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Our built environment is replete with engineered structural systems (e.g., civil 

infrastructure, automobiles, marine and aerospace structures, among others), and the 

socioeconomic well-being of our society is strongly dependent on their safe and reliable 

operations. However, structural safety degrades with age, and they can sustain damage due to 

various natural hazards and extreme events (e.g., earthquakes, hurricanes, and landslides, to name 

a few). In addition, because of increasingly closer human and engineered structure interactions, 

human error and/or fatigue can also threaten the safe operations of various structural systems. 

Therefore, structural health monitoring (SHM) techniques have attracted extensive attention, 
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mainly for their potential of timely detecting structural damage while minimizing service 

downtime and economic loss. A similar monitoring paradigm can also be employed to assess 

human operators’ performance for avoiding human-induced structural failures and accidents. 

The SHM paradigm typically relies on sensing systems to provide rich datasets regarding 

structural performance. While various off-the-shelf sensing transducers have been employed, the 

complex damage modes, drastically different materials, intricate geometries, and diverse 

operational environments make it challenging for conventional sensors to effectively quantify 

structural health and human performance. Multifunctional materials, on the other hand, can be 

designed using a bottom-up approach for realizing novel sensing mechanisms that could be better 

suited for extracting relevant damage features while tailoring their designs for specific engineering 

applications. 

The primary objective of this dissertation was to develop, characterize, and implement 

multifunctional material-based sensing systems for both structural health and human performance 

monitoring. This work aimed to leverage the extraordinary mechanical and electrical properties of 

nanostructured materials (including carbon nanotubes and graphene) to achieve robust and high-

performance sensing systems. Although previous endeavors have been dedicated to developing 

nanomaterial-based sensing systems, their practical applications could be hindered by complex 

material fabrication processes and poor scalability. Therefore, this study employed simple, 

scalable, and low-cost manufacturing techniques to fabricate multifunctional nanocomposites of 

optimized mechanical properties and strain sensing characteristics. In addition, a topological 

design methodology was proposed to strategically engineer the strain sensing properties of 

nanocomposite thin films for different target applications.  
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To overcome the discrete sensing limitations of current transducers, this work coupled the 

nanocomposite sensors with electrical impedance tomography and compressed sensing algorithms 

for achieving spatial sensing capability. Extensive laboratory tests were performed to characterize 

their spatial sensing performance. In the last phase of this work, the spatial sensing systems were 

implemented to monitoring seismic loading-induced structural damage on a full-scale reinforced 

concrete shear wall. At the same time, fabric-based sensors were fabricated and integrated with 

socket prosthesis surrogates to demonstrate their applicability for human monitoring applications 

(e.g., assistive rehabilitation and pressure ulcers prevention). Overall, this dissertation advanced 

multifunctional material-based sensing systems for monitoring engineered structures and human 

health. 
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Chapter 1. Introduction  

 

 

1.1. Grand Challenges for Built Environment Resilience 

The current built environment depends heavily on the safe and reliable operations of 

ubiquitous complex engineered structural systems. These structural systems broadly include civil 

infrastructure (e.g., buildings, bridges, pipelines, railways, dams, and wind turbines), automobiles, 

marine vessels (e.g., ships), and aerospace structures (e.g., airplanes), among many others. Most 

of these structures are designed to bear loads and operate safely under anticipated loading scenarios 

over their expected lifespans [1-4]. However, the initially designed structural performance can 

often be compromised by structural damage and deterioration, hence threatening the resilience of 

the built environment [1, 3, 5]. For instance, structural aging (i.e., structural performance 

degradation) is inevitable when these systems have been in service over long periods of time. 

Specifically, in the context of civil infrastructure systems, highly-developed urban regions, such 

as those in the United States (U.S.) and Europe, contain an excessively large inventory of aged 

infrastructure that operate close to the end of, if not already past, their designed service life [4-6]. 

The degraded structural performance could potentially lead to structural failure and cause grave 

casualties as well as enormous adverse socio-economic impacts.  
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As an example, in the U.S., gas leaks from aging pipelines have frequently led to 

destructive explosions. Since 2004, such accidents have killed 135 people, injured 600 people, and 

costed ~ $2 billion in damages [7, 8]. In addition, the nearly 50-year-old Oroville Dam (California, 

U.S.) suffered damage in its main and emergency spillways in February 2017, causing the 

evacuation of more than 180,000 people who were living downstream, which pushed dam safety 

to the epicenter of national concerns [9, 10]. Similarly, public concerns about infrastructure aging 

in Europe were brought front and center in August 2018 when the over 50-year-old Morandi 

Bridge (Genoa, Italy) collapsed, possibly due to corrosion of its cables, and caused 43 deaths and 

left over 600 homeless [11, 12].  

Besides long-term structural aging, extreme load events (i.e., load combinations that 

significantly exceed designed structural load capacity) are also major causes of structural damage. 

Many extreme load events for civil infrastructure are associated with natural disasters. For 

example, the Northridge earthquake (Los Angeles, U.S.) in January 1994 killed 57 people and 

injured 8,700, causing an estimated $13 to $44 billion in damage [13]. The earthquake even 

damaged hospitals and school buildings (which are built according to some of the most strongest 

building code requirements). This unfortunate natural catastrophe significantly stimulated 

development of earthquake-resilient structures, especially for critical infrastructure, and launched 

the nationwide effort to advance performance-based earthquake engineering design principles. 

While damage due to earthquakes and other natural disasters make headlines, the U.S. also suffers 

from increasingly costly weather- and climate-related damage to its infrastructure systems, and 

their performance and safety become further jeopardized in light of these extreme events [5, 14, 

15].  



3 
 

Furthermore, due to the rapid global urbanization, the United Nations has predicted that 

about 70% of the world’s population will be living in urban areas by 2050 [16]. Accompanied with 

the ever-increasing population in the built environment, the interactions between humans and 

engineered structural systems have never been closer and more sensitive. In particular, the safety 

and reliability of human-operated land, air, and marine vessels and structural systems can be 

significantly compromised by human operator behavior. As a matter of fact, human error or fatigue 

was shown to be the predominant threat to the safe operations of various structural systems [17-

21]. For instance, one investigation from Boeing reported that 80% of flight accidents were caused 

by human error, which was equivalent to the share of machine-related failures in 1903 [22]. More 

recently, the Virgin Galactic SpaceShipTwo spacecraft crashed in California due to the co-pilot’s 

error during flying (October 31, 2014) [23]. As for land transportation, it was reported that 90% 

of car accidents were human error-related [24], and the National Highway Traffic Safety 

Administration argued that numerous road catastrophes were caused by drivers’ medical 

conditions during driving [25]. 

It is clear from the aforementioned examples that the safety of structural systems is 

vulnerable to aging, extreme events, and multi-hazards (including both natural and manmade 

disasters). In addition, failures of critical structures can significantly jeopardize public safety and 

the socio-economic well-being of society in general. Therefore, from a structural damage detection 

perspective, it is imperative to assess and even predict structural performance and damage states 

so as to prevent similar types of accidents from occurring in the future (or at least minimizing their 

negative impacts) [2, 4, 26]. In the context of human-induced structural failures, similar 

performance assessment strategies could also be implemented to evaluate the human operators’ 

conditions for minimizing or preventing structural damage due to human misconducts [18, 19, 21]. 



4 
 

Therefore, the grand challenge is how to economically and efficiently enhance the resilience of 

our built environment while improving quality of life. 

1.2. Current State-of-the-Art of Monitoring Technologies 

1.2.1. Structural health monitoring 

Since structural damage and deterioration can compromise the load capacity of structural 

systems and can leave structures to be more vulnerable to failures, early detection of structural 

damage is direly needed for ensuring structural safety and minimizing their life cycle costs [2, 4, 

26-28]. Conventional wisdom dictates that visual inspection should be used to identify damage on 

structural surfaces or inspectable locations. The recent and rapid advancements in robotic systems 

and computer vision technologies have fundamentally transformed traditional visual inspection 

approach to that of an automatic process, whereby unmanned robotic systems could navigate and 

inspect areas where they were once too difficult to access by technicians. The next-generation 

autonomous visual inspection techniques are promising to overcome some of the major limitations 

of manual inspection, including inspection cost and subjectivity of human inspectors [2, 27, 28]. 

However, the fact that not all types of structural damage are visible on the surface (i.e., because 

they occur subsurface) and that many critical structural components are inaccessible, 

comprehensive safety evaluation of structures remains challenging when using visual inspection 

and robotic-assisted inspection methods. Furthermore, visual inspection is highly subjective, and 

inspection outcomes can differ tremendously depending on the training and experiences of 

different technicians. 

Motivated by the limitations of visual inspections, more quantitative damage detection 

technologies have been developed in several closely related disciplines, including nondestructive 



5 
 

evaluation (NDE), structural health monitoring (SHM), condition monitoring (CM), and statistical 

process control (SPC), among others [4, 26, 28]. NDE mainly focuses on offline characterization 

of the location and severity of damage in the system. Some common NDE techniques include X-

ray penetration, thermography, acoustic emissions, and Lamb wave propagation (or active 

sensing), among many others [30-32]. Typically, these NDE techniques need to be operated 

manually by a trained technician and when the structure is taken out of service. In contrast to NDE, 

the SHM strategy is that instrumented sensing systems deployed on structures will monitor and 

record system response to different loads without having to take the structure offline. By extracting 

or inferring features that suggest damage or degradation has taken place, an automated signal can 

be generated to alert the relevant stakeholders. Thus, SHM is promising and broadly applicable to 

a vast category of civil infrastructure, machinery, aerospace, and marine structural systems. 

Similar to SHM, the purpose of CM is to detect damage in rotating machinery [26, 29].  

Among these strategies, SHM has recently received extensive attention due to its potential 

for minimizing structural service downtime and economic loss [4, 26, 27]. In general, SHM intends 

to acquire relevant data that inform structural performance, based on which to provide actionable 

information and to inform asset management decisions [2, 26, 28]. In other words, comprehensive 

SHM systems would include both damage detection and damage prognosis. As the first stage of 

SHM, effective sensing technologies are needed for acquiring rich datasets that contain 

information about structural damage and their properties. Their robustness, accuracy, and cost 

directly define the capability and practical applicability of these SHM systems for the 

corresponding target structures [4, 26]. Given the importance of sensing systems in the entire SHM 

process, this dissertation mainly focuses on developing innovative sensing systems for advancing 

the SHM paradigm. 
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In fact, various sensing systems have been designed and implemented for SHM 

applications. For example, foil strain gages possess advantages such as being low-cost, 

lightweight, are easy to install, and have high strain sensitivity (~ 2 at room temperature). 

However, their application is limited to individual locations, and a dense network of strain gages 

is often needed for monitoring large-scale structures [33]. The same is true for accelerometers, 

which has been deployed on countless structures for monitoring their dynamic characteristics when 

these structures are subjected to ambient and forced excitations. On the other hand, distributed 

fiber sensing techniques are capable of measuring strains over the entire length of continuous 

optical fibers [34-38]. Fiber optic sensors offer advantages by being lightweight, immune to 

electromagnetic interference and corrosion, and can achieve distributed sensing, among others [35, 

38, 39]. While the fiber optic sensing systems have been used in practical SHM implementations, 

since these systems offer optical fiber cables and optical analyzers, it can be expensive and 

complicated to install these tethered systems on large-scale structures [34, 35].  

As an alternative, wireless sensor networks (WSNs) can realize relatively simpler and 

cheaper implementation by eliminating most of the cables required for the aforementioned tethered 

systems [40-44]. A typical WSN node includes microcontrollers, sensors, and radios, whose power 

consumption management can be challenging for long-term monitoring tasks (especially since 

individual wireless sensing nodes are powered by portable power supplies such as batteries) [34, 

41, 43]. In addition, current WSNs have been combined with micro-electro-mechanical system 

(MEMS) to not only reduce the cost of the overall cost of the sensing system, but they also enhance 

sensing data quality and communication capabilities. This is because MEMS integrates micro-

scale functional electronic components in a single silicone chip, which can significantly 

miniaturize sensor form factor, reduce power consumption, and improve sensing performance [34, 
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44-46]. However, these wireless sensors mostly rely on conventional materials (e.g., metals and 

silicone), and they are discrete devices that can only measure the structural response at limited 

locations. 

1.2.2. Human performance monitoring 

On the other hand, as previously mentioned, human operators’ performance can also 

directly affect structural performance and even lead to catastrophic structural failures. In order to 

reduce the number of human-induced structural incidents, one should ensure that the operator 

maintains their optimal physiological and psychological conditions. In that regard, wearable 

sensing systems offer great promise for measuring a human operator’s vital signals (e.g., 

respiration rate and body temperature), which can be used for evaluating their state-of-mind and 

physical wear.  

In general, wearable sensors are transducers that can be externally applied onto 

individuals and provide signals related to human physiological or biophysical parameters [47]. 

They have received extensive attention mainly due to their potential for improving the well-

being of diverse groups. For example, people working in dangerous or harsh environments (e.g., 

warfighters, firefighters, law enforcement personnel, and astronauts) are constantly faced with a 

variety of potentially life-threatening situations. Wearable sensors can enable real-time 

monitoring of their physiological performance for ensuring their optimal performance and 

safety. In addition, in the context of senior care, wearable sensors have enabled health monitoring 

systems of senior citizens and patients so that they can receive diagnosis or treatment without 

physically visiting a hospital. Instead, they can receive care in a more hospitable environment, 

such as their own home, which is the goal of the telemedicine movement [47, 48]. When it comes 
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to enhancing athletes’ performance, wearable sensors offer tremendous opportunities for better 

quantifying and analyzing their motions, which, at the same time, can help protect them from 

injuries [49]. Given the broad impacts of wearable sensors, it is imperative to further develop 

higher performance transducers that can monitor different aspects of human performance, such 

as physical motions and human vitals, among others. 

A popular approach of designing wearable sensors is to integrate commercial-off-the-

shelf electronic devices, including strain gages, accelerometers, and pulse-oximeters, among 

others, to form a miniature hardware package. Some examples of early-generation wearable 

sensors were designed as rings, glasses, bracelets, and watches. For instance, a ring sensor 

equipped with light-emitting diodes (LED) and photo-detectors was developed by Rhee et al. 

[50] for wirelessly monitoring patients’ blood oxygen saturation. Anliker et al. [51] designed a 

portable telemedical monitoring and alerting system that could be worn on the wrist of patients 

whom suffer from cardiac/respiratory diseases. The sensing system can monitor multiple vital 

signals, including heart rate, blood pressure, electrocardiogram (ECG), and skin temperature. 

Further developments sought to incorporate these sensors in clothes and garments for 

minimizing the inconvenience of having to wear additional peripheral devices on one’s body. 

Gopalsamy et al. [52] presented a smart shirt integrated with a “wearable motherboard” that can 

be easily worn by soldiers for monitoring multiple vital parameters. Pandian et al. [49] designed 

a smart vest, which was equipped with temperature sensors, electrodes for ECG, 

photoplethysmograph (PPG), and galvanic skin response (GSR) measurements. Lee et al. [48] 

used a smart shirt coupled with a wireless sensor network to accurately extract ECG signals from 

a test subject’s physical movements. One of the considerable advantages of these conventional 

wearable sensing systems is that a single sensor can be used to measure multiple physiological 
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parameters with favorable accuracy. Besides, many of these sensors are relatively low-cost. 

However, these devices usually include bulky and rigid components. Their form factors and 

intrinsic rigidity and can be incompatible with complex and high-strains typical of human 

motions, which not only compromises sensing accuracy but can also cause user discomfort. 

1.3. Emerging Materials-Enabled Sensing System Design 

1.3.1. Applications in monitoring structural performance 

To overcome the aforementioned limitations of discrete electronic sensors, nanostructured 

material-based sensors have undergone rapid development over the last few decades. As an 

emerging sensing technique, so far, nanomaterial-based sensors are still mainly employed in 

controlled scenarios, but have already exhibited remarkable potentials to transform the current 

sensing devices [53-57]. Some target application examples include electrochemical biosensors 

[58-60], moisture sensors [61], optical sensors [62], temperature sensors [63], and heavy-metal 

detectors [64], and many of which are based on nanomaterials in conjunction with conductive 

polymers. The growing interests in nanostructured materials stem from the fact that these materials 

possess superior and unique thermal, electrical, mechanical, optoelectronic, and chemical 

properties as compared to their bulk counterparts [65]. In addition, inherent to nanomaterials is 

their large surface area-to-volume ratio, and these surfaces can be tailored and functionalized with 

different molecular species so as to tune their material properties and to enhance their macro-scale 

sensing performance [66-68]. 

In the context of SHM applications, nanomaterial-based sensors offer tremendous 

advantages over conventional mechanical- or electrical-based transducers that are inherently 

discrete devices and can be bulky in size. Nanomaterial-based sensors can be applied onto entire, 
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large, and complex structural surfaces for continuous spatial structural sensing, as opposed to being 

only instrumented at certain discrete locations. For example, Loh et al. [69] fabricated freestanding 

piezoresistive zinc oxide (ZnO) nanocomposite thin films by mold-casting, which could be directly 

adhered onto cantilever beams for monitoring their strain changes under dynamic excitations. 

Gullapalli et al. [70] incorporated ZnO with paper (i.e., cellulose fibers) via a dipping and drying 

process and obtained flexible paper sensors that could be readily installed onto structural surfaces. 

Being highly flexible and lightweight, those nanocomposite thin film sensors provide numerous 

opportunities for monitoring strains on curved structural surfaces without affecting structural 

performance, which would otherwise be challenging for conventional strain sensors. 

1.3.2. Applications in monitoring human physiological performance 

When it comes to human performance monitoring, as the demands for flexible wearable 

sensors have increased in recent years, a plethora of nanomaterials have been identified as 

promising candidates to design sensors that could replace those aforementioned bulky, rigid 

transducers [71]. By leveraging their extraordinary mechanical, electrical, and chemical 

properties, highly flexible and sensitive wearable sensors have been developed for monitoring 

various bio-signals [72, 73]. For example, Yamada et al. [74] grew carbon nanotube (CNT) 

forests onto poly(dimethyl siloxane) (PDMS), which functioned as the flexible substrate. The 

assembled device could be attached to different human body parts, and the strains generated at 

those regions can change the configuration of the CNT forest to cause corresponding detectable 

electrical resistance variations. Wang et al. [75] transferred graphene grown by chemical vapor 

deposition (CVD) to PDMS and medical tape. The resulting device showed high strain sensitivity 

potentially suitable for monitoring small human motions. Besides graphene and CNTs, 

nanowires (NW), such as silver NWs [76] and gold NWs [77], were also employed for 
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fabricating devices for monitoring human physical movements. On the other hand, human skin-

inspired e-skins were also investigated [72, 73]. Pang et al. [78] developed a laminated patch-

like sensor, in which nanofibers were mechanically interlocked. External forces could change 

the configuration of the nanofibers, and, hence, the electrical resistance would be altered 

accordingly. When attached to the waist, the sensor was sensitive enough to detect heartbeat. 

Kwak et al. [79] designed a skin patch with nanostructured micro-hairs, which allowed for dry 

attachment onto the human chest for ECG monitoring. Other nanomaterial-based wearable 

sensors also exhibited additional advantages, such as transparency [80, 81], self-powered [81, 

82], and self-healing [83]. Despite these tremendous advancements, they generally required 

complicated fabrication procedures and are limited in scalability and cost efficiency. 

1.4. Research Objectives and Dissertation Outline 

Previous discussions have demonstrated that new sensing materials possess the potential to 

transform the data acquisition capabilities of structural and human performance monitoring 

systems. However, it remains challenging to employ these emerging material-based sensing 

systems for real-life monitoring tasks (i.e., both in structural and human health monitoring 

contexts). One of the limiting factors is that they frequently required sophisticated designs and 

manufacturing procedures for integrating these functional materials, which may not be scalable, 

especially for large-scale infrastructure health monitoring. Thus, the primary objective of this 

dissertation is to develop high-performance multifunctional material-based sensing systems by 

leveraging the extraordinary electrical and mechanical properties of the nanostructured materials. 

The application targets include engineered structural systems as well as the human body. To 

overcome challenge of ultimately deploying these sensing systems practical monitoring 

applications, this dissertation aims to not only employ low-cost, efficient, and scalable 
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manufacturing techniques to fabricate the sensing materials but also to develop a systematic 

methodology for designing and optimizing the materials’ properties for their specific applications. 

Chapter 2 introduces three different bottom-up fabrication techniques to manufacture strain 

sensing nanocomposites, including spray fabrication, screen printing, and micro-patterning. In 

addition, the effectiveness of the manufacturing techniques has been evaluated based on a series 

of characterization experiments performed on the resulting nanocomposites’ microstructures, 

electrical properties, and electromechanical performance. Here, CNTs and graphene are employed 

as sensing components, and the fabrication techniques are optimized for different material systems 

so as to obtain nanocomposite thin film sensors with consistent and optimal mechanical and 

electromechanical properties. 

Based on the fabricated nanocomposites in Chapter 2, Chapter 3 proposes a topological 

design-based approach to strategically control the strain sensing performance of nanocomposites, 

which can potentially transform the current methodology of designing functional materials using 

a relatively empirical approach. In particular, Chapter 3 introduces different topologies to 

manipulate the uniaxial-tension-induced stress field distribution in nanocomposite thin films. The 

goal is to leverage stress-concentrating topologies to enhance strain sensing response while 

utilizing stress-releasing structures to decouple deformation effects for multifunctional sensing 

applications. The experimental findings are compared with numerical simulation results to 

demonstrate the effects of topological design of nanocomposite strain sensing performance. 

In Chapter 4, the nanocomposite thin films are employed for monitoring human 

physiological performance (i.e., as wearable sensors). Specifically, two different sensing systems 

are designed, namely, CNT fabric sensors and printed GNS sensors, which serve as building blocks 
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for smart garments and smart skins, respectively. They are designed to monitor human motions as 

well as vital signals, including respiration and pulsation. 

However, to overcome the discrete sensing limitation of current electronic devices, Chapter 

5 discusses a nanocomposite-based spatial sensing system that is capable of identifying, 

characterizing, and locating potential anomalies. To be specific, the strain sensing nanocomposites 

are coupled with tomographic imaging and signal processing algorithms to interrogate the 

electrical properties of sensing materials, which can be correlated to the mechanical performance 

of the corresponding structures to which they are attached. Chapter 5 introduces the mathematical 

formulations of electrical impedance tomography and compressed sensing algorithms while 

demonstrating the spatial sensing performance of the coupled system through spatially distributed 

pressure and damage detection experiments. 

By building upon the results presented in Chapter 5, Chapter 6 demonstrates how these 

spatially distributed nanocomposite sensors can be applied for large-scale applications. Two 

applications are discussed, namely, monitoring seismic loading-induced structural damage in a 

full-scale reinforced concrete shear wall and smart socket prostheses for pressure ulcers 

prevention. This dissertation concludes with Chapter 7 summarizing the major findings in this 

study and a brief discussion of future research directions.  
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Chapter 2. Fabrication and Characterization of 

Piezoresistive Nanocomposites 

 

  

2.1. Introduction 

The primary objective of this chapter is to design, manufacture, and characterize 

multifunctional nanocomposites that are mechanically robust and possess electrical properties 

responsive to externally applied deformations (i.e., they are strain sensitive or piezoresistive). By 

understanding their electromechanical properties, the goal is then to design and optimize the 

piezoresistive properties of nanocomposites and to ensure that they are compatible with low-cost 

and scalable manufacturing procedures. The expected outcome is that this study will pave way for 

future applications of these nanocomposites for strain sensing and structural health monitoring.  

The approach to design these multifunctional nanocomposites is by incorporating CNTs 

and graphene as nanofillers in polymer matrices. CNTs and graphene are employed, because they 

possess extraordinary mechanical and electrical properties, such as high aspect ratios, low density, 

mechanical robustness [84-86], and intrinsic piezoresistivity [87-89], among others, which can be 

potentially translated to larger length scales and can enhance the properties of these 
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nanocomposites. It should be noted that, although extensive studies have been conducted on 

employing individual CNTs or graphene nanosheets (GNS) as sensing elements, it is nearly 

impossible to implement these nano-scale elements onto large-scale civil, aerospace, and marine 

structural systems for SHM. Therefore, this chapter mainly investigates nanocomposites with 

CNTs and GNS embedded in polymeric matrices as a more practical and effective approach to 

leverage the intrinsic nano-scale material properties of CNTs and GNS. 

However, due to strong Van der Waals’ and electrostatic forces that exist between many 

nanomaterials, CNTs and GNS tend to aggregate into bundles, which renders manufacturing high-

performance nanocomposites challenging. These agglomerated nanofillers become localized 

inhomogeneous inclusions when embedded in a polymer matrix and can significantly compromise 

the mechanical and electrical performance of the resulting nanocomposites. Therefore, to disperse 

CNTs and GNS, many approaches have been used, including chemically functionalizing the 

nanostructures (e.g., graphene oxide) or by means of mechanical excitation (e.g., ultrasonication 

and shear mixing) [90].  

