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Applications and confounds in drug discovery and repurposing
Tia A. Tummino

Abstract

The process of discovering a new drug is always evolving with the knowledge,
technologies, and needs of the time. This information should be used to guide your search
and to separate legitimate drug candidates from artifacts and suboptimal leads. In fact, it
has been said that a Drug Hunter's job is not to find the best molecule, but to find a reason
why every molecule is not the best molecule. The focus of this dissertation is firstly the
application of computational drug discovery and repurposing to identify new treatments
for diseases. Secondly, it is the mechanistic understanding of two artifacts common in
early-stage drug discovery and repurposing that if used appropriately, should remove

potential false-positive screening hits from being pursued as lead candidates.

Chapter 1 describes the large-scale docking technology developed in the lab and
how it can be used to discover new drugs for protein targets of interest to a particular
disease. It further describes the utility of drug repurposing and how it was used during the
COVID-19 pandemic to search for novel antivirals. Briefly, it introduces how ligands
discovered in drug repurposing screens were ultimately found to be acting through

mechanisms that confounded their antiviral activities.

Chapter 2 demonstrates how compounds that induce a phenomenon known as

drug-induced phospholipidosis are not legitimate antivirals, and that this effect is a
Xii



confound in cell-based antiviral repurposing screens. This shared mechanism underlies
the activity of many o1 and o2 ligands, among others, that were pursued as potential
antivirals early in the COVID-19 pandemic. Counter-screening for this activity will help
save time, money, and resources from being spent on drugs that have no legitimate

promise as antiviral drugs.

Chapter 3 identifies colloidal aggregation as another mechanism by which many
compounds show up as false-positive screening hits in biochemical drug repurposing
screens. Importantly, we demonstrate that by reducing the formation of colloids in
screening assays, we can remove false-positive enzymatic activity of multiple ligands that

otherwise appear to be inhibitors of viral proteins.

Chapter 4 demonstrates a legitimate use for o2 ligands as potential therapeutics,
importantly controlling for both phospholipidosis and aggregation as confounding factors
in their activity. We demonstrate with novel selective ligands that o2 receptor ligands are
antiallodynic in neuropathic pain models, and that their effects are time-dependent,

replicating similar phenotypes of other o2 ligands from the literature.

Chapter 5 applies the large-scale docking technique on the lipid-binding G-protein
coupled cannabinoid-1 (CB1) receptor. Here, we demonstrate the concept of “new
chemistry for new biology” by first identifying a novel CB1 agonist and then finding that it
has strongly analgesic properties but lacks two of the major cannabinoid side-effects:

sedation and catalepsy.

Xiii



Table of Contents

Chapter 1: Innovations and challenges in drug discovery and repurposing .......... 1
1.1 The Dream of DiSCOVENNG DrUgS .......cocuuiiiiiiiiiee e 2
1.2 Recent Innovations in Drug DISCOVEIY .........cooiiiiiiiiiieiiiiiiieeee e 3
1.3 Drug Repurposing as an Alternate Approach. ..........cccccoviiiiiiiiiiiiiiiiiiieieeenen.. 5
1.4 REFEIENCES ....coiieie e 7
GlosS t0 Chapter 2. 4

Chapter 2: Drug-induced phospholipidosis confounds drug repurposing

FOr SARS-COV-2.... oo s e e e n e nnnnnnas 4
2. ADSIFACT ... 7
2.2 INTFOAUCTION ... e e s e aeeeas 8
2.3 RESUILS ... 10
2.4 DISCUSSION ...ttt ettt e et e e e e e et e e e e e e et e e e e e e e e e nnnnnreeee s 16
2.5 ACKNOWIEAGEMENTS ... 20
2.8 FIQUIES ...ttt 23
2.7 TADIES. .. 53
2.8 Supplemental FileS.......cooiiiiiiee e 64
2.9 Materials and Methods ............cooiiiiiiiii e 65
210 REFEIENCES ...t 83

Gloss to Chapter 3. 92

Chapter 3: Colloidal aggregators in biochemical SARS-CoV-2 repurposing
£ o7 = =1 o L 93

R T AN 013 { = [ TP 95



R IV2 A [0 (oo [UTex 110 ] o HUUUUE TP 96

3.3 RESUIES e 98
3.4 DISCUSSION ...ttt ettt e e e e e e e e e e e e eeeaeeeas 102
3.5 ACKNOWIEAGEMENTS ... 106
3.6 FIQUIES ...t 107
BT TADIES. ... 119
3.8 Materials and Methods ..........ooooiiiiiiii e 124
BLO REFEIENCES ... 128
Gloss to Chapter 4.......... s 134

Chapter 4: Structures of the 02 receptor enable docking for bioactive

ligand diSCOVery.........iiiiiiiiii e ————— 136
4. ADSIFACE ... 138
4.2 INTFOAUCTION ...t e e e 139
4.3 RESUILS ..o 140
4.4 DISCUSSION ...ttt e ettt e et e e e e e e e e e e e e e e s e e e e e e e e e nnnee e 149
4.5 ACKNOWIEAGEMENTS ...t 153
4.6 FIQUIES ...ttt e e 155
A7 TADIES. ... et 172
4.8 Materials and Methods............cooiiiiiiiiii e 175
4.9 REFEIENCES ..ottt e 194

