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The Role of Analogy in a Theory of Problem-Solving
Beth Adelson, Mark Burstecin, Dedre Gentner, Kristinn Hammond, Keith Holyoak, Paul
Thagard

The processes that underlie the generation and use of analogics have consistently been of interest in the
study of cognition. The goal of this symposium is to look nt scveral computational theories of analogy and
to see in what ways each contributes to our understanding. We hope to attain this goal by looking at the
sufliciency of each one in the broader context of problem-solving and by asking the following questions:

1. In what way is a theory of analogy constrained by specifying its role in a theory of problem-solving?

2. To what extent are the theories presented below competing theories? ‘T'o what extent are they members
of the same class? Does each one speak to any issue that the others do not address?

3. How is structure related to purpose and semantics?

4. How do purpose and semantics affect:

(a) Retreival
(b) Mapping
(c) Justification
(d) Debugging

(e) Generalization

Present an example reflecting your theory’s position.

The Structure-mapping Engine: A Cognitive Simulation of Analogy
Dedre Gentner, University of Illinois, Champagne-Urbana!

Computational modeling of analogy.

The Structure-mapping Engine (SME), written by Brian Falkenhainer and Ken Forbus, is a computer simn-
ulation of Gentner’s structure-mapping theory of analogy (Falkenhainer, Forbus, & Gentner, 1986, in press;
Gentner, 1980, 1983, 1988). Given predicate calculus representations of two potential analogs, it uses purely
structural principles — one-to-one correspondence, structural consistency, and systematicily — to interpret
and evaluate an analogy between two situations. It operates by first finding all possible relational identi-
tics between base and target; it then assigns each of these match hypotheses an evaluation, based on the
structural closeness of the match and on a kind of local systematicity by which a given pair of matching
predicates is assigned a higher evaluation if their parents also match. SME then sweeps these matching
pairs into the largest possible sets consistent with the structural constraints laid out above and computes an
overall evaluation. In addition, it hypothesizes candidate inferences: new facts about the target domain that
are derived by analogy with the base domain. Thus, SME sinmlates both the matching of existing predicates
in the two domains and the carryover of hypothesized predicates from one domain to the other.

There are some other points to note about the simulation:

1. SME's evaluation concerns only structural soundness. ‘T'he palidity of the inferences in the target and the
contextual relevance of the inferences must be evaluated by scparate processes (See Burstein, 1983; Collins
& Burstein, in press; Gentner, 1988).

2. To allow us to check our modeling assumptions individually, SME is constructed modularly. For example,
different kinds of structural evaluation rules can be tested, and (as discussed below) dilferent predicate-
matching rules can be utilized.

1 Researchera who contributed to this work include Ken Forbua, Brian Falkenhainer, Mary Jo Rattermann, Bob Schumacher,
and Janice Skorstad. This research is supported by the Office of Naval IReacarch, Contract No. N0O0014-85-K-0559.
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3. To my knowledge, SME has the greatest range of application of any existing analogy program. Over 40
analogies have been run successfully — that is, they have yiclded human-like interpretations and evaluations.
Further, SME is ellicient. It takes only seconds for most examples,

4. In addition to simulating analogy, SME can also be used to simulate other kinds of similarity: e.g., mere-
appearance matches, in which only low-order information such as object attributes are considered, and literal
similarily matches, in which both relational structure and object properties are considered. This enables us
to simulate different aspects of human similarity processing.

Psychological studies of access and inference.

Besides analogical mapping, there are other subprocesses in analogical reasoning. Given a current problem
(the target situation), the person must access a similar base situation, create a mapping from the base to the
target, draw new inferences on the basis of the mapping, and judge the soundness of the analogy and the
relevance and target validity of the candidate inferences. In our recent rescarch we examine the determinants
of these subprocesses, using SME to computationally model the results of psychological experiments.

In a series of studies, we gave people different kinds of similarity matches to discover (a) which kinds of
matches lead to reminding and (b) which kinds of matches are considered inferentially sound (Gentner &
Landers, 1985; Rattermann & Gentner, 1987). Subjects were given roughly 30 short stories to read and
remember. A week later, they returned and read a new sct of stories; they were to write down any of the
original stories that they were reminded of while reading the new stories. The new stories were designed
to match the original stories, cither as structural analogies or as superficial mere-appearance matches. 'T'he
results show a dissociation. In rating soundness, subjects rated on the basis of relational commonalities:
analogies were rated high and mere-appearance matches low. But their natural remindings showed the
opposite pattern: superficial matches were far more likely to be retrieved than relational matches (Ilolyoak
& Koh, 1987; Ross, B. 1., 1984). Thus the matches that came most readily to memory were not the matches
subjects found inferentially sound.

We have compared the performance of SME with that of our subjects for a subset of the stories (Skorstad,
Falkenhainer & Gentner, 1987). We find that the results of the soundness task are best fit by running SME in
analogy mode, while the results of the access task are best fit by running SME as a mere-appearance matcher.
These results suggest that surface similarity is important in determining access to similarity matches, while
relational similarity is important in judging the soundness of a match.

Analogical Problem Solving: A Constraint Satisfaction Approach
Paul Thagard, Cognitive Science Laboratory, Princeton University
Keith Holyoak, Psychology Department, UCLA?

We are developing a general cognitive architecture for problem solving and learning in which analogical
problem solving will have an important role. We are aiming for a system that will incorporate all the
standard components of analogical problem solving in which a source problem is used to help solve a target
problem: (1) the retrieval of a potentially useful source, (2) mapping of the target to the source, (3) transfer
of the solution of the source to provide a solution to the target, and (4) learning that will facilitate later
problem solving, for example by forming schemas that abstract from the source and target.

Our first implementation of analogical problem solving in the PI? systen was found to put insufficient
constraints on the mapping and retrieval processes (lolland, Holyoak, Nisbett, & Thagard, 1986; Holyoak &
Thagard, 1986). Accordingly, we have been developing new theories of mapping and retrieval that specify a
collection of principled constraints on when an analog will be retrieved and on how components of two analogs
will be mapped to each other. Mapping and retrieval both involve structural, semantic, and pragmatic
(purpose-directed (Burstein & Adelson, 1987, 1988)) constraints, although the constraints vary in importance
to the two processes, with semantics being more important for retrieval than for mapping.

2This research is supported by Contract MDA903-86-K-0297 from the Army Research Institute.
3Processes of Induction
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In mapping, the central constraint is structural correspondence between the two analogs, a relation whose
importance has been emphasized by Dedre Gentner. We maintain, however, that sernantic correspondences
relating predicates with similar meanings are also important. Moreover, pragmatic factors involving the
purpose of the analogy can also play a role in mapping. For example, if the purpose of the analogy is to
convince someone of a conclusion, then mappings that support this conclusion will be encouraged.

Connectionist models provide a graceful means for simultaneously satisfying multiple constraints. Accord-
ingly, we have implemented our theory of mapping in a program called ACME?" that takes two analogs as
inputs and constructs a network of hypotheses concerning what components of the two analogs to map to
each other. ACME has now been applied to more than 20 commplex analogies drawn from several domains,
including radiation problems of the sort investigated experimentally by lolyoak.

Complementary to ACME, we are now developing ARCS ®, a constraint satisfaction model of refrieval that
uses semantic, structural and pragmatic constraints to help find relevant analogs stored in memory (llolyoak
& Thagard, 1987). In contrast to ACME, semantic constraints take precedence in ARCS, with the retrieval
of analogs initiated through associations of semantically similar concepts. However, the retrieval process is
also guided by structural correspondences and pragmatic import. ARCS is also a connectionist program and
is being tested on a large data base.

Eventually, we plan to integrate ARCS and ACME with our rule-based problem solver Pl, producing an
architecture capable of both analogical and non-analogical problem solving.

Purpose Guided Analogical Learning and Reasoning
Beth Adelson Tufts University, Cambridge, MA®

The goal of this research program, conducted jointly with Mark Burstein, is the development of a theory of
purpose-guided analogical learning and reasoning. Our current work focusses explicitly on the role of partial
models in the generation of analogical mappings, and suggests that the process of integrating these multiple
analogies which form partial explanations can be described using a set of general principles for relating
partial mental models of different types (Burstein & Adelson, 1987).

Our approach of specilying mapping using a principled set of partial models is based on the fact that one
typically knows a large amount about a familiar domain and what is mapped from the familiar domain to
the domain being learned, is constrained by the purpose of the analogy(Burstein & Adelson, 1988; Holyoak
& Thagard, 1986). Additionally, although behavior, mechanism, or physical and functional topology may be
focussed on during initial learning, full understanding of a complex domain requires the integration of these
aspects. In what follows we present some of the issues generated by our theory.

Purpose guided debugging: The role of within domain analogy

Because analogies, by definition, do not provide perfect models of a target domain, a newly mapped model
will need to be debugged; structure will need to be refined, added or dropped. llere as in other aspects of
analogical learning, purpose can help to constrain the process.

For example, in one of our protocol experiments a student was taught about the concept of stacks by analogy
to a stack of plates in a cafeteria. The student was then asked to write the Pascal procedure for pushing
elements onto the stack. Using the plate analogy, the student was able to draw correctly a box and arrow
representation of the steps involved in push. However, the student was not able to then write the first line
of code in which the new element is placed on the stack by pointing the new element’s next-pointer to the
element that previously was the first element. What needs to be done here is to assign to the new element’s
next-pointer variable the value contained in the head-pointer variable (NEW:NEXT := HEAD). When the
student was reminded that pointer variables were analogous to other types of Pascal variables he was able to
write the code. That is, he used this within domain analogy to refine his representation of pointer variables.

# Analogical Constraint Mapping Engine
5 Analogical Retrieval by Constraint Satisfaction
®This research is supported by the National Science Foundations Enginecring Design and knowledge and Data Base Programs
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They then took on the properties of other types of Pascal varinbles; they contained values of a specified type
and these values could be copied using the assignment operator.

As this example illustrates, when the learner’s task is to describe how a system will be realized in the target
domain, base domain analogies will most likely be insufllicient. llowever, within domain analogies may the
type of analogies that are appropriate both for this purpose.

Integrating behavioral, causal and topological models

Our theory also addresses the nature of the relationship between behavioral, causal and topological models,
how this information is used and why it is important in any problem-solving in which an old solution will
be transformed to solve a new, similar problem.

Frequently problem solving will involve understanding the behavior of a system in terms of the relationship
between input and output or start and goal states. This description of the system’s goal that is contained in a
behavioral model provides an explanation of the systemn’s purpose. By comparison, a causal model represents
a system as a connected set of components with causal effects and constraints. The causal model consists
of a description of how the outputs of components cause state changes in other, topologically connected
components. As a result, a causal description provides an account of what happens across the system in
otder to get from a start to a goal state. A topelogical model is needed to describe the physical realization
of a system’s mechanism and behavior. A topological model does this by describing both the functionality
of the system's components and the interconnections among them.

In our theory, the three models are related in the following way. T'he behavior model describes the purpose
for which the system is used. The causal model is related to the behavioral model in that it describes what is
done to acheive the purpose stated in the behavioral model. The topological model explains how the causal
model is realized.

The need for the three models and for rules describing their relationship is illustrated by the same student
learning about the concept of a queue by analogy to the concept of a stack. The student was told that a
queue is like a stack except that it is used when First In First Qut behavior is desired. The student was
then asked to write the Pascal procedures for pushing and popping stack elements.

The student knew that the Last In First Out behavior of a stack was obtained through a mechanism in
which the next element to be popped was the one that was most recently pushed. Using the difference in
the behavior of the two concepts he mapped a transformed causal model of a queue, in which FIFO behavior
would be obtained by popping the least recently pushed element. On the basis of the newly mapped causal
model the student was then able to map a transformed fopological model of a queue. In this model, pushing
and popping occur at the same, rather than opposite, ends. Also, as a result of understanding the way in
which causal and topological models are related, the student was able to state that the topological model for
a queue, as opposed to a stack, contains two pointers rather than one, in order to indicate separately where
the next push and pop occur.

Here, and generally in situations in which existing mechanisms are used as analogies in order to implement
some new desired functionality, a description of the relationship between the behavioral, the causal and the
topological representation enters strongly into successful problem-solving.

Analogical Explanations Combining Inconsistent Mentnal Models
Mark Burstein BBN Laboratories, Cambridge, MA”

Analogies are used during problem solving for a number of purposes. They can be used to suggest'plans
of action, organizations for components in a synthesis or design problem, predictions of effects of partially
understood systems, and explanations of observed behaviors. All of these uses of analogy share some common
underlying cognitive mechanisms, but emphasize and exploit semantically different relational structures, We
reported a preliminary categorization of some of these types of relational structure in (Burstein & Adelson,

"This research was supported in part by the Army Research Institute.
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1987).

As described in the preceding section, we are developing a theory of analogical reasoning and learning that
differentiates these different uses of analogies. One important aspect of our theory is that analogies can
compare and relate systems at several levels of description. Well understood domains or systens, i.e., those
whose behavior, mechanism, and applications are all understood, may serve as source analogs at several
different levels of abstraction, and for several of these diflerent purposes.

One recent computer model that demonstrates some of these uses of analogy is Falkenhainer’s PIIINEAS
system (Falkenhainer, 1987). PIIINEAS is an ambitious systemn that coordinates some large programs for
qualitative reasoning and planning, in conjunction with his Structure Mapping Engine (SME) (Falkenhainer,
Forbus & Gentner, 1986). Falkenhainer’s system first (1) builds a qualitative causal model of heat flow by
analogy to liquid [low to ezplain an observation of heat flow behavior. The system then seeks to (2) verify
Jurther predictions from its new model, as a means of testing its reliability and generality. This step also
involves (3) planning ezperiments to bring about other situations predictable from the same qualitative
model.

One of the reasons the behavior of PIIINEAS differs from the model we are developing is that PIIINEAS
does not use analogical reasoning from its source domain knowledge in steps 2 and 3. That is, its predictions
of related target domain behaviors and it's plans for actions to bring about those behaviors are generated
using only the newly constructed target domain qualitative model. PHINEAS does not have access to stored
plans suggesting uses of water flow for different purposes, nor does it use alternate envisionments of water
flow situations to generate additional heat flow predictions. Its resulting model of heat flow is embeded in a
specific setting based on the initially presented situation. We would argue that creation of a full test of the
generality of the newly derived heat flow principle, and the analogy to fluid flow, would involve ertending
the analogy to relate a number of ” parallel” water and heat flow situations (Burstein, 1988).

The point of this example is that successful, strategic use of analogies in learning and problem solving is often
based on several levels of correspondence between domains. PHINEAS and other systems have successfully
shown how the discovery of corresponding behaviors can lead to the induction of a corresponding qualitative
causal structure, but many analogies can be used to relate other levels of description as well. We are
developing a computer model where several levels of description can be successively mapped from a single
analogy, based on an initial, successful mapping at the behavioral or some other level. This requires richer
source domain representations with multiple related examples and mechanisms which allow semantically
different kinds of structural relations to be preferred for mapping at different times.

Another reason for investigating this form of purpose-constrained analogical mapping is that human mental
models of domains are are seldom complete, nor totally internally consistent (Collins & Gentner, 1987;
Spiro et al., 1988; Burstein, 1985). We often use a sef of related examples with associated explanatory
models to keep from generating erroneous predictions and explanations. Similarly, explanations of different
behaviors within a single domain may be generated from different analogical models, or combinations of
models. Inconsistencies in these explanations can only be detected during problem solving episodes that fully
exercise the interrelations between models. We will present examples of subjects developing and relating
models derived from different analogies, and show how detected inconsistencies can be understood in terms
of attempts to relate mental models at diflerent levels of abstraction during problem solving.

Analogical Reasoning as a By-Product of Problem-Solving.
Kristian J. Hammond, University of Chicago®

We don’t work on analogy. We do work on problem solving. As it turns out, we have a program and
an approach that results in “analogical” behavior. Simply stated, the program (POLYA) seeks cases in
memory to use as exemplars and often finds cases that an obscrver would see as analogical. POLYA itself,

8This work was done with Thomas McDougal at the University of Chicago Al Lab.
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however, does not distinguish between true analogy and similarity. POLYA simply uses mapping information
associated with the shared predicates to transfer the solution or partial solution of the recalled problem to
the new situation without distinguishing between types of similarity.

POLYA is a problem-solver in the domain of geometry theorem proving. In particular, it is a case-based
problem-solver that constructs new proofs out of existing solutions (or generalizations of solutions) that
it finds in memory. The aim of the POLYA project is the development of techniques for automatically
constructing vocabularies of feature combination and interaction that are eflective in describing problem
situations and thus organizing solutions in memory.

The POLYA project is predicated on the notion that for every domain, there exists a vocabulary of feature
combination and interaction that best describes the problems within it. The two features that are most
important to this vocabulary are the near independence of the predicates and a close association between
problem descriptions and solution sets. The near independence of predicates enables use in indexing. The
association between problem description and solution set determines utility.

This vocabulary is generated out of the constraints of existing problem/solution pairs and is tested through
its use in indexing cases in memory. Those statements used in a proof that, by necessity, share arguments
are compounded into a single predicate. A special purpose mechanisim is then constructed to recognize this
predicate and the predicate is added to the list of features used to index the solution in memory. As new
problems are presented, they are understood in terms of the new predicates created by the system and these
descriptions are used to search for existing solutions. Rather than confront the general problem of indexing
off of arbitrary conjuncts of predicate calculus statements (potentially exponential), only certain conjuncts
are recognized and used.

While POLYA constructs these new predicates they do not diller formally from those it initially uses. While
a compound predicate such as SQUARE-WITHIN-CIRCLE or KITE-WITH-CROSS represents interactions
between parts, the low-level predicates such as LINE and CURVE do as well. Further, the techniques for
recognizing the later are of the same type as those for recognizing the former. Rather than look for analogies,
POLYA simply looks for useful exemplars.

There are five steps to the POLYA architecture:

1. Proofs are used to generate compound predicates out of conjuncts of predicates implicated in the proof
that share variables.

2. New problems are analyzed in terms of these predicates.
3. The resulting predicate list is used to search for appropriate solutions.

4. Mapping information associated with each predicate is used to obtain the bindings between source and
target.

5. Any gaps in the proof are dealt with as a new problem description and POLYA recurs on the search
for a solution.

6. The resulting proof is used to generate a new set of candidate predicates.

The result of this is a system that makes use of cases that are both “similar” and “analogous” to its problem
situation without having to distinguish between the two. The behavior is analogical, but this is a natural
by-product of the case-based problem solving.
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