 1c= 0,304 0,06%
R 1691%15 3143 141643 7.0 1 peak:P=1% 9732 84 1:6 0,23<1<0,28 125430 3c=0,6720,10
12,0 2 peak:P=1% ! >3¢=0,03%0.03
3 peak: P=20t0
60% (Ry, 5, 3)
' 1¢=0.3720,13
R, 1632415 3443 <24 6.7 360x 70 1:4,7 35410 3c=0,590.21
: 2>3¢c=0,04%0.04
. 7.0 1c=0.42% 0,11
R, 1700#15 3043 <30 0 6.1 485 73 1:3,3 4 3¢=0.56% 0,14
. >3c=0,04% 0,01
- 1c=0,44% 0,08
Ry 1748415 2843 <38 1.3 425% 74 14:3,5 47 3c=0.80#0,18
: >3c = 0,054 0,05
s o 0.5
) “'0'06-0.06
5 1929214 2242 <35 12,0 5,5 2265 41 1:7  022<t<0,36 35#12 3c=092%00%
. : sogxt0:43
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~ +0.44
ic-().O‘i_o‘(M
T 2195415 3944 €13 12,0 5.4 209% 41 1:7  0,22<t<0.36 29410 3c=0.94"0:%
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>3c¢=0.02 ;05
. 1¢=0.3020.10
U 2382424 6226 <30 2.0 5.9 2524 43 4:6 0,28<t%0,36 42414 3c=0.4520.15

>3¢=0.25%0.10

x, do/dt normalized to 4 GeV/c (average momentum).

y. do/dt weighted between py = 3, 3.5, and 4.5 GeV/c.

%, errors are one atandard

aviation,

vy n
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P
AL (T

(presumably the same as one of the R mesons) which at the moment is the
p Yy

= 2+) and a probable assignrnent4) of J = 3 for the charged g meson

basis for the conjecture on J. Thus, strictly from an experimental point
of view, the evidence for the Regge interpretation is still very flimsy in-
deed. On the other hand, the idea implied by such a model is very appeal-
ing

Se

1.2 The Brookhaven precision total };p and ;d cross seclion measurements

The pp and pn systems have baryon number zero and hence can
have all the quantum numbers of the nonstrange boson states of mass >2Mp.
As part of a series of precision total cross .section measurements, Abrams,
Cool, Giacomelli, Kycia, Leontit; Li, and Michaelz) have measured the
pp and pd cross sections for momenta from 1.0 to 3.4 GeV/c. The remark-
able feature of these measurements is that despite the very large cross
sections (75 to 120 mb for pp and 130 to 210 mb for pd), they note distinct
peaks of the order of a few mb. See Figs. III-3 to III-6. One straight- '
forward interpretation of the data is that the péaks represent higher bosons.
- In particular it is noteworthy that the peaks are consistent in mass--but not
width-with the T _and U mesons of Foccaci, Kienzle, Maglic':, et al, 1) One
difficulty which is not yet resolved is that the lower peak also corresponds

~in mass to the threshold of the reaction,

p~> N'N or N'N, M=2180 MeV.

Because of the large cross section for N* production this reaction could in
principle give rise to a peak in the total cross section which does not neces-
sarily correspond to a boson resoﬁance, i.e., a t-channel rather than an
s-channel effect. If this is so the situation is analogous to the peak of

Cool et al. S)V in the K+p system at 1910 MeV, which has been interpreted
on the basis of nonresonant KN* production. 6) We can compare these data
with precision total cross section measurement on the pp system by Bugg
et al. 7). In that experiment prominent structures generally ascribed to
the production of various N*'s in the t channel have been observed. How-
ever, the structures occur at somewhat different masses than in the P
system {see Fig. JII-7). Interpretation of the peaksin the pp system is

thus not possible without more detailed studies of the reaction products.
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2. THE gqg MODEL OF THE BOSONS

Here we consider the qa system as a tightly bound system in a

very deep potential well, Many of these considerations were given by

- Dalitz in his Rapporteur talk at the 1966 Berkeley Conference. )

i) The effect of angular momentum L
If we treat the qq system similarly to a diatomic molecule, the
energy Splittihg due to different angular momentum states is given by a

~ centrifugal term of the form

6 (E°) = L(L+1) (-5 L
Tr

To account for the observed Regge behavior, namely a hnedr dependence
of L with mass squared, we have to assume that the ( 2>J term does
not remain roughly constant as is the case for moleculesﬁ but rather that
it falls off like 1'/(2 Li+l) as L increases. As Dalitz points out, this cén :

be achieved with a harmonic oscillator potential of the form

V(r) = VO + )\1'2,

If this were the only mass-splitting effect, we would obtain clusters of
four boson nonets for each L value, namely the four states which can be

formed by combining L with the total quark spin Sfor S=1 or S =0,
3. 1 3 :