Gloss to Chapter 5. 204

Chapter 5: Structure-based discovery of cannabinoid-1 receptor agonists
with reduced side effects...........cccoui——— 205

LT I AN 013 { = [ TR 208

XV



LIV [ 21 (e Yo [UTox 1 o] o NPT 209

5.3 RESUIES .. 210
5.4 DISCUSSION .....cteieeeee e ettt e et e e e e et e e e e e e e e e e eeeas 223
5.5 ACKNOWIEAGEMENTS ... 228
5.6 FIQUIES ...ttt 230
B.7 TADIES. ... e 252
5.8 Materials and Methods .........cccooiiiiiiiii e 269
5.9 REfEIENCES ... 295
Chapter 6: Conclusions and Future Perspectives............ccoommmmmmmmmmmmeesnnnscccinnnnn, 306
6.1 Conclusions and Future Perspectives. ..........ccuuvvveeeiiiiiiiiiiiee e 307
B.2 AQVICE. ...ttt ettt e e e e anee e anaeaan 308
6.3 REfEIrENCES ... e 310

XVi



List of Figures

Figure 2.1. Representative examples of cationic amphiphilic drugs that are

identified in SARS-CoV-2 drug repurposing SCreens........................

Figure 2.2. Cellular phospholipidosis may confound antiviral screening

LS UL S, et

Figure 2.3. Quantitative relationship between phospholipidosis and viral

AMOUNE S . e e e s

Figure 2.4. Phospholipidosis and spike protein measurements in the same

CellUIar CONTEXL. ...

Figure 2.5. Phospholipidosis-inducing drugs are not efficacious in vivo. ...............

Figure 2.51. Correlation analyses for sigma receptor affinity and antiviral

ACHIVITY . e

Figure 2.52. Dose response curves for a set of cationic amphiphilic drugs in

an RT-gPCR viral infectivity @ssay..........cccuvveiiiiiiiiiiiis

Figure 2.S3. Dose response curves for a set of cationic amphiphilic drugs

(CADs) in an anti-NP immunofluorescence viral infectivity

Figure 2.54. Example cationic amphiphilic drugs identified from SARS-CoV-

2 drug repurposing literature predicted to induce

PhOSPhOlIPIAOSIS. ..o e

Figure 2.S5. Dose response curves for drugs measured in the

phospholipidosis and cell viability assays and plate images at

........ 24

........ 27

........ 28

........ 29

........ 30

........ 39

XVii



top tested concentrations. ..o 42
Figure 2.56. Dose response curves for cationic amphiphilic drugs in the RT-

gPCR viral infectivity assay that were measured for NBD-PE

=Yoo £ =To T= 11 (o] o AP PPPPPPRPPPPPPRR 44
Figure 2.S57. PB28 analog StruCtures. ..o 45
Figure 2.S8. PB28 analog antiviral and sigma binding data.................ocoooiiiiiiiiiiinnee. 47

Figure 2.S9. Quantification of phospholipidosis and spike protein in the same

Figure 2.510. Many drugs with activity against SARS-CoV-2 are CADs that

induce phoSPhOlIPIdOSIS. ......uuuueeiiiiiee e 49
Figure 2.511. Additional endpoints for 15-day dosing experiment..................ccccvvveeneee. 51
Figure 3.1. Lercanidipine’s behavior as an aggregator. ...........ccccccoiiiiiiiniiiiiiiiiieee, 107

Figure 3.2. MDH inhibition concentration-response curves for literature active

(o0 0] 0] 8 T - 7SRRI 109
Figure 3.3. Critical aggregation concentrations for literature active

(o] 0] 0 0] 8 T - 7S UPPUPRRPRR 111
Figure 3.4. MDH inhibition dose-response curves for drugs drawn from a

repurposing liDrary. ... 112

Figure 3.5. Critical aggregation concentrations for drugs drawn from a

repurposing liDrary. ... 113
Figure 3.51. DLS autocorrelation curves for literature reported hits. ...............cccuvveeeee. 114
Figure 3.52. MDH activity is restored when colloidal solution is centrifuged. .............. 115

Figure 3.S3. Concentration response curves for literature compounds with

XViii



3CL-Pro in the presence of detergent. ...........ccccueiiiiiiiiiiiiie 117

Figure 3.S4. DLS autocorrelation curves for drugs drawn from the

repurposing liDrary. ... 118
Figure 4.1. Structure of the o2 receptor and binding site ligand recognition................. 155
Figure 4.2. Docking 490 million molecules against the g2 receptor...............ccccvvvnneeee. 156