Upon obtaining the dispersed nanofiller-polymer solutions, various techniques have been 

developed so far for fabricating nanocomposites. Some of the most commonly employed 

techniques include, for instance, spin coating [91], solution casting [92, 93], vacuum filtration [94], 

layer-by-layer (LbL) deposition [57], electrospinning [95, 96], screen printing [97, 98], and inkjet 

printing [99-102], to name a few. Upon investigating the material components involved in the 

aforementioned literature, one can find that different fabrication techniques may be more suitable 

for certain scenarios, depending on, for example, solution viscosity, particle dimensions, 

patterning requirements, temperature restrictions, and target applications, among others. 
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Therefore, it is important to optimize the manufacturing processes to effectively fabricate the 

nanocomposites so that desired performance and functionalities could be attained. 

In this chapter, three different bottom-up fabrication techniques are introduced, including 

spray fabrication (Section 2.3), screen printing (Section 2.5), and micro-patterning (Section 2.6). 

Particularly, Section 2.3 focuses on using CNTs as nanofillers, while Sections 2.5 and 2.6 employs 

high-quality GNS, whose synthesis and characterization is discussed in Section 2.4. In addition, 

the detailed procedures of the manufacturing techniques are described in corresponding sections, 

where their effectiveness has also been evaluated based on a series of characterization experiments 

performed on the resulting nanocomposites’ microstructures, electrical properties, and 

electromechanical performances. 

2.2. Spray Fabrication of Carbon Nanotube Nanocomposites 

2.2.1. Materials 

All raw materials were used as is and without further purification. CNTs used in this study 

were multi-walled CNTs (MWCNTs) acquired from SouthWest NanoTechnologies (outer 

diameter: 6 to 9 nm; length: 5 μm; and purity: >95%). Poly(sodium 4-styrenesulfonate) (PSS) 

(molecular weight of ~ 1 Mg mol-1) and N-methyl-2-pyrrolindinone (NMP) were from Sigma–

Aldrich. The latex solution was from Kynar Aquatec. Other reagents, solvents, chemicals, and 

disposable laboratory supplies were purchased from Fisher Scientific.  

2.2.2. Thin film fabrication procedure 

The nanocomposite thin films were fabricated by spray-coating MWCNT-latex inks onto 

substrates using an airbrush. The spray fabrication technique was based on previous works by 
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Loyola et al. [103, 104] and Mortensen et al. [105]. In short, the first step involved preparing 

MWCNT-latex ink solutions. MWCNTs were initially mixed with a 2 wt% PSS aqueous solution 

with dilute amounts of NMP. Here, three MWCNT concentrations were used for fabricating sets 

of films with 1, 2, and 3 wt% MWCNTs. Then, the mixture was subjected to 60 min of high-energy 

probe sonication (3 mm tip, 150 W, 22 kHz) for dispersing MWCNTs. It should be mentioned that 

high-molecular weight PSS could wrap or align themselves along MWCNT surfaces during 

sonication, thereby enhancing steric stabilization and preventing MWCNTs from agglomerating. 

On the other hand, NMP was used to enhance MWCNT suspension and the dissolution of PSS and 

latex in solution. Once a well dispersed MWCNT/PSS-NMP solution was obtained, the Aquatec 

latex solution and 18 MΩ⋅cm deionized (DI) water were added in appropriate quantities to obtain 

the final sprayable ink. Here, latex was used, because an objective of this work was to create 

sprayable nanocomposite coatings that emulated the characteristics of common latex paints. In 

addition, the incorporation of latex increased the viscosity of the MWCNT-latex ink, which 

prevented the ink from flowing on the substrate after it was sprayed. Thus, films could be sprayed 

and patterned onto flat, curved, and vertical substrates. 

For all the specimens fabricated in this study, a Paasche airbrush was utilized, and spraying 

was conducted immediately after ink preparation to avoid the ink becoming too viscous to be 

sprayed. Spraying was conducted in a fume hood and was performed manually by holding the 

airbrush ~ 30 cm perpendicular to the substrates and by moving the airbrush at a constant speed. 

After spraying, the thin films were air-dried inside the fume hood (for at least 3 h). It should be 

mentioned that manual airbrushing does not guarantee uniform films. However, the thin film 

specimens were prepared meticulously so as to guarantee the best possible quality and uniformity. 

Furthermore, MWCNT-latex thin films were deposited onto different substrates, namely, 25 × 75 
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mm2 glass microscope slides and flexible 215 × 280 mm2 poly(ethylene terephthalate) (PET) 

sheets, which were for characterizing the films’ physical properties and sensing performance, 

respectively.  

In addition, post-fabrication thermal annealing was also conducted on certain sample sets. 

The procedure involved transferring the dried nanocomposite films to a StableTemp Model 282A 

vacuum oven and annealing them at a temperature of 80 ˚C for 12 h, followed by 150 ˚C for 3 h, 

and in vacuum. It should be noted that this annealing process was optimized and determined mainly 

based on MWCNT-latex strain sensors’ sensing performance. It was found that such annealing 

conditions could eliminate resistance drifts that would otherwise occur in the non-annealed 

specimens [106]. 

2.2.3. Electromechanical characterization 

The MWCNT-latex thin films were subjected to electromechanical tests for characterizing 

their strain sensing properties. The test setup shown in Figure 2.1a depicts an MWCNT-latex film 

mounted in a Test Resources 150R load frame. In addition, an Agilent 34401A digital multimeter 

(DMM) was employed for measuring the thin film’s electrical resistance (sampling rate: 2 Hz), 

while the film was subjected to various load patterns. Figure 2.1b shows a close-up view of an 

MWCNT-latex specimen mounted in the load frame. The applied load, crosshead displacement, 

electrical resistance, and time were recorded simultaneously and time-synchronized using a 

customized LabVIEW program. 

Electromechanical tests were conducted by commanding the load frame to first apply a 

static pretension force of 0.03 N to ensure that the film was taut and vertically aligned with the 

axis of loading. In addition, each specimen was also checked to see if slippage between the 
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specimen and crosshead grips occurred. It should be mentioned that the load frame was equipped 

with serrated grips that were able to secure the specimens in place, and film slippage was rarely 

an issue. Then, each specimen was subjected to 5-, 10-, and 15-cycle tensile cyclic load patterns 

to a maximum applied strain of 0.5%. Multiple sets of these tests were conducted on the same 

specimen, and the load rate was varied to be 1, 2, and 3% min-1. 

For the annealed films in which their electrical resistances stabilized after some initial 

exponential decay, one could compare their baseline resistances as a function of different MWCNT 

concentrations, as is shown in Figure 2.2. It can be seen that films of higher MWCNT 

concentrations tended to have lower nominal resistance. This result agrees with the percolation-

based numerical modeling results obtained by Lee and Loh [33] and can be explained by the fact 

that greater CNT concentrations provide more electrical conductive pathways for current to flow 

through the material, thereby decreasing resistance. Figure 2.2 also shows each sample set’s 

  

(a) (b) 

Figure 2.1 (a) MWCNT-latex thin films were mounted in a Test Resources 150R load 
frame. A DMM was employed for measuring the specimen’s electrical properties. (b) A 

close-up view of the highlighted film mounted in the load frame. 
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standard deviation as the error bar, and it is clear that the nominal resistance differences are 

statistically significant. It also appears that the rate of resistance decrease became slower with 

higher MWCNT concentrations; however, only three concentration sets were investigated in this 

study, and more data is needed to verify this observation, which is the focus of future 

investigations. 

Representative resistance time histories of annealed 1 wt% MWCNT-latex thin films were 

overlaid with the corresponding 5-cycle (load rate: 1% min-1) applied strain patterns, as shown in 

Figures 2.3a. It was found that, regardless of MWCNT concentration, load rate, and the number of 

load cycles, the films’ electrical resistance increased in tandem with increasingly applied strains, 

and the opposite was true during unloading. In addition, Figure 2.3b plots the corresponding 

normalized change in resistance (ΔRn) with respect to the applied strains. Here, ΔRn is calculated 

as the difference between the film’s resistance at any instant (Ri) and its nominal resistance (R0), 

then normalized by R0 as follows: 

 

Figure 2.2 The average nominal electrical resistance and standard deviations (as error bars) 
of annealed MWNT-latex thin films. 
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   (2.1) 

The films’ strain-sensitive electromechanical properties could be a result of two effects. 

The first is that the applied strains could induce rigid-body motions of MWCNTs within the 

polymer matrix. In this case, tension would decrease the number of nanotube-to-nanotube 

junctions, thereby decreasing the number of electrical conductive pathways to cause an increase 

in the measured electrical resistance of the bulk film. On the other hand, MWCNTs embedded in 

the polymer matrix could also deform due to stress and strain transferred from the externally 

applied loads [107], which would decrease the conductance of each MWCNT with increasingly 

applied tensile strains to cause the bulk film to also exhibit higher electrical resistances [88, 108]. 

It should be noted that Lee and Loh [33] also numerically modeled this latter effect. If larger strains 

were to be applied to these films, it is also possible that nanotubes may be pulled out of the matrix 

or be fractured [109, 110]. However, this would likely induce damage to the films and cause its 

nominal resistance to increase, which was not the case observed in these tests. 

Using the resistance time histories and applied strain patterns, the strain sensitivities of 

MWCNT-latex thin films were also evaluated for films of different MWCNT concentrations and 

tested with different load rates and number of load cycles. The strain sensitivity or gage factor 

(GF) of each film was determined using the following equation: 

 𝐺𝐺𝐺𝐺 = 𝛥𝛥𝑅𝑅𝑛𝑛
𝛥𝛥𝛥𝛥

  (2.2) 

where Δε is the change in applied strain corresponding to the change in normalized resistance 

measured. In fact, strain sensitivity is equivalent to the slope of the linear least-squares regression 

line fitted to the ΔRn versus ε data, as shown in Figure 2.3b. 
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The average strain sensitivities and corresponding standard deviations for all the various 

sample sets were calculated and shown in Figure 2.4. From Figure 2.4, two distinct trends can be 

observed. First, MWCNT-latex thin films of higher MWCNT concentrations were characterized 

by higher strain sensitivities. In fact, this observation was consistent with other types of CNT-

based strain sensors [57, 111]. It is clear from the results shown in Figure 2.4 that strain sensitivity 

differences due to changes in MWCNT concentrations were statistically significant, especially 

given the small standard deviations (error bars). This trend of increasing strain sensitivities can be 

explained by the fact that nominal bulk film resistance decreases with increasing MWCNT 

concentrations. Since R0 is the reference value in which changes in resistances are based on (see 

Equations 2.1 and 2.2), any reductions in the denominator translates to higher strain sensitivities. 

In other words, assuming that all else being equal, the relative resistance change appears to be 

larger since nominal resistance is lower for films of higher MWCNT concentrations. It should also 

be mentioned that the MWCNT-latex thin films investigated in this study exhibited slightly lower 

strain sensitivities as compared to some other types of CNT-based strain sensors [111]. Sensitivity 

  

(a) (b) 

Figure 2.3 Representative electromechanical response of an annealed 1 wt% MWCNT-
latex thin film: (a) resistance time history overlaid with the applied 5-tensile-cyclic load 

pattern to 0.5% (load rate: 1% min-1) and (b) corresponding normalized change in 
resistance (for all 5 cycles) plotted as a function of applied strains (R2=0.9699). 
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variations between different types of thin films could be a result of different interfacial properties 

between the CNTs and its polymer matrix [112]. Future research will employ both experimental 

and numerical techniques for clarifying this relationship and for testing this hypothesis. 

2.3. High-Performance Graphene Nanosheets 

2.3.1. Water-assisted liquid phase exfoliation 

The scalable production of high-quality GNS is a critical milestone for various potential 

applications, including strain sensing [113], nanoelectronics [114], nanocomposites [115], energy 

conversion and storage [116], catalysis [117], and biomedical applications [118]. Among those 

applications, GNS provides tremendous opportunities for improving the properties of next-

generation strain sensors [113, 119], in particular, by leveraging their nanostructured two-

dimensional (2D) morphology and extraordinary mechanical and electrical properties [115, 120, 

121]. Over the last decade, various methods have been introduced for the synthesis of GNS, 

including micromechanical exfoliation [122], CVD [123], the reduction of GO [124], and liquid-

 

Figure 2.4 Average strain sensitivities (and standard deviations as the error bars) of films of 
different MWCNT concentrations tested using different load rates. 
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phase exfoliation (LPE) of bulk graphite in various solvents [125]. Although the bulk production 

of GNS by reduction of GO is a popular method [124, 126], the drastic conditions (i.e., the use of 

strong reducing agents or high temperature) involved in the reduction process often introduce 

impurities or defects in RGO, which affect the intrinsic properties of GNS. In addition, the 

synthesis of RGO chemically or thermally is time-consuming, laborious, and hazardous for the 

environment. While CVD is capable of producing almost defect-free GNS, the yield is low in terms 

of bulk production. In contrast, LPE of bulk graphite via sonication in various solvents [127, 128] 

to prepare GNS has attracted considerable attention due to its simple operations, low defects in the 

produced nanosheets, and minimal environmental impact [129]. Recently, mixtures of solvents 

have been demonstrated as successful liquid phases to improve the yield and quality of GNS, as 

well as other 2D layered materials in LPE [130]. 

Here, low-defect few-layer GNS were synthesized from graphite microcrystalline powders 

(-325 mesh, 99.995 % pure, Alfa Aesar) using a surfactant-free, efficient, and economical LPE 

process [128] by using a water-NMP (99% extra pure, Acors Organics) mixed solvent. Figure 2.5 

summarizes the entire experimental method employed for exfoliation of each material. The same 

14 mL centrifuge tubes were used throughout the experiments to avoid material loss due to transfer. 

Here, 50 mg of each material were measured and placed in 14 mL centrifuge tubes with an initial 
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concentration of 5 mg mL-1 for exfoliation. The materials were to bath sonicated for 6 h (Elma 

sonic P60H) at a fixed nominal power and frequency of 100 W and 37 kHz, respectively. The 

positions of each sample tube were interchanged every 30 min to subject the mixtures to uniform 

power distribution. The water of the bath sonicator was replaced with normal cold water every 30 

min to minimize temperature increase during sonication, and the temperature was maintained 

between 27 to 37 ˚C. Sample dispersions were left overnight after sonication, followed by 

centrifugation at 3000 rpm for 30 min using a Hettich EBA20. The top 75% of the colloidal 

supernatant was first collected. Then, the supernatant was kept undisturbed for 24 h for further 

precipitation, if any, and the upper 67% portion of the colloidal supernatant was used for 

characterization. Every experiment was repeated for five times to obtain statistically representative 

results and to account for experimental error. 

Ex situ characterization of the as-produced LPEGNS was performed by transmission 

electron microscopy (TEM) and micro-Raman spectroscopy. Cold-field emission Cs-corrected 

TEM (JEOL ARM-200F) with 200 kV accelerating voltage was used. Carbon-coated copper grids 

(400 mesh) were used for TEM sample preparation. Figure 2.6 shows the TEM images of the as-

synthesized GNS at different magnifications. The red arrows in Figure 2.6c indicate the distinct 

layers of GNS, showing that they had few layers as well as relatively intact nanostructures. 

 

Figure 2.5 Schematics of GNS exfoliated from bulk graphite using an 8:2 NMP/H2O 
solvent. 
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In addition, Raman scattering was performed at room temperature with a JASCO 5100 

spectrometer (λ = 533 nm). The thin films for Raman analysis were prepared on silicon wafers and 

dried in a hot air oven at 60 ˚C. The Raman spectrum of the LPEGNS is shown in Figure 2.7. The 

impurities or defects in the graphene basal plane were quantified from the intensity ratio of D to 

G band (ID/IG). The low value of ID/IG (~ 0.60) and high 2D peak intensity of GNS indicated that 

the water-NMP co-solvent approach resulted in fewer defects in GNS during synthesis [128, 131, 

132]. The water-assisted LPE (WALPE) method was capable of obtaining high-quality GNS due 

to the interactions between GNS and the co-solvent. In particular, the bulky (NMP·2H2O)n 

aggregates, formed due to water-NMP hetero-association, can generate inter-sheet repulsive forces 

and separate individual GNS with non-overlapping Leonard-Jones (L-J) potentials [128, 133]. 

Therefore, the WALPE method can preserve the unique properties of graphene and is potentially 

more suitable for scale-up and enhancing bulk sensor performance. 

 

Figure 2.6 (a – c) TEM images of different magnifications for the GNS synthesized by the 
WALPE method. The red arrows in (c) indicate the distinct edges of the few-layer GNS. 
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2.3.2. Bulk performance comparison with reduced graphene oxide 

To validate that the superior material properties of the LPEGNS could translate to the bulk-

scale, the LPEGNS- and RGO-based flexible graphene paper specimens were fabricated and their 

electrical properties and strain sensing properties were compared. First, RGO was synthesized 

following typical procedures. To be specific, 0.1 g of natural graphite was suspended in 100 mL 

of H2SO4, followed by stirred, using a magnetic stirrer, at 300 rpm for 2 h until a visually 

homogeneous black solution formed. Then, KMnO4 of different quantities was slowly added to 

the solution and further stirred for another 2 h at room temperature. After that, the temperature was 

gradually raised to different temperatures and then maintained for 2 h in a water bath (IKA-HS7 

digital). When the reaction completed, the product was removed from the heat source, allowed to 

cool to room temperature, and was then poured into 350 g of ice containing 5 mL of 35% H2O2 

(i.e., to prevent precipitation of insoluble MnO2). The mixtures were then centrifuged (at 24,500 

rpm and for 30 min) to obtain crude solid (Beckman, Avanti J-25). The solid was removed and 

then bath-sonicated in 60 mL of DI water for 30 min (IKA-HS7 digital). The material was bath-

 

Figure 2.7 A representative Raman spectrum of the as-synthesized LPEGNS. 
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sonicated again by adding 30 mL of HCl, and the dispersion was centrifuged (24,500 rpm and 30 

min). Furthermore, the collected solid was removed and then bath-sonicated in 60 mL ether for 30 

min. The purified GO was then obtained by collecting the centrifuged (24,500 rpm and 30 min) 

solid. Finally, exfoliation of GO was conducted by heating it (~ 10 ˚C min-1) to 1,000 ̊ C in an inert 

Ar atmosphere. After thermal reduction, RGO were obtained. 

To fabricate graphene paper specimens, 0.5 mg mL-1 GNS (RGO and LPEGNS) were first 

added to 0.5 wt% polyoxyethylene (40) nonylphenyl ether (IGEPAL® CO890, average Mn ~ 1982, 

branched) aqueous solution (Figure 2.8a). Here, a water-based solution was preferred over organic 

solvents (e.g., NMP) so as to avoid damaging the cellulose structure of paper fibers or 

compromising the mechanical properties of the paper substrates. The mixture was then subjected 

to 2 h of high-energy probe sonication (3 mm tip, 150 W, 22 kHz) for dispersing GNS (Figure 

2.8b). Second, using disposable pipettes, 6 mL of GNS-CO890 solution was deposited to cover a 

12 × 2.5 cm2 rectangular area on paper, as is shown in Figure 2.8c. The surface tension of the 

solution was found sufficient for confining the solution within the rectangular area and, hence, 

ensured that the amount of GNS deposited in each paper specimen was the same. Note that the 

deposition was conducted on a horizontal platform, on which the GNS-CO890 solution could be 

uniformly distributed. After being air-dried at room temperature overnight, the GNS paper were 

cut to form 14 × 1 cm2 specimens (with 1 cm margins on both the longitudinal ends of the specimen, 

as is shown in Figure 2.8d. Figure 2.8d also illustrates the technique for establishing electrodes, in 

which copper tape strips were sandwiched between two layers of conductive silver paste so as to 

minimize contact resistance. Here, the gage length was 30 mm. On the other hand, to improve the 

ease of fabricating LPEGNS-based samples, ethanol was added to 0.7 mg mL-1 LPEGNS-CO890 

dispersed solutions (5:1 sonicated solution-to-ethanol by volume), and the mixture was then 



29 
 

subjected to cold bath sonication for 30 min. The fast evaporation of ethanol could accelerate the 

integration of GNS with the paper fibers. In addition, a syringe was used to deposit the dispersed 

LPEGNS-CO890/ethanol solution to form 60 × 2 mm2 thin rectangular strips on paper. After the 

samples fully dried, electrodes were attached as shown in Figure 2.8d, and the gage length was 20 

mm. Moreover, post-fabrication thermal annealing was conducted by subjecting the dried 

LPEGNS-based samples to annealing at 180 ̊ C for 1 h in vacuum using a vacuum oven (ADP300C, 

Yamato Scientific America). It should be noted that all electrical measurements were performed 

after annealed sample sets cooled down to room temperature overnight. One can observe from the 

photograph of fabricated sensors (Figure 2.8e) that LPEGNS and RGO were uniformly distributed 

and were well-integrated with paper fibers, and the incorporation of GNS did not compromise the 

flexibility of the pristine substrate (inset of Figure 2.8e). 

 

Figure 2.8 The graphene paper strain sensors were fabricated using a multi-step solution-
based process. (a) graphene nanosheets were dispersed by subjecting graphene and CO890 

solution mixture to (b) 2 h of ultrasonication. (c) Sonicated solution was uniformly deposited 
on printer paper. (d) Electrodes were established on both ends of completely dried specimens. 

(e) A photograph of an assembled RGO-CO890 and LPEGNS-CO890 (light grey) paper 
sensor are shown; the inset shows the graphene paper sensor was highly flexible.  



30 
 

Figures 2.9a and 2.9b show the representative nominal resistance time histories of RGO-

CO890 and LPEGNS-CO890 paper sensors, respectively; the plots also include their average 

unstrained resistance values and standard deviations. It was found that samples fabricated with 

RGO possessed significantly higher resistance than their LPEGNS-based counterparts. The 

inferior bulk electrical conductivity of RGO-based sensors could be mainly attributed to the 

structural defects in the nanosheets that were inevitably introduced when removing the oxygen-

containing groups. Furthermore, upon closer examination of the resistance time histories over a 

period of 500 s (insets of Figures 2.9a and 2.9b), RGO-CO890 paper sensors exhibited a higher 

noise floor. Here, the root-mean-square (RMS) noise (RRMS) of the nominal resistance data were 

calculated using Equation 2.3,  

  (2.3) 

where Ri represents the measured resistance data as a function of time (t), whose average is denoted 

by Rave, and n is the total number of measurements included. It should be mentioned that Rave is 

also regarded as the nanocomposite’s unstrained nominal resistance. The calculated RMS noise 

values for the two sample sets tested are listed in Figures 2.9a and 2.9b, which confirmed that the 

RGO-CO890 sensors were characterized by significantly higher noise. It is hypothesized that 

RGO-CO890 graphene paper nanocomposites contained unstable or defective conductive 

pathways, which could be more susceptible to external stimuli (e.g., changes in ambient 
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temperature, humidity, and light), resulting in considerable variations (or noise) in their electrical 

resistivity. 

Furthermore, the strain sensing performances of RGO and LPEGNS were also compared 

by conducting load tests. Here, a commercial foil strain gage (GF of 2.13 ± 1% at room 

temperature) was installed on the beam and parallel to the graphene paper sensors using epoxy for 

measuring induced strains (i.e., as benchmark tests). In contrast, double-sided tape and Kapton 

tape were employed for affixing the GNS paper sensors onto the test beam, since epoxy might 

affect the intrinsic electrical properties of these specimens. The interface was strong and reliable 

 

Figure 2.9 Representative unstrained nominal resistance time histories of (a) RGO-CO890 
and (b) LPEGNS-CO890 paper sensors are shown. The corresponding insets show closer 

examinations of resistance fluctuations over a 500-s window for evaluating noise floor. The 
electromechanical responses of an RGO- (c) and LPEGNS-CO890 paper sensor (d) are 

overlaid with the applied strain pattern (measured using the foil strain gage).  
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enough that no slippage was observed during the tests. Then, quasi-static strain was applied 

uniformly to both the GNS paper sensor and strain gage by gently placing weights onto the free 

end of the beam, the test setup is shown in Figure 2.10. Here, two Keysight 34465A DMMs were 

employed to simultaneously measure the electrical resistance of the GNS paper sensor and strain 

gage. Both DMMs were controlled by a Keysight BenchVue program, which also recorded all the 

data.  