: < 3 ‘
These are t}21§+1;onets Liy LL’ LL‘ LL+1’ where the symbol

stands for LJ in the usual spectroscopic notation. An exception to _

_this is the case for L=0 where we only have two such states, the SO

L

and 381 nonets., Indications from experiment suggest that the mass
Splittings for different L valucs are greater than those between the four
nonets corresponding to a given L values, Thus we might expect to ob-
serve clusters of boson resonances which are clearly separated from each
other but in which the four nonets may not always be clearly resolved., I -
will call these '‘boson L clusters."
_ The first ss_ucﬁ boson cluster observed was the A meson, which was
later resolved into the Al and A2 mesons, These are believed to corre-
spond to the P-wave ¢qq system. The I =1/2 Kwr boson cluster centered

at 1320 MeV was the next such example. Here again at least two objects,

third object, presumably the C meson also, as was discussed in Lecturell,
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ii) Spin-orbit splitting

If we look at the above-mentioned mwm and Kwm boson clusters,
we can note the effect of spin-orbit splitting. In particular let us consider
the I = 1 members of the four nonets 3P0, 3Pl’ 1'Pl, and 3P2. The cur-
rently popular (though yet tentative) assignment for the last three is
A, (1080), B(éZZO), and .A2(1310). We note that these represent (roughly)
equal (mass) splitting. If we ascribe the observed splitting to a spin-
orbit potential

V. =(g+9) LV (r)=8"LV_(r),

with the mass-splitting coefficient

5L = 2[I(T+1) -L (L+1) - S(S+1)],

then for the four nonets this takes on the values given below:

3 3 1 3

Ly B R Ry
S 1 1 0 1
L L L L L
J ‘L-1 L L . L+l
S'L - (L+1) -1 0 +L

Hence on the basis of the experimerital mass sequence of the Al’ B, and
Ay, Dalitz suggests that we are dealing with a repulsive spinéorbit poten-
- tial, that is, Vso(r)>0. For L =1 this gives equal (mass) splitting in

accordance with experiment, For. L =2 this (rnass)2 splitting is 2:1:2

- (see Fig. III-8). Dalitz also points out that a tensor force, which in

principle could also split a given L cluster, is probably small, as it would

give rise to unequal splitting for the L =1 case.

iii) Spin-spin splitting

The L =0 nonets are an anomaly in that we have only spin-spin

forces available for splitting the lSO and 381 states, These are very

considerable , however, in view of the large mp mass difference. The
surprising feature is that this force appears to have died out for L = 1,
8)

This behavior can be explained”’ by making the spin-spin force of suffi-

ciently short range.
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q @ model

Distributions of nonets
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iv) Exchange degeneracy

In the Regge model for baryons one finds that a Regge trajectory
contains baryons having values of J which differ by 2 units, so that
| J, = .Jl + 2. The separation between two such trajectoriés with different
- J values is ascribed to an exchange force. For bosons the A, appears to
lie on the p trajectory, and so on through R, S, T, and U, which in the
spii‘it of the presént discussion are believed to correspond to adjacent J
values (J5 = Jl+ 1). Thus for bosons there appears to be an exchange
degeneracy. Dalitz explains this by pointing out that the simplest object
which can be exchanged between q and q must have baryon number 2/3,

and thus consists of two quarks qgq with mass 2Mq. The large mass of

such an object would tend to suppress the exchange potential.

- 3. THE REGGE PLOT

To explore the model I have outlined above in further detail, we

can consider the schematic Regge plot shown in Fig, IlI-9a. Here I have
indicated schemétically what the boson clusters may look like. As we do
not know the spin-orbit splitting of the higher L boson clusters, I have
Jjust ‘sk‘etched what such clusters might be like. The indicated mass
splitting should not be taken seriously, of course. Each square in Fig.
II1-9 represents a nonet of mesons. It must be noted that the SU(3) split-
ting is not shown. Presumably there can be four distinct Regge trajec-
thri'es. I have indicated only the p trajectory. Figure III-9% shows the
same plot, whepe now, however, L is plotted against mass squared.
Here the clustering is more apparent. In a way, this represents the

. simplest possible situation. Should the spin-orbit splitting increase as L
increases we could get bosons of different L superimposed on each other,
and thus lose the cluster effect.