Figure 4.3. High structural fidelity between docked and crystallographic

poses of novel o2 receptor lIgands. ... 157
Figure 4.4. 01,2 ligands are anti-allodynic in a model of neuropathic pain..................... 158
E.D. Figure 4.1. Characterization of 02 reCeptor. ............ccccviiiiiiiiiiie e 161
E.D. Figure 4.2. Comparisons of the distribution of docking scores................cccuvvveeeee. 162

E.D. Figure 4.3. Analogs of o2 receptor ligands and the effect of a structural

WaLEr MOIECUIE. ... 165
E.D. Figure 4.4. Effect of systemic o receptor ligands on motor behavior. .................. 166
E.D. Figure 4.5. Off-target profiling of 24446724338, 21665845742, and

ZABETAB58944 ...ttt e 169
E.D. Figure 4.6. Paw withdrawal thresholds. ... 170
Figure 5.1. Large-scale docking of a 74-million molecule library against the

0 | OSSR 231

Figure 5.2. Structure-activity relationships and optimization of ‘51486 to

BOB2. ..t e e e e e nn e e e e aneeas 232
Figure 5.3. Cryo-EM structure of “1350-CB1R-Gi1 complex. .........ccooviiiiiiiiiiiiiiiiinnee. 233
Figure 5.4. Functional activity of ‘4042 and its active enantiomer “1350. ..................... 234
Figure 5.5. In vivo analgesic profile of ‘4042, ... 236

XiX



Figure 5.6. In vivo side-effect and cotreatment profile of ‘4042...............cccoeiiirne 237

Figure 5.S1. Hydrophobicity calculations for the hCB1R orthosteric pocket

based on PDB: SXRS8.......oo i 239
Figure 5.52. Functional measurements for a subset of screening hits. ....................... 240
Figure 5.S3. hCB1 binding and functional data for analogs. ............ccccoeviiiiiiiiiiiininnee. 241

Figure 5.S4. Additional pharmacological characterization of ‘4042 and its

ENANTIOIMETS. ...ttt e e e e e e e e e e e e e e e e e e e e e 242
Figure 5.S5. Cryo-EM sample preparation and data processing. ...........cccoevveereeinnnnnes 244
Figure 5.56. hCB1/2 functional data for select analogs in the bioSens-All®

0] F= 11 o T 245

Figure 5.S7. hCB1 functional data for select analogs in the bioSens-All®

0] F= 11 o o 1 246
Figure 5.S8. CB2 binding and functional data for select analogs...............cccccvviiinnnee. 247
Figure 5.59. Off-target profiling of ‘“4042. ... 248
Figure 5.510. Pharmacokinetic profiles of ‘4042 compared to CP-55.940................... 249
Figure 5.511. Additional analgesic and side-effect profiles of ‘4042.................ccuvee. 250

XX



List of Tables

Table 2.S51. Cationic amphiphilic drugs found active against other viruses in

the TIHErature. ... 53
Table 2.52. Measured pharmacokinetic parameters for Amiodarone. ........................... 61
Table 2.S3. Measured pharmacokinetic parameters for Sertraline. ...................cooooe. 61
Table 2.54. Measured pharmacokinetic parameters for Tamoxifen............................... 62
Table 2.S5. Measured pharmacokinetic parameters for PB28.............ccccceeiiiiiiinnn. 62
Table 2.56. Measured pharmacokinetic parameters for Elacridar. ............cccccooeeeeeiee. 63

Table 2.S7. Estimates of expenditures of COVID-19 cationic amphiphilic drug

ClINICAI TrIAIS. ...t 63
Table 3.1. Literature SARS-CoV-2 repurposing hits shown to cause colloidal

r=To [0 £=To T= 11 (o] o AP PPPPPPPRPRPPPPP 119
Table 3.2. Literature repurposing hits do not potently inhibit 3CL-Pro in the

presence of detergent. ... 122
Table 3.3. Six drugs from a repurposing library aggregate at screening-

relevant concentrations. ...........ooooiiiiiiiiii e 123
E.D. Table 4.1. Data collection and refinement statistics. ............ccccceiiiiiiiiiiiiiiiinnee. 172
E.D. Table 4.2. Fourteen of the highest-affinity direct docking hits for the o2

(=17 =T o] (o] RPN 173
E.D. Table 4.3. Measured pharmacokinetic parameters for PB28,

71665845742, 74446724338 and 24857158944 in male CD-1

mice by 10 mg/kg subcutaneous administration.................cccccciiiiinnnnne. 174
XXi



Table 5.51. Binding affinities for hits identified in initial CB1 docking screen. ............. 252

Table 5.S2. Binding affinities and functional activities for active analogs at

Table 5.S3. Cryo-EM data collection, model refinement, and validation

SEALISTICS. ..ttt 260
Table 5.S4. Functional activities for select analogs versus a variety of

transducers and hCB1 in the bioSens-All® platform. .............ccccccoe....... 261
Table 5.S5. Detailed functional activities for select analogs and controls

versus a variety of transducers and hCB1 in the bioSens-All®

0] F= 11 o o 1 263
Table 5.S6. Relative efficacy calculations for ‘4042 and ‘1350 versus CP-

55,940, ...t et e et e ne e e are e e anneeenneee s 264
Table 5.S7. Binding affinities and functional activities for select active

ANAIOGS At CB2. ... 265
Table 5.S8. Functional activities for select analogs and controls versus a

variety of transducers and hCB2 in the bioSensAll platform................... 267
Table 5.S9. Fraction unbound levels of CP-55,940 and ‘4042 in mouse brain

B S U e 268

XXii
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Innovations and challenges in drug discovery and repurposing

Tia A. Tummino'2

Department of Pharmaceutical Chemistry, University of California San Francisco
(UCSF), San Francisco, CA, USA.