Figures 2.9c and 2.9d show the resistance changes of RGO- and LPEGNS-based samples 

when subjected to applied strains, respectively. The electromechanical response of RGO-CO890 

samples could be barely detected because of the dominant effects of noise during applied strains 

(Figure 2.9c). On the other hand, one can observe from Figure 2.9d that the resistance of LPEGNS-

based sensors increased in tandem with increasingly applied tensile strains and without any phase 

lag. During the unloading process, the paper sensors’ resistance decreased simultaneously and 

returned to their initial unloaded resistance. The piezoresistivity of graphene paper could be 

 

Figure 2.10 A graphene paper sensor and a foil strain gage were both affixed onto an 
aluminum cantilevered beam, whose electrical resistances were measured using DMMs. The 
inset is a photograph of the test setup. Quasi-static strain was applied by loading the free-end 

of the beam using weights.  
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primarily contributed by the disturbance of electrically conductive pathways in the nanocomposite 

under applied strains. In particular, portions of deposited GNS could experience strain-induced 

rigid-body motion (along with the paper fibers) to become physically and electrically disconnected 

(during applied tensile strains), which would disrupt the originally formed conductive network and 

impede electrical current flow. As a result, the bulk electrical resistance of the nanocomposite 

would increase correspondingly. When tensile strains were removed, the paper fibers restored to 

their previous configurations, enabling LPEGNS to re-establish the initial percolation network and 

reducing bulk film resistance to its initial value. The assumption of elastic behavior of paper is 

valid given that only small strains were applied and that no residual strains (or permanent 

deformation) were observed after the tests. However, for RGO-based specimens, since the 

conductive network itself was unstable and that RGO was sensitive to ambient effects, the 

nanocomposite’s piezoresistivity was unreliable, if detectable at all. Therefore, the superior quality 

of LPEGNS versus RGO is crucial for manufacturing paper-based thin films with favorable strain 

sensing properties. 

In situ Raman spectroscopy of LPEGNS-CO890 at variable strains was performed to 

examine the effect of strain on the hexagonal graphene layers (Figures 2.11a and 2.11b). Figure 

2.11a clearly shows there is a shift in the G mode frequency of LPEGNS under applied strain. An 

LPEGNS film on paper substrate was sufficiently sensitive to respond at weak strain (0.02 %), 

which also implied the high quality (low-defect) of the LPEGNS. Despite of an irregular trend, G 

mode showed an overall blue-shift over the entire strained graphene. The irregularity might be due 

to the nonuniform strain distribution over the LPEGNS layers. The nonuniformity could be 

attributed to the consequence of van der Waals interaction between paper substrate with graphene 

nanosheets [134]. On the other hand, an overall decreasing trend was observed in ID/IG profile with 
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increasing strain (Figure 2.11b), which implied that the applied strain did not introduce defects or 

deformations in graphene layers. The effect of strains on LPEGNS was also investigated by SEM 

measurements (Figures 2.11c to 2.11f). It was noted that no significant deformation due to strain 

could be observed from SEM images taken at high (Figures 2.11d and 2.11f) and low 

magnifications (Figures 2.11c and 2.11e). 

In summary, the proposed WALPE technique has been demonstrated to be capable of 

synthesizing GNS of reduced defect densities. To assess the benefits of different GNS and how 

these material properties translated to larger length-scales, strain sensing validation tests were 

conducted on solution-cast GNS paper specimens. It was found that the LPEGNS paper strain 

sensors exhibited higher electrical conductivity, lower noise floor, and more stable 

electromechanical response as compared to their RGO-based counterparts. Therefore, more intact 

nanostructures of the as-synthesized LPEGNS could significantly benefit their applications as 

strain sensing transducers. To effectively leverage the superior electrical properties of high-quality 

GNS, the following work on the development of graphene nanocomposites was all based on the 

as-synthesized LPEGNS. 

2.4. Screen Printing of Graphene Nanocomposites 

2.4.1. Materials 

Ethyl cellulose (EC) was purchased from Sigma-Aldrich (viscosity 100 cP, 5% in 

toluene/ethanol 80:20, 48% ethoxyl). It should be noted that the biocompatibility and flexibility of 

cellulose is suitable for wearable devices that can potentially make contact with human skin. In 

addition, cellulose possesses comparable surface energy characteristics, which could facilitate 



35 
 

better separation of individual GNS during ultrasonication. Here, ethanol was used to solubilize 

cellulose while providing faster drying during film fabrication. Conductive silver paint was 

purchased from Ted Pella for establishing electrodes on the fabricated nanocomposites. 

 

Figure 2.11 Effects of strain on the LPEGNS-CO890 on paper substrates. (a) and (b) Raman 
spectroscopic analyses, (a) average G mode frequency and (b) average ID/IG as functions of 

applied strains. The error bars are the standard deviations. (c) and (d) SEM images of 
unstrained LPEGNS-CO890 samples. (e) and (f) and SEM images of LPEGNS-CO890 

samples after being subjected to 0.1 % strain.  
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2.4.2. Thin film fabrication procedures 

Figure 2.12 shows the schematics of the fabrication procedures. First, the dispersing agent 

was prepared by dissolving EC in ethanol through 24 h of stirring at room temperature. Then, 2 

mg mL-1 GNS were mixed with the EC/ethanol solution and the mixture was subjected to 2 h of 

ice bath sonication (Figure 2.12a). Here, the ice bath could effectively minimize ethanol 

evaporation, which would otherwise induce GNS agglomerations. To achieve optimal solution 

viscosity for screen printing, the dispersed GNS-EC/ethanol solution was heated with a hot plate 

at 50 ˚C for ~ 10 min (Figure 2.12b). It should be noted that the solution was continuously stirred 

during heating to guarantee uniform heating and efficient evaporation of ethanol. After obtaining 

the viscous GNS-based solution, it was coated onto PET substrates through masks, whose patterns 

could be pre-cut using laser cutter (Figure 2.12c). Finally, the coated GNS-EC patterns were air-

dried overnight at room temperature to evaporate the residue ethanol. For the following tests on 

electrical properties of the GNS-EC nanocomposites, the electrodes could be established on the 

nanocomposite thin films with colloidal silver paint, as shown in Figure 2.12d. 

 

Figure 2.12 Schematics of screen printing fabrication of GNS-EC nanocomposite thin films. 
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2.4.3. Electromechanical characterization 

The strain sensing performance of the GNS-EC nanocomposite thin films were 

characterized by conducting load tests. Here, a Test Resources 150R load frame was employed to 

apply tensile cyclic strain patterns (load rate: 10 % min-1; peak strain: 1%) to the thin film 

specimens, while a Keysight 34465A DMM was used for measuring changes in thin film resistance 

during applied loading. The electrical resistance time histories of the various patterned specimens 

were recorded and digitized using Keysight BenchVue. 

Figure 2.13a shows the representative ∆Rn time history of a GNS-EC specimen, which 

exhibited good agreement between the thin films’ resistance change and applied tensile strain 

pattern. Thus, the screen-printed GNS-EC thin films possessed piezoresistive properties and could 

be potentially used as strain sensing elements. 

To further characterize the strain sensitivity of the nanocomposites, Figure 2.13b plots the 

∆Rn as a function of applied strain. One can observe a slight nonlinear response. In order to 

  

(a) (b) 

Figure 2.13 (a) Representative ∆Rn time history of a GNS-EC thin film. (b) Corresponding 
∆Rn (for all 3 cycles) plotted as a function of applied strains. 
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quantify its GF using Equation 2.2, the specimen’s response to strains ≥ 0.3% was approximated 

to be linear and was fitted by a least-square regression line, as is shown in Figure 2.13b. The 

evaluated GF was ~ 37, which was about 18 times more sensitive than commercial strain gages. 

2.5. Micro-Patterning of Graphene Nanocomposites 

2.5.1. Materials 

IGEPAL® CO890 was purchased from Sigma–Aldrich. Ultrathin (8 μm) medical tape was 

provided by Nitoms (XTRATA® Perme-Roll AIRTM). Conductive thread and conductive silver 

paint were purchased from Adafruit and Ted Pella, respectively. Dragon Skin® FX-Pro was from 

Smooth-On. 

2.5.2. Thin film fabrication procedures 

To obtain printable GNS-based ink, 0.5 wt% CO890 was first dissolved in DI water by 

bath sonication (Fisher® Scientific) for 1.5 h. Second, a mixture of 1 mg mL-1 of as-synthesized 

 

Figure 2.14 Schematic illustration for (i) GNS synthesis, (ii and iii) printable ink preparation, 
and (iv) micro-patterning the ink on the substrates. Scale bar, 10 mm. 
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WALPE GNS in 0.5 wt% CO890 aqueous solution was subjected to 1 h of high-energy probe 

sonication (3 mm tip, 150 W, 22 kHz), as is shown in Figure 2.14 (steps ii and iii). Here, an aqueous 

solution was used instead of organic solvents to maintain compatibility with the printing substrates. 

Then, a Microplotter® (SonoPlot) was employed for patterning the dispersed GNS-CO890 solution 

onto ultrathin medical tape at room temperature, forming pre-designed, 2D geometrical patterns 

during fabrication (step iii) [135]. The printing resolution was ~ 60 μm. It should be noted that the 

Microplotter® can fabricate complex geometries, but, in this study, the sensing elements were only 

rectangular for simplicity sakes. Then, the as-printed patterns were air-dried at room temperature. 

Unlike traditional patterning techniques (e.g., photolithography, soft lithography, and screen 

printing), the patterned printed graphene sensor (PGS) was fabricated at a low temperature and 

without the use of masks and molds. In particular, each GNS-based sensing element was pre-

designed as 12 × 1 mm2-thin rectangles using AutoCAD (Autodesk). The designed patterns could 

be printed multiple times onto the previously deposited layer, where each pass of the Microplotter® 

formed one monolayer of the multi-layered PGS. Finally, the electrodes were established on the 

printed patterns by drying conductive silver paint over the sensing element and electrically 

conductive threads. 

2.5.3. Microstructure characterization 

The microstructure of the printed graphene patterns was investigated using micro-Raman 

spectroscopy and SEM. Here, specimens were fabricated by printing 4- and 14-layer GNS sensing 

elements onto PET substrates. It should be noted that, instead of using medical tape, the rigidity 

and transparency of the PET substrates made it easier to perform microscopy. In particular, micro-

Raman scattering studies were performed at room temperature with a JASCO 5100 spectrometer 

(λ = 533 nm). The Raman spectra were recorded using 10 random spots on the specimens. The 
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effect of laser heating was avoided by maintaining the laser beam intensity at 0.1 mW. In addition, 

a JEOL JSM-6500F SEM was used to qualitatively observe the surface morphologies of the printed 

graphene patterns. The accelerating voltages were set to be between 10 to 15 kV. 

Figure 2.15a shows the representative Raman spectra of the printed graphene sensing 

element. The result shows three typical peaks, namely, the D, G, and 2D bands at 1340, 1577, and 

2692 cm-1, respectively, which are consistent with previously reported Raman spectrum of 

LPEGNS [136, 137]. The increase in the dominance of GNS’ featured peaks indicates that a denser 

graphene network was established as more ink was printed, which was further characterized using 

SEM, as is shown in Figures 2.15b (i) and (iii). In addition, Figures 2.15b (ii) and (iv) show the 

magnified view of the GNS network’s 2D film-like surface morphology, which implies that 

graphene was efficiently dispersed and deposited without aggregation. 

 

Figure 2.15 (a) Representative Raman spectra of the printed graphene network (i.e., 4- and 
14-layer films) and the PET substrate. The intensity is of arbitrary unit for easy comparison. 
(b) SEM images of the surface morphologies of the (i) 4- and (iii) 14-layer GNS networks. 

(ii) and (iv) are magnified views of (i) and (iii), respectively. 
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2.5.4. Electromechanical characterization 

The test coupons were prepared by transferring the PGS to the test phantom so as to mimic 

a simplified PGS-skin structure. The phantom or surrogate skin was fabricated by spin coating 

(1200 rpm, 30 s, spin coater model WS-650MZ-23NPPB, Laurell Technologies) stretchable and 

low modulus (~ 190 kPa) Dragon Skin® (a 1:1 mixture of parts A and B). After being air-dried at 

room temperature, the phantom skin was removed from the glass substrates. The resulting phantom 

had an average thickness of ~ 90 μm, which was cut to 50 × 28 mm2 individual specimens. Then, 

the PGS was attached onto the phantom skin to form the test specimens. Figures 2.16a and 2.16b 

illustrate an explosion-view of the laminated test coupon structure and a photograph of an 

assembled specimen. The inset of Figure 2.16b shows an assembled specimen that collapsed under 

its own self-weight, further indicating the flexibility of the device. 

Before conducting load tests, the nominal resistance of the PGS was first characterized. 

Here, PGS of different numbers of layers (i.e., 4, 8, 12, 18, and 24 layers) were fabricated. The 

resistance time histories of the specimens were recorded using a DMM when they remained un-

 

Figure 2.16 (a) An explosion-view of the test coupon structure. (b) An assembled coupon for 
strain sensing tests. The left inset illustrates a magnified-view of the test coupon structure. 

The inset illustrates the flexible configuration of the device. All scale bars, 10 mm. 
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deformed and at room temperature. Then, an electromechanical load frame (TestResources 150R) 

was employed for applying tensile cyclic loads to the specimens. During the load tests, the 

resistance time history of the PGS specimen was measured using a Keysight 34465A DMM 

interfaced to the Keysight BenchVue program for data acquisition and storage. Here, multiple 

tensile cyclic strain patterns to different peak strains (i.e., 0.5%, 1%, 2%, 4%, 8%, 10%, and 20%) 

were applied at a constant loading frequency of 0.5 Hz. In addition, the long-term strain sensing 

response was investigated by subjecting the PGS specimen to 2000-cycle loads with a peak strain 

of 1% at 0.5 Hz loading frequency. 

Figure 2.17 shows the average nominal resistance of the PGS fabricated using different 

numbers of printed layers. To render the GNS-based pattern electrically conductive, at least 4 

printed layers were required. In addition, as more layers were deposited (i.e., incorporating more 

GNS), the printed trace became more conductive.  

Figure 2.18a shows the stress-strain curves of the pristine medical tape and the PGS. It can 

 

Figure 2.17 The nominal resistance of the PGS fabricated using different numbers of printed 
layers. 
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be seen that printing the GNS-based patterns onto medical tape barely affected the mechanical 

properties of the pristine substrate. Figure 2.18b exhibits the undeformed and deformed 

configurations of a specimen mounted in the load frame. In general, the printed GNS sensing 

element deformed conformably with the substrate without any visible delamination. Figure 2.18c 

illustrates a representative normalized change in resistance (∆Rn) time history response of a PGS-

phantom skin when subjected to different applied strain patterns. The inset of Figure 2.18c shows 

the specimen’s response at low strains. The sensor’s resistance increased in tandem with 

increasingly applied tensile strains, and the opposite was true during unloading, regardless of the 

magnitudes of peak strain applied. Its piezoresistive response is likely mainly due to deformation-

induced changes in the conformation of the electrically conductive GNS network (i.e., contact 

resistance). Although the piezoresistivity of individual GNS was also reported [138, 139], in this 

study, GNS was assumed to be too rigid to be deformed by the interactions within the binder-free 

GNS network. Therefore, strain-induced changes in GNS-to-GNS junctions most likely dominated 

the piezoresistivity of the sensing element. In particular, it is hypothesized that GNS could undergo 

rigid-body motions within its compliant matrix as strain was applied to deform the substrate, 

thereby disrupting graphene-to-graphene junctions and the number of conductive pathways that 

exists within the film. However, the GNS network was able to restore back to its initial 

configuration upon strain release, thereby allowing resistance to decrease and return to its nominal 

resistance when strain was completely removed [140, 141]. 

In Figure 2.18c, ∆Rn is plotted as a function of ε, and each set of raw data is then fitted with 

a linear least-squares regression line. The slope of the best-fit line equates to GF. The inset of 

Figure 2.18c shows a detailed view of the PGS’ response when it was subjected to low levels of 

strains. The PGS exhibited ubiquitous linear strain sensing response and an average GF of 21 for 
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applied strains up to ~ 10% (where the coefficient of determination or R2 was 0.96), which is a 

preferable attribute. It can also be observed in Figure 2.18d that the PGS was characterized by 

bilinear strain sensitivity when strained beyond 10%. GF was ~ 142 when applied strain was 

between 10% and 20%. The PGS developed in this study exhibited significantly higher strain 

sensitivities than previously reported sensing skins, including silicon-based patterns (GF was ~5 

[142] and ~1.6 [143]) and CVD-grown graphene patterns (GF was ~ 2.1 [144]). The observed 

nonlinearity of strain sensing response could be due to abrupt changes in the GNS network 

topology. To be specific, the microstructure of the GNS network might change from a 

“homogeneous network” to an “inhomogeneous network” when applied strain was increased 

beyond a certain threshold (i.e., ~ 10% in this case) [76, 145]. The nonlinear electromechanical 

performance was commonly reported for resistive strain sensors of high sensitivity but are 

relatively limited in stretch-ability [76, 145-147]. Future studies will focus on characterizing and 

improving the linearity of the sensing performance, especially under large strains. In addition, 

sensor durability was investigated by applying 1000 cycles of tensile strains, and a representative 

∆Rn time history plot is shown in Figure 2.18e. The inset of Figure 2.18e examines a magnified 

view of the response within a 50-s time window, which clearly shows the sensor’s repeatable and 

stable electromechanical response. In addition, the repeatable response indicates that the PGS was 
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mechanically intact throughout all the load tests. Overall, the PGS is characterized by repeatable, 

reversible, and stable strain sensing performance and without noticeable fatigue degradation. 

 

Figure 2.18 (a) The stress-strain curves of the medical tape (highlighted in blue) and the PGS 
(highlighted in red). (b) Images of a specimen subjected to 0 %, 10 %, and 20 % applied 

strains in the load frame. The dashed lines depict the edges of the PGS. Scale bar, 10 mm. (c) 
Representative ∆Rn time histories of a specimen subjected to tensile cyclic strains of different 
peak magnitudes. The inset confirms the sensor’s linear response at low-strains. (d) The ∆Rn 

data extracted from (c) plotted as a function of applied strains, and fitted by least-squares 
regression lines. The inset magnifies the region highlighted in the dashed box. (e) The ∆Rn 

time history corresponding to cyclic load tests to 1 % peak strain at 0.5 Hz loading frequency. 
The inset shows the ∆Rn data included in the 50 s time window. 
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2.6. Summary and Conclusions 

In this chapter, the CNT- and GNS-based nanocomposites have been fabricated with three 

different bottom-up techniques, depending on manufacturing requirements. To be specific, spray 

coating is advantageous for large-scale implementation, while screen printing can be used to 

fabricate relatively large-scale patterns. On the other hand, micro-patterning is desirable for 

creating high-precision (i.e., microscale), small-scale patterns. The manufacturing procedures have 

been designed and optimized for specific material components to obtain consistent qualities of 

resulting nanocomposites. By investigating their microstructures with microscopy imaging and 

Raman spectrum analyses, it was found that CNTs and GNS could be uniformly dispersed in the 

polymeric matrices of the nanocomposites, indicating the effectiveness of the proposed 

manufacturing methods. 

Upon fabricating the nanocomposite thin films, their strain sensing properties were 

characterized by conducting tensile cyclic load tests. Here, the thin films were subjected to 

different tensile strain patterns, while their electrical resistance changes were measured and 

recorded simultaneously. It was found that the fabricated nanocomposites were all responsive to 

the applied strains, and their resistance changed in accordance with the strain patterns, which 

validated that these nanocomposites were piezoresistive and could be potentially applied as strain 

sensors. In general, it was hypothesized that the distributed CNTs and GNS could establish 

electrical pathways in the nanocomposites that were susceptible to deformation-induced 

disturbances. Increasingly applied tensile strains would reduce the number of electrically 

conducting pathways, which results in an increase in bulk resistance. On the other hand, the 

electrical pathways could restore their initial configurations once the strains were released, 

provided that the thin films were strained in their elastic domain.  
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As compared to commercial strain gages, the designed nanocomposites exhibited superior 

mechanical and sensing properties. In particular, since the CNTs and GNS were densely distributed 

in the nanocomposites, every location on the thin films were piezoresistive and could be potentially 

utilized as densely distributed strain sensors. This feature and the ability to perform spatial sensing 

will be discussed in Chapter 5. In addition, the strain sensitivity of nanocomposites could be 

designed significantly higher than of commercial strain gages (e.g., screen-printed GNS sensors 

were ~ 37 times more sensitive when ε ≥ 10%, and micro-patterned GNS sensors were ~ 10 times 

more sensitive when ε ≤ 10%). The highly strain-sensitive nanocomposites are promising to not 

only enhance the signal-to-noise ratio and data accuracy but could also capture otherwise 

undetectable structural deformations. In addition, it should be noted that the sensing performances 

of the nanocomposite thin films were characterized via uniaxial load tests, and future work is 

needed to characterize the Poisson’s effect induced-transverse strain sensitivity [148, 149]. Thus, 

in the applications demonstrated in the remainder of this dissertation employed sensing films with 

a biased longitudinal gage length which could effectively reduce transverse strain sensitivity and 

more accurately measure the uniaxial longitudinal strains [148]. However, for practical 

applications that generally require measuring complex stress/strain fields with unknown principal 

stress/strain directions, it is essential to further characterize the transverse sensitivity of the 

nanocomposite thin films to calibrate measurements and obtain the absolute strain values.   

Chapter 2, in part, is a reprint of the material as it appears in Spray-coated Carbon 

Nanotube-Latex Strain Sensors, L. Wang and K. J. Loh, 2015; Micro-Patterned Graphene Sensing 

Skins for Human Physiological Monitoring, L. Wang, K. J. Loh, W.-H. Chiang, and K. Manna, 

2018; and Printed Strain Sensors Using Graphene Nanosheets Prepared by Water-Assisted Liquid 
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Phase Exfoliation, K. Manna, L. Wang, K. J. Loh, and W.-H. Chiang, 2019. The dissertation author 

was the primary investigator and author of these papers.
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Chapter 3. Topological Design and Characterization of 

Piezoresistive Nanocomposites  

 

  

3.1. Introduction 

The previous chapter introduced three different manufacturing techniques for fabricating 

nanocomposites, and their piezoresistivity was validated through extensive electromechanical 

characterization tests. The high strain-sensing performance of the designed nanocomposites render 

them promising to be utilized as strain transducers. In addition, it should be noted that the 

manufacturing procedures were empirically optimized based on the corresponding material 

systems for obtaining the optimal fabrication efficiency and piezoresistive properties. 

On the other hand, when it comes to other sensing applications, the fact that a transducer 

would change its output response due to applied strains can be highly undesirable and limit their 

use. For example, stretchable conductors are promising candidates for flexible displays [150], 

flexible energy harvesting and storage [151], and artificial skins [145, 152], among others. It 

remains challenging to develop highly flexible conductive materials whose electrical conductivity 

maintains constant even during large deformations (e.g., stretching, bending, and twisting). In 
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addition, for the next-generation of wearable electronics, it is essential to develop flexible sensing 

materials that provide stable electrical outputs related to multiple parameters (e.g., temperature 

and pH) without being affected by applied strains and loads [153, 154]. Therefore, there remains 

a need to effectively design the piezoresistive properties of functional materials for different types 

of target applications. To be specific, these functional materials may require enhanced 

piezoresistivity for operation as a strain sensor or, in a different scenario, exhibit suppressed 

piezoresistivity to prevent the strain- or load-induced effects. 

To develop the functional nanocomposites of desirable piezoresistive performance, most 

of the reported work to date focused on engineering and enhancing the material aspect of the 

nanocomposites, such as the nanostructures of the nanofillers [153, 155-157], nanofiller loading 

or concentrations [119], and morphologies of the polymetric matrices [145, 158], to name a few. 

Although these strategies were successful at adjusting nanocomposite piezoresistivity, the 

processes were mostly empirical and inefficient, especially considering the complex effects of the 

resulting material systems on global piezoresistive behavior. More importantly, the potential 

multifunctionality of the nanocomposites were hardly leveraged given that each material system 

had to be developed for a specific target application. Thus, it is essential to develop a more 

universal material engineering methodology that is not only broadly applicable to different 

nanocomposites but also capable of achieving a wide range of desired piezoresistivity depending 

on the application needs. 

Therefore, this chapter proposes a topological design-based approach to strategically 

control the strain sensing performance of nanocomposites. By building upon the fabricated CNT- 

and GNS-based nanocomposite thin films described in Chapter 2, this study aims to manipulate 

the bulk strain sensitivity of the nanocomposites by controlling the uniaxial-tension-induced stress 
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field distribution in the thin films. Particularly, to alter and control the stress distribution in the 

material system, Section 3.2 proposes different topological designs, including hierarchical 

inhomogeneous structures and Kirigami structures for concentrating and releasing stresses, 

respectively. To arrive at different material topologies, finite element (FE) analysis was conducted 

to investigate the effects of different topologies on their corresponding stress field distributions. 

Based on the numerical simulation results, patterned thin films were reproduced experimentally 

by screen-printing GNS-EC (Section 3.3.1) and spray-coating CNT-latex nanocomposite (Section 

3.3.2) thin films onto laser-patterned PET substrates, respectively. They were then subjected to 

load tests for characterizing their strain sensitivity and for assessing the effectiveness of 

topological design on controlling bulk film strain sensitivity. Furthermore, to numerically 

investigate the topological effects on the nanocomposites’ piezoresistivity, Sections 3.4.1 and 3.4.2 

employed linear and nonlinear material models to simulate the electromechanical performance of 

the patterned thin films, respectively. 

3.2. Topological Designs 

3.2.1. Pattern designs and fabrication 

Many thin film strain sensors are based on a continuous, rectangular geometry, which was 

employed as the Non-Patterned control set in this study. Since the aim of this study was to 

manipulate thin film strain sensing properties when the material system remains unchanged, 

different topological designs were proposed. By varying thin film topologies, the tension-induced 

stress and strain distributions in the patterned material system could be altered and controlled. 

