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Abstract

When people make decisions, these often do not stand alone
but are made in a sequence of decisions. For instance, a doc-
tor will first decide on a patient’s treatment and then about the
duration of the treatment. In such decision sequences, later
decisions frequently depend on the outcome of the first deci-
sion (e.g., if the treatment results in an adverse reaction, this
predicts the next decision). While there is research on how hu-
mans discover inter-relations between sequentially presented
information, for example, regarding grammar, little is known
about whether and how humans can also learn complex inter-
category relations in decision sequences. To provide a step
towards closing this gap, we present an experiment in which
we embedded a problem structure, known in category learning
as Type II or Exclusive-Or, in a sequence of three decisions. In
each trial, participants saw one of eight unique stimuli, each
followed by three categorization tasks for this stimulus. In
a Type II condition, the outcomes of tasks 1 and 2 predicted
the outcome of task 3, which we compared to a control condi-
tion without a regularity. We hypothesized that the sequential
Type II regularity, as in visual category learning, would facil-
itate learning and subsequent generalization compared to the
control condition. Instead, the evidence favored the Null hy-
pothesis in both cases. This is in contrast to findings from the
visual categorization domain in which this benefit is reliably
observed. These findings highlight the boundary constraints
on the human ability to discover rule-based category structures
in sequential sequences.
Keywords: Category Learning; Sequential Learning

Introduction
Human learning often relies on discerning patterns and regu-
larities in the surrounding environment, as those usually fol-
low specific rules, as studied in language, music, motor se-
quencing, visuospatial perception (Gomez, 2002; Newport et
al., 2004b,a; Romberg & Saffran, 2013; Vuong et al., 2016;
Lu & Mintz, 2021; Iao et al., 2021), and category learning
(e.g., Shepard et al., 1961; Nosofsky, Gluck, et al., 1994).
In category learning, it is typical to study the corresponding
learning processes using visual stimuli that differ on multi-
ple visual dimensions (e.g., color, size). Participants have to
predict which category a stimulus belongs to based on the vi-
sual dimensions (e.g., green things are bananas, blue things
are berries). However, it is plausible that humans can also
learn inter-category relations, which are surprisingly rarely
studied. Consequently, we extend the classic approach to cat-
egory learning by investigating whether learning phenomena
observed in visual scenarios generalize to situations where a
predictable structure arises from correlated categories in a se-
quence of stimulus-category decisions.

For example, imagine you are inspecting some rocks based
on their visual properties. First, you categorize the rock as
containing metal or not. In the next step, you categorize it as
heavy or light. While both could be done based on the rock’s
appearance, you could notice that metal rocks are also heavy
after examining many rocks. Consequently, you can predict
its weight (heavy vs. light) once you know the first outcome
(metal or not) without requiring visual information.

The current work focuses on better understanding under
which conditions people can learn to use such sequential
inter-category associations, as illustrated in the rock exam-
ple above, and how this compares to how people use visual
stimulus dimensions in category learning. Visual category
learning has shown that the ease with which people master a
visual categorization task depends on the category structure,
as illustrated in the seminal work by Shepard et al. (1961)(see
also Nosofsky, Gluck, et al., 1994; Lewandowsky, 2011). In
this classic work, Shepard et al. (1961) introduced six prob-
lem types in which participants categorize stimuli based on
three binary dimensions (i.e., color, size, and shape) into two
categories. Figure 1 demonstrates three of these problems. In
Type I problems, a single binary feature is sufficient to predict
category membership (i.e., large objects belong to Category
A and small objects to Category B). Type II problems, a.k.a.
Exclusive-Or (XOR), can be solved by a combination of two
binary features (e.g., size [small vs. large], shape [triangle vs.
square]), whereas the Type VI problem is unstructured, and
predicting the categories requires memorizing every stimulus
and its category.