2Graduate Program in Pharmaceutical Sciences and Pharmacogenomics, UCSF, San
Francisco, CA, USA.

1.1 The Dream of Discovering Drugs

When | entered graduate school, | knew that | wanted to learn how to discover drugs.
In particular, | wanted my work to help people who suffered from diseases of the nervous
system— like depression, anxiety, PTSD, neurodegeneration, pain, or addiction. Coming
from a Neuroscience background, | was mostly familiar with traditional phenotypic drug
discovery approaches: you have an animal— probably a rat or a mouse, or in some cases
humans experimenting on themselves— you treat it with a compound and see how it
changes the behavior or some other readout of activity. Then, you can go back and figure
out how the compound works, oftentimes uncovering a new aspect of biology,
neurocircuitry, or cellular signaling at the same time." When | entered graduate school, |
became much more familiar with more target-based drug discovery approaches, which
start with a protein target that is important in disease and you screen libraries of molecules
in vitro against it to find your “magic bullet”?3. Regardless of which approach? | took, | was
sure that if | found the right set of tools, | could push this field forward during my time in

graduate school.

What | was blissfully unaware of was, firstly, how difficult it is to do good drug

2



discovery, especially as a student at an academic institution. Secondly, | had yet to
develop an appreciation for computational drug discovery- taking the physical animals
and cells out of the equation, instead using a combination of experimental and predicted
atomistic models of proteins and ligands to guide our search of chemical space. These
themes shaped my ideas and work throughout my PhD and will be present throughout

the following chapters of this dissertation.

1.2 Recent Innovations in Drug Discovery

| joined the Shoichet lab during a magical time, as multiple innovations had recently
transformed the field of computational drug discovery. Firstly, and particularly for G-
protein coupled receptors (GPCRs) which are the target of many CNS drugs, the
structural biology revolution made getting high-quality atomic-level information about
GPCRs increasingly possible.>® This work was granted the 2012 Nobel Prize in
Chemistry”8, and by the time | entered the field in 2018, an embarrassment of riches
surrounded me. It seemed that every day there was a new important protein structure
solved— and once the protein structure was solved— we could use this information to
find new drugs.® By the time | graduated, this information became even easier to access
without even solving experimental structures due to the advent of AlphaFold Al software
which was able to predict the folds of proteins where structures had not yet been, or

weren't yet able, to be resolved.°

Importantly, how this information can be used to find new drugs became an area

of interest for me and is what led me to the Shoichet lab. Dr. Brian Shoichet, and many



that came before him including Dr. Tack Kuntz, spent their careers developing physics-
based search algorithms'! (termed “docking”'?'3, from here on out) to computationally
approximate the free energy of a ligand binding in a protein cavity binding site without
testing every ligand experimentally.'4-'® What set this method (DOCK3.7/3.8) apart from
other docking programs (DOCKG6, AutoDock, Glide, etc.) is a careful balance of physics-
based accuracy with computational speed of the calculations, making it possible to know

if a ligand might bind or not in one second or less.

At the time | joined the lab, docking was well-established, though new
developments to make the algorithm faster and more physically accurate were always
being tested.!” The major innovation at the time, however, was the development and
application of large-scale make-on-demand chemical libraries for virtual screening.'® The
basis for this approach is that chemical space is vast, exceeding numbers of stars in the
universe'®, yet most of these molecules have not yet been synthesized and therefore are
not included in chemical libraries. Further, molecules that do exist in chemical libraries
are often structurally similar to known biogenic molecules, creating a feedback loop of the
types of “new” drugs able to be found.?%?! So, in collaboration with Enamine, a chemical
company based in Ukraine, the lab combined their make-on-demand chemical libraries
with our virtual screening tools. This work consisted of virtually enumerating hundreds of
millions to billions of molecules that could theoretically be made using existing chemical
building blocks and simple chemical reactions for direct use in large-scale docking

campaigns.'®2?



The beauty of the technique is that by docking more molecules that are dissimilar
to existing known molecules, we can find novel chemotypes that act upon our favorite
protein targets in different ways, uncovering novel biological outcomes at the level of the
protein, resulting signaling pathways, and sometimes even at the level of behavioral
profiles.?® Previous work in the lab on multiple important drug targets, including the mu
opioid receptor?*, the alpha 2A adrenergic receptor?®, and the serotonin transporter?®
exemplify such findings. A similar approach, here looking at the 02 and cannabinoid-1

receptors became the focus of my work in Chapters 4 & 5.