Here, two main categories of different topologies were designed, namely, stress concentrating and 

stress releasing topologies, which are presented in Figures 3.1 and 3.2, respectively. 
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First, the stress concentrating designs started with the creation of a grid-like pattern in lieu 

of a continuous material system (i.e., the Grid as shown in Figure 3.1a). The introduction of stress 

concentrations was based on the inhomogeneity of stress distribution in the commonly used dog-

bone test specimen. It is well-known that a dog-bone shaped structure pulled in tension would 

result in concentrated stresses and strains in its tapered center region. Thus, the vertical elements 

of the grid design in Figure 3.1a were substituted with dog-bone elements to purposely introduce 

inhomogeneity to the structure (i.e., considering that tension is applied along the vertical direction), 

  
 

(a) (b) (c) 

 
  

(d) (e) (f) 

Figure 3.1 The AutoCAD drawings detail the design of the (a) Grid, (b) Dog-Bone Grid 
(whose detailed dimensions shown in (c)), and (d) Hierarchical Dog-Bone topologies (whose 

detailed dimensions shown in (e-f)). 
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as shown in Figure 3.1b (i.e., the Dog-Bone). Figure 3.1c illustrates the detailed dimensions of the 

dog-bone unit. In addition, the horizontal elements were replaced with an inverse dog-bone shape 

to combat Poisson’s effect. To further enhance stress concentrations, a hierarchical design was 

employed, where the shape of the entire grid was modeled after a dog-bone structure (Figure 3.1d). 

This design also entailed the incorporation of smaller dog-bone units as the vertical elements, as 

is shown in Figure 3.1d; hence, this topology design is referred to as the Hierarchical Dog-Bone. 

Figures 3.1e and 3.1f detail the dimensions of highlighted components of the hierarchical design. 

On the other hand, the stress releasing topology designs were inspired by a Japanese 

artform called Kirigami, which is a paper cutting technique. The Kirigami-based structure allows 

for enhanced elastic softening and large deformations of an otherwise rigid or non-stretchable 

substrate material [159]. Figure 3.2a shows the Kirigami design, which includes a periodic array 

of horizontal cuts (Figure 3.2b) that releases stresses when the entire structure is subjected to 

vertically applied tension. In addition, this study also introduced a Modified Kirigami structure 

(Figure 3.2b), which has additional curved corner cuts on both ends of the horizontal cuts (Figure 

3.2d) so as to further release the stress. In this study, consistent fabrication of all topology designs 

was performed by laser-cutting PET substrates (thickness: ~ 100 µm) using a 40 W CO2 benchtop 

laser cutter (Orion MotorTech). Digital AutoCAD drawings were uploaded, and the laser-cutter 

faithfully reproduced these patterns in the PET. 

3.2.2. Numerical analysis of stress field 

To validate that the proposed topological designs could effectively concentrate or release 

tension-induced stresses in the films, FE modeling using the Solid Mechanics Module of 
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COMSOL Multiphysics was performed. The AutoCAD-based topological designs were imported 

to COMSOL to build the model geometry; thickness was manually assigned to be 1 mm. The 

material’s mechanical properties were assumed to be dominated by the PET substrate (i.e., 

Young’s modulus: 3.5 GPa; Poisson’s ratio: 0.39; density: 1,300 kg m-3). One end of the material 

model was fixed, while the other end was assigned a 1% tensile strain applied along the y-axis or 

vertical direction. It should be noted that material performance was assumed to be in the elastic 

domain. 

  

(a) (c) 

  

(b) (d) 

Figure 3.2 (a) The Kirigami and (b) the length of the Kirigami cut is shown. (c) The 
Modified Kirigami design and (d) the zoomed-in view of the periodic unit highlighted 

shows the additional stress and strain releasing cuts introduced. 
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Figure 3.3 shows the results from FE analysis of the von Mises stress fields in thin films of 

different topologies when subjected to a 1% tensile strain applied in the vertical direction. Figures 

3.3a to 3.3d indicate that stresses were concentrated in the inhomogeneous vertical elements, and 

the overall magnitude of stress (in the vertical elements of the dog-bone shape patterns) was 

increased due to inhomogeneity of the pattern. In addition, the Hierarchical Dog-Bone (Figure 

3.3d) possessed the most dominant stress concentrations, as well as the highest stress magnitudes 

in the corresponding inhomogeneous elements. In other words, stress concentrations could be 

achieved by introducing inhomogeneity in the material structures, and such stress concentrating 

effect could be enhanced using hierarchical designs. 

On the contrary, Kirigami structures were expected to relieve stress concentrations in the 

material systems. Figures 3.3d and 3.3e show that the stress distributions in the Kirigami and 

Modified Kirigami designs, respectively. One can see that the stress magnitudes in these structures 

were significantly lower than the Non-Patterned control set, as well as versus those of the stress-

concentrating topologies. In particular, the Modified Kirigami design (Figure 3.3e) was 

characterized by an even lower stress distribution than the conventional Kirigami structure in 

Figures 3.3d, which was achieved by purposely introducing additional corner cuts at the ends of 

the horizontal cuts. Therefore, the FE modeling results indicated that the designed hierarchical 

inhomogeneous topologies led to enhanced stress concentrations, whereas cuts in the film or 

Kirigami-based topologies effectively reduced stress distribution and stress concentrations. 
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3.3. Strain Sensing Characterization of Patterned Nanocomposite Thin Films 

3.3.1. Patterned graphene-based nanocomposites  

To experimentally investigate the effects of different topological designs on the 

piezoresistivity of the nanocomposite thin films, two different nanocomposite material systems, 

including GNS- EC and CNT-latex, were fabricated and tested in this study. First, the GNS-EC 

nanocomposite thin films were fabricated by screen-printing the vicious GNS-EC ethanol solution 

onto PET substrates, which were pre-patterned into the aforementioned topologies. The detailed 

screen-printing procedures were described in Chapter 2. After the coated solution was air-dried, 

colloidal silver paste and copper tape electrodes were established at the two ends of each film for 

two-point probe electrical resistance measurements. Then, the strain sensing response of the 

   

(a) (b) (e) 

   

(c) (d) (f) 

  

Figure 3.3 FE analyses of the von Mises stress field distributions in the (a) Non-Patterned, 
(b) Grid, (c) Dog-Bone Grid, (d) Hierarchical Dog-Bone, (e) Kirigami structure, and (f) the 

Modified Kirigami structure are shown. 
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patterned nanocomposite thin films was experimentally characterized by conducting load tests 

using a Test Resources 150R load frame. Here, each specimen was subjected to uniaxial tensile 

cyclic strains (load rate: 10%/min; peak strain: 1%), while a Keysight 34465A DMM 

simultaneously measured the bulk film resistance at a sampling rate of 2 Hz. Data was recorded 

using a Keysight BenchVue software. 

Figure 3.4 shows the representative ΔRn (Equation 2.1) time histories of the control set and 

patterned thin films when they were subjected to tensile cyclic strains. Among the different 

topologies, it can be seen that the ΔRn time histories of the Non-Patterned (control set), Grid, Dog-

Bone Grid, and Hierarchical Dog-Bone followed closely with the applied tensile cyclic strain 

pattern in a stable and repeatable manner. In addition, the thin films patterned with stress-

concentrating designs exhibited larger normalized changes in resistance (i.e., were more sensitive 

to strains) than the homogeneous control set. 

 

Figure 3.4 Representative ΔRn time histories of the different patterned GNS-EC specimens 
subjected to the same tensile cyclic strain pattern are overlaid. 
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To better compare the strain sensitivities or GFs of the nanocomposite thin films of 

different topologies, Figure 3.5 plots ΔRn as a function of applied strains (Δε). Although the strain 

sensing response of the grid structures were polynomial, as is shown in Figure 3.5, linear least-

squares best-fit lines were fitted to the data corresponding to ≥ 0.3% applied strains. Then, the 

slopes of the fitted linear lines were extracted to estimate thin film GFs (according to Equation 

2.2). It can be seen from Figure 3.5 that the linear approximation was able to sufficiently 

characterize the changing trends of ΔRn for the various nanocomposite topologies tested. To be 

specific, the GFs of the Grid, Dog-Bone Grid, and Hierarchical Dog-Bone topologies were 

calculated to be ~ 38, 41, and 60, respectively. This indicated that the bulk film GF of the GNS-

EC strain sensors could be effectively increased by leveraging the inhomogeneous topology-

induced stress concentrations in the material system. In addition, higher levels of hierarchical 

inhomogeneity led to more significant enhancements in strain sensitivity. These results imply that 

  

Figure 3.5 The ΔRn of the GNS-EC specimens are plotted as functions of the increasingly 
applied strain during one loading cycle. Linear least-squares regression lines are fitted to 

data where strain ≥ 0.3%. 
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high-sensitivity sensors could be developed solely based on designing the material’s topology. It 

was hypothesized that the piezoresistivity of GNS-EC thin films mainly stem from deformation- 

and strain-induced disturbances to the percolated and conductive GNS network of the 

nanocomposite. In particular, applied tensile strains would induce separations between individual 

or small bundles of GNS to decrease the total number of GNS-to-GNS contacts, thereby reducing 

the number of overall electrical current conducting pathways in the nanocomposites and thus 

leading to higher bulk film resistance. Based on this hypothesis, this study focused on manipulating 

the stress distribution in nanocomposite thin films and used this as a mechanism for controlling 

their bulk film strain sensitivity. For instance, when higher strain sensitivity is desired, significant 

disturbances in the GNS-conducting pathways could be achieved by purposefully incorporating 

stress and strain concentrations in the nanocomposite. 

On the other hand, based on the same hypothesis, the Kirigami-based topologies were 

designed to release stress/strain concentrations in the nanocomposites so as to reduce disturbances 

to the percolated GNS networks and to minimize strain sensitivity. From Figures 3.4 and 3.5, one 

can observe that the Kirigami-based nanocomposite specimens exhibited significantly lower strain 

sensing response. The suppressed strain sensitivity was especially obvious for the Modified 

Kirigami topology sample set, whose GF was found to be ~ 0.48 (Figure 3.5). These results 

suggested that the global strain sensing performance of piezoresistive nanocomposite thin films 

could be efficiently suppressed by releasing stresses in the material system and by preserving their 

nanostructure during large deformations. In other words, the stress releasing topologies (i.e., 

Kirigami-based structures in this study) are promising for decoupling sensing signals induced by 
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strains/deformation from the primary desirable measurand (e.g., temperature-induced resistance 

changes). 

Overall, Figure 3.6 summarizes the normalized difference in GFs (ΔGFn = (GFi−GF0)/ 

GF0) obtained by the proposed topological designs as compared to the Non-Patterned control set. 

Here, GFi represents the GF values of each pattern, while GF0 is that of the Non-Patterned sample 

set (~ 40). It was found that, based on the same GNS-EC material system, a topological design 

strategy could achieve a remarkably expanded spectrum (− 99% to + 50%) of strain sensing 

performance. This indicates that the proposed topological design approach could be potentially 

leveraged to strategically manipulate the bulk material piezoresistive property for target 

multifunctional performance in a predictable and controllable manner. 

 

Figure 3.6 The ΔGFn obtained by different topological designs as compared to the Non-
Patterned control set. 
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3.3.2. Patterned carbon nanotubes-based nanocomposites 

To further validate the effectiveness and applicability of this topological design strategy, 

this study also experimentally characterized the strain sensing performance of CNT-based 

nanocomposite thin films. In particular, the CNT-latex thin films were patterned by spray-coating 

the CNT-based ink onto the pre-patterned PET substrates, following the procedures introduced in 

Chapter 2. Similar to Section 3.3.1, load tests were performed on the fabricated CNT-based 

specimens to investigate their strain sensing response. Figure 3.7 shows representative ΔRn time 

histories of the control and patterned thin films when they were subjected to tensile cyclic strains. 

In addition, GFs of different thin film patterns were evaluated in Figure 3.8. Based on the 

approximate linear regression best-fit lines in Figure 3.8, the GFs of the Modified Kirigami, 

Kirigami, Grid, Dog-Bone Grid, and Hierarchical Dog-Bone topologies were calculated to be 

 

Figure 3.7 Representative ΔRn time histories of the different patterned CNT-latex specimens 
subjected to the same tensile cyclic strain pattern are overlaid. 
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about 0.06, 0.2, 1.3, 1.7, and 1.9, respectively. Furthermore, Figure 3.9 summarizes the ΔGFn 

obtained from different topologies as compared to that of the Non-Patterned control set (~ 1.1). 

One can observe that the stress-concentrating topologies enhanced the strain sensitivity of the 

CNT-latex nanocomposites by ~ 70% (i.e., Hierarchical Dog-Bone), while the stress-releasing 

structures suppressed piezoresistivity by ~ 95% (i.e., Modified Kirigami). These results further 

demonstrated that the topological design-based approach could consistently manipulate different 

piezoresistive nanocomposite material systems, paving ways for next-generation multifunctional 

materials development and strategies for engineering specific material properties.  

  

Figure 3.8 The ΔRn of the CNT-latex specimens are plotted as functions of the increasingly 
applied strain during one loading cycle. Linear least-squares regression lines are fitted to 

data where strain ≥ 0.3%. 
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3.4. Numerical Analysis of Electromechanical Response 

3.4.1. Linear piezoresistive material models 

To further investigate the topological effects on the strain sensing performance of 

nanocomposite thin films, numerical analysis of their electromechanical response was first 

conducted based on a calibrated linear piezoresistive material model. Here, the simulation was 

performed in COMSOL by coupling the Solid Mechanics Module with the Electric Currents 

Module. Initially, the nanocomposite thin films were simulated by modifying the material 

properties of the COMSOL built-in material model for piezoresistive p-doped silicon. Particularly, 

the piezoresistive coupling matrix (𝛱𝛱) was calibrated to fit the experimental measurements for the 

control set of Non-Patterned specimens, including both GNS-EC and CNT-latex nanocomposites 

for the corresponding material systems. In general, for piezoresistors, the current electric field 

strength (E) can be expressed as follows: 

 

Figure 3.9 The ΔGFn obtained by different topological designs as compared to the Non-
Patterned control set. 
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 𝐸𝐸 =  𝜌𝜌 ∙ 𝐼𝐼 + ∆𝜌𝜌 ∙ 𝐼𝐼 (3.1) 

where I represents the current, ρ is the original resistivity of the material, and ∆ρ is the change in 

resistivity resulting from mechanical excitations (e.g., applied loads). In other words, ∆ρ is related 

to mechanical stress (σ), which can be expressed in the form of constitutive relationship, as follows 

[160]: 

 ∆𝜌𝜌 =  𝛱𝛱 ∙ 𝜎𝜎 (3.2) 

In the context of three-dimensional (3D) modeling of cubic symmetry materials with isotropic 

conductivity (e.g., silicone), Equation 3.2 becomes:  
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 (3.3) 

where 𝜋𝜋ij are the elements of the piezoresistive coupling matrix 𝛱𝛱 and are defined as piezoresistive 

coefficients [160-162]. Assuming the nanocomposites also possess similar isotropic electrical 

properties as silicone, the piezoresistive coefficients of the nanocomposite material models were 

first linearly calibrated based on the experimentally measured strain response (i.e., ΔRn time 

histories) of the Non-Patterned sample set. Then, the calibrated material models were used to 

simulate the electromechanical responses of different topological designs, whose results were 

compared with the corresponding experimental measurements. Here, the fixed-end of each 

material model (Section 3.2.2) was assigned as electrical ground, while the other end was set as 

the terminal. A DC of 2 mA was then injected between the ground and terminal, which is similar 

to the experimental resistance measurement mode of the DMM as mentioned earlier. 
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First, for the GNS-EC nanocomposite thin films, Figure 3.10a shows the spatial distribution 

of electric potential, as well as isosurfaces of electric potential in the Non-Patterned material 

model, when it was subjected to 1% tensile strain applied in the direction of the y-axis. It can be 

seen that its electric potential is uniformly distributed in the material except for regions near the 

boundaries (due to ground and terminal effects), which was consistent with the assumption of 

homogeneous material properties. In addition, the strain response of the material models could be 

obtained by probing the terminal electric potential for each deformation case. In Figure 3.10b, the 

normalized change in electric potential (ΔVn=ΔV/V0) of the calibrated Non-Patterned control set 

was plotted as a function of applied strains and overlaid with the corresponding experimentally 

measured ΔRn results. Here, ΔV and V0 represent the change in the terminal electric potential and 

initial (unstrained) terminal electric potential, respectively. It can be seen that the simulated 

material possessed similar strain sensitivity as the actual GNS-EC nanocomposite thin films. 

 
 

(a) (b) 

Figure 3.10 (a) The electrical potential distribution along with the isosurfaces of electric 
potential in the Non-Patterned material model when subjected to 1% tensile strain is plotted. 

(b) The FE model was calibrated using experimental results from the Non-Patterned topology, 
and ΔVn with respect to applied strains are compared to the experimentally measured ΔRn 

values. 
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However, the experimental measurements exhibited slight nonlinear behavior that could not be 

simulated using the piezoresistive numerical model. It is hypothesized that the nonlinear strain 

response potentially resulted from inhomogeneous changes in the nanocomposites’ microstructure 

during applied strains and deformations [76, 145]. Thus, to further enhance the accuracy of the 

electromechanical simulation, Section 3.4.2 intends to account for potential inhomogeneous 

material property changes using nonlinear percolated material models. 

Nevertheless, the calibrated material model’s piezoresistivity was then directly assigned to 

the different topological models for characterizing their electromechanical performance. Figure 

3.11 shows the variations of ΔVn for different topological material models subjected to increasingly 

applied tensile strains up to 1%. Similar to the experimental results, one can find that the simulated 

stress-concentrating topologies were more sensitive to strain, while the stress-releasing ones could 

decrease strain sensitivity. In the meantime, it should be noted that the linear numerical model 

underestimated the absolute values of the strain sensing responses for the corresponding 

specimens. 

 In addition, this study also implemented the same FE analysis approach to simulate the 

electromechanical responses of the CNT-latex nanocomposite thin films. Figure 3.12 shows the 

computed ΔVn for different topological material models, including the pre-calibrated Non-

Patterned control set. The linear piezoresistive model could also simulate the relative change in 

strain sensitivity introduced by different topological designs. Overall, the linear electromechanical 

FE analyses successfully demonstrated how thin film topologies would affect bulk film strain 

sensitivity, and the results were consistent with those observed from the experiments. 



67 
 

3.4.2. Percolated inhomogeneous material models 

The previous section modeled the nanocomposites using homogeneous piezoresistive 

material models, which could not simulate the nonlinear behavior observed from experimental 

data. Thus, this section aims to employ material models with inhomogeneous electrical properties 

to introduce nonlinearity to the simulated electromechanical response. Here, the nanocomposites 

were considered as percolated material systems, which include randomly distributed electrical 

defects (i.e., low electrical conductivity) within the material. It was hypothesized that the 

experimentally observed piezoresistivity of the nanocomposite thin films mainly stemmed from 

mechanical loading-induced disturbances to the electrical defects distribution. To be specific, 

increasingly applied tension could generate more electrical defects in the material system, which 

would correspondingly increase the bulk electrical resistance of the nanocomposites. In other 

 

Figure 3.11 The electromechanical responses of different topological material models when 
they were subjected to up to 1% tensile strain were determined through multi-physics FE 

modeling. The inset shows a zoomed-in view of the Kirigami-based material models’ 
electromechanical responses. 
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words, the proposed approach ultimately would generate a material model that possesses randomly 

distributed inhomogeneous features (i.e., electrical defects), which would propagate according to 

externally applied mechanical deformations and cause an increase in its electrical resistance. 

Based on the aforementioned assumption, in a 3D domain of interest with dimensions of 

40 × 40 × 0.1 mm3 (i.e., slightly larger than the dimensions of the designed topologies), a 

randomized statistical data set was first generated using a combination of trigonometric functions 

as follows [163, 164]: 

  𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) =  ∑ ∑ ∑ 𝑎𝑎(𝑘𝑘, 𝑙𝑙, 𝑚𝑚)𝑐𝑐𝑐𝑐𝑐𝑐(2𝑁𝑁𝑁𝑁(𝑘𝑘𝑘𝑘 + 𝑙𝑙𝑙𝑙 + 𝑚𝑚(40𝑧𝑧)) + 𝜑𝜑(𝑘𝑘, 𝑙𝑙, 𝑚𝑚))𝑀𝑀
𝑚𝑚=−𝑀𝑀

𝐿𝐿
𝑙𝑙=−𝐿𝐿

𝐾𝐾
𝑘𝑘=−𝐾𝐾  (3.4) 

where the slowest oscillation of the cosine waves was defined by 2𝜋𝜋/2N𝜋𝜋 = 1/N, which determined 

the periodicity of the synthesized data. With N = 25 in this study, the spatial period length was 40 

 

Figure 3.12 The electromechanical responses of different topological material models when 
they were subjected to up to 1% tensile strain were determined through multi-physics FE 

modeling. The inset shows a zoomed-in view of the Kirigami-based material models’ 
electromechanical responses. 
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mm so that the 3D domain of interest could include all the randomly generated dataset without 

bias. On the other hand, k, l, and m are spatial frequencies that determined the fastest oscillations 

of the cosine waves, whose maximum values are K, L, and M, respectively. Generally, larger 

spatial frequencies could improve the spatial resolution of the data, but it would also increase 

computational cost, especially for 3D cases. In this study, considering the dimensions of the 

material models, it was set that K = L = M = 200 m-1; then the shortest wavelengths in the x, y, 

and z directions were 0.2 mm. To avoid generating cosine wave functions of biased oscillation 

directions, k, l, and m were allowed to take on negative values. In addition, φ(k, l, m) represents 

phase angles, which were generated with a uniform distribution that ranged from -𝜋𝜋/2 to 𝜋𝜋/2. 

Furthermore, 𝑎𝑎(𝑘𝑘, 𝑙𝑙, 𝑚𝑚) represents oscillation amplitude coefficients, which were determined by: 

 𝑎𝑎(𝑘𝑘, 𝑙𝑙, 𝑚𝑚)  =  𝑔𝑔(𝑘𝑘,𝑙𝑙,𝑚𝑚)

(𝑘𝑘2+𝑙𝑙2+𝑚𝑚2)
𝛽𝛽
2
 (3.5) 

where the function 𝑔𝑔(𝑘𝑘, 𝑙𝑙, 𝑚𝑚) had a random Gaussian distribution (𝑔𝑔(𝑘𝑘, 𝑙𝑙, 𝑚𝑚) ~ 𝑁𝑁(0, 1)), and β is 

the spectral exponent to attenuate higher frequencies so as to generate smooth amplitude 

coefficients [165]. It should be noted that, since the 3D domain is a thin slab (i.e., smaller z-

dimensions), the z-coordinate values were scaled up 40 times to include all the dataset. Figure 3.13 

shows the synthesized random data distributed in the 3D domain, and Figure 3.13 shows five slices 

on the y-z plane of the thin slab to expose the data distribution inside of the slab. The randomized 

dataset was attributed to each patterned material model by truncating it from the same 3D thin 

slab. At this point, the randomized data were dimensionless and did not represent any physical 

properties. 

Then, to employ the dimensionless synthesized data to represent physical property 

parameters, one could multiple Equation 3.4 with a corresponding function that holds 
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corresponding physical meaning. To use the randomized statistical data set to represent material 

electrical conductivity distribution in this work, Equation 3.4 was multiplied by a simplified 

constant C [S m-1], which ideally should be calibrated with experimental data (i.e., nanocomposite 

conductivity measurements). However, since this study would mainly evaluate the normalized 

changes in the terminal electrical potential of the material models under tension, as opposed to 

absolute values of the electrical potentials, obtaining the exact value of C was not crucial. 

Furthermore, in order to introduce the aforementioned electrical defects (i.e., inhomogeneous 

material features), Boolean expression was implemented to convert the randomized conductivity 

values into binary data distribution, and it can be expressed as follows: 

 𝜎𝜎(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝐶𝐶[0.1 + 0.9 × (|𝑓𝑓(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)| > 𝜏𝜏(𝑥𝑥, 𝑦𝑦, 𝑧𝑧))] (3.6) 

where σ(x, y, z) represent the conductivity value at coordinate (x, y, z), and τ(x, y, z) is a pre-defined 

threshold function. Here, the absolute values of the synthesized randomized data were considered 

for mathematical simplicity. Equation 3.6 indicates that the electrical conductivity at a specific 

  

(a) (b) 

Figure 3.13 (a) The synthesized randomized data distribution in the thin slab. (b) 
Randomized data distributions on five slices on the y-z plane within the thin slab. 
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location could only be either 0.1C or C, which represents electrical defects and intact electrical 

connection, respectively. 