The above rock example would correspond to the Type I
problem, which seems straight forward. However, sequential-
intercategory relations can also be conceived as Type II prob-
lem when they include conditional regularities. As an every-
day example, consider a security mechanism of a door, with
sensors recognizing whether the door is open or not, and
whether a correct security code was entered or not. The third
decision is regarding whether the security system works cor-
rectly. The decision that the system works correctly follows
from two cases, if the door is open while somebody entered
a correct security code, or when the door is closed while no
code was entered. Vice versa, a decision that the system does
not work follows from the opposite cases, namely, if the door
is open while no code was entered, or if the door is closed
despite the correct code being entered. Returning to our rock
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Figure 1: Category Structures. Type I, II and VI from Shep-
ard et al. (1961). Coordinates reflect three binary dimensions
(e.g., Dim 1 = size: large vs. small). Shading reflects as-
signed category (A vs. B). See further text.

example, a decision might concern, whether a rock is to-be
further ‘processed’ or ‘not’. In a Type II combination this de-
cision could depend on the rock being metal or not, and heavy
or not. For instance, if ‘metal’ and ‘heavy’ or ‘non-metal’
and ‘light’ further categorize the rock as to-be-processed, but
if ‘metal’ and ‘light’ or ‘non-metal’ and ‘heavy’ further cate-
gorize the rock as not-to-be-processed.

In visual categorization, research suggests that people learn
Type I problems much more quickly than Type VI problems.
Similarly, the XOR (Type II) structure is often found to be
easier than problems requiring to memorize the stimulus-
category association as in Type VI (e.g., Shepard et al., 1961;
Nosofsky, Gluck, et al., 1994; Lewandowsky, 2011) but more
difficult compared to Type I. These differences in learning
difficulty are often attributed to using different cognitive pro-
cesses. In Type I and II problems, people likely realize that
they can abstract a perfectly predictive categorization rule us-
ing just one or two features. In contrast, in Type VI prob-
lems, people have to memorize each exemplar and its associ-
ated category, a slower and more effortful process compared
to Type I and Type II. This provides support concerning dif-
ferent learning strategies, such as rule vs. memory-based
processing (Anderson, 1991; Nosofsky, 1991a,b; Nosofsky,
Palmeri, & McKinley, 1994; Schlegelmilch et al., 2021;
Bruner et al., 1956; Martin & Caramazza, 1980).

However, it is an open question whether the same phe-
nomenon will occur when these regularities are observed in
a temporal sequence of categorical outcomes (inter-category
instead of feature-category), like the rock example. The focus
here is on the categorical outcome of each stimulus and not
on the visual features of the stimuli presented. In our previ-
ous research (https://osf.io/gd9v4/), we therefore first inves-
tigated whether people can learn a temporal version of the
Type I category structure. For this, we presented one of mul-
tiple idiosyncratic stimuli (e.g., an icon representing a moun-
tain or a knot), for which participants made two subsequent
categorical outcome predictions (T1: A vs. B, then T2: C
vs. D). While there was no visual regularity to predict these

categories, we embedded a Type I rule in the two-category
sequence (i.e., T1: A always predicted T2: C, and T1: B
always predicted T2: D). In other words, participants could
either use the visual stimulus to memorize its category, or
they could pick up on the Type I between-category relation.
We compared this task with a Type VI structure (control con-
dition), which participants could only master by memoriz-
ing all stimulus-category associations. Crucially, after sev-
eral learning trials, we also introduced novel stimuli but with-
holding feedback to test whether participants could general-
ize the Type I regularity. The left panel of Figure 2 shows
the learning curves for the critical outcome T2 in both con-
ditions, averaged within the ten repeated training blocks. As
can be seen, T2 accuracy was higher in the Type I condition
compared to the control Type VI condition. Furthermore, the
right panel of Figure 2, shows the probability of regularity-
consistent responding for novel items in the generalization
test phase. As can be seen, we found conclusive evidence
(BF10 > 100; M = 75.33, CI95= [65.98, 84.69]), indicating
that participants successfully generalized the Type I regular-
ity to novel objects.