1.3 Drug Repurposing as an Alternate Approach.

In addition to de novo drug discovery, part of my work focused on drug
repurposing. Drug repurposing is an approach where you use an existing drug that has
already passed FDA scrutiny to treat a disease it wasn’t developed to treat?’. Typically,
drug repurposing is used when you don’t know much about the underlying biology of a
disease, or if there is an urgent need to find a treatment as quickly as possible. This
approach became particularly appealing during the COVID-19 pandemic?® which struck
the world in my third year of graduate school. Using maps of human-SARS-CoV-2 protein-
protein interactions, our goal was to try and computationally identify FDA-approved drugs
that could disrupt interactions between human host proteins that were being hijacked by
SARS-CoV-2 during viral infection. Surprisingly, our work identified many drugs that
target the o4 and o2 receptors— proteins typically thought of as being involved in CNS
processes and the target of many “dirty” drugs— as being potentially repurposable as

antivirals.?®3% However, the mechanism of how these proteins were involved in SARS-



CoV-2 infection was unclear, and the drugs we identified had no structure-activity
relationship to support their antiviral effects coming from engagement of these targets.
Work understanding how these, and other, drugs were ultimately confounding drug

repurposing projects led to Chapters 2 & 3 of this dissertation.
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Gloss to Chapter 2

If you were to have asked me at the start of grad school if part of my work would
focus on antiviral drug repurposing to try and save us from a worldwide pandemic, | would
have looked at you like you had two heads. However, when Brian asked for volunteers to
help find repurposing candidates that might help us deal with COVID-19, | jumped at the
opportunity to adjust my focus to meet the need of the time. What came out of that initial
project, however, was very intriguing. Why are antidepressants, antipsychotics,
antihistamines, and antimalarials showing antiviral activity? Why would both o4 and o>,
which have little structural similarity and are not genetically related, be involved? How can
we separate the activity of each receptor from one another when so little is known about
their biological functions and so many of their ligands bind both receptors? The further
we dug into these questions, the more confused we got. Finally, after testing nearly 100
ligands, some of which we ourselves had discovered, and no structure-activity

relationship emerged, we knew we were in trouble.

Rather than throwing the data in the garbage, we decided to try and understand
why these ligands in particular were showing up as antiviral screening hits, which led us
to the phenomenon of drug-induced phospholipidosis. | will forever be grateful for the
lessons that | learned during this project, and especially for having to face that my initial
hypothesis was incorrect. This work has made me a much more skeptical scientist,

always hunting for ways my data may be misleading me or misrepresenting reality.
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2.1 Abstract

Repurposing drugs as treatments for COVID-19, the disease caused by severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has drawn much attention.
Beginning with sigma receptor ligands and expanding to other drugs from screening in
the field, we became concerned that phospholipidosis was a shared mechanism
underlying the antiviral activity of many repurposed drugs. For all of the 23 cationic
amphiphilic drugs we tested, including hydroxychloroquine, azithromycin, amiodarone,
and four others already in clinical trials, phospholipidosis was monotonically correlated
with antiviral efficacy. Conversely, drugs active against the same targets that did not
induce phospholipidosis were not antiviral. Phospholipidosis depends on the
physicochemical properties of drugs and does not reflect specific target-based activities—
rather, it may be considered a toxic confound in early drug discovery. Early detection of
phospholipidosis could eliminate these artifacts, enabling a focus on molecules with

therapeutic potential.



2.2 Introduction

The outbreak of COVID-19 has inspired multiple drug repurposing screens to find
antiviral therapeutics that can be rapidly brought to the clinic’. To date, over 1,974 drugs
and investigational drugs have reported to have in vitro activity against SARS-CoV-2'
(Fig. 2.1). Since almost all of these act against human targets, and might be unlikely to

be viable against a novel virus?, the question of mechanism of action arises.

Our interest in this question was motivated by the discovery that human sigma
receptors were candidate targets for modulating SARS-CoV-2 infection®, and that drugs
and reagents like chloroquine, haloperidol, clemastine, and PB28—all with nanomolar
affinity against one or both sigma receptors—had cellular antiviral ICso values in the 300
nM to 5 uM range. Subsequently, we investigated over 50 different molecules with a wide
range of affinities at these receptors. While this found molecules with relatively potent
antiviral activity, structure activity relationships (SAR) found little correlation between
receptor potency and antiviral efficacy in cells (Fig. 2.81-2.S3, Supplementary File 1).
Whereas drugs like amiodarone, sertraline, and tamoxifen had mid-to high-nM antiviral
ICs0s, other sigma-active compounds, such as melperone and DTG, were equipotent on
target without measurable antiviral activity. Intriguingly, the antiviral sigma drugs were all
cationic at physiological pH and relatively hydrophobic, while those that were inactive
against the virus were often smaller and more polar. This cationic-amphiphilic character
was shared by many of the hits emerging from other phenotypic screens (Fig. 2.1, 2.S4),
suggesting it was this physico-chemical property that might explain cellular antiviral

activity, instead of a specific on-target activity*.