In addition, due to the experimentally observed piezoresistive performance of the 

nanocomposite thin films, their electrical conductivity should to be coupled with their mechanical 

response when subjected to applied tensions. Based on the previously mentioned hypothesis, 

electromechanical performance coupling was obtained by establishing the following relationship: 

 𝜏𝜏(𝑥𝑥, 𝑦𝑦, 𝑧𝑧) = 𝜙𝜙(𝛾𝛾𝑖𝑖(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝛾𝛾0

) (3.6) 

where γi(x, y, z) represents the von Mises stress values at coordinate (x, y, z) when the patterned 

material model was subjected to uniaxial tensile strains (ranging from 0 to 1%). γo is the von Mises 

stress value at the center location of the Non-Patterned material model under 1% tensile strain (i.e., 

control stress). Both γi(x, y, z) and γ0 could be obtained from FE analyses of the stress distributions 

performed in Section 3.2 for different material models. In other words, Equation 3.6 evaluates the 

relative changes in stress distribution introduced by the designed topologies, as compared to the 

Non-Patterned control set. In addition, the ϕ function could be established by calibrating the 

percolated material model for the control set with corresponding experimental data. The simplest 

form of the ϕ function would be a linear function, whose simulated responses for the patterned 

material models were found to be more accurate than those obtained from nonlinear ϕ functions. 

This was because the patterned material models featured much higher stresses than the Non-

Patterned control set under the same amount of deformations (i.e., large 𝛾𝛾𝑖𝑖(𝑥𝑥,𝑦𝑦,𝑧𝑧)
𝛾𝛾0

 values), and the 

nonlinear ϕ functions performed poorly for extrapolation. Thus, the remainder of this study used a 

monotonically increasing linear ϕ function. From Equations 3.5 and 3.6, one can estimate that 
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more concentrated stresses would lead to more electrical defects, whereas released stress would 

avoid electrical defect formation and propagation, which was consistent with the initial hypothesis. 

For the GNS-EC nanocomposite system, similar to homogeneous linear material modeling, 

the percolated material model was first calibrated based on the Non-Patterned control set. Figure 

3.14a shows the spatial distribution of electric potential, overlapped with isosurfaces of electric 

potential in the Non-Patterned material model, when it was subjected to 1% tensile strain along 

the y-axis. It can be seen that the electric potential was non-uniformly distributed in the material, 

indicating that inhomogeneous electrical conductivity distribution was successfully introduced to 

the material model. In Figure 3.14b, the ΔVn of the calibrated Non-Patterned control set was plotted 

as a function of applied strains and overlaid with the corresponding experimentally measured ΔRn 

results, as well as the ΔVn computed using linear piezoresistive model, for comparison purposes. 

Overall, the inhomogeneous material model not only introduced nonlinearity to the simulated 

strain response but also more accurately characterized the strain sensitivity of the GNS-EC 

nanocomposites than the linear model. Furthermore, Figures 3.15a, 3.15b, 3.15c, and 3.15d show 

the electrical conductivity distributions of the calibrated Non-Patterned material model when it 

was subjected to 0.5% and 1% tensile strains, respectively. The electrical defects clearly 

propagated in the material when subjected to larger strains. 

Then, the calibrated material model was implemented to simulate the electromechanical 

responses of the other patterned material models. Figures 3.16 to 3.20 demonstrate the electrical 

defects distributions and development in the Grid, Dog-Bone Grid, Hierarchical Dog-Bone, 

Kirigami, and Modified Kirigami material models when they were subjected to 0.2% and 1% 



73 
 

strains, respectively. From Figures 3.16 to 3.20, it should be mentioned that the electrical defects 

mainly formed and propagated at the stress-concentrating regions. For the Kirigami topologies, 

since stress was effectively released from the material, the electrical defects barely developed even 

at 1% strain. In addition, Figure 3.21 overlays the simulated electromechanical responses of all the 

patterned material models as functions of applied strains. The proposed inhomogeneous material 

models agreed well with the experimental strain sensing tests, where both showed that the stress-

concentrating topologies could enhance nanocomposites thin film piezoresistivity, while the 

stress-releasing topologies could significantly suppress their strain sensing responses. 

 
 

(a) (b) 

Figure 3.14 (a) The electrical potential distribution along with the isosurfaces of electric 
potential in the Non-Patterned material model when subjected to 1% tensile strain is plotted. 

(b) The non-linear FE model was calibrated using experimental results from the Non-
Patterned topology, and ΔVn with respect to applied strains are compared to the 

experimentally measured ΔRn values as well as that obtained from previous linear model. 
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3.5. Summary and Conclusions 

This chapter focused on investigating the effects of topological designs on the strain 

sensing performance of nanocomposite thin films. The hypothesis was that the strain sensitivity of 

a piezoresistive nanocomposite could be controlled by tailoring its topological design and its 

corresponding stress and strain distribution during applied loading. To engineer and control stress 

distributions in these thin films, this study proposed two types of topologies, namely, stress-

concentrating patterns and Kirigami-based stress-releasing structures. FE models of these 

  

(a) (c) 

  

(b) (d) 

Figure 3.15 (a – b) The electrical conductivity distributions in the Non-Patterned material 
model when it was subjected to 0.5% and 1% tensile strains along the y-axis, respectively. 

(c – d) Five cross-sections of the electrical conductivity distributions in (a) and (b), 
respectively. (a - d) share the same color bar. 
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topologies simulated the stress distributions in the patterned thin films and showed that they could 

effectively change thin film mechanical response. Then, patterned GNS-EC and CNT-latex 

nanocomposites were fabricated following the screen-printing and spray-coating techniques 

described in Chapter 2. Their strain sensing performance was characterized by performing 

electromechanical tests on the various specimens. It was found that, regardless of the 

nanocomposite material systems, the stress-concentrating topologies could enhance bulk film 

strain sensitivity, while the Kirigami-based stress-releasing topologies could effectively suppress 

piezoresistive response. Furthermore, to numerically investigate the topological effects on the 

  

(a) (c) 

  

(b) (d) 

Figure 3.16 (a – b) The electrical conductivity distributions in the Grid material model when 
it was subjected to 0.2% and 1% tensile strains along the y-axis, respectively. (c – d) Five 

cross-sections of the electrical conductivity distributions in (a) and (b), respectively. (a - d) 
share the same color bar. 
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nanocomposites’ piezoresistivity, both a linear piezoresistive material model and an 

inhomogeneous percolated material model were developed and implemented. Prior to them being 

utilized to simulate the patterned material models, both models were calibrated using experimental 

data obtained from the Non-Patterned control sets. It was found that both models suggested similar 

topological effects on the nanocomposites’ piezoresistive behavior as experimental measurements. 

In addition, the statistical randomized data-based percolated material model could more accurately 

characterize the nonlinear strain sensing response of the nanocomposite thin films. 

  

(a) (c) 

  

(b) (d) 

Figure 3.17 (a – b) The electrical conductivity distributions in the Dog-Bone Grid material 
model when it was subjected to 0.2% and 1% tensile strains along the y-axis, respectively. (c 

– d) Five cross-sections of the electrical conductivity distributions in (a) and (b), 
respectively. (a - d) share the same color bar. 
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Overall, this work demonstrated that the topological design-based approach holds 

remarkable promise for strategically engineering the performance and properties of functional 

materials so as to achieve desired multifunctionalities for various target applications. This 

methodology could potentially overcome the current relatively empirical material development 

limitation while efficiently encoding predictable material performance and multifunctionalities 

during manufacturing.  

  

(a) (c) 

  

(b) (d) 

Figure 3.18 (a – b) The electrical conductivity distributions in the Hierarchical Dog-Bone 
Grid material model when it was subjected to 0.2% and 1% tensile strains along the y-axis, 

respectively. (c – d) Five cross-sections of the electrical conductivity distributions in (a) 
and (b), respectively. (a - d) share the same color bar. 
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Chapter 3, in part, is a reprint of the material as it appears in Topological Design of Carbon 

Nanotube-based Nanocomposites for Strain Sensing, L. Wang, G. Vella, and K. J. Loh, 2019; 

Topological Design and Characterization of Piezoresistive Nanocomposites, L. Wang, G. Vella, 

W.-H. Chiang, and K. J. Loh, 2019; and in part is currently being prepared for submission for 

publication of the material, Topological Design-Encoded Strain Sensing Performance of Graphene 

Nanocomposites, L. Wang and K. J. Loh, 2019. The dissertation author was the primary 

investigator and author of these papers. 

  

(a) (c) 

  

(b) (d) 

Figure 3.19 (a – b) The electrical conductivity distributions in the Kirigami material model 
when it was subjected to 0.2% and 1% tensile strains along the y-axis, respectively. (c – d) 
Five cross-sections of the electrical conductivity distributions in (a) and (b), respectively. (a 

- d) share the same color bar. 
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(a) (c) 

 
 

 

(b) (d) 

Figure 3.20 (a – b) The electrical conductivity distributions in the Modified Kirigami 
material model when it was subjected to 0.2% and 1% tensile strains along the y-axis, 

respectively. (c – d) Five cross-sections of the electrical conductivity distributions in (a) 
and (b), respectively. (a - d) share the same color bar. 
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Figure 3.21 The electromechanical responses of different topological material models when 
they were subjected to up to 1% tensile strain were determined through multi-physics FE 

modeling. The inset shows a zoomed-in view of the Kirigami-based material models’ 
electromechanical responses. 
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Chapter 4. Wearable Nanocomposite Sensors for 

Human Physiological Monitoring 

 

  

4.1. Introduction 

Chapter 2 demonstrated that the CNT- and GNS-based nanocomposites could be fabricated 

in a low-cost and scalable manner by leveraging optimized spray coating, screen printing, and 

micro-patterning techniques. The tensile cyclic tests showed that the nanocomposite thin films 

possessed stable and repeatable strain sensing properties. Furthermore, Chapter 3 proposed a 

topology design approach to program the nanocomposites’ strain sensing properties during their 

manufacturing, and this approach established the foundation for encoding more complex sensing 

modalities and functionalities (e.g., temperature and pH sensing) in these nanocomposites.  

Based on the aforementioned CNT- and GNS-based nanocomposites, the objective of this 

chapter is to implement them as strain sensing elements to validate their applications for 

monitoring human physiological performance (i.e., as wearable sensors). In particular, two 

different sensing systems were designed, namely, CNT fabric sensors and printed GNS sensors, as 

building blocks for smart garments and smart skins, respectively. Both designs have been 
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demonstrated to be mechanically robust, flexible, and compliant to the human body without 

causing user discomfort. As for the targeted human performance parameters, the nanocomposite 

sensors were first employed to monitor human motions, including hand motions and eye blinking. 

It should be noted that human motion monitoring can remarkably facilitate athletic performance 

assessment, physical therapy development, senior fall prediction, human-machine interfaces, and 

musculoskeletal studies, among others. In addition, the designed sensing systems were utilized for 

monitoring human vital signals, including respiration and pulsation, which can be potentially used 

for personalized healthcare, such as the early diagnosis of cardiovascular diseases. 

4.2. Carbon Nanotube Nanocomposite-based Smart Garments 

4.2.1. Fabric Sensor Fabrication 

The sensing elements were spray-fabricated CNT-latex nanocomposite thin films (Chapter 

2.2). As shown in Figure 4.1a, electrodes were directly established on both ends of the thin films 

(gage length: 48 mm). The film was sandwiched between two layers of double-sided iron-on 

adhesives and fabrics, and then integrated together by ironing (ironing temperature was ~ 130 ˚C). 

Finally, the fabric sensors were cut to form 16 × 132 mm2 smaller specimens for testing. The 

  

(a) (b) 

Figure 4.1 (a) Illustration of the sandwich structure of fabric sensors. (b) Photographs of an 
assembled sensor subjected to large deformations. 
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photographs of an assembled specimen in Figure 4.1b indicate that the fabric sensor was highly 

flexible and that the sandwiched structure was strong enough to undergo large deformations. 

4.2.2. Human Motion Monitoring 

The sensing elements were spray-fabricated CNT-latex nanocomposite thin films (Chapter 

2.2). Validation of human motion monitoring was first performed using a 2 wt% CNT fabric sensor 

for detecting finger bending movements. To be specific, the fabric sensor was longitudinally 

adhered onto the index finger of a human subject, as shown in the insets of Figure 4.2. During the 

test, the finger repetitively bent to roughly three different angles, and the sensor’s resistance change 

was recorded by a DMM in real-time. Based on the different angles of finger bending during the 

tests, the entire monitoring process could be divided into three regions, namely, i, ii, and iii, as 

marked in Figure 4.2. Within each region, the finger bent back-and-forth multiple times. Owing to 

the high flexibility of the fabric sensor, it could conform to the finger and deform together, thereby 

generating electrical resistance changes that followed well with finger movements. Obviously, 

larger bending angles could generate higher changes in resistance due to greater strains being 

 

Figure 4.2 Change in resistance of a fabric sensor during finger bending motion tests. 
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applied. Also, region iii in Figure 4.2 indicates that the fabric sensor was able to detect various 

finger bending patterns, including holding at the same angle for a few seconds, as well as higher 

frequency bending movements. On the other hand, the drift in its baseline resistance could be 

caused by stress relaxation of fabrics, which could be minimized if fabric sensors were pre-loaded 

or if the fabric sensors are later integrated with a glove instead of being directly attached to the 

finger.  

4.2.3. Respiration Monitoring 

The fabric sensors were also used to monitor respiration, where the goal is to capture strain 

changes caused by thorax expansion and contraction during respiration. Here, sensor design was 

improved by utilizing conductive threads and stainless steel snap buttons for the electrodes, instead 

of single-strand wires, as shown in Figure 4.3a. The inset of Figure 4.3b shows both sides of the 

assembled fabric sensor. Here, conductive threads were sewed tightly on the snap buttons to 

establish reliable electrical contacts. Resistance measurements were obtained using the snap 

buttons as electrodes. This new sensor design allowed the fabric sensors to be even more flexible. 

 
 

(a) (b) 

Figure 4.3 (a) Fabric sensor with conductive threads and snap buttons and (b) attached to a 
chest band for respiration monitoring. 

 
 
 
 
 
 
 
 
 



85 
 

In addition, with the use of snap buttons, these sensors can be readily installed onto or disassembled 

from garments, which enabled the sensors to be reusable or exchangeable.  

In the respiration monitoring tests, each fabric sensor was implemented on a customized 

chest band with snap buttons. The chest band was worn by a human subject, as exhibited in Figure 

4.3b, and the electrical resistance of the fabric sensor was recorded as the subject breathed. To 

ensure favorable strain transfer from thorax motion to the sensor, the chest band had to be tight, 

while the fabric sensor should be taut after installation. In this study, the subject stood still and 

breathed at a roughly fixed respiration rate, while resistance was measured using a DMM. It should 

be mentioned that the subject was asked to take deeper breaths, so respiration rate was lower than 

the typical standard for an adult at rest (i.e., 12 to 20 breaths-min-1). The respiration monitoring 

tests could be divided into two subsections based on different purposes. 

In the first subsection, to validate that the fabric sensors were capable of capturing strain 

changes near the thorax during respiration, the human subject breathed in different patterns. In 

particular, the subject sometimes inhaled and exhaled quickly, while occasionally holding the 

breath for a few seconds. Figure 4.4a shows the representative change in resistance of a 1 wt% 

CNT fabric sensor due to the expansion and contraction motions of the subject’s thorax during 

respiration. One can observe that chest expansion introduced increases in resistance (i.e., applied 

tension to the sensor), while contraction enabled resistance to restore back to its original level (i.e., 

released tension). The fabric sensor exhibited stable, reversible, and repeatable response with high 

signal-to-noise ratio. Besides, Figure 4.4b illustrates that sharp peak-like (i) and step-like (ii) 

resistance changes could be correlated to fast breathing and breath-holding, respectively. Thus, by 

integrating the fabric sensors with a chest band, respiration could be monitored in real-time.  
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Furthermore, this study also used the fabric sensor measurements for estimating respiration 

rate (as a significant vital signal). To accomplish this, instead of tediously counting the number of 

resistance change peaks (i.e., number of breaths taken), the fast Fourier transform (FFT) was used 

to convert time-domain data to the frequency-domain. Therefore, for this case, the human subject 

held still and breathed deeply at a slow but regular rate. The data acquisition system recorded data 

at three times the sampling rate (66 Hz) as compared to previous tests but would unfortunately 

introduce higher levels of baseline noise to the raw data. To compensate for this, the collected data 

was first processed using a moving-average approach [166]. Figure 4.5a shows the moving-

average, down-sampled, resistance time history results, in which the moving-average was 

computed using every 51 sets of data. From these results, it is clear that the sensor was still able to 

quantify resistance changes due to respiration. In addition, one can also observe from Figure 4.5a 

certain amounts of baseline resistance drift. This could be a coupled result of ambient temperature 

changes and slight body movements, among others. Therefore, the goal of using FFT was to extract 

respiration rate in light of noisy and resistance drifts due to ambient effects. In this study, FFT was 

  

(a) (b) 

Figure 4.4 (a) Change in resistance of a fabric sensor during respiration monitoring test. (b) 
Regular breathing shows sharp peak in change in resistance (i), whereas breath-holding 

leads to step-like response (ii). 
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conducted using a 60 s moving-window with a time step of 2 s. An example time window, as well 

as the sensor’s response within the time window, is presented in the inset of Figure 4.5a.  

The inset of Figure 4.5b demonstrates the corresponding power spectrum (i.e., FFT result) 

of the same time window shown in the inset of Figure 4.5a. The dominant peak of the power 

spectrum would occur in the frequency range from 0 to 0.5 Hz, which was then considered as the 

range of interest. Figure 4.5b zooms in the power spectrum in the 0 to 0.5 Hz frequency range. The 

frequency corresponding to the peak of the power spectrum peak in Figure 4.5b corresponded to 

the subject’s respiration rate. Since this moving-window FFT analysis was performed in real-time 

(i.e., using a time window with a step size of 2 s), the extracted respiration rate for each window 

could be calculated and plotted as a function of time, as shown in Figure 4.6. The results shown in 

Figure 4.6 suggest that these fabric sensors could be potentially used for monitoring respiration. It 

should be note that, since the human subject breathed deeply during this test, the respiration rate 

was relatively slow at 4 – 5 breaths min-1.  

  

(a) (b) 

Figure 4.5 (a) Change in resistance of a fabric sensor acquired during respiration 
monitoring tests. Inset shows sensor response within a narrower time window. (b) 

Representative power spectrum of respiration monitoring resistance time history data. Inset 
shows power spectrum peak (respiration rate) can be easily identified. 
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4.3. Graphene Nanocomposite-based Sensing Skins 

4.3.1. Printed graphene sensor-skin compliance 

Here, PGS were fabricated by micro-patterning the GNS-CO890 solution on ultra-thin 

medical tape substrates (Chapter 2.5). Figure 4.7a shows a PGS in its (i) un-deformed state and 

adhered onto the forearm of a subject; thereafter, the PGS was able to deform compliantly with 

 

Figure 4.6 Computed respiration rates (updated every 2 s) in real-time. 
 
 
 
 
 
 
 

 

Figure 4.7 (a) Images of a PGS attached onto the skin in its (i) un-deformed state, followed by 
being subjected to (ii) compression, (iii) stretching, and (iv) shear. (b) (i) A PGS attached 
onto skin underwent 100 cycles of stretching/compressing. (ii) A PGS was peeled off and 

partially removed from the skin after being mounted for 2 h. The skin did not show any signs 
of sensitivity towards the tapes and PGS. All scale bars, 20 mm. 
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different motions that induced (ii) compression, (iii) tension, and (iv) shear to the sensor. In 

addition, no damage to the PGS nor detachment occurred after it was repeatedly stretched and 

compressed for 100 cycles, thereby indicating its mechanical robustness to repeated use, as is 

shown in Figure 4.7b (i). Furthermore, when the human subject performed daily activities with the 

PGS attached for 2 h, the subject’s motion was not interrupted or constrained by the PGS, owing 

to its ultra-lightweight (3.9 mg cm-2) and high flexibility. After the PGS was detached from the 

skin, no irritation (e.g., skin rash) was observed from where it was attached, as can be seen in 

Figure 4.7b (ii). Thus, the design allows the PGS to be easily attached and removed as necessary, 

which can be used as a disposable and low-cost skin-mountable device. 

4.3.2. Motion pattern recognition 

To demonstrate the PGS’ potential for monitoring various human activities in real-time, a 

series of experiments were conducted. Here, the PGS specimens tested consisted of four printed 

layers, mainly to leverage the superior sensing properties of the 4-layer PGS for accurate 

measurements. First, the PGS was attached to a subject’s index finger for detecting finger 

movements. Figure 4.8 (i) and (ii) depict the top and side views of the experimental setup, 

respectively, where the graphene sensing element was aligned with the longitudinal direction of 

the index finger. During the tests, the finger repeatedly bent to different pre-calibrated angles 

(Figures 4.8 (iii) ~ (vi)) in a random manner so as to prevent biasing the results if bending was 

monotonically increased. In the meantime, the PGS’ resistance time history was recorded. 

Figure 4.9a shows a representative ∆R time history of the PGS when the finger repeatedly 

bent to different pre-calibrated angles in a random manner so as to prevent biasing the results if 

bending was monotonically increased. The inset of Figure 4.9a is the PGS’ response corresponding 
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to 15˚ of bending. In Figure 4.9b, the average ∆Rn and its standard deviations are plotted as a 

function of the corresponding bending angles. A least-squares regression line was fitted to the data 

in Figure 4.9b, and an approximately linear sensor response can be observed. However, it can also 

be observed from Figure 4.9b that some deviation to this linear response can be observed, 

 

Figure 4.9 (a) The ∆R time history of the PGS corresponding to finger bending. The inset 
shows the ∆R due to the 15˚ of finger bending case (highlighted in the dashed box). (b) The 
average ∆Rn plotted as a function of bending angles (standard deviations as error bars) and 

fitted with a least-squares regression line. 

a b

∆

∆Rn

 

Figure 4.8 (i) Top view of a PGS mounted onto the index finger. (ii-vi) Side views of the 
finger bent to different angles (i.e., 0˚, 15˚, 30˚, 45˚, and 60˚, respectively). 
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particularly when bending increased from the initial straight state (0˚) to 15˚. This deviation could 

be a result of the low levels of strains applied when the finger was only bent to 15˚. 

Furthermore, it should be noted that, in real-world applications, wearable sensors can be 

subjected to sophisticated, multi-axis strains (including shear). In order to develop wearable 

sensors that can characterize complex skin deformations and infer corresponding muscle 

contractions, simultaneous strain measurements in different directions are needed. Therefore, by 

further leveraging the advantages of printing technology, PGS was patterned to form a rosette. The 

sensing elements included three GNS strips oriented in three different directions (i.e., Sa, Sb, and 

Sc), as shown in the inset of Figure 4.10b (i). Here, to validate multi-directional strain sensing, the 

PGS rosette was adhered onto the back of a subject’s hand (see Figure 4.10b (i)) for distinguishing 

different hand motion patterns. Figure 4.10b (ii) shows a schematic illustration of the orientation 

of the PGS rosette with respect to a predefined Cartesian coordinate system. 

 Figure 4.11a (top) shows that the subject moved the (i) thumb, (ii) index, (iii) middle, (iv) 

ring, and (v) pinky fingers, individually, and then (vi) typing “UCSD” on the keyboard. Figure 

 

Figure 4.10 (i) Top view of a PGS rosette attached to the back of the hand. The inset shows 
the PGS rosette before mounting. (ii) A schematic of the orientation of the PGS rosette. 

(i) (ii)
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4.11b (bottom) shows the corresponding ∆Rn time history response of each sensing element in the 

PGS rosette, which indicates that different finger movements induced unique and complex strain 

patterns that were detectable by the rosette. The strain components (i.e., εx, εy, and shear εxy) were 

calculated based on the classical strain transformation equation [167]: 

 𝜀𝜀𝑖𝑖 = 𝜀𝜀𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃𝑖𝑖 + 𝜀𝜀𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃𝑖𝑖 + 𝛾𝛾𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃𝑖𝑖 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃𝑖𝑖         (𝑖𝑖 = 𝑎𝑎, 𝑏𝑏, 𝑐𝑐) (4.1)  

where θa, θb, and θc represent the angles from the εx-direction (i.e., where counterclockwise is 

positive to the Sa, Sb, and Sc directions), which are 135˚, 90˚, and 45˚, respectively (Figure 4.10 ii). 