Figure 2: Experiment Type I vs Type VI. The left panel shows
accurancy (y-axis) over training blocks (x-axis; 8 trials per
block) for T2 categorizations. The right panel shows the
proportion of regularity-consistent choices (y-axis) over test
blocks (x-axis; 4 trials per block) for T2. Error bars indicate
95% CIs of individual means.

From this perspective, people might be able not only to
learn simple associations (e.g., Type I) but also more com-
plex ones (XOR), when embedded into sequential decisions
compared to a Type VI problem, which we test in the cur-
rent study. Indeed, similar questions on the influence of
structural complexity in sequential learning have been investi-
gated in the domain of grammar learning (see; Gomez, 2002;
Romberg & Saffran, 2013; Deocampo et al., 2019; Newport
et al., 2004b), in which sequentially observed grammatical el-
ements predicted further elements, for example, syllables or
sounds in a tri-element sequence (e.g., ba→da and pa→do
in a stream of ba-da-ku, pa-do-ti, ba-da-ti, etc.). First, these
studies suggest that people could learn such tri-element syl-
lables with inter-element regularity better than tri-elements
without regularity, which also leads to generalization for
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novel tri-element sequences. Second, however, the ease of
acquisition, in terms of complexity, seems to co-depend on
whether these regularities appear in adjacent vs. non-adjacent
(element regularities with an intervening element) positions
(e.g., Newport et al., 2004b; Conway & Christiansen, 2005;
Wilson et al., 2020), and/or where the adjacent and non-
adjacent associations occur concurrently (e.g., Deocampo et
al., 2019; Conway et al., 2020, e.g., when ba→da and pa→do,
the presented sequence is either ba-pa-da-do (crossed regular-
ity) or ba-pa-do-da (nested regularity) ).

These insights from grammar learning seem to suggest that
it might be possible to learn complex sequential regularities
like XOR in decision sequences as well. Formally, consider a
sequence of three categorical decisions for the same stimulus
(T1: A vs. B, T2: C vs. D, and T3: E vs. F). A temporal
XOR structure here means that the first two categories (T1 &
T2) disjunctively predict the third one (T3), such that AC→E
and BD→E but AD→F and BC→F. However, there might
be reasons to expect no learning of XOR regularities. For
one, in the visual domain, Love & Markman (2003) suggests
that changing the stimulus material might hinder discovering
complex regularities if the stimulus features were perceived
as less separable, or as highlighted by Kurtz et al. (2012), if
participants are not directly prompted to search for catego-
rization rules. From another perspective, when compared to
complex grammar learning, another reason might be that dis-
covering XOR structures in decision sequences is more diffi-
cult than rule discovery in rapidly presented phonological or
syntactical elements. That is, an XOR solution in a sequential
categorization task requires keeping category information in
mind over successive actions, which seems more demanding
than combining concurrently presented visual features. Thus,
answering the question whether or not XOR can be learned in
a sequence of decisions could further shed light on the bound-
ary constraints of rule discovery in category and sequential
learning in general.

Experiment
The experiment was designed to find out whether participants
can learn and generalize disjunctive rules known as Type II
or XOR when embedded in a sequence of decisions. Our
task design reflects a trial-and-feedback learning procedure.
In each trial, participants see an idiosyncratic stimulus fol-
lowed by three sequential binary categorization tasks. For
each feedback is provided after the corresponding decision.
In the following we therefore refer to the inter-category de-
pendencies in terms of task 1, 2 and 3 (for T1, T2, and T3,
respectively). In the Type VI condition, the outcomes of each
task were independent of each other. In the Type II condition,
the outcomes of task 1 and 2 predicted the outcome of task
3 in an XOR structure. The study was pre-registered on OSF
(https://osf.io/jgwhr).

Method
Participants As pre-registered, we implemented the Se-
quential Bayes factor method with maximal N design

(Schönbrodt & Wagenmakers, 2018), taking the hypothesis
test on the assumed interaction in the test phase for novel
stimuli (generalization, see Results section). That is, we
determined a minimum (Nmin) = 60 participants (i.e. 30
per condition) and continued the sampling until a BF>10
or BF<0.1 was reached. For determining Nmax, we simu-
lated the category output in the Type II condition accord-
ing to a small effect p = .6 rule-consistent responding in the
Type II condition (i.e., the mean probability of the consis-
tent response based on a Binomial distribution for each indi-
vidual in 16 trials [4 novel stimuli * 4 blocks]), then con-
ducted a one-sample Bayesian t-test on the simulated data
against mean = .5. We repeated the procedure 500 times,
with different sample sizes, and obtained a BF>10 in 90.4%,
with 60 participants in each condition, which we set as Nmax
(https://osf.io/mzkyt).

We recruited 70 English-speaking participants on Prolific
Academic (Male = 42, Female = 28; M(age) = 32, SD =
7). They received 4.00C as basic compensation and an ad-
ditional bonus, which increased with their learning accuracy
(2C max). The participants were randomly assigned to the
two conditions. The study duration was M =32.8 minutes,
SD = 16.5 minutes. To ensure equal levels of memory per-
formance, we excluded 6 participants based on the method
explained below (N(Type VI)=5, N(Type II)=1) for not learn-
ing task 1. One participant indicated that their data should
not be used for the analysis, which we also excluded. Over-
all, 30 and 33 participants remained in the Type VI and Type
II conditions, respectively.

Design The learning task consisted of a sequence of three
sub-tasks on fictitious objects (see Table 1), similar to our ini-
tial rock-analysis example. Task 1, 2 , and 3 comprised cate-
gorization tasks, which had to be performed for each object.
In each task, participants had to classify the object into one
of two categories (T1: Herf vs. Jonth; T2: Krill vs. Wask;
T3: Thesh vs. Aurek). There were two experimental condi-
tions: In the experimental condition, also referred to as the
Type II condition, the outcomes of task 1 and 2 predicted that
of task 3, regardless of the assigned visual object, as in the
example in Table 1. In the control condition, also referred to
as Type VI condition, there was no dependency between the
three tasks. Thus, the study implements a 2 (Type II regu-
larity vs. control; between) x 3 (Task 1 vs. 2 vs. 3; within)
mixed factorial design.

Material and Procedure The experiment was created us-
ing jsPsych De Leeuw (2015) and conducted online on Pro-
lific. The experiment comprised two phases: training and test.
During the training phase, participants engaged in three deci-
sion tasks using a trial-and-feedback approach, repeatedly en-
countering eight objects in a block-wise manner twelve times.
The object presentation order within blocks was randomized,
resulting in 96 trials. The eight objects were chosen ran-
domly for each participant from a set of 12 objects (created by
Freepik) and assigned to the category structure. One random
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Table 1: Task Design - Type II Regularity
Object Task 1 Task 2 Task 3

Herf Krill Aurek

Herf Krill Aurek

Herf Wask Thesh

Herf Wask Thesh

Jonth Wask Aurek

Jonth Wask Aurek

Jonth Krill Thesh

Jonth Krill Thesh

Task 1-3 refer to subsequent decisions for the same object.
‘Herf’ and ‘Jonth’ refer to category outcomes in Task 1,
‘Krill’ and ‘Wask’ to outcomes in Task 2, and ’Thesh’ and
’Aurek’ to outcomes in Task 3, with Type II structure to
predict Task 3.

allocation is illustrated in Table 1. The remaining four objects
served as novel objects for the test phase. Object-task assign-
ments remained constant within participants across all trials
but varied randomly between participants. In each trial, par-
ticipants saw an object and then could categorize it by click-
ing on one of two buttons with the category labels that were
shown beneath the object. The three categorization tasks fol-
lowed sequentially until the third task was performed. Af-
terwards the next trial started. The button-label assignments
were randomly interchanged over trials to emphasize learning
category labels rather than specific button-press associations
such as learning a sequence of pressing right-left-right for an
object.

Participants followed an identical procedure in the test
phase except for two changes. First, we showed four ran-
domly selected objects from the training phase (one from
each unique combination of the T1 and T2 category com-
binations). In addition, participants saw four novel objects,
which we used to test whether participants made decisions
consistent with Type II structure in the experimental condi-
tion. Second, participants only received feedback for tasks
1 and 2, but not for task 3, to cleanly asses rule generaliza-
tion without ongoing learning. The test phase consisted of 32
trials (eight objects randomized within four blocks).

Before participants started the categorization tasks, they
provided informed consent and received instructions. Before
the training phase, we asked three control questions to ensure
an understanding of the procedure. After the experiment, we
asked participants to rate the perceived difficulty of the study
and their diligence while participating as well as indicate any
strategies they used while doing the tasks (not reported). We
also asked participants if there were reasons to exclude their
data from the analysis (e.g., use of tools). The participants
who withdrew their consent were excluded from the analysis.

Lastly, they provided the prolific code as proof of completion.

Data Cleansing To control for sample biases in overall per-
formance we excluded participants with chance or lower-
than-chance performance in the last 24 trials of the train-
ing blocks in task 1. For this, we pre-registered and used
a Bayesian latent class model to classify participants into
guessing, medium, and high-accuracy groups in the final
three blocks of the training phase (24 decisions), which we
performed before applying any hypothesis testing. Priors
were set for each group mean probability as, respectively,
ϕguessing = .5, and ϕmedium and ϕhigh, with the latter two
drawn from a uniform distribution between .5 and 1 (non-
hierarchical). The models were assigned to the participants in
a trans-dimensional MCMC method drawing the model like-
lihoods from a Dirichlet distribution (uniform), passed to the
individual level via categorical samples (Schlegelmilch & von
Helversen, 2020; Zeigenfuse & Lee, 2010, for similar appli-
cations, see). We ran 20000 iterations to calculate how often
each participant was assigned to each group and excluded the
participants assigned to the guessing group with more than
80% confidence.

Results

Training Accuracy Our hypothesis was that learning
would be better in a classical Type II structure when embed-
ded in a sequence compared to a decision sequence without
any structure (control). We performed a mixed-effects logis-
tic regression on decision accuracy (1=correct) with training
blocks, condition, and task as fixed effects, including by-
participant and by-stimulus as random intercepts (using the
R package Afex Singmann et al., 2015) with Type III LRT
tests (full vs. reduced model). As also suggested in the Fig-
ure 3, we found no significant main effects for task, χ2(1, 62)
= 1.38, p = .503, or condition, (X2 (1, 62) = 0.47, p = .495,
suggesting no difference in accuracy in the three tasks or be-
tween the conditions. There was a significant main effect of
blocks (X2 (1, 62) = 15.52, p < .001), showing that accuracy
increased with learning. Importantly, there was no significant
interaction between condition and task, X2(1, 62) = 2.03, p
= .362, indicating that T3 accuracy, indeed, did not differ be-
tween the Type II and the control condition. There was also
no interaction between task and blocks, X2(1, 62) = 5.08, p =
.079, condition and blocks, X2(1, 62) = 1.59, p = .208, or a
3-way interaction, X2(1, 62) = 2.33, p = .312.

We carried out planned post-hoc analyses on the mixed
model estimates (log-scale; R package: Emmeans; Lenth et
al., 2019), which further confirmed that participants in the
Type II condition were not better in learning the outcome of
task 3. Within participants, there was higher accuracy in task
T1 compared to T3, z = 3.22, p = .004, Mdiff = 0.05, CI95
= [0.048,0.3], however, no difference between T3 and T2,
z = 1.07, p = .53, Mdiff = 0.05, CI95 = [-0.07,0.19] in the
Type II condition. In the Type VI condition, there was neither
a difference in accuracy in task T3 compared to T1, z = 1.17,
p = .47, Mdiff = 0.05, CI95 = [-0.07,0.20], nor compared to
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T2, z = 0.6, p = .82, Mdiff = 0.05, CI95 = [-0.10,0.17]. Fi-
nally, there was no significant difference found in the learn-
ing accuracy in T3 between Type II and control (Type VI)
conditions, z = -0.142, p = 0.8868, Mdiff = 0.2, CI95 = [-
0.42,0.36]. Thus, the training results suggest that learning
Type II vs. Type VI (control) does not reproduce the ordinal
difficulty trends observed in visual category learning. In other
words, learning performance on the critical task 3 was equal
between both conditions.

Figure 3: Training phase mean accuracy. Accuracy (y-axes)
over training blocks (x-axes; 8 trials each block) for T1 cate-
gorizations (left), T2 (middle), and T3(left). Error bars indi-
cate 95% CIs of individual means.

Testing Accuracy: Old Items We hypothesized that pre-
viously trained (old) stimuli were categorized equally well or
better for task 3 in the Type II condition compared to the Type
VI control condition. Figure 4 depicts the main results, again
suggesting equal performance between sub-tasks and condi-
tions. We tested this by performing the same mixed-effects
logistic regression model as the one performed for the train-
ing phase but focusing on the four previously trained stimuli.
We found no significant main effect of task, X2(1, 62) = 1.38,
p = .502), blocks,(X2(1, 62) = 0.25, p = .62, and condition
X2(1, 62) = 0.02, p = .85. There was no significant inter-
action between condition and blocks (X2(1, 62) = 0.01, p =
.92, or between tasks and blocks (X2(1, 62) = 1.22, p = .55
or between task and condition (X2(1, 62) = 0.73, p = .69 or a
three-way interaction, X2(1, 62) = 0.25, p = .88.

A planned post-hoc analysis on the interaction between
outcome and condition (as pre-registered) further confirmed
that there was no difference in the outcome accuracy of T3
in the Type II condition compared to the control condition,
z = 0.21, p = .84, Mdiff = 0.35, CI95 = [-0.61,0.76]. Thus,
the test phase mainly replicates the previous results from the
training phase.

Testing Accuracy: Novel Items Finally, to see whether
there nonetheless was some generalization of the Type II reg-
ularity on novel objects, we tested whether the participants’
predictions were consistent with Type II. This would be
indicated by higher-than-chance rule-consistent responding
(above 50%) for these stimuli (recall, T1 and T2 were known

Figure 4: Test phase mean accuracy (old objects). Accuracy
(y-axes) over testing blocks (x-axes; 4 trials each block) for
T1 categorizations (left), T2 (middle) and T3 (left). Error bars
indicate 95% CIs of individual means.

via feedback, but feedback in task 3 was withheld). Consis-
tent predictions are T3 choices that follow the same pattern
as for old objects based on the observed outcomes of task 1
and 2. Figure 5 (right panel) depicts the average consistency
score over the test blocks for the Type II condition, as done
for our previous study on Type I (https://osf.io/gd9v4/). Since
there is no regularity in the control condition, we tested the
hypothesis focusing on Type II, using a one-sample Bayesian
t-test against 50% (guessing). We found conclusive evidence
against the hypothesis that participants generalized the Type
II regularity, BF10 = 0.21. Thus, the generalization result is
consistent with the results from the training phase. We there-
fore conclude, that embedding a Type II category structure in
a sequence of decisions, unlike in visual category learning,
does not facilitate learning compared to Type VI (control),
further discussed below.

Figure 5: Testing phase (new targets). Accuracy (y-axes)
over testing blocks (x-axes; 4 trials each block) for T1 cat-
egorizations (left-panel) and T2 (middle-panel). The right
panel shows the propotion of rule-consistent categorizations
(y-axes) over training blocks (x-axes; 4 trials each block) for
T3 categorizations against chance level (50% accuracy). Er-
ror bars indicate 95% CIs of individual means.
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Discussion
Our goal was to investigate whether humans can learn an
XOR regularity, as traditionally observed in visual category
learning, when embedded in three sequential categorization
tasks in terms of an inter-category relation, and whether they
generalize this regularity to novel stimuli. The results suggest
that participants neither acquired nor generalized the sequen-
tial XOR structure. Indeed, the participants’ performance was
basically the same as in the control condition without inter-
category regularity, in which each stimulus-category associa-
tion had to be memorized. These results are inconsistent with
visual category learning, where people perform better in tasks
with an XOR structure than in Type IV tasks (e.g., Shepard
et al., 1961; Nosofsky, Gluck, et al., 1994; Lewandowsky,
2011), and highlights a corresponding boundary condition.
Below, we discuss some potential reasons and further impli-
cations.

First, our previous study showed that participants could ac-
quire a Type I regularity in a sequence of decisions in a nearly
identical procedure. Thus, the current lack of a benefit on
learning and generalization is not solely due to the inability
to pick up on temporal category regularities. The complete
lack of a benefit seems also a little surprising in light of gram-
mar learning studies showing that participants can learn more
complex regularities at least to some degree (Gomez, 2002;
Romberg & Saffran, 2013; Deocampo et al., 2019; Newport
et al., 2004b). What differentiates the current Type II problem
from such grammar learning studies is that those typically en-
tail the mere observation of sequentially presented elements
(e.g., sounds) in rapid succession (e.g., incidental learning),
while our task included active decision-making with each
decision taking some time. In other words, in each of the
three tasks, participants had to integrate information to form
a category prediction, which would recruit processes of cate-
gory inference, while requiring to keep relevant information
in short-term memory.

In a similar vein, previous studies on visual category learn-
ing suggest that not only the stimulus material can affect dis-
covering XOR rules (Love & Markman, 2003), but also task
instructions regarding whether or not to search for rules at
the outset (Kurtz et al., 2012). Thus, a corresponding follow-
up question could be under which circumstances participants
also could learn a sequential XOR rule. It seems plausi-
ble, that instructions highlighting the existence of the inter-
category regularities might boost learning and generalization
performance. However, even if participants knew about the
existence of a rule, noticing complex inter-category regulari-
ties like XOR necessitates good memory of both outcomes of
tasks 1 and 2 while predicting the outcome of task 3. Thus,
in contrast to grammar learning making decisions could inter-
fere with maintaining this information nonetheless. It seems
worthwhile investigating whether working memory capacity
predicts rule discovery, while making the acquisition of the
inter-category regularity intentional vs. incidental, highlight-
ing the potential of extending such classic category learning

designs to the temporal domain.
In particular, it seems fruitful to study problems such the

sequential XOR tasks in relation to measures of complex
working memory span (e.g., remembering stimuli, while per-
forming other mental operations; see Redick & Lindsey,
2013). As other researchers highlighted, working memory
is an inherent component of category learning (e.g., updat-
ing and maintaining of information), however, remains still
an understudied topic (e.g., Lewandowsky, 2011). Thus, we
believe that despite the Null result, our study provides a first
step towards understanding the limitations of when and how
humans acquire inter-category relations, and provides an out-
look how these limitations could be overcome also in rela-
tion to individual differences in working memory. For in-
stance, learning about compound predictors could be influ-
enced by keeping more or less outcome information of pre-
vious tasks visually available (similar to set size in working
memory studies), and varying the amount of information that
needs to be maintained or integrated. Such studies could be-
tray the interactions of multiple cognitive processes, which
we seek to address in future studies.
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