Other causes which can complicate or even obscure the cluster
effect would be -

(a) the presence of bosons belonging to higher—symmétry groups
such as the 27 cé.nfigurati.on, which requires the existence of states like
K+K+, Krm I = 3/2, 1T+TT+, etc. In my estimation, there is not yet suffi-
cient evidence to require us to invoke such configuratiéns.

(b) boson clusters corresponding to higher radial quantum numbers

n. Here we must note that, until we get a clear understanding of the qq -
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potential, it is not obvious just what n represents.

| Finally, convtin.uing in the spirit of this inquiry,v we can ask what
are the allowed decay modes for the members of these various nonets?
Some representative decay modes are ill_ustrafed in Fig. III-10. Here
again I have indicated a crude mass-squared scale. Thus, in a sense,
this figure illustrates, in an approximate féshion, the mass spectrum ex-
pected for various final states. For example, the first two rows indicate
the mass spectrum in the I =1 and I =0 7w state, and so forth. A few
of the presently known and identified states are marked with their names.

A comparison of these patterns with the experimental spectra is
perhaps the most sensitive Way in which to detect evidence for, or
deviations from, the model described herein. Thus, for example, in the
"rrpA or 7w decay mode, in the region of the A meson there is only room
for two distinct mesons, corresponding to the L = 1 boson cluster. If
the A1 is established as a definite meson, and if one finds any more
mesons in this region, this must indicate the presence of other effects.
For example, . the possible existence of the A1 5 would be such ah effect;
so would the A, if it is indeed split, as the CERN missing-mass-
‘spectrometer work appears to indicate, and if it is shown that such a
h split corresponds to two distinct resonances! »

In Fig. III-9 I have also indicated in each case which nonent would
be prbduced by diffraction dissociation or pomeron exchange. That is,
we could produce the corresponding isovector meson by pion bombard-
ment or the I =1/2 meson by K bombardment. As stated in Lecture II, to
be produced by diffraction dissociation the boson has to have the quantum
" numbers of the incident particle, i.e., 07, plus angular momentum £.
This yields J = £ and a parity of P = (—1)'@‘H

Bosons produced by this process are expected to have constant cross

for the resulting boson state.

section with increasing energy. Thus for high bombarding energies these
are the ones which should dominate the cluster, while the other three
nonets would presumably have cross sections that go through a maximum

above threshold and then die out again with increasing energy.

4, POSSIBLE DECAY SCHEMIES

It is of interest to look in greater detail at how these boson reso-

nances will decay.
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i) Nomenclature

To identify the various members of a boson L cluster I will use

the following nomenclature: T, 1, n', and K stand for the isotopic triplet,

singlets, and doublet, as in Rosenfeld et al. 9) This symbol plus the quan-
2S5+ C— : ‘

tum numbers S 1LJ identify a specific qq state. For example, the A‘2

is given as m( PZ)’ the © is given as n(3Sl). Furthermore I occasionally

use the name of the isotriplet to refer to the entire nonet: thus A, nonet

refers to the 3PZ nonet and p nonet refers to the 381 nonet.

ii) Allowed decays into well-known particles

In Tables III-2, through III-6 I have listed the dllowed decays of

the L = 2 to LL = 5 bosons into some of the better-known particles. The
entries in the tables are the angular rﬁomentum £ and corresponding P
when the decay mode indicated is allowed via strong interactions. The
threshold mass rcquired'for each given decay mode is also indicated.

One very interesting feature emerges immediately from these tables:

the nonet with J = L + 1 decays consistently through higher éngular mo-
mentum states for the common decay modes than any of the other three

" nonets. Thus we might ekpect that the widths of the bosons in the J =1L+l
‘nonets could be considerably narrower than the widths of the other bosons,
for the same L value. I will commment on this later in connection with

comparisons with experiments.

iii) The cascading to lower boson clusters

Aside from the decay into well-known mesons described in the
tables above, we can also consider what transitions are allowed by pion
emission from one L cluster to another. The allowed transitions with
£ =0 and / =1 between the two final-state particles are illustrated in
Figs. II-11, III-12, and II-13. In Fig. III-14 is shown the decay from -
the J = L + 1 levels. As can be noted from these figures, the three nonets
with J = L- 1 and J =L in the two charge conjugation states, can each
~decay via an £ = 0 transition as well as via an £ = 1 transition. On the
other hand the nonet with J = L. + 1 can only cascade down to the next lower
similar nonet via an £.= 2 transition. The 4 = 1 transitions within a boson
cluster of given L (see Fig. III-13) are probably forbidden by energy con-
servation. Thus, here‘too, we see that the members of the J = L+l nonets
have no way of decaying with angular rnomentum les‘s than 2--a feature,

again, which will contribute to their particularly narrow decay widths.
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rTa ble III-2