In addition, the principal strains (i.e., maximum strain ε1 and minimum strain ε2) and principal 

direction (ε1) were calculated as follows: 

 𝜀𝜀1,2 = 𝜀𝜀𝑥𝑥+𝜀𝜀𝑦𝑦

2
± 1

2 �(𝜀𝜀𝑥𝑥 − 𝜀𝜀𝑦𝑦)2 + 𝛾𝛾2
𝑥𝑥𝑥𝑥 (4.2) 

 𝜃𝜃1 = 1
2

𝑡𝑡𝑡𝑡𝑡𝑡−1 � 𝛾𝛾𝑥𝑥𝑥𝑥

𝜀𝜀𝑥𝑥−𝜀𝜀𝑦𝑦
� (4.3) 

By assuming that strain varied linearly between sensing elements of the rosette, one could 

map the spatial strain distribution on the back of the hand using the strain transformation results 

obtained from the PGS rosette. In particular, Figure 4.11b shows a schematic illustration for the 

derivation details. The dashed semicircle shows the sensing region of interest. 𝑛𝑛�⃗ 0  is the unit 

directional vector pointing to an arbitrary point (x0 , y0), whereas 𝑛𝑛�⃗ 𝑥𝑥 is projection of 𝑛𝑛�⃗ 0 onto the x-

axis. The angle between 𝑛𝑛�⃗ 𝑥𝑥 and 𝑛𝑛�⃗ 0 are denoted as θ0. Then, the following can be obtained: 

 𝑛𝑛�⃗ 𝑥𝑥 = (1, 0); 𝑛𝑛�⃗ 0 = (𝑥𝑥0,𝑦𝑦0)

�𝑥𝑥0
2+𝑦𝑦0

2
 (4.4)  
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 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃0 = 𝑛𝑛�⃗ 𝑥𝑥 ⋅ 𝑛𝑛�⃗ 0 = 𝑥𝑥0

�𝑥𝑥0
2+𝑦𝑦0

2
;  𝑠𝑠in𝜃𝜃0 = 𝑛𝑛�⃗ 𝑥𝑥 × 𝑛𝑛�⃗ 0 = 𝑦𝑦0

�𝑥𝑥0
2+𝑦𝑦0

2
 (4.5)  

 𝜀𝜀0 = 𝜀𝜀𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐2 𝜃𝜃0 + 𝜀𝜀𝑦𝑦 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜃𝜃0 + 𝛾𝛾𝑥𝑥𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠 𝜃𝜃0 𝑐𝑐𝑐𝑐𝑐𝑐 𝜃𝜃0 (4.6) 

where ε0 represents the strain at the arbitrary point. It was assumed that strain remained constant 

along each radial direction from the origin, and ∆Rn was converted to strains using 21 as the GF. 

Strain mapping was performed using MATLAB. 

Figure 4.11c illustrates the spatial-temporal maps of strain distributions of the hand 

corresponding to different fingers moving. Figure 4.11c shows that the PGS successfully captured 

and distinguished the minor change in strain distribution on the hand due to contractions of 

different muscle groups when different fingers moved. Instead of implementing multiple sensors 

on each finger as reported previously [76, 168, 169], this study showed that a single PGS rosette 

could recognize the movements of the entire hand with high fidelity. The PGS can be beneficial 

for establishing new human-machine interfaces, as well as providing insightful information for 

human behavioral assessment and muscle-epidermis interactions. 

4.3.3. Eye blinking monitoring 

Besides sensing human motions, the PGS was utilized to detect eye blinking, as is depicted 

in the inset of Figure 4.12a.  Eye movement and blinking are significant clinical parameters for 

behavior-based diagnosis of impaired consciousness (i.e., coma, vegetative state, and minimally 

conscious state (MCS)) for patients with brain damage [170]. On the other hand, as for patients 

with locked in syndrome (LIS) who have complete tetraplegia while preserving intact 

consciousness and eye movement and blinking, their communication solely depends on eye 

movement and blinking [171, 172]. In addition, the frequency and intensity of eye blinking can 
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indicate human fatigue to some extent. Therefore, by monitoring eye blinking, the PGS is 

envisioned to facilitate high-fidelity diagnosis of consciousness, improve communications with 

LIS patients, and facilitate detection of fatigue.  

Figure 4.12a shows the ∆Rn time history response of the PGS when the subject blinked 

repeatedly, where each drop in ∆Rn indicates a blink. Here, the PGS’ resistance decreased because 

the GNS sensing element was compressed in the vertical direction together with the lateral canthus 

when the eye closed. Figure 4.12b shows a representative detailed view of the change in ∆Rn during 

an eye blink (i.e., corresponding to the region highlighted in Figure 4.12a). The results confirmed 

that eye closing and opening corresponded to the drop and increase in ∆Rn, respectively. In 

 

Figure 4.11 (a) (Top) Images of different finger and hand motion patterns (i.e., when the 
subjected moved the (i) thumb, (ii) index finger, (iii) middle finger, (iv) ring finger, and (v) 

pinky finger, followed by (vi) typing “UCSD”). (Bottom) The representative ∆Rn time history 
of each sensing element of the PGS rosette corresponding to the different motions. All scale 
bars, 20 mm. (b) A schematic of mapping the complex 2D strain field. (c) Spatial-temporal 

maps of strain distribution induced by different hand motions in (a), as measured by the PGS 
rosette, overlaid with the computed principal strains (ε1 and ε2). 

 

a b

c

∆
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addition, the form factor of the PGS enabled it to capture the transient blinking process in a 

reversible manner without restricting eye motions or causing user discomfort. 

4.3.4. Pulsation monitoring 

Furthermore, the PGS’ capability for monitoring pulsation was studied, as is shown in the 

inset of Figure 4.13a. Radial pulse is one of the most representative vital signals that is commonly 

measured in clinical practice to quantify human physiological performance (e.g., blood pressure, 

heart rate, and vascular stiffness) [173]. Moreover, radial pulse wave monitoring also facilitates 

early diagnosis of cardiovascular diseases. Here, the PGS’ potential for monitoring pulsation was 

explored by attaching the PGS onto the surface of the skin close to the radial artery of a human 

subject’s (a 25-year-old male) wrist. The PGS was used to measure pulse signal when the subject 

was at rest and after rigorous exercise for 40 s. 

 

Figure 4.12 (a) The representative ∆Rn time history of a PGS corresponding to eye blinking. 
The inset shows a PGS that was mounted on the subject’ lateral canthus. (b) Detailed view of 

the ∆Rn data included in the dashed box in (a). 

a b

∆ ∆



96 
 

Figure 4.13a shows the pulse signal measured by the PGS when the subject was at rest and 

after rigorous exercise. The PGS exhibited good SNR due to its high strain sensitivity and 

conformability.  Figure 4.13b provides a detailed view of the cardiac cycles highlighted in Figure 

4.13a. The typical features of a radial pulse wave (including systolic peak, diastolic peak, and 

dicrotic notch) are distinguishable from the sensor’s measurements when the subject was at rest 

[173-175]. The time interval between the systolic and diastolic peaks (∆T) was measured as ~ 310 

ms, which was normal for adults in their 20s [174]. It is known that ∆T depends on artery stiffness, 

which increases with age. Artery stiffness is a precursor for various cardiovascular diseases, such 

as myocardial infarction and stroke [176]. To further quantify artery stiffness, stiffness index (SI) 

can be calculated as follows [174, 175]: 

 
T

HSI
∆

=  (4.7)  

where H is the height of the human subject. Here, SI was calculated to be ~ 5.6 m s-1, which is 

within the normal range for a healthy adult [174, 175]. However, the measured radial pulse 

waveform could not distinguish the aforementioned features after the subject exercised (Figure 

4.13b) [173].  

In addition, to quantify heart rate, the radial pulse signals were analyzed using continuous 

wavelet transform (CWT), thereby enabling time and frequency localization. Figures 4.13c and 

4.13d show the real-time heart rate spectrograms when the subject was at rest and after exercise, 

respectively. The red regions represent dominant frequencies of the radial pulse signals, which 

were converted to heart rates. The average heart rates of the subject at rest and after exercise were 

60 beats per minute (bpm) and 114 bpm, respectively, which were both within the normal range. 



97 
 

4.4. Summary and Conclusions 

In this chapter, CNT-based fabric sensors and PGS were used as discrete wearable sensors 

for monitoring human physiological performance. To be specific, the CNT-based fabric sensors 

were first applied to detect finger bending movements as a proof-of-concept demonstration for 

human motion monitoring. It was found that they could capture different bending motions and 

 

Figure 4.13 (a) The representative ∆Rn time history of the PGS when it was employed for 
monitoring radial pulse of a human subject at rest and after exercise. The inset shows the 

sensor attached to the wrist of the subject. ∆Rn is of arbitrary unit for easy comparison. Scale 
bar, 20 mm. (b) The radial pulse waveforms in the dashed boxes in (a). (c, d) Heart rate 

spectrograms when the subject was at rest and after exercise, respectively. The red regions 
indicate the dominant frequencies (i.e., measured heart rates). 

a b

c d

∆ ∆
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exhibited relatively stable response. Second, the fabric sensors were integrated with a chest band 

for monitoring respiration. The resistance change of the fabric sensors was well-correlated with 

the expansion and contraction movements of the subject’s thorax. Furthermore, respiration rate 

was successfully extracted using a moving-window FFT analysis, and the results could be 

visualized in real-time. The results obtained in this study suggest that these CNT-based fabric 

sensors could potentially be used for applications, such as multifunctional wearable sensors or be 

integrated as part of “smart garments”. 

The second major part of this chapter demonstrated that the designed PGS was highly 

flexible, ultra-lightweight, conformable, and could be easily adhered to or detached from the skin. 

In addition, to investigate its applications for human monitoring, the PGS was strategically 

attached to different parts of the human body. The experiments showed that the PGS was capable 

of quantifying finger bending motions, identifying hand motion patterns (and strain distributions), 

monitoring eye blinking, and capturing radial pulse signals. To improve the practical applicability 

of PGS, future work will focus on incorporating flexible wireless transmission circuits. In addition, 

by further employing versatile and low-cost printing techniques, more robust and high-

performance sensor designs, including multi-materials and multi-modal sensing capabilities, can 

be achieved. Overall, based on the studies in this chapter, the vision is that the nanocomposite 

sensors can potentially be used as low-cost, disposable, wearable devices for human-machine 

interfaces, rehabilitation, human performance assessment, and even telemedicine.  

Chapter 4, in part, is a reprint of the material as it appears in Micro-Patterned Graphene 

Sensing Skins for Human Physiological Monitoring, L. Wang, K. J. Loh, W.-H. Chiang, and K. 

Manna, 2018; and Wearable Carbon Nanotube-Based Fabric Sensors for Monitoring Human 



99 
 

Physiological Performance, L. Wang and K. J. Loh, 2017. The dissertation author was the primary 

investigator and author of these papers.  
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Chapter 5. Nanocomposites-Based Spatial Sensing 

Systems 

 

  

5.1. Introduction 

Chapter 4 focused on utilizing the piezoresistive nanocomposite thin films as sensing 

elements for monitoring human motions and physiological health, where the nanocomposites were 

integrated with flexible substrates (i.e., fabrics and medical tapes). The proposed sensing devices 

were highly flexible and compliant to the human body, which enhanced data accuracy and avoided 

user discomfort. Although the nanocomposites-based sensing systems exhibited significant 

advantages over conventional rigid electronic transducers, the aforementioned methodology still 

relied upon discrete sensing, implying that the acquired data were only relevant to the locations 

where they were instrumented. Therefore, the primary objective of this chapter was to design and 

characterize a spatial sensing system that is capable of identifying and locating potential 

anomalies. Densely distributed sensing was demonstrated using fabric-based nanocomposite 

sensors for pressure sensing applications. The outcome of this study was the validation of a 

nanocomposites-based spatial sensing system that could be implemented on both engineered 

structures and the human body. 
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In the context of large-scale monitoring applications, distributed sensing is more desirable 

for comprehensively acquiring spatial information of target structures, so as to identify and locate 

abnormal structural performance and to efficiently inform the decision-making process (e.g., for 

structural maintenance and retrofitting) [34, 177]. It should be noted that spatial sensing can be 

challenging when sensing streams are acquired from traditional transducers, since there is an 

inherent tradeoff between spatial sensing resolution and the difficulty, logistics, and costs 

associated with installing a dense network of sensors [34, 40, 178]. 

To address the aforementioned sensing limitations and to achieve spatial sensing, this 

chapter focuses on integrating the proposed nanocomposite thin films with imaging and signal 

processing techniques, namely, electrical impedance tomography (EIT) and compressed sensing 

(CS), respectively. The coupled densely distributed sensing systems could truly leverage the 

unique property of multifunctional nanocomposites such that every location across the continuous 

thin films are sensitive to different stimuli (e.g., strains).  

This chapter starts with introducing the concept and formulation of EIT (Section 5.2), 

where the main challenge was to efficiently and accurately solve the inverse problem to reconstruct 

the conductivity (or resistivity) distribution of the nanocomposite sensing element. To handle such 

a challenge, a CS scheme was adopted to take advantage of the prior knowledge of typical EIT 

problems (i.e., spatial sparsity), as discussed in Section 5.3.4. Then, Section 5.4 demonstrated the 

application of the coupled system to detect spatially distributed deformations and puncture 

damage, so as to characterize the performance of the distributed sensing system. Last, Section 

5.4.3 conducted a resolution analysis of the EIT inverse problem reconstruction and compares the 

results computed using Tikhonov regularization algorithm (discussed in Wang et al. [179]) and 

sparsity reconstruction algorithm, respectively. 
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5.2. Electrical Impedance Tomography 

5.2.1. Forward problem 

Electrical impedance tomography is essentially an electrical imaging technique, where it 

determines the electrical conductivity (or resistivity) distribution of a conductive body of interest 

[180-182]. In practical experiments, the conductive body is interrogated using an electrical current, 

and the induced boundary voltages are all recorded. This procedure needs to be repeated for several 

times with current injected from different pairs of electrodes to gather enough spatial information 

of the conductive body. The boundary voltage measurements are used as inputs to the EIT 

algorithm. Thus, the EIT technique is advantageous in that it is capable of characterizing the 

internal electrical properties of an object only based on measurements obtained along its boundary 

[180, 182]. Provided that the electrical conductivity distribution of the body is sensitive to applied 

strains (i.e., piezoresistive materials), the boundary voltages will also change accordingly, 

depending on the distribution of strain exerted on the conductive body. Therefore, one can use EIT 

and a piezoresistive material (which in this case is the nanocomposite sensing films) for 

quantifying the strain distributions of structural components where the system is implemented. 

In general, the EIT algorithm includes the forward and inverse problems. The forward 

problem aims to solve for boundary voltages (v) based on an assumed conductivity (σ) distribution. 

Without any current sources within the object (Ω), the forward problem can be formulated as a 

simplified 2D Laplace’s equation as follows: 

 𝛻𝛻 ⋅ (𝜎𝜎𝛻𝛻𝑣𝑣) = 0     𝑖𝑖𝑖𝑖 𝛺𝛺 (5.1) 

The complete electrode model (CEM) is recognized as one of the most accurate and 

efficient models for mathematically modeling the EIT measurement procedure [183-185]. The 
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CEM considers electrodes ({𝑒𝑒𝑙𝑙}𝑙𝑙=1
𝐿𝐿 ) as perfect conductors (i.e., shunting effect), as well as the 

contact impedance at electrodes and object interfaces. The CEM can be expressed as follows: 

 

⎩
⎪
⎨

⎪
⎧𝑣𝑣 + 𝑧𝑧𝑙𝑙𝜎𝜎 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑉𝑉𝑙𝑙       on 𝑒𝑒𝑙𝑙 , 𝑙𝑙 = 1, 2, ⋯, 𝐿𝐿

∫ 𝜎𝜎 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

𝑑𝑑𝑑𝑑 = 𝐼𝐼𝑙𝑙       for 𝑙𝑙 = 1, 2, ⋯, 𝐿𝐿𝑒𝑒𝑙𝑙

𝜎𝜎 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0                  on 𝛤𝛤
 (5.2) 

where zl is the contact impedance between boundary electrodes and the object Ω, n is unit vector 

outward normal to the surface (𝛤𝛤 = 𝜕𝜕𝜕𝜕) of the object Ω, and L is the total number of boundary 

electrodes. Vl and Il (l = 1, ⋯, L) are the measured electrode potentials and injected current on the 

lth electrode, respectively. In addition, injected current satisfies the charge conservation law by 

imposing Equation 5.3: 

 ∑ 𝐼𝐼𝑙𝑙 = 0𝐿𝐿
𝑙𝑙=1  (5.3) 

Furthermore, the grounding potentials are imposed using Equation 5.4: 

 ∑ 𝑉𝑉𝑙𝑙 = 0𝐿𝐿
𝑙𝑙=1  (5.4) 

In the EIT forward problem, the assumed isotropic electrical conductivity σ, injected 

current I, and contact impedance zl are known a priori. The forward problem is typically solved 

using the weak-form of Equation 5.1 in conjunction with a finite element model (FEM) of the 

conductive body Ω. Then, the forward problem can be expressed as a set of linear equations 

combined in the form of 

 𝐴𝐴(𝜎𝜎)𝑏𝑏 = 𝐼𝐼 (5.5) 
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where A(σ) is a square matrix as a discretized expression of CEM, and b is a coefficient vector to 

be determined, which contains elemental nodal potentials as well as boundary electrode voltages. 

Here, A(σ) is invertible for σ so that there exists a unique solution to the forward problem [184, 

186]. 

5.2.2. Inverse problem 

Reconstructing the inverse problem is relatively more challenging in the EIT problem, and 

this has attracted extensive studies focusing on enhancing the efficiency and accuracy of the 

algorithms [180, 182, 184, 187]. If the forward problem is expressed using a general operator as 

follows: 

 𝑉𝑉 = 𝐹𝐹(𝜎𝜎) (5.6) 

where F(σ) is the operator that maps injected current to boundary electrode potentials based on 

corresponding conductivity distribution σ. V represents boundary voltages, which can be either 

theoretically calculated values (Equation 5.1) or experimentally measured data Vmeas (with 

measurement noise added to the right-hand side of Equation 5.6). 

On the other hand, the inverse problem seeks to estimate the conductivity distribution σ of 

the body Ω from boundary voltages V, which can be expressed as 

 𝑉𝑉 = 𝐹𝐹−1(𝜎𝜎) (5.7) 

Given an initial estimate of σ0 that is close to the actual solution, the forward operator F(σ) can be 

linearized by only considering the first-order term in its Taylor expansion, as follows:  

 𝐹𝐹(𝜎𝜎) = 𝐹𝐹(𝜎𝜎0) + 𝐹𝐹′(𝜎𝜎 − 𝜎𝜎0) (5.8) 



105 
 

where F’ represents the Jacobian matrix (J) for discretized elements calculated at σ0. In the context 

of practical applications (i.e., the interest of this study), the inverse problem aims to compute σ 

based on experimentally measured boundary voltage data (Vmeas) and the forward problem 

computed values. Letting 𝛿𝛿𝛿𝛿 = 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐹𝐹(𝜎𝜎0), Equation 5.8 can be re-written as: 

 𝛿𝛿𝛿𝛿 =  𝐽𝐽𝐽𝐽𝐽𝐽 (5.9) 

where 𝛿𝛿𝜎𝜎 = 𝜎𝜎 − 𝜎𝜎0 represents the inhomogeneous conductivity inclusion in the conductive body 

Ω, which can be correlated to mechanical disturbance to the sensing materials’ electrical properties 

in this study. Thus, reconstructing the change in electrical conductivity (or resistivity) of the 

sensing materials by solving the EIT inverse problem can allow one to noninvasively identify and 

locate anomalies in the structure (especially since the sensing material’s electrical properties are 

pre-calibrated to applied strains in this study).  

In ideal cases, Equation 5.9 implies that (𝐽𝐽𝑇𝑇𝐽𝐽)𝛿𝛿𝛿𝛿 = 𝐽𝐽𝑇𝑇𝛿𝛿𝛿𝛿. However, in practice, there can 

be computational errors in forward problem modeling as well as measurement noise in the 

experiments. Due to the ill-posedness of the EIT inverse problem, small computational or 

experimental errors can lead to a significantly inaccurate reconstruction solution, which makes it 

challenging to minimize the difference between experimental measurements and simulated 

forward problem values [182, 187]. Therefore, to stably reconstruct the inverse problem, a penalty 

term (or regularization term) that includes assumptions consistent with prior information needs to 

be imposed, which results in the commonly used objective function as follows: 

 𝛿𝛿𝛿𝛿 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1
2

‖𝐽𝐽𝐽𝐽𝐽𝐽 − 𝛿𝛿𝛿𝛿‖2 + 𝜆𝜆𝜆𝜆(𝛿𝛿𝛿𝛿) (5.10) 
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where ϕ(δσ) is the penalty function, and λ is the regularization parameter that balances data fitting 

and the penalty term. 

In addition, from a practical application standpoint, reliably solving the EIT inverse 

problem requires changes in signals that are sufficiently above the experimental noise level and 

computational errors. In other words, the conductive body Ω needs to generate significant enough 

electrical property changes when subjected to external perturbations. Therefore, for damage 

detection and monitoring applications, it is of paramount importance to develop high-performance 

strain sensing materials (i.e., conductive body) (Chapter 2) that are potentially capable of resolving 

small changes in structural strain/stress distributions, thereby generating corresponding data of 

high signal-to-noise ratio. 

5.2.3. Tikhonov reconstruction 

Tikhonov regularization has been most commonly used to reconstruct the EIT inverse 

problem. It employs L2 minimization as the penalty term (i.e., ϕ(δσ) in Equation 5.10). Then, the 

objective function can be expressed as: 

 𝛿𝛿𝛿𝛿 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1
2

‖𝐽𝐽𝐽𝐽𝐽𝐽 − 𝛿𝛿𝛿𝛿‖2 + 𝛼𝛼
2

‖𝐿𝐿𝐿𝐿𝐿𝐿‖2 (5.11) 

where α is the regularization parameter that balances the data fitting and L2 regularization. L is an 

appropriate regularization matrix, which is formulated as an identity matrix in this study (i.e., L = 

I). Then, the solution to the linearized regularization problem can be obtained as (with L = I): 

 𝛿𝛿𝛿𝛿 = (𝐽𝐽𝑇𝑇𝐽𝐽 + 𝛼𝛼𝛼𝛼)−1𝐽𝐽𝑇𝑇𝛿𝛿𝛿𝛿 (5.12) 

Upon solving Equation 5.12, a new estimate for σ can be obtained with 𝜎𝜎𝑖𝑖+1 = 𝜎𝜎𝑖𝑖 + 𝛿𝛿𝛿𝛿. 

Then, the algorithm iteratively updates the reconstruction by using the new estimate for σ as an 
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initially assumed value (i.e., Gauss-Newton method). The stopping criterion can be based on either 

the relative error in boundary voltage prediction or the number of iterations, depending on the 

demands for reconstruction accuracy and computational costs. Although the Tikhonov 

regularization is relatively easy to solve, it tends to impose an over-smoothing effect on the EIT 

inverse problem reconstruction. As a result, the reconstructed EIT images are usually blurred, 

indicating a considerably compromised resolution and accuracy [181, 186, 188]. 

5.2.4. Sparsity reconstruction 

In order to further to improve the resolution and accuracy of the EIT inverse problem 

reconstruction, a CS scheme was adopted in this study [181, 186]. Particularly, CS theory states 

that, if the unknown signal is sparse, it can be accurately reconstructed using far less measured 

data than that obtained at the data acquisition rate required by Shannon’s law [189-193]. In fact, 

most of the real-life physical signals are sparse (i.e., fulfilling the assumption of CS) on an 

appropriate basis, which renders CS theory promising for a plethora of signal processing related 

applications, such as imaging, geophysics, and astronomy, among others [190-192]. 

In the context of typical EIT problems, the images (i.e., signals) to be reconstructed include 

only a limited portion of interesting features (i.e., significant entries), which is embedded in an 

uninteresting background. It indicates a prior knowledge of sparsity (in the spatial domain) in the 

EIT problem and that the CS theory is applicable. Particularly, this study has implemented L1-

norm regularization as the penalty term in Equation 5.10, since it was shown to be capable of 

leveraging signals’ sparsity [191, 192]. Then, the formulation of the objective function becomes: 

 𝛿𝛿𝛿𝛿 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 1
2

‖𝐽𝐽𝐽𝐽𝐽𝐽 − 𝛿𝛿𝛿𝛿‖2 + 𝜆𝜆‖𝛿𝛿𝛿𝛿‖1 (5.13) 
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where λ is the regularization parameter that balances data fitting and L1-norm penalty term. ‖𝛿𝛿𝛿𝛿‖1 

is the L1-norm of δσ, which essentially refer to the sum of the absolute values of δσ. 