If the cationic-amphiphilic nature of these molecules led to antiviral activity in vitro,
rather than their individual target-based activities, one would expect this physical property
to reflect a shared cellular mechanism. Indeed, cationic amphiphilic drugs (CADs) can
provoke phospholipidosis in cells and organs®. This side effect is characterized by the
formation of vesicle-like structures in susceptible cells and “foamy” or “whorled”
membranes®®, and is thought to arise by CAD disruption of lipid homeostasis. CADs
accumulate in intracellular compartments such as endosomes and lysosomes where they
can directly or indirectly inhibit lipid processing®. Modulation of these same lipid
processing pathways is critical for viral replication’, and inhibiting phospholipid production
has previously been associated with inhibition of coronavirus replication®. CADs have in
vitro activity against multiple viruses including Severe Acute Respiratory Syndrome,
Middle East Respiratory Syndrome, Ebola, Zika, Dengue, and filoviruses®, though CAD-
induction of phospholipidosis has only been proposed as an antiviral mechanism for
Marburg virus'®. Finally, among the drugs that are best-known to induce phospholipidosis
are amiodarone'’ and chloroquine'>'3, which are potent inhibitors of SARS-CoV-2
replication in vitro'-'6, while drugs from SARS-CoV-2 phenotypic screens, such as
chlorpromazine'” and tamoxifen'®, can also induce phospholipidosis'®. As an effect that
rarely occurs at concentrations lower than 100 nM, that does not appear to translate from
in vitro to in vivo antiviral activity and that can result in dose-limiting toxicity'®,

phospholipidosis may act as a confound to true antiviral drug discovery.

Here, we investigate the association between phospholipidosis and antiviral

activity against SARS-CoV-2 in cell culture. This apparently general mechanism may be



responsible for many of the drug repurposing hits for SARS-CoV-2, and an extraordinary
amount of effort and resources lavished on drug discovery against this disease. We
explore the prevalence of this confound in SARS-CoV-2 repurposing studies, how
phospholipidosis correlates with inhibition of viral infection, and how to eliminate such hits
rapidly so as to focus on drugs with genuine potential against COVID-19, and against

new pandemics yet to arise.

2.3 Results

Correlation of phospholipidosis and antiviral activity.

To investigate the role of phospholipidosis in antiviral activity in vitro, we tested
19 drugs for their induction of this effect in A549 cells using the well-established NBD-PE
staining assay?°. Here, the vesicular lipidic bodies characteristic of the effect may be
quantified by high content imaging (Fig. 2.2A). Three classes of drugs and reagents were
initially investigated: A. Sigma-binding antiviral CADs we had discovered, like
amiodarone, sertraline, chlorpromazine, and clemastine (nine total); these molecules are
predicted or known to induce phospholipidosis; B. Analogs of these CADs that no longer
bound sigma receptors, but were still antiviral (four total); these molecules are predicted
to induce phospholipidosis despite their lack of sigma binding; and C. Sigma-binding,
non-antiviral drugs, like melperone and DTG, that were much more polar than classic
CADs (two total); these molecules are predicted not to induce phospholipidosis. Of the
nine sigma-binding CADs that were antiviral (class A), six of which were also found in
phenotypic screens from the literature as inhibitors of COVID-19, eight induced

phospholipidosis, consistent with the hypothesis (Fig. 2.2A-B, 2.S5-2.S6). The only non-
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phospholipidosis inducing antiviral from this set was elacridar, a promiscuous P-
glycoprotein inhibitor; this investigational drug may therefore be active via another
mechanism. Intriguingly, analogs of the potent sigma ligand PB28 that had lost their
sigma-binding activity but remained CADs (ZZY-10-051 and ZZY-10-061, Fig. 2.2B-F,
2.S5-2.S8), did induce phospholipidosis, as did the antipsychotic olanzapine and the
antihistamine diphenhydramine, which are weak sigma receptor ligands but are
structurally related to potent sigma receptor tricyclics (e.g., chlorpromazine) and
diarylethanolamines (e.g., clemastine; class B). Finally, melperone and DTG, which are
potent cationic sigma receptor ligands but are not antiviral, did not induce
phospholipidosis (Fig. 2.2A-B, 2.S5-2.S6; class C). These results do not prove
phospholipidosis as the antiviral mechanism but are consistent with the phospholipidosis

hypothesis.

If phospholipidosis is responsible for antiviral activity, then molecules known to
induce phospholipidosis should also be antiviral. We tested three CADs for antiviral
activity, including ebastine, ellipticine, and Bix 01294, all of which are reported to induce
phospholipidosis?' (Bix 01294 and ebastine have also been reported as drug repurposing
hits against SARS-CoV-2??). We further tested azithromycin, also reported to induce
phospholipidosis??, but having different physical properties from typical CADs. We first
confirmed phospholipidosis-inducing activity for these molecules, though it is difficult to
separate cytotoxicity from phospholipidosis and antiviral activity for both ellipticine and
ebastine (Fig. 2.2B, 2.S5-2.S6). All four molecules were next shown to be antiviral, here

and elsewhere with live virus assays (e.g., SARS-CoV-2 strain
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BetaCoV/France/IDF0372/2020; Methods), with ICso values in the 400 nM to 3 uM range,
overlapping with the activities of other CADs we and others have identified for SARS-
CoV-2?? (Fig. 2.S6). This too was consistent with the antiviral phospholipidosis

hypothesis.

For phospholipidosis to explain antiviral activity, we might expect a correlation
between concentration-response curves for phospholipidosis and for antiviral activity. We
compared concentrations that induce phospholipidosis to those that inhibit SARS-CoV-2
for each drug individually. Typically, the correlations were high—not only did antiviral
activity occur in the same concentration ranges as phospholipidosis, but the statistically
significant R? values, ranging from 0.51 to 0.94, supported a quantitative relationship
between the two effects (Fig. 2.3A). We then fit a sigmoidal model through all the 107
phospholipidosis versus antiviral activity observations (comprised of six concentration
measurements each for 16 phospholipidosis-inducing drugs) and observed a strong
negative correlation (R? = 0.65, 95%CI [.52, 0.76]) between induced phospholipidosis and
SARS-CoV-2 viral load across all observations for all 16 drugs. Because phospholipidosis
and antiviral effects are both saturable, the sigmoidal curve-fit plateaus at the extremes

(Fig. 2.3B).

Concurrent measurement of viral infection and drug induced
phospholipidosis.
In the previous experiments, drug-induced phospholipidosis and drug antiviral

activity were measured separately. To measure the two effects in the same cells at the
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same time, we dosed cells with either 1 or 10 uM of five characteristic CADs (amiodarone,
sertraline, PB28, hydroxychloroquine (HCQ), and Bix 01294), followed by a mock or
SARS-CoV-2 infection, and quantified phospholipidosis and the accumulation of viral
spike protein (Fig. 2.4A, 2.S9). Compared to DMSO, drug treatments led to substantial
increases in NBD-PE aggregates, indicating increased phospholipidosis (Fig. 2.S9). At 1
MM drug concentrations, SARS-CoV-2 spike protein was readily stained, and one could
visualize both spike protein and phospholipidosis in the same cells (yellow puncta),
suggesting at this low concentration of drug—often close to the antiviral ICso value—both
phospholipidosis and viral infection co-occur, though even here viral staining was reduced
relative to the DMSO treated controls. As drug concentration rose to 10 uM, viral spike
protein staining dropped while staining for phospholipidosis increased (Fig. 2.S9); there
was nearly complete loss of spike protein signal with a concomitant increase in
phospholipidosis (Fig. 2.4A) for all treatments. In seven-point concentration-response
curves for amiodarone, sertraline, and PB28, viral staining monotonically decreased as

phospholipidosis increased (Fig. 2.4B-C).

CADs are common among drug repurposing hits for SARS-CoV-2 and other
viruses.

With the strong correlation between CAD phospholipidosis and antiviral efficacy
(Fig. 2.3), including drugs that have been found in multiple SARS-CoV-2 repurposing
studies, we investigated the prevalence of phospholipidosis-inducing CADs among 1,974
total reported repurposing hits identified in the literature. We focused on 12 drug

repurposing efforts for SARS-CoV-2, including two screens of the ReFRAME library?425,
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screens of the NCATS “approved drug” and “bioactive” libraries’®, among
others314.16.22.26-30  Together, these 12 screens found 310 drugs, investigational drugs,
and reagents that were antiviral in vitro against SARS-CoV-2. We used two physico-
chemical features to identify likely CADs: drugs with calculated Log octanol:water
coefficients above 3 (cLogP = 3), and with pKa values 2 7.43"32, We then further filtered
for drugs that topologically resembled known phospholipidosis inducers'®?! using an
ECFP4-based Tanimoto coefficient ((Tc) = 0.4) (Supplementary File 2). Sixty percent of
the 310 drugs passed the cLogP and pKa threshold; 34% also resembled a known

phospholipidosis inducer (Fig. 2.1, 2.54, 2.510).