So"me possible decay schemes for L = 2 bosons;
the entry refers to £ minimum for allowed decays

ety (D)) n(°Dy) n('Dy) n(’py) w(°p)) 7°py) n('py) w(py) Thresh-
- o C . __ _ . old
o) MO O A S W 20 30 ey
T - - - - 17 - 37 280 B
w17 1" ; 3" - 1m - 905
™ - - - - - - - 690
Tw - - - - 17 - 3"/ 925
e - - 3 1" - 3" 990
1%z |
- wff - - - - - 0 - 1390
A, - - of .27 -2t 1450
pp - - " - 1 - 17 1530
e - : ; - - 1 : 1550
o ; - ; ot - of 2015
Table III-3
- Boson noneg, in L = 2 cluster
mods) " threohold -‘Tl?l' J.22 k(D)) K(’Dy) K('D,) K(’Dy)
| gpc=1"" 277 27t 37-
K 635 07, 0~ 1” . - 3"
K n 1030 17, 0 1" 1" 1" 3"
Kp 1260 07, 17 17 1" 1” 3"
K (1400)7 1540 2t o- 2t ot ot 2t
K A, 1810 0o, 2" 2t ot of 2t
K £ 1745 o, 2% 2t ot ot 27
K* o 1655 17, 17 1" 1" 1" 1"
K*A, 2210 1=, 2t ot ot ot ot
K* 1% 2140 17, 2t ot of ot of




Some possible deca
the entry refers to £
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Table III-4

schemes for L. = 3 bosons;
minimum for allowed decays

e mCF) ACF (' Py nCE, wCrp) 7CFy w'Ey) wCFy Thesh- -
: : ol '

I I S T R S AT VN o B

r 2t - s . L. - 280

o - - 2% - 2T . 4t 905

™, - - - - - - at 690

e - - - - -2t 925,

KK K, X, 2t . - 4t 2t 4* 990

| KZKZ |

7 £° - - - - 17 17 - 3" 1390
A, - - - - - - - - 1450 .

pp of 2t - * . - 2t - 1530
Cow - - - ot 2t o 2f 1550

pf?® - - - - - - 17 - 2015

Table I1I-5
Some possible decay schemes for L = 4 bosons;
the entry refers to 4* minimum for allowed decays
oety a6y G 1’ Gy nCGy) 7(°G,) 717Gy m('G) 7(Gy) Thresh-
A P e el S-S S Sl e N I Y- Sy (1?413\/)
(G) (=) (-) (+) (-) (+) () (-) (+)

T - - - - 3" - - 5° 280

p 37 37 - 5 - - 37 - 905

i) - - - - - - - - 690

T - - - - 37 37 . 5° 925

KR or 3~ - - 5” - - - 5” 990

X K,

nf - - - - -2t 1390
A, - 2t - - - - 1450

op - - 3 - 1" 37 - 37 1530

00 - - - - - - 3° - 1550

of? - - - ot 2t . 2t 2015

o A ot 2t . 2t . - 2075
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Table TII- 6

~ Some possible decay schemes for L = 5 bosons;
the entry refers to 2P minimum for allowed decays

"'rrp

| _'Bﬁi?, ~CHY) aCHY) a1y ACHY) "(3H4.) “(‘3H5) n(' 1) 7CH) Thresh
R S S S M R v
-  4+_ - ot . . - . 280
S VL L A 905
S A £1
, 1rw | - . - - - at o 925
KR Kk 4t . : ottt L - et 990
or KZKZ .
w £° - - - - 3" ,3""‘ - 5 1390
wA, - . - - - . 3T - 1450 °
P 2t 4t st . at 1530
po - - ; ; AR . 4t 1550
pf® - - - - - - 3T - 2015
o A, - - - - 17 37 - 3" 2075
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Boson L clusters

M2$A possible decay schemes

P4 L : .
For Z = 0% transitions with 7 emission.

to scale) i
(O~ transition overall)
.3+_ _
o+ [=1—1
| AR
- Ar=t | |I=i—=1
2-+ ¥
o—= 3
. AI=*
- I= | 4=1
AI=i-| I=1—=1
ot++ .| A, nonet
|+— ) B u
|++ ! A "
A,
++
O Al=*1
I=—|t
Ay cxnlll )
|__ p 1"
—_t ¥ T 1
O | 1 1 1 .
0 I 2 3 4 5 J

XBL677-3468

Fig. 1II-141



- 60-

| Boson L clusters
M2 4\ n possible decay schemes
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Boson L clusters
M2 T possible decay schemes
\ Within each cluster £° = 1=, 7 emission
(Not to scale) (1T transitions overall )
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Depending on the

magnitude of the spin-orbit splitting the transitions

---- are probably forbidden by energy conservation.
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Let Il refer to the initié.l boson, and I2 to the final boson, which is
produced together with the ™ meson. Thus AI =1 - 1 indicates that
the transition has to occur between an isovector initial state and an
isovector final state +. Similarly AI =%l refers to the change of I°
spin from the initial- to the final-state bosons.. The selection rules

for 7 transitions from an ini’cial boson state 1l toa final boson state

2 I (Ll)J P C G - T +I (LZ)J P C ) wi th angular momentum £
17171 _ 2727272
be ween 2 and T are v
‘2 "y g4,
le = P (-1)~.
Afor C2 = Cl’ then AI = *£];
for Cz-:-—Cl, then I2 =Il =1,
" We can then distinguish
f/ = even J = odd
P2= —Pl ‘ P2= Pl
LZ—L1= odé L2 Ll= even

This behavior is illustrated below. Thus, for example,

'rr(3P) ->‘1r+1r(3S) W

. 2 1 Al=0, I =1, =1
ie A - 7+ 1 2
T2 P d (£ =2)

]

or, ™ (1Pl) - w41 (381) ‘
ie., B LT T 2 Al = % ]
ie., H -1 +p

Note that the experimental identification of the B and H with given quan-

tum numbers is still texltative.

5. MORE DETAILED COMPARISON WITH EXPERIMENTS

If we accept the experimental evidence cited above at face value -

we must ask: Can the narrow peaks from the CERN missing-mass
~spectrometer work be reconciled with the broad peaks observed in
o(pp)? It is, of course, impossible to answer this question at present

without considerably more experimental data. We need an independent
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confirmation for the very narrow peaks, and we need further information

~on whether o:r not the pp data indeed correspond to bosons.

In spite of these serious problems let us explore the possiBility that
the two types of corresponding phenomena could belong to the same boson .-

L clusters. To do this we will consider the following points:

i) E_\:perim.entai sénsitivity to different regions'of t

The mi'ssing-massfsPectrolmeter work relies on precision angle
measurements on a pi‘oton in the region of the '"Jacobian peak.' This
cuts out low-momentum-transfer data. In the region of the S$(1929),

T(2195), and U(2382) mesons the average momentum transfer squared

~value for the measurements made is t= 0.3(GeV) ., On theother hand, '

U(Ep)'lneasurelpents are sensitive to all allowed values of t. The same

is true for bubble cha_mEer work, which in fact is most sensitive to the
"lowest allowed t values, for which the cross sections are maximal for

"peripheral reactions.

ii) Examples of different t distributions

If we look at the 'Al and A2 do/dt distributions vs t we note the

well-known feature that the AZ has a much broader t dlstnbutlon than

the A,. This is illustrated in Fig, III- 15, from the p ABC experiment ™

-1
at 8 GeV/c, where the slopes for elastic scattering, Al productmn, and

A2 production are compared. The ratio of intensity at t = 0.3 to t= 0 is

 shown on the graphs. It is perhaps significant to note here that the Ay

‘_pr‘esumably belongs to the 3LL+1 nonet, Although we cannot make a

rigorous argument, it is possible that differences in t distributions
among the bosons in a given L cluster contribute to the difference between

the phenomena discussed here. .

iii) The width of higher boson rcsonances

As I mentioned above, the four-multiplets belongihg to a giveh

L cluster have quite different decay schemes., In particular, the nonet

- with the spinJ = L +1, i.e,, 3L 41> must in nearly all cases decay via

higher angular momentum states than the other three nonets. The decay

width 1" for decay into two paltlcles can be expressed as

,F=Y%HRMVMHZ

when k is the ¢c.m. momentum, £ the decay angular momentum, and

M the mass of the boson. The coupling constant y and characteristic
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radius R ‘are, however, not known to sufficient accuracy. If we consider
'y and R .to be constaht for a given boson L cluster, it follows that mem--
bers of the J = L + 1 nonet have a considerably narrower decay width than
members of the other three nonets. Thus, for L =3 and higher we might
expect one narrow nonet,” while it is possible that the width of the others
is comparable to the_sPin.—orbit splitting, so that they may actually not

always be fully resolved from each other,

iv) Sensit'i.vity of the mis sing-—mé.ss spectrometer experiment

| Next we must take into account the fact that the CERN missing-
mass experiment was carried out in the region of the S, T, and U mesons
in a signal-to-background ratio of =1:7, while the magnitude of the signal
in each peak consisted of 200 to 250 events. If this same number of
events, constituting a s_i.gﬁal, had been distributed over 3 or 4 times the
number of bins, such a signal could not have been detected by tliis. method,
In other words, within the statistics available so far, the mis si'n'g-m.ass '

measurement is most sensitive to narrow resonances,

v) Partial width for pp decay
The o(pp) experiment will, of course, show up only boson

resonances for which there is a finite partial width Y (pp) for pp decay

in a given nonet, At presentitis not known to me how I (i;p) depends on
'~ the quantum numbers of a particular nonet in a given L cluster,

In conclusion, then, when these various points are taken into ac-
count, it is possible that the two sets of observed phenomena correspond
to the observation of different componenté of the same boson L clusteré.
Namely, it is possible that what has been observed as the S, T, and_ U
in the CERN missing-mas s—spectrometér work is the one set of very
narrow bosons with J = L +1. On the other hand, depending on ' (pp),
the o (pp) experiment at Brookhaven may have observed one or more
different members of the "L cluster, which then can be appreciably
broader, Clearly, these ideas are purely speculative at the moment,

-and much further experimental work is required to confirm them,
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APPENDIX I

Three-Pion Resonances

Here we describe a new method for the utilization of the Dalitz

plot designed to facilitate the search for the existence of new resonunces

and the determination of their quantum numbers for three-particle
resonances, ~The method we shall describe has a counterpart in resonance

formation ekperiments. Consider wp scattering through a direct channel

resonance, Tp —*> N WP, The total cross section has very marked
: L

bumps for the low-lying resonances, but at higher masses the N does
not always manifest itself in such an obvious way, and the methods must -

be refined. An example is the use of angular dis {ributions. For a

"definite .'P the distribution assumes a characteristic shape at E = M,

and varies rapldly over the range M - ——é—— <E<M+ —%« . A very recent

method used by the Michigan group at Argonne is the study of backward
Tp scattering., By the study of 29 (180°) one obtains strong variations

in this quantity as one sweeps thlough resonance regions, This effect is

'ampliﬁed, in fact, due to interference effects between the superimposing

resonance amplitude and a high-energy Regge background term,. This
method has revealed some new resonances. The interference effects also.
led to a sensitive test of the assumed quantum numbers for the higher N*
resonances.

In the case of three-particles (bosonj, the method is to study the

density distribution of events in the Dalitz plot as a function of the three-
particle mass. For example, in the reaction 1r+p - 1T+1r"17°'rr+p it is

possible that there is some hidden structure at the high end of the 3mmass ~

spectrum, The method depends on the fact that the decay-matrix elements
for a three-pion system follow a very char acteristic symmetry pattern in

the Dalitz plot for various I, J PG values, A very elegant graphical
representation of the density distributions for the states I =0, JPG: 0 ",

- +- ) : 1)

1 “and 1 |, given by Stevenson et al, based on the '"simplest"

matrix element first suggested by Gell-Mann, 2) is in Fig, A-1, A tho-

-rough discussion of this problem has recently been carried out by Zemach 3)

(see Fig. A-Z). In this note we wish to discuss a method by which one can

carry out a pattern search as a function of the three-pion mass. Letus

consider the state I = 0 and J* & = 0", 177, 1+-, 2”7, and 2+'.
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The corresponding "simplest'" matrix elements are given in Table A-1.
The Daiitz contour maps for the corresponding density distributions are
given in Figs. A-3 through A-7. These were calculated for a mass of
the three-pion system' of M = 782 MeV. The contour maps are computéd
in 5% steps labeled by the 20 lettefs A to T. Alternate letters are left
blank for clarity. ' '

Table A-1

The square of the matrix elements fo+r the an_fgular momentum-
parity states I = 0, P =0",17,17, 27, 2

L . . 2
M) = [(By- Eg) (By-E)) (B)- Ep)]
N(1T) = (P.XB, +B,XxB, +B,xB) =g
172 2 3 3 1 d
A1) = [B(E,-E,) + D,(E,- E.)+B,(E - E,)]%
A VI Ak S| 3V 2
- N 12 2 4 : f - =2 1 2 2*}
N (27) = Z [3 (EJ.- E,) .pi +2(Ej—Ek)(Ek—Ei) (P, PJ.) -3 P, PJ. )J
yo W 2
A = o7 (E,P +E, B, +E; P,)

We can plot the three-pion mass distribution for )\(JP) less than
and gréater than XM(JP) where ),\M(JP) is a suitable median value of
)\(JP) such that about 1/2 the events with quantum numbers JP have a
)\(JP) grea.ter'than )\M(JP). By limiting )\(JP) to certain values--e. g.,
0.7<X(1 )=1.0 for the w meson™'--we are considering definite regions
in the Dalitz plot at which _?\(JP) is near its maximum value. These re-
gions correspond to small fractions of the area and thus phase-space
effects become considerably reduced relative to a given matrix element.

The values chosen fqr ?\M(J'P) together with the corresponding
percentage of evénts and percentage of area (i.e., phase space) are
given in Table A-2. The regions occupied in the Dalitz plot for the various
matrix elements with MJT) = xM(JP) are shown in Fig. A-8. Notice
that these maxima lie in practically disjoint regions, so that each region

: . P . .
corresponds to a certain J~ value which can be studied separately.
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Table A-2

Percéhtage of area and percentage of integral over the
. matrix element above the value )\M(J )

Three-pion mass

500 MeV 1000 MeV 1500 MeV 2000 MeV
iF .(JP)" Aréa. Integral |Area |Integral Area Integral [Area [ntegral
MY (T (% (% (%) (%) (7 (%) (%)

0 | 0.3 | 8.4 | 48.5 | 14.1| 61.5 | 149 63.2 |14.9 [ 63.3
17 1 0.7 (3001 s1.2 | 28.4] 49.7 | 27.4| 48.8 |26.9 | 48.6.
Y | 0.4 l1s.8 | 454 [17.8] s52.3 | 16.8] 521 |16 | 51,5
2 | 0.7 |21.7 35.9 | 28.1] 43.4 | 27.4| 43.3 |27.0 | 43.0
2t o6 1187 | 41.4 | 24.2] 48.3 | 24.4] 48.7 | 24.3 | 48.7

‘Notice also that as the £ values are summed, the maxima almost cover
the plot, so that the expected uniform population of the plot for phase '
space is being explicitly shown, _

The shape and area of the normalized Dalitz plot change consider-
ably with total energy of the three-pion system (i, e., from a near éircle
in the nonrelativistic case to a triangle in the highly relativistic regions),
For example, from M = 500 MeV to M = 2000 MeV, A(500)/A(2000)=1,62,
‘where A corresponds to the normalized area. ‘ |

The comparison of the correspondiﬁg Dalitz plots at 500 MeV and
2000 MeV for the JP= 17 and l+ matrix eclement is shown in Fig, A-9,
We note that although the area and shape are changing, the percentage of
events with A\ (JP) = RM(JP) varies only slowly with M.,

' Figuré A-10 shows this technique applied to the @ meson, a 1~
resonance. The matrix element peaks in the center; the central curve
encloses 50% of the events but only 36% of the area, Figure 10 shows the
radial density distribution (background accounts for the events where the
@ density should _bé zero),
| Figure A-11 shows the projection onto the 1T+TT—TIO_ axis of the

- central and outer regions, Notice thaf the backgrouﬂd is considerably re-

duced in the central region plot. Also notice that the m shows up only in
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the outer region; if we had not known about the n we could have found it
this way. | | , | v |
Figure A-12 shows the same data in a different form. The y
axis is the 7\'('1')' matrix element; we see that the mass sweep shows the
resonance best where its matrix element is lax:gest, as expected, The’
figure cori'esponds 'td choosing conc‘ent-rié regions in the Dalitz plot. |

Figure A-13 shows the same data plotted vs the 2% matrix element, .

 The statistics are limited (3000 events are shwon and probably we would

need 10000 to 20000 events to detect a real effect over the fluctuations),
The A, meson (a 2t meson) should show up in this plot. Figure A-14
shows the same data plotted against the 2”7 matrix element.

One further difficulty in the application of this method should be

mentioned. In analysis of a resonance with a two-step decay, such as the

A

or A,, there will be p bands across the Dalitz plot corresponding to
N
AZ—’ p T7 (notice Az'f’ p0 7°). Hence the recognition of the appropriate .

pattern for the A, meson is altered by these bands. Similar calculations

‘taking these effects into account will be needed.

-
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APPENDIX IT

Tables of allowed and forbidden two-body decay modes
TableI: B=Y =0 Nonstrange mesons

From Alvarez Memo No. 474 by
R. Huff and J. Kirz Revised May 29, 1967

In the following tables we give various allowed and forbidden two-body decay
modes for various initial states, as well as the selection rules which are operative
for the forbidden decays. The selection rules are applied in the following order:

1. J Angular momentum conservation. This entry for the single-photon
refers to the familiar selection rule forbidding 0-0
radiative transitions.

2, S Symmetry, i.e.,, Bose-Finstein or Fermi.Dirac statistics. For the
two-photon states, (S) refers to the J=1 states, but not to
the higher odd angular momentum states, these latter being

~forbidden only for odd parity (C. N, Yang, Phys. Rev. 77:242).

3. P Parity conservation.

Lo C Charge‘conjugation invariance.

50 I,G I-spin conservation and G-conjugaticn-invariance, which are really
equivalent when charge conjugation invariance holds, although
we list both in the tables for pedigogical reasons., We use
IG and I* to stand for the entries "I and G" and "I or GY,
respectively.

The appearance of one of these symbols in the tables means that the state in question
is forbidden by the corresponding selection rule, but is allowed by all selection
rules earlfer in the above list., We have enclosed C in parenthesis in the tables to
indicate that C applies to the neutral state of a multiplet, but not to the charged
 states of the same multiplet. Thus, for the multiplet X with quantum numbers

(3P1%= 6"1*), C forbids X°— "™ but does not forbid X'->r'm°(although the latter
is forbidden by I). However, for non-photon decays, if C completely forbids the decay
of the neutral member of a multiplet X into a given pair of multiplets, then the decay
of the charged members of X into the same pair of multiplets is forbidden by I or G,

so we 1ist this along with {(C). This means a stronger selection rule for the neutral

decay than for the charged, since C is valid for both strong and electromagnetic

interactions, but I and G need only be valid for strong interactions.
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Tables of allowed and farbidden two-body decay modes

‘TableI: B=Y=0 Nonstrange mesons

We have listed the quantum numbers of the initial state in the form JP(C ) IG,

@

but .1t should be kept in mind tﬁat the C eigenvalues refer only to the neutral member
;fNa muiﬁiplet. This notation is more symmetric than I(JPG) because J and P are tﬁe
spiﬁ and parity in co-ordinate space, while I and G are the spin and parity in isotopic
Spin space, at least for the non-strange mesons, The final states are listed in order
of increasing masses, and the sum of masses of the two particles are given in Mev,
We do nof mean to imply, however, that the decay probabilitieé of the various allowed
~modes for a given initial state will decrease in the same order, After all, matrix
'~ elements also have something to do with the rates, and not all matrix elements are

‘equal,

We/ have made the tentative assignments £(1250) = 2"*0" and p (1020) = 17707,

Also the K.(725) has I=4 , with J¥ = even™ or odd” , but the symbols enclosed

in square brackets apply to the special case JP= 0+.

Note ‘that all decays that are I- and/ér G-forbidden can only occur by virtual
emission and reabsorption of a photon, which means that these decay rates are down by
& factor of at least q* relative to modes which are allowed by I and G. Decays
- i{nvolving one or two real photons are also down by o or a?, respectively, and we
have indicated these factors in the tables by @ or 8@, respectively. Thus blanks
in the tables indicate strong decays fully allowed by all five selection rules.
Theal=0 orsl s:-eleétion rule for electromagnetic interactions impeaces the
decay of I=2 mesons into I=0 mesons and a gamma ray. The need for the emission

“and absorption of an addiiional photon in this case is denoted by €1,
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TableI; B=Y =0 Nonstrange mesons
JP(C) IG 77 e wTere ww (L) ™ VP Yw mep® |
0 140 270 280 550 690 750 780 885
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0 1 ee J P P J P @ @ c
2t ee J P P J P @ el c
- o: c - J P P J P c c
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=) oo ¢C @ c c @ c c c
ren 1t c @ c (c)1 @ (¢)G (c)e c 16
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Tablel;: B=Y =0 Nonstrange mesons

a -
_ o kx®T s K
' L TWw . KK Ky Ky K, K3 7’1'0 7% T ra
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—w 0 ¢ c P P P e P c
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- 18 G ()1 P . P P eI P (c)1 I
) 0~ 16 P P P c P 1G
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_ _ )
o* @ c c e c p
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+&) oy 16 C c c c I1G P,
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V/ 1t is not assumed that KK, , K,X;, or K,K,are produced as KKe They may have
S=0 orzx 2 '

2
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,

: or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides.access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