Since the L1-norm penalty term makes the regularization function non-differential, it 

requires a robust algorithm to efficiently minimize the objective function. With the advancement 

of CS methodologies, various algorithms have been proposed to solve the L1-norm regularization 

problem, which show different performances depending on specific application scenarios [181, 

188, 191, 192]. Particularly, this study mainly employed a two-step iterative shrinkage 

thresholding (TwIST) algorithm due to its relatively more robust performance in the target 

applications. The TwIST algorithm was first developed by Bioucas-Dias et al. [194] based on the 

standard iterative shrinkage thresholding (IST) method. It aims to more efficiently solve ill-posed 

problems while maintaining the good denoising performance of IST. Here, to adopt the TwIST 

method for solving EIT inverse problem, the algorithm has been modified as follows: 

 𝛿𝛿𝛿𝛿1 = 𝜑𝜑𝜆𝜆(𝛿𝛿𝛿𝛿0 + 𝐽𝐽𝑇𝑇(𝛿𝛿𝛿𝛿 − 𝐽𝐽𝛿𝛿𝛿𝛿0)) (5.14) 

 𝛿𝛿𝛿𝛿𝑡𝑡+1 = (1 − 𝛼𝛼)𝛿𝛿𝛿𝛿𝑡𝑡−1 + (𝛼𝛼 − 𝛽𝛽)𝛿𝛿𝛿𝛿𝑡𝑡 + 𝛽𝛽𝜑𝜑𝜆𝜆(𝛿𝛿𝛿𝛿𝑡𝑡 + 𝐽𝐽𝑇𝑇(𝛿𝛿𝛿𝛿 − 𝐽𝐽𝛿𝛿𝛿𝛿𝑡𝑡)) (5.15) 

where α and β are parameters determined by prior data. It should be noted that δσt+1 is dependent 

on both δσt-1 and δσt, which is the reason the algorithm involves two steps. The TwIST algorithm 

will transform to IST if the parameter α equals to 1 (i.e., δσt+1 depends only on δσt). φλ is the soft 

shrinkage operator, which is in the form of: 

 𝜑𝜑𝜆𝜆(𝛿𝛿𝛿𝛿𝑡𝑡 , 𝜆𝜆) = sign(𝛿𝛿𝛿𝛿𝑡𝑡)max(|𝛿𝛿𝛿𝛿𝑡𝑡| − 𝜆𝜆, 0) (5.16) 

The stopping criteria of the iterative algorithm can be based on either the relative error 

lower than pre-defined threshold or the number of iterations.  
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5.3. Spatial Sensing Validation Experiments 

5.3.1. Fabric sensor fabrication and sample preparation 

The spray-fabricated CNT-latex nanocomposites were used as sensing elements (260 × 200 

mm2) for the fabric sensors (Chapter 2). A schematic of the procedure for assembling the sensors 

is shown in Figure 5.1a. First, 8 × 6 electrodes (28 in total) with an equal spacing were established 

on the four boundaries of the sensing films by drying silver paint over conductive threads and the 

film. The number of electrodes can be customized depending on the dimensions of the sensing 

films and the desired sensing resolution. Conductive threads, which are commercially available, 

were used in lieu of other types of electrodes (e.g., copper tape or multi-strand wires) for 

maximizing the flexibility of the fabric sensors. Then, the sensing element was integrated with the 

fabric by sandwiching it between two layers of iron-on adhesives and then ironing them directly 

onto the polyester fabric. This procedure resulted in a highly flexible, strong, waterproof, and 

integrated sandwich structure. Figure 5.1b shows a photograph of an assembled fabric sensor 

prototype, which was also used for experimental testing. 

  

(a) (b) 

Figure 5.1 (a) An MWCNT-latex thin film is integrated with flexible fabric, and (b) a 
photograph of a fabric sensor prototype. 
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5.3.2. Spatially distributed pressure and impact damage detection 

The boundaries of the aforementioned fabric sensor (Figure 5.1b) was mounted on a 

customized support, which had a cavity below the sensing domain of the fabric sensor to allow 

pressure-induced out-of-plane deformations. The schematic of the experimental setup is shown in 

Figure 5.2. Spatial sensing tests were conducted by interrogating the sensor to collect the necessary 

boundary voltage measurements for EIT spatial conductivity reconstruction. Here, a customized 

data acquisition (DAQ) system was employed to perform automated EIT measurements. A 

Keithley 6221 current source was interfaced with the switch to inject 5 mA of direct current (DC) 

across a certain pair of boundary electrodes. To automatically switch the pair of electrodes for 

injecting a different DC excitation pattern, the current generator was interfaced with a Keysight 

34980A multifunctional switch, which was controlled using a customized Matlab program. 

Furthermore, the switch includes a built-in DMM that could measure and record voltages that 

developed between the other pairs of electrodes. The entire set of voltage measurements were then 

used as inputs to the EIT algorithm for reconstructing the fabric sensor’s conductivity (or 

resistivity) distribution. It should be noted that the accuracy and resolution of the sensing results 

could be potentially improved by including more boundary electrodes. However, this will in turn 

 

Figure 5.2 Schematic of the spatial pressure distribution experimental setup. 
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increase the time needed for experimental measurements and computational demand required for 

solving the EIT inverse problem. Therefore, an optimized boundary electrodes setup (i.e., from a 

sensing hardware perspective) should be designed to strike a balance between accuracy and 

efficiency, specifically, when considering real-world applications. In addition to the sensing 

hardware optimization, the EIT algorithm (i.e., from a computational perspective) could also be 

optimized to obtain enhanced sensing performance, which was also in the scope of this study and 

will be discussed later in this section. 

The EIT DAQ system was commanded to obtain an initial set of boundary voltage 

measurements when no pressure or damage was introduced to the specimen (i.e., to establish the 

baseline). Then, for the pressure sensing test, cylindrical rods were used to apply localized pressure 

at different regions on the sensing fabric. On the other hand, the last set of experiments introduced 

permanent damage to the fabric sensor. Puncture damage was created, one-by-one, by penetrating 

and leaving a small hole in the fabric sensor using a sharp rod.  

From the strain sensing performance characterized in Chapter 2, it was expected that 

applied pressure would generate an increase in sensing films’ electrical resistance at the 

corresponding locations. Thus, by using EIT to reconstruct the relative change in resistivity 

distribution of the sensing fabric (relative to the baseline), the location and magnitude of applied 

localized pressure could be identified. It should be noted that this chapter aims to highlight the 

enhanced resolution and accuracy of the EIT inverse problem reconstruction through employing 

the sparsity reconstruction algorithm (Equations 5.13 to 5.16), as compared to the results obtained 

using conventional Tikhonov reconstruction algorithm (Equations 5.11 to 5.12) that are discussed 

in Wang et al. [179]. 
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As mentioned earlier, two experimental cases were investigated, namely, nondestructive 

pressure sensing tests and impact damage detection tests. During the pressure sensing tests, the 

fabric sensor was first subjected to a single pressure point. Figures 5.3a to 5.3d illustrate the 

positions of applied pressure points (i.e., highlighted by the red circles). Based on the sparsity 

reconstruction algorithm, Figures 5.3e to 5.3h show the computed EIT resistivity maps of the 

sensing fabric corresponding to the pressure “hot spots” applied in Figures 5.3a to 5.3d, 

respectively. The EIT results clearly show changes in resistivity (“highlighted spots”) where 

pressure was applied, while the remainder of the sensing area reflected almost no change in 

electrical properties. This was consistent with the fact that the fabric only deformed locally where 

pressure was applied. Thus, the EIT results shown in Figures 5.3e to 5.3h demonstrate that pressure 

detection and localization could be achieved. It should be noted that, since applied force/pressure 

    

(a) (b) (c) (d) 

    

 

(e) (f) (g) (h) 

Figure 5.3 Localized pressure was applied to the fabric sensor near the (a) top-left, (b) bottom-
left, (c) bottom-right, and (d) top-right corners. (e-f) Sparsity reconstruction obtained EIT 

resistivity maps corresponding to applied pressure at (a-d) locations, respectively. 
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was not recorded in this test, one could not back-calculate and compare estimated pressure with 

the actual applied pressure. 

In addition to the single pressure point sensing tests, this study also sought to investigate 

the fabric sensor’s ability to simultaneously capture multiple points of applied pressure. Here, two 

pressure points were applied on the fabric sensor at the same time, as depicted in Figures 5.4a to 

5.4d; again, the applied pressure positions are highlighted by the red circles. The corresponding 

resistivity distributions, which were computed by solving the EIT inverse problem and subtracted 

from the baseline resistivity map and computed from the sparsity reconstruction algorithm, are 

shown in Figures 5.4e to 5.4h.  Similar to the previous test results shown in Figure 5.3, the EIT 

resistivity maps show “highlighted spots” that corresponded to the locations of applied pressure. 

    

(a) (b) (c) (d) 

    

 

(e) (f) (g) (h) 

Figure 5.4 Localized pressure was applied at two points simultaneously at: (a) diagonal 
corners, (b) bottom and left edges, (c) top and right edges, and (d) top and bottom edges. (e-f) 
Sparsity reconstruction obtained EIT resistivity maps corresponding to applied pressure at (a-

d) locations, respectively. 
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It can be observed that the proposed L1-norm regularization algorithm could not only captured the 

applied pressure points simultaneously, but it also more accurately mapped the spatial pressure 

distributions than the conventional Tikhonov minimization (i.e., L2-minimization) (as was also 

found in Wang et al. [179]). These results confirm that the fabric sensors were capable of 

simultaneously resolving multiple externally applied pressure points. It should be noted that the 

two sets of experiment did not affect the integrity of the fabric sensor, which suggested that it was 

mechanically robust enough to undergo these deformations. 

The second set of experiments sought to evaluate the fabric sensor’s ability to capture 

impact-induced puncture damage. Thus, in this study, the fabric sensor was subjected to multiple 

punctures at different locations, and EIT analysis was conducted after the introduction of each 

damage scenario. Figures 5.5a to 5.5d show the schematic distributions of actual puncture damage 

on the fabric sensor specimen, where the damage locations are highlighted by red circles. Figures 

5.5e to 5.5f show the corresponding EIT spatial resistivity maps, which were computed as the 

difference with respect to the undamaged baseline EIT map based on the sparsity regularization 

algorithm. These results clearly show that the multiple puncture holes were successfully detected 

and their locations identified, which correspond to the “highlighted spots” in the reconstructed 

images. Since punctures disconnected material locally, they created highly localized regions of 

high electrical resistivity (i.e., theoretically infinite resistance and non-conductive). This localized 

increase in resistance was identified by the EIT-CS algorithm. However, the EIT algorithm would 

not be able to output an infinite resistivity, and the results appear smoothed to different extents 

near the vicinity of damage. The degree of smoothness and converged resistivity values would 

depend on the different inverse problem reconstruction algorithms employed. Theoretically, the 

L1-norm regularization is capable of avoiding the over-smoothing effect that is inevitably 
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introduced by conventional Tikhonov regularization [181, 190-192, 194]. Further analysis on the 

smoothing effect on the EIT inverse problem reconstruction is provided in Section 5.4.3. 

Furthermore, in the context of practical applications, it is hypothesized that, as long as the 

boundary electrodes of the fabric sensors are not damaged, the coupled spatial sensing system 

should be able to detect and locate puncture damage that extend beyond just the four punctures 

demonstrated in this study. 

5.3.3. Spatial resolution study 

In addition to validating the spatial sensing capability of the coupled system, this section 

further investigated the resolution of the EIT inverse problem when using the sparsity 

    

(a) (b) (c) (d) 

    

 

(e) (f) (g) (h) 

Figure 5.5 Puncture damage was introduced sequentially near the (a) top-left, (b) bottom-right, 
(c) top-right, and (d) bottom-left corners. (e-f) Sparsity reconstruction obtained EIT resistivity 

maps corresponding to (a-d) puncture damage cases are shown, respectively. 
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reconstruction versus Tikhonov reconstruction. As previously mentioned in Section 5.4.3, the L1-

norm regularization has demonstrated an improved reconstruction resolution as compared to the 

Tikhonov regularization (i.e., L2-norm) [179] based on observations of the computed resistivity 

maps. Particularly, to quantify and compare the resolutions of the inverse problem reconstruction, 

a resolution analysis was performed based on the puncture damage cases. In fact, Tikhonov 

regularization theoretically tends to heavily penalize the drastic change in electrical conductivity 

or resistivity (thus causing the over-smoothing effect). In contrast, the sparsity regularization 

penalizes all terms equally [190-192]. Thus, the puncture damage cases (i.e., drastic changes in 

electrical property of the sensing element) are prime examples for demonstrating the over-

smoothing effects induced by Tikhonov reconstruction and how sparsity reconstruction can be 

used to enhance reconstruction resolution and accuracy. 

Here, the EIT reconstruction spatial resolution was evaluated based on pixel values of the 

reconstructed images. Particularly, the blur radius (BR) was used to quantify sensing resolution, 

which was defined and calculated as follows [195, 196]: 

 𝐵𝐵𝐵𝐵 = �𝐴𝐴𝑅𝑅
𝐴𝐴0

 (5.17) 

where A0 is the total area of the domain of interest (i.e., areas of the sensing films). AR is the area 

that contains significant reconstructed changes that are larger than half of the maximum magnitude 

of the image pixel values, which can be expressed as 

 𝐴𝐴𝑅𝑅 = ∑ 𝐴𝐴𝑖𝑖
𝑁𝑁
𝑖𝑖=1  𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑎𝑎𝑎𝑎 𝑖𝑖 𝑡𝑡ℎ𝑎𝑎𝑎𝑎 𝛿𝛿𝛿𝛿𝑖𝑖 ≥ 1

2
𝑚𝑚𝑚𝑚𝑚𝑚 (𝛿𝛿𝛿𝛿𝑖𝑖) (5.18) 
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where N is the total number of pixels whose values are above the threshold. It can be seen from 

Equations 5.17 and 5.18 that smaller BR values indicate higher reconstruction resolution (i.e., 

“highlighted spots” are more distinct and with less blurred features).  

As previously mentioned, the resolution analysis in this Section was based on the 

experimental data on spatial puncture damage cases. Figure 5.6 shows a comparison of the BR 

values of EIT inverse problem reconstruction computed using Tikhonov and sparsity 

reconstruction algorithms, respectively. The chart clearly shows that the L1-norm regularization 

was able to enhance the reconstruction resolution for all the damage cases, which was consistent 

with previous observations of the reconstructed resistivity maps. 

5.4. Summary and Conclusions 

In this chapter, as-fabricated piezoresistive nanocomposite thin films were coupled with 

imaging and signal processing techniques to achieve spatial sensing. The sensing strategy allowed 

 

Figure 5.6 BR values of the EIT inverse problem reconstruction for all puncture damage 
cases computed with the Tikhonov and sparsity reconstruction algorithms, respectively. 
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one to interrogate and map the electrical property changes in the nanocomposite thin films by 

relying solely on the boundary voltage measurements, and the resulting resistivity maps enabled 

one to locate and visualize potential damage or abnormally high stress/strain distributions in the 

structure. In particular, this study employed an EIT measurement strategy and algorithm (which 

comprises the forward and inverse problems) to noninvasively characterize the electrical property 

distribution of strain-sensitive materials. One of the major challenges that this chapter aims to 

address was to develop a robust algorithm that could more accurately and efficiently solve the EIT 

inverse problem and generate high-resolution reconstruction maps. In particular, this study adopted 

a CS scheme and imposed L1-norm regularization (computed using the TwIST algorithm) to 

leverage the prior information of spatial sparsity present in typical EIT problems. 

Furthermore, this chapter conducted a set of experimental demonstrations for 

characterizing the spatial sensing performance of the nanocomposite-EIT coupled system. 

Specifically, fabric sensors with a set of boundary electrodes were designed and fabricated to be 

compatible with the EIT measurement scheme. During the experiments, the fabric sensors were 

subjected to locally applied pressure points (i.e., nondestructive), as well as several impact-induced 

puncture damages (i.e., destructive). The EIT-CS algorithm was employed to reconstruct the 

resistivity maps of the sensing films for each deformation and damage case. It was shown that the 

proposed spatial sensing system could successfully identify and locate the applied mechanical 

disturbance. In addition, a spatial resolution analysis verified that the sparsity reconstruction 

algorithm could effectively enhance the EIT inverse problem reconstruction resolution with 

respect to those solved by conventional Tikhonov reconstruction algorithm. Therefore, the L1-

norm regularization is recommended here for computing typical EIT inverse problem, and the 

remainder of this dissertation is mainly based on the sparsity reconstruction algorithm. 
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Furthermore, it should be noted that the EIT-CS algorithm was used to reconstruct 

conductivity/resistivity distribution change relative to the baseline distribution, rather than 

quantifying the absolute values of the conductivity/resistivity change. This was mainly because 

system errors (including computational errors and measurement noise) could be mostly avoided 

by subtracting the baseline distribution. Future work could focus on minimizing the system errors 

so that to reconstruct the absolute change in the sensing films’ conductivity/resistivity, which could 

enable the spatial sensing systems to identify, locate, and quantify the change in structural 

mechanical performance. The quantified spatial mechanical response could potentially be used for 

updating physical models of corresponding structural components. 

Overall, this chapter demonstrated that spatial sensing could be achieved by coupling the 

piezoresistive nanocomposite thin films with the EIT-CS algorithm. Due to the high-performance 

strain sensing materials manufactured in this study, there is promise for utilizing these coupled 

spatial sensing systems to more accurately characterize stress/strain distributions, whose detection 

based on conventional transducers may otherwise be compromised by system noise and errors. 

The following chapter will highlight the large-scale applications of these spatial sensing systems 

for monitoring the structural integrity of physical assets, as well as for assistive rehabilitation for 

amputated patients. 
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Chapter 6. Nanocomposite-Based Spatial Sensing 

Systems for Structural and Human Health 

Monitoring 

 

  

6.1. Introduction 

Chapters 2 and 3 introduced several design and manufacturing strategies for developing 

multifunctional nanocomposites, whose applications for monitoring human physiological 

performance was demonstrated in Chapter 4. To leverage the unique distributed sensing advantage 

of these nanocomposites, Chapter 5 introduced a coupled spatial sensing system for noninvasively 

interrogating the change in electrical properties of these nanocomposite sensors. Since the 

electrical response of these materials are pre-calibrated to applied strains, the results could be 

correlated to the mechanical (i.e., strain and stress) performance of structures and their 

components. 

The primary objective of this chapter is to demonstrate the relatively large-scale application 

of densely distributed sensing using nanocomposite sensors coupled with EIT. Specifically, this 
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chapter highlights two application scenarios. Fist, Section 6.2 demonstrates implementing the 

nanocomposites-based spatial sensing system to monitor and evaluate the structural integrity of a 

full-scale reinforced concrete shear wall that was subjected to cyclic lateral loads. Then, Section 

6.3 discusses nanocomposite fabric sensor-based sensing systems for assistive rehabilitation and 

pressure ulcers prevention, particularly for lower-limb amputees fitted with socket prostheses. 

6.2. Integrated Sensing System for Reinforced Concrete Shear Wall 

6.2.1. Reinforced concrete shear wall health monitoring 

Reinforced concrete shear walls (RCSWs) have been widely used for enhancing civil 

infrastructure ductility under seismic events as a means to improve infrastructure system safety 

[197-199]. However, their integrity can be compromised by multi-hazards-related extreme loads 

as well as long-term degradation. To ensure the RCSWs’ structural reliability, in addition to 

conventional manual visual inspection of concrete cracks, various SHM and non-destructive 

evaluation (NDE) techniques have been proposed to more efficiently and accurately assess the 

condition of RCSWs. For instance, acoustic emission (AE) has unique advantages in monitoring 

the formation and propagation of cracks in RCSWs. In general, AE requires the implementation 

of an array of piezoelectric transducers on the structure to detect propagating stress waves released 

when concrete cracks. The features extracted from the detected AE signals (e.g., peak amplitude, 

arrival time, and frequency, among others) can be used to evaluate structural integrity [197, 200, 

201]. In addition, several integrated SHM techniques for monitoring concrete cracks have been 

developed by embedding the sensing devices in concrete structures, such as distributed fiber optic 

sensors [37, 202], piezoelectric ceramic-based smart aggregates [203, 204], and CNT-based 

sensors [205-207]. The embedded sensing approaches not only require transducers to be 



122 
 

sufficiently robust to survive the harsh construction conditions, but they also need to avoid (or 

minimize) disruption to the construction process and timeline. 

Therefore, this study aims to demonstrate the potential of applying nanocomposite-based 

spatial sensing system for large-scale civil infrastructures and for monitoring their structural 

integrity. In particular, a full-scale RCSW was designed as a ductile structural component, which 

was subjected to under simulated seismic loading. To assist monitoring and evaluating RCSW 

integrity (i.e., specifically, potential local damage development during the load tests), the CNT-

based nanocomposite sensing skin was spray-coated onto the surface of the wall structure. The 

EIT-CS algorithm was employed to investigate structural damage-induced changes in the electrical 

property of the sensing skin. 

6.2.2. Experimental setup and test procedures 

Here, the RCSW was designed, constructed, and tested according to current design codes, 

and a detailed description can be found in Faraone et al. [208]. In short, the aspect ratio (i.e., 

height-to-weight) of the wall specimen was 2, so that the slender wall is expected to exhibit 

flexure-dominated behavior (ASCE 7 2016 and ACI Committee 318 2014). Figures 6.1a and 6.1b 

show schematics of the experimental setup and a photograph of the east façade of the 

corresponding specimen, respectively. The RCSW was mounted on the strong floor through a 

reinforced concrete footing. Seismic loading was simulated by applying a combination of axial 

load (i.e., dead load) and cyclic lateral load. Specifically, four post-tensioned rebars were used to 

apply a total axial load of 500 kips (2225 kN) from the top of the reinforced concrete load stub to 

the wall through two steel beams that were transversely installed on the load stub. The axial load 

was first applied to the wall and was maintained throughout the entire duration of the load test. In 
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addition, cyclic lateral load was generated using a horizontal hydraulic actuator, whose load and 

displacement capacities were 500 kips (2225 kN) and ± 24 in, respectively. One end of the actuator 

was installed on the strong wall, while the other end was attached to the left side (i.e., south side) 

of the load stub, as shown in Figure 6.1. The construction of the RCSW and testing was performed 

in the Powell Labs at the University of California, San Diego. 

The cyclic load test followed the displacement-controlled protocol suggest by ACI 374.2R-

13 (ACI Committee 374 2013), and more details are described in Faraone et al. [208]. The actual 

experiment consisted of applying three load cycles, with each cycle set designed to induce 0.125%, 

0.25%, 0.5%, 0.7%, and 1.0% drift; thereafter, two load cycles of 1.5%, 2.0%, and 2.5% drift each 

were applied. The test ended once the structure reached 3.0% drift, since significant reduction in 

load capacity was observed. 

To characterize structural damage, visible concrete crack patterns were documented, and 

their widths were individually measured following each loading cycle. However, visual inspection 

can be subjective, labor-intensive, and fundamentally limited to identify potential subsurface 

damage. Therefore, this study mainly focused on employing the nanocomposite-based spatial 

sensing system (Chapter 5) to facilitate monitoring and evaluating wall integrity. One of the main 

objectives was to identify and locate seismic load-induced structural anomalies that were invisible 

to the naked eye. It was hypothesized that the high strain-sensing performance of the 

nanocomposite thin films could reveal the presence of micro-cracks and/or subtle changes in strain 

distributions as a result of subsurface concrete cracking. To enhance the sensing accuracy and 

sensitivity via relatively more direct stress/strain transfer from the structure to the sensing material, 

nanocomposite thin films were integrated with the reinforced concrete system by means of spray-

coating the films directly onto the structure. 
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However, it should be noted that it is generally challenging to perform in situ fabrication 

of nanomaterials at civil construction sites, mainly due to the required sophisticated material 

processing procedures, scalability of the fabrication techniques, and harsh construction 

environment. Thus, practical large-scale applications, especially in infrastructure monitoring, of 

nanomaterial-based sensors have been very limited to date. Therefore, another objective of this 

study was to demonstrate that robust and scalable manufacturing techniques (introduced in Chapter 

2) are promising to break though the current “bottle neck” of real-life applications of 

multifunctional nanomaterials, especially for infrastructure health monitoring. 

Specifically, prior to the load test, the CNT-based nanocomposite sensing skin was spray-

coated onto the surface of the RCSW using an airbrush, forming a 12 × 12 in2 (304.8 × 304.8 mm2) 

  

(a) (b) 

Figure 6.1 (a) Schematics of the sensing skin implementation on the RCSW specimen and 
the simulated seismic load test setup. (b) A photograph of the east façade of the RCSW 

specimen. The inset shows a zoomed-in view of the spray-coated sensing skin with 
established boundary electrodes. (Note: 1 ft = 12 in = 304.8 mm) 
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sensing domain, as shown in Figure 6.1. The spray-coated CNT-based ink was air-dried overnight. 

It should be noted that even though the structural surface was rough and vertical (in addition to 

limited accessible space during construction), the nanocomposite-based sensing system was 

successfully implemented without disturbing the construction process. To couple the sensing skin 

with the EIT measurement strategy, 8 × 8 electrodes were established along the boundaries of the 

coating using aluminum tape and conductive silver paint. Here, aluminum tape was used to 

improve signal quality, since they are more resistant to oxidation than copper. The electrodes were 

then extended and connected to the EIT DAQ system (Chapter 5) via coaxial cables to avoid 

signals being corrupted by environmental electromagnetic noise. Overall, the entire coating and 

specimen preparation process indicated that the spray-coating technique was robust and 

compatible with such large-scale applications. 

Prior to testing, an EIT boundary voltage dataset was acquired to establish the global 

undamaged baseline of the coating (and RCSW structure). This baseline corresponded to the case 

when axial loads were imposed on the structure, but no lateral loading was applied to the RCSW 

structure yet. During testing, boundary voltages were acquired at the end of each load cycle.  

6.2.3. Local structural performance monitoring 

The seismic load test induced buckling and fracturing of boundary longitudinal rebars in 

the wall specimen at the finally applied 3.0% drift case, which led to ~ 20% reduction in its load 

capacity. Ultimately, the RCSW failed in flexure (as expected from initial design) and exhibited a 

residual drift of 0.7 in (18 mm) in the southern direction. Figure 6.2a shows a photograph of the 

east façade of the RCSW (sensing skin side) at the completion of the load test. The visible damage 

formation and propagation was analyzed by documenting the concrete crack patterns and 
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measuring the crack widths using linear potentiometers. More details about the crack damage 

evaluation can be found in Faraone et al. [208]. The highest visible concrete crack developed at ~ 

160 in (4.064 m) from the top surface of the reinforced concrete footing, which was slightly below 

the location of the spray-coated sensing skin. Figure 6.2b shows a zoomed-in photograph of the 

sensing skin and its vicinity at the conclusion of the load test. It can be observed that the sensing 

skin remained intact (i.e., no visible concrete cracks occurred in the sensing domain). 

As mentioned earlier, the structural performance at the sensing skin location was further 

investigated using the coupled spatial sensing system. Specifically, the boundary voltage 

measurements were used as inputs to the EIT-CS algorithm to compute the electrical resistivity 

distribution of the sensing skin. The cyclic lateral load-induced changes in resistivity distribution 

were obtained by subtracting the results with the global baseline resistivity distribution of the 

sensing skin (i.e., the undamaged case), which was acquired prior to the start of testing. Figure 6.3 

shows the reconstructed maps of changes in resistivity distribution corresponding to applied drifts 

of different magnitudes. One can observe that there was a highlighted spot at the bottom left corner 

of the sensing domain, and it became increasingly more obvious (i.e., change in resistivity 

increased) as larger drifts were applied to the RCSW specimen. Since the nanocomposite thin film 

was directly integrated with the concrete, the change in stress/strain distribution at the 

corresponding region could disrupt the electrical resistivity distribution of the piezoresistive 

nanocomposite thin film, forming anomalous features in the resistivity maps. Therefore, it was 

hypothesized that the captured local highlighted spot (i.e., anomaly) was potentially caused by 

irreversible stress/strain concentration developed at that specific location during the load test. 
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These results indicate that the coupled spatial sensing system could potentially capture anomalies 

in structural behavior and damage that may be hidden from visual inspection. In addition, since it 

is well known that irreversible stress/strain concentration in structural components could 

potentially lead to structural damage, this study successfully demonstrated an example for which 

the integrated sensing system could help guide further structural inspection on regions with 

suspected damage. 

  

(a) (b) 

Figure 6.2 (a) A photograph of the east façade of the RCSW specimen at the completion of 
the load test. (b) A zoomed-in view of the sensing domain and its vicinity (highlighted in 
the red dashed box in (a)), where the highest visible concrete crack was highlighted in the 

green dashed box. (Note: 1 ft = 12 in = 304.8 mm) 
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6.2.4. Summary and conclusions 

This section focused on demonstrating the scalability of the nanocomposite-based spatial 

sensing system for monitoring the health of large-scale civil infrastructures through a collaborative 
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Figure 6.3 (a – i) EIT-CS algorithm reconstructed changes in resistivity distribution of the 
nanocomposite sensing skin corresponding to different drifts of the RCSW specimen. 
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effort on testing a full-scale RCSW specimen. Here, the CNT-based nanocomposite sensing skin 

was directly spray-coated onto a portion of the RCSW specimen. The RCSW was then subjected 

to simulated seismic loading, while distributed strain measurements were acquired using the 

sensing skin and a customized EIT DAQ system. The EIT-CS algorithm was employed to 

interrogate the structural integrity of a region of the RCSW by computing the resistivity 

distribution of the sensing skin corresponding to different drift ratios (or damage states). Based on 

the EIT results obtained from this study, the spatial sensing system was successfully validated for 

its ability to detect and locate anomalies or damage in the structure caused by cyclic loading, which 

could facilitate a more detailed structural integrity inspection thereafter. Another major finding of 

this study was that the spray-coating manufacturing technique employed was scalable and 

compatible with in-situ implementation at a construction site. Overall, the manufacturing 

technique and sensing methodology gives promise for utilizing functional nanomaterials for civil 

infrastructure and structural health monitoring applications.  

Future work will compare the sensing results with theoretical structural responses 

characterized by finite element analysis, specifically, of the stress/strain distribution in the vicinity 

of the sensing domain. This study was a preliminary step towards employing high-performance 

multifunctional materials for large-scale integrated infrastructure sensing. However, it should be 

noted that, considering system implementation costs, signal processing complexities, and data 

relevance, it might be sufficient and more efficient to implement these multifunctional materials-

based sensing system only at critical and/or damage susceptible structural components, which 

could be determined a priori through numerical modeling. 
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6.3. Smart Socket Prostheses and Pressure Ulcers Prevention 

Similar to the infrastructure systems, human body can also be considered as a mechanical 

system. However, since human biomechanical system is highly flexible, conventional bulky 

transducers, which are designed for rigid structures, are fundamentally challenged to accurately 

and non-intrusively monitor human performance. Therefore, this section aims to implement the 

flexible spatial sensing system to monitor human body and engineered structures interactions. In 

particular, the target application is assisting amputee rehabilitation with pressure-sensing smart 

socket prostheses. 

6.3.1. Socket prostheses 

Hundreds of thousands of people each year undergo limb amputation as a result of either 

traumatic injury or peripheral vascular disease [209]. In the United States, for instance, there are 

approximately 84,500 to 114,000 amputation cases per year [210, 211]. This number is expected 

to be increasing due to the increase in the aging population and as diseases such as diabetes 

continue to grow.  

To help the patient regain physical mobility post-amputation, a prosthesis, which consists 

of a socket, a shank, the ankle, and foot (i.e., for lower-limb amputees), is prescribed to replace 

the removed limb [212, 213]. The socket is responsible for coupling the residual limb (or stump) 

with the rest of the components of the prosthesis. One of the most challenging procedure for a 

prosthetist is to design a customized socket due to the uniqueness of each patient’s residual limb 

[213]. Even though the socket is customized, lower-limb amputees (~ 75% of them) still often 

experience problems related to pressure ulcer due to the lengthy and repetitive mechanical 

perturbation applied by the socket [214, 215].  
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Pressure ulcers refer to the tissue breakdown in localized regions in the skin and/or 

underlying tissue, where prolonged mechanical loading prevents healthy capillary flow [209, 216]. 

Studies have shown that the prevalence of pressure ulcers ranges from 8% to 23%, depending on 

the subject group being studied [209]. In addition, pressure ulcers are usually painful, difficult and 

expensive to treat, and can potentially lead to re-amputation in serious cases. As a consequence, 

pressure ulcers significantly threaten the physical and financial health of these amputees, not to 

mention that these issues place a considerable burden on the global healthcare system. For 

instance, the annual cost for pressure ulcer care in the U.S. exceeds ~$11 billion, with individual 

costs amounting to as much as $70,000 for each ulcer diagnosed.  

Pressure ulcers can develop both on the superficial skin layers and in the deep tissue, 

depending how the skin and tissue are loaded. In particular, superficial ulcers are predominantly 

caused by shear stresses acting on the skin layers, while deep ulcers are mainly due to long-lasting 

compression of tissue in bony body parts [217, 218].  Previous studies showed that the measured 

interfacial pressure and shear stress in a prosthesis are 415 kPa and 65 kPa, respectively [219, 220]. 

For reference, only 8 kPa pressure is large enough to hinder skin blood flow [221], which explains 

the prevalence of these pressure ulcers. It should be noted that deep ulcers can develop at a faster 

rate than superficial ones, forming large areas of ulceration. In addition, deep ulcers are inherently 

difficult to be identified and can be easily ignored until they become visible and too late to be 

treated, which makes them the most severe ulcers. Therefore, when it comes to pressure ulcer care, 

prevention is remarkably cheaper and more efficient than current forms of treatments [209]. 

One of the common approaches to determine ulcer condition is by visual and physical 

inspection [209]. However, the assessment results are highly subjective relative to the experience 

of clinicians. Besides, visual inspection is usually ineffective for diagnosing deep ulcers at early 
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stages. On the other hand, various imaging techniques have been applied for better assessing 

pressure ulcers. For instance, X-ray can determine ulcer status by injecting contrast media into the 

wound. B-mode ultrasonography is a noninvasive method for imaging both the surface and 

embedded necrotic tissues through scanning the inspection probe across the wound while 

recording the corresponding images [222]. Although these imaging techniques provide an accurate 

qualitative assessment, they usually require specific imaging systems that can only be operated by 

clinicians in a controlled environment.  

On the other hand, many endeavors have been undertaken to implement sensing devices 

onto prostheses to monitor pressure generated at the interface. For example, a network of strain 

transducers can be integrated in the socket [213], so as to measure the pressure distribution in the 

socket, which can provide valuable information for socket design as well as for identifying 

abnormal pressure locations and “hot spots”. However, conventional transducers are discrete 

devices, which makes them inefficient and inaccurate for mapping the pressure distribution over 

large areas. In addition, large quantities of those rigid transducers integrated in the socket can lead 

to user discomfort. 

In this work, a next-generation socket prosthesis design was considered and is shown in 

Figure 6.4a. It has two main components, which are the composite strips (covered by fabric) on 

the periphery and a socket base at the bottom. Figure 6.4b shows the top and bottom views of the 

socket base structure, and it can be seen that its top surface is similar to the side of a truncated 

cone. First, a piezoresistive CNT-based fabric sensor was designed to conform to the surfaces of 

the composite strips and socket base. Second, the sensor was interrogated at its boundaries, and 

the raw data was used in conjunction with an EIT algorithm for achieving distributed pressure 
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mapping. Then, the strain sensing and pressure mapping performance of the fabric sensors were 

characterized. 

6.3.2. Spatial pressure distribution monitoring 

Here, to demonstrate the fabric sensors’ potential for monitoring pressure distributions on 

different components in the socket prosthesis, the fabric sensors were shaped to form a 2D, thin, 

rectangular strip (Figures 6.5a and 6.5c) and a 3D truncated cone (Figures 6.5b and 6.5d), which 

were designed to fit the geometry of the composite strip and the socket base, respectively. This 

shows the advantage of the fabric sensor design, which allows one to readily customize the shapes 

and dimensions of the sensing materials. 

To realize distributed pressure sensing, the fabric sensors were used in conjunction with an 

EIT measurement strategy and algorithm. Here, a Keithley 6221 current generator was utilized to 

inject 1 mA of DC across a preselected pair of boundary electrodes. To automatically switch the 

pair of electrodes for injecting a different DC excitation pattern, the current generator was 

  

(a) (b) 

Figure 6.4 (a) A picture of a next-generation prosthetic socket as well as the (b) top and 
bottom views of the socket base are shown. 
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interfaced with a Keysight 34980A multifunctional switch, which was controlled using a 

customized Matlab program. Furthermore, the switch includes a built-in DMM that could measure 

and record voltages that develop between the other pairs of electrodes. The entire set of voltage 

measurements were then used as inputs to the EIT algorithm for reconstructing the fabric sensor’s 

conductivity (or resistivity) distribution.  

Prior to conducting the distributed pressure sensing tests, the EIT DAQ system was 

commanded to obtain an initial set of boundary voltage measurements when the fabric sensors 

were in their undeformed state (i.e., baseline). Thereafter, the fabric sensor strip was first tested by 

pressing the fabric sensor, using fingers, at different points along the entire strip. The goal was to 

simulate abnormally high pressure points on the amputee’s residual limb, potentially either due to 

inappropriate design/fitment or physical changes of the residual limb itself over time. Similarly, 

  

(a) (b) 

  

(c) (d) 

Figure 6.5 (a) Fabric sensors had a laminated structure and (b) were cut to different shapes 
and integrated with fabric substrate. Fabric sensors were prepared to form (c) a rectangular 

strip and (d) to conform to the socket base. 
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the socket base with the fabric sensor was subjected to applied localized pressure points by 

pressing the top surface of the socket base and fabric sensor (Figure 6.6). For each case, the EIT 

DAQ system collected the corresponding boundary voltage measurements. 

The fabric sensor strip was first subjected to localized pressure sensing tests. Figure 6.7 

shows the pictures of where the pressure points were applied to the fabric sensor strip (left column), 

as well as the corresponding EIT reconstructed resistivity maps (right column). It should be noted 

that these EIT results show changes in resistivity of the deformed state with respect to its 

undeformed baseline. According to the color bar, darker colors refer to larger increases in 

resistivity. Since the fabric sensor strip was only locally deformed, each EIT reconstruction result 

of Figure 6.7 shows a distinct highlighted spot (i.e., localized increase in resistivity) at the vicinity 

where the specimen was pressed. In addition, the fabric sensor strip was subjected to multiple 

pressure points at different locations. Figure 6.8 shows the photographs of introduced pressure 

points (left column) and their corresponding reconstructed resistivity maps of the sensing fabric 

(right column). It was found that the fabric sensor could locate the pressure points with relatively 

high accuracy across the entire strip.  

 

Figure 6.6 Localized pressure was applied to the fabric sensor on the socket base. 
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Next, the socket base with the fabric sensor was fabricated and tested for sensing 

distributed pressure along its 3D surface. Similar to the fabric sensor strips, the socket base with 

the fabric sensor was subjected to applied concentrated pressure points at multiple locations. 

Figure 6.9 presents the EIT resistivity images of the socket base after it was deformed by manually 

 

Figure 6.7 The EIT reconstruction results of the fabric sensor strip when it was subjected 
to multiple localized pressure points applied at different locations are shown side-by-side. 

 

 
 

 
 

 

  

Figure 6.8 The EIT reconstruction results of the fabric sensor strip when it was subjected 
to localized pressure points applied at different locations are shown side-by-side. 
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pressing at different locations (left column). The corresponding resistivity maps (right column) are 

also shown in Figure 6.9; again, these EIT results show the changes in resistivity distribution with 

respect to its undeformed baseline. Overall, these results confirmed that pressure hot spots could 

be detected effectively and accurately. These results validated that the CNT-based fabric sensors 

could be integrated with next-generation smart socket prostheses for distributed pressure sensing. 

6.3.3. Summary and conclusions 

In this section, fabric sensors were designed and employed for monitoring distributed 

contact pressure along the interior surface of socket prostheses as a means to monitor an amputee’s 

residual limb health and to prevent pressure ulcer formation. To achieve spatial sensing and to 

leverage the unique feature that every location of the entire sensing films is sensitive to strains (or 

equivalently pressure), the fabric sensors were coupled with the EIT-CS algorithm. Furthermore, 

this study performed preliminary pressure distribution sensing tests on the fabric sensor strip and 

 

Figure 6.9 The socket base and fabric sensor was subjected to localized pressure points, 
and the corresponding EIT reconstructed pressure distributions successfully identified the 

localized pressure point(s). 
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the sensing socket base by applying pressure at different locations so as to simulate the possible 

interactions between an amputee’s residual limb and the socket prosthesis. It was found that the 

EIT resistivity maps captured localized increases in resistance at regions where pressure was 

applied. Therefore, this work demonstrated that the fabric sensors could be customized to conform 

to complex geometries and be implemented with socket prostheses for distributed pressure sensing 

and pressure ulcer prevention. 

Chapter 6, in part, is a reprint of the material as it appears in Nanocomposite Fabric Sensors 

for Socket Prostheses, L. Wang and K. J. Loh, 2018. The dissertation author was the primary 

investigator and author of these papers. 
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Chapter 7. Conclusions 

 

  

7.1. Summary of Results 

This primary objective of this dissertation was to develop, characterize, and implement 

nanocomposite-based sensing systems for structural health and human performance monitoring. 

This work aimed to overcome some of the current challenges for implementing multifunctional 

materials in a practical manner so as to pave the way for the next-generation of more robustly 

integrated sensing systems for acquiring high-quality data on structural and human performance.  

In Chapter 2, three different bottom-up manufacturing techniques were introduced to 

fabricate the CNT- and GNS-based nanocomposite thin films. Each fabrication technique featured 

unique advantages. To be specific, spray-coated CNT-based nanocomposites could be readily 

implemented on large-scale structures, either directly on structural surfaces or embedded in the 

structural materials (e.g., concrete and composites). Screen-printed GNS-based nanocomposites 

could be rapidly patterned to form large-scale thin films and be well integrated with porous 

substrate materials (e.g., fabrics and paper). On the other hand, micro-patterning was advantageous 

in printing nanomaterial-based inks on various substrates with high-precision (i.e., microscale) and 

could potentially enable automatic multi-material patterning. The effectiveness of these 



140 
 

manufacturing techniques was evaluated by investigating the microstructures of the resulting 

nanocomposites, which showed that the CNTs and GNS could be uniformly dispersed in the 

polymeric matrices.  

In addition, Chapter 2 also performed a series of cyclic load tests to investigate the strain 

sensing performance of the designed nanocomposites. It was found that these nanocomposite thin 

films were piezoresistive and exhibited stable and repeatable strain sensing response. As compared 

with commercial metal foil strain gages, the manufactured nanocomposites possessed superior 

strain sensitivity and a much larger measurable strain range. For instance, screen-printed GNS-

based sensors were ~ 37 times more sensitive when ε ≥ 10%, and the micro-patterned GNS-based 

sensors were ~ 10 times more sensitive when ε ≤ 10%).  

However, the manufacturing processes were empirically optimized for each material 

system so as to obtain the optimal fabrication efficiency and piezoresistive properties. This process 

is commonly involved when developing functional materials. To develop a more universally 

applicable material engineering methodology that can predictably encode material properties for 

desired applications and to bring these nanocomposites one step closer to field implementations, 

Chapter 3 proposed a topological design-based approach to strategically manipulate 

nanocomposite strain sensing properties. This approach was investigated based on the GNS- and 

CNT-based nanocomposite thin films that were fabricated in Chapter 2. It was found from the load 

tests that, regardless of the nanocomposite material systems, inhomogeneous topology-induced 

stress concentrations could enhance bulk film piezoresistive response, which could facilitate 

designing high-sensitivity strain sensors. On the other hand, stress releasing topologies (i.e., 

Kirigami-based structures in this study) were shown to be promising for decoupling sensing signals 

induced by strains/deformation from the primary desirable measurand (e.g., temperature-induced 
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resistance changes). Furthermore, in Chapter 3, numerical analyses were conducted to characterize 

the electromechanical responses of the patterned nanocomposites. To be specific, a linear 

piezoresistive material model and a statistical nonlinear material model were employed. Both 

material models were first calibrated using experimental data on the strain sensing response of the 

Non-Patterned control set specimens. Then, the calibrated materials models were implemented to 

simulate the electromechanical responses of the patterned samples. It was found that both models 

showed similar effects of topological designs on the nanocomposite’s piezoresistivity that were 

consistent with experimental characterization results, and the nonlinear material models could 

more accurately match the experimental findings. 

Chapter 4 implemented CNT- and GNS-based nanocomposites as discrete strain sensing 

elements to validate their applications for monitoring human physiological performance. To be 

specific, CNT-based fabric sensors were designed to first detect finger bending movements as a 

proof-of-concept demonstration for human motion monitoring, which exhibited relatively stable 

response. Then, a smart chest band was designed based on the fabric sensors for monitoring 

respiration. In addition, a PGS was developed to form sensing skins that featured high flexibility 

and conformability, which could be readily adhered to or detached from the skin. The PGS was 

demonstrated to be capable of quantifying finger bending motions, identifying hand motion 

patterns, monitoring eye blinking, and capturing radial pulse signals. 

However, since Chapter 4 only employed the designed nanocomposites as discrete sensing 

elements, Chapter 5 designed spatial sensing systems by coupling the piezoresistive 

nanocomposite thin films with EIT and CS algorithms. The main purpose of marrying EIT with 

thin film strain sensors was to overcome a major limitation of current sensing technologies, which 

is discrete sensing. Here, to enhance the EIT reconstruction resolution, a CS scheme was adopted 
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to leverage prior information of spatial sparsity present in typical EIT problems. To validate the 

spatial sensing capability of the coupled system, Chapter 5 conducted a series of distributed 

pressure and impact damage sensing tests based on fabric sensors. It was found that the spatial 

sensing system could successfully identify and locate applied pressure points as well as puncture 

damages. In addition, the resolution analysis demonstrated that the L1-norm regularization 

algorithm was capable of more accurately solving EIT inverse problem than conventional 

Tikhonov regularization. 

Building on Chapter 5, Chapter 6 mainly employed the coupled spatial sensing systems for 

large-scale structural and human health monitoring applications. To be specific, in the first 

demonstration scenario, a CNT-based nanocomposite thin film was spray-coated onto the surface 

of a full-scale reinforced-concrete shear wall specimen. This work showed that the spray-coating 

manufacturing technique was scalable and compatible with in situ implementation at a 

construction site. During the simulated seismic loading tests, the nanocomposite-based sensing 

system was employed to monitor structural integrity of its instrumented region on the RCSW 

specimen. The computed EIT results could detect and locate anomalies or damage in the structure 

caused by cyclic loading. Furthermore, another major target application in Chapter 6 focused on 

implementing the fabric sensor-based spatial sensing system on socket prostheses for monitoring 

pressure distributions on the interface between an amputee’s residual limb and the socket structure. 

Here, the shapes and dimensions of the fabric sensors could be readily customized to be applied 

on different components of the socket without causing user discomfort. It was found that the EIT 

resistivity maps could identify and locate regions with high pressure hot spots. 
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7.2. Contributions and Future Work 

As the first stage of SHM paradigm, sensor-based data acquisition systems directly define 

the capability, cost, and practical applicability of SHM systems for different structures. While 

various off-the-shelf sensing devices have currently been employed for SHM, the pressing 

demands for more robust sensing capabilities has motivated extensive efforts dedicated to 

developing innovative sensing techniques. As discussed in Chapter 1, one of the most promising 

approaches is by leveraging the unique properties of nanostructured materials for designing high-

performance sensing materials. One of the grand challenges for implementing the nanomaterials 

for real-life applications is associated with how current methods frequently require sophisticated 

manufacturing techniques and have poor scalability.  

Hence, one of the major contributions of this dissertation was the development of high-

performance nanocomposite-based sensing systems by leveraging and optimizing simple, scalable, 

and low-cost manufacturing techniques. This work demonstrated that the designed 

nanocomposites not only possessed superior strain sensing performance as compared to 

commercial strain gages, but they were also compatible with large-scale applications, ranging from 

integrated infrastructure sensing to wearable sensors for smart socket prostheses. Based on these 

manufacturing techniques, future work will focus on designing multi-modal sensing materials that 

are sensitive to multiple structural performance parameters (e.g., pH and temperature), in addition 

to stress and strains. The goal is to more comprehensively evaluate multiple aspects of structural 

health using a single integrated sensing system. 

In addition, to overcome the discrete sensing limitation of current transducers, this 

dissertation coupled nanocomposite thin films with EIT and CS algorithms to realize spatial 
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sensing. From a computational perspective, the major challenge is to accurately and efficiently 

solve the EIT inverse problem and generate high-resolution reconstructed conductivity maps. 

Tikhonov regularization (i.e., L2-norm) is commonly used to solve the inverse problem, which 

generally introduces over-smoothing effects and compromises reconstruction resolution and 

accuracy. This dissertation adopted the CS scheme and imposed L1-norm regularization (computed 

using the TwIST algorithm) to leverage prior information of spatial sparsity present in typical EIT 

problems. The experimental results demonstrated that the sparsity reconstruction algorithm 

effectively enhanced the EIT inverse problem reconstruction resolution. Thus, this dissertation 

recommended the L1-norm regularization for solving the EIT inverse problem. 

Furthermore, in the context of developing functional materials, current approaches mainly 

focus on engineering the material system by means of trial-and-error. In addition, these approaches 

typically designed different material systems for specific target applications, which could barely 

take advantage of the potential multifunctionality of these nanocomposites. To overcome these 

limitations, this dissertation contributed an innovative material property engineering methodology. 

To be specific, this dissertation experimentally demonstrated that, by solely changing the thin 

films’ topologies, the strain sensitivity ranges of the GNS- and CNT-based nanocomposites could 

be significantly expanded to − 99% to + 50% and − 95% to + 70% as compared to their 

corresponding Non-Patterned control sets, respectively. Besides, the experimental findings were 

mostly consistent with numerically simulated electromechanical responses. These results indicated 

that the piezoresistivity of the nanocomposite thin films could be effectively manipulated by 

designing their topologies (in addition to tuning their nanomaterial constituents). Future work will 

improve the accuracy of the numerical material models to better simulate the experimentally 

measured nanocomposites’ strain sensing responses. The topological design approach will also be 
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further validated for other piezoresistive nanocomposite material systems.  

Overall, this dissertation demonstrated a step towards achieving next-generation 

multifunctional material-based sensing systems for monitoring engineered structures and human 

health. While the capability of these sensing systems needs to be further validated in more complex 

and practical application scenarios, this study validated remarkable potentials of these 

nanocomposite sensing materials for acquiring high-quality data related to structural and human 

performances. In addition, the multifunctional material-based spatial sensing systems provide 

previously unavailable data streams, which can potentially motivate more advanced developments 

in data analytics and risk assessment tools that support both SHM and human health assessment.   
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