Although the two physical property filters do not capture atypical phospholipidosis
inducers such as azithromycin, they do capture 16 of the other 18 CADs we had already
tested (missing only the medium phospholipidosis inducers olanzapine and ellipticine);
intriguingly, nine of these, including amiodarone, sertraline, chlorpromazine, Bix 01294,
clemastine, and benztropine also appeared in at least one of the 12 other repurposing
studies. To probe the reliability of this association, we tested another five drugs that
passed our filters, and had been reported as antiviral against SARS-CoV-2, for their
induction of phospholipidosis. Not only were all five were active in the NBD-PE assay, but
we were able to confirm SARS-CoV-2 antiviral activity for these drugs (Fig. 2.510).
Additionally, these molecules fit into the sigmoidal model relating the extent of
phospholipidosis to reduction in viral load (salmon points overlaid with sigmoidal model;
Fig. 2.3B). Finally, we note a preliminary identification of 30 CADs, 19 of which overlap

with the literature-derived SARS-CoV-2 list, active against other viruses including Middle
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East Respiratory Syndrome and Severe Acute Respiratory Syndrome3?, Ebola34-36,
Marburg3®-37, Hepatitis C38 (38), and Dengue®® (Table 2.S1). It may be that most drugs
repurposed against many viruses are CADs whose antiviral activities can be attributed to

a phospholipidosis mechanism.

Animal efficacy for repurposed drugs.

Though phospholipidosis is considered a drug-induced side effect, it remains
possible that it can be leveraged for antiviral efficacy. Accordingly, we tested four of the
repurposed, phospholipidosis-inducing drugs most potent against SARS-CoV-2 in vitro,
amiodarone, sertraline, PB28 and tamoxifen®'8, for efficacy in a murine model of COVID-
1940 In the same model, we also tested elacridar, which does not induce phospholipidosis
(Fig. 2.2B) and remdesivir, which is unlikely to induce phospholipidosis at concentrations
relevant to its antiviral activity. In pharmacokinetic studies, all molecules had relatively
long half-lives, especially in the lung where tissue Cmax values often exceeded 10 uM after
a 10 mg/kg dose, or 10 to 1000 times higher than their in vitro antiviral ICsoes, suggesting
that exposure would be high enough for plausible efficacy (Table 2.S2-2.S6). Guided by
the pharmacokinetics of each drug, mice were dosed either once (amiodarone and
elacridar) or twice per day (remdesivir, PB28, tamoxifen, and sertraline), for three days.
Two hours following the first dose, mice were intranasally infected with 1 x 10* PFU of
SARS-CoV-2 and lung viral titers were measured after a three-day infection period.
Notwithstanding their high lung exposure, the four phospholipidosis-inducing drugs had
no substantial effect on viral propagation in the mice. Conversely, remdesivir reduced

viral load by two to three orders of magnitude. While the cationic non-phospholipidosis

15



drug elacridar had a modest antiviral effect, it did not rise to statistical significance (Fig.
2.5) and mice given elacridar doses higher than 3 mg/kg exhibited toxicities that limited

further study.

Because phospholipidosis is typically an in vivo side effect that appears after
chronic dosing, we then pre-treated mice with five-fold higher concentrations (50 mg/kg)
of amiodarone over twelve days prior to a 3-day infection period. Even here, no diminution
of viral titer was observed in mouse lungs after infection, and amiodarone offered no
protection from infection-induced weight loss or from pulmonary inflammation and
epithelial necrosis, as measured by histopathology scores (Fig. 2.5, 2.811). We noted
that foamy vacuolation and whorled vacuoles that are the hallmarks of phospholipidosis
were not seen in lung and spleen by light or transmission electron microscopy. It is thus
possible that this treatment was not long enough to induce a protective phospholipidosis
phenomenon. Still, taken together, the in vitro activities of the phospholipidosis-inducing
drugs did not translate in vivo, and drugs whose antiviral activity arises due to

phospholipidosis seem non-viable for clinical progression.

2.4 Discussion

The emergence of COVID-19 has motivated intense effort to repurpose drugs as
SARS-CoV-2 antivirals. An extraordinary number of diverse, apparently unrelated hits
have emerged'. A key observation from this work is that many, perhaps most of these
are active in antiviral assays via induction of phospholipidosis (Fig. 2.1, 2.S4, 2.S10). This

disrupts lysosomal lipid catabolism and trafficking, which may in turn disrupt the double
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membrane vesicles that the virus creates and on which it depends for propagation.
Quantitatively, there is a close in vitro correlation between drug-induced phospholipidosis
and antiviral activity, both drug-by-drug and over the set of drugs tested here (Fig. 2.3).
The effect is predictive: molecules that induce phospholipidosis are antiviral over the
same concentration range, irrespective of whether they are cationic amphiphilic drugs
(CADs) or not (e.g., azithromycin), while molecules that are related by target activity to
the CADs, but are more polar and do not induce phospholipidosis (e.g., melperone and
DTG), are not antiviral. Unfortunately, CAD induction of phospholipidosis, at least at the
potencies observed here, does not appear to translate in vivo (Fig. 2.5). More
encouragingly, this study illuminates a method to rapidly identify confounds in cellular
antiviral screens, allowing one to eliminate them from further study and to focus on those

molecules with true potential.

Although the molecular mechanisms for the antiviral effects of phospholipidosis
remain unclear, certain associations may be tentatively advanced. SARS-CoV-2, like
many viruses, subverts the cell to produce double membrane vesicles in which it
replicates*'~43. Disruption of lipid homeostasis by the induction of phospholipidosis may
disrupt these vesicles, reducing viral replication. The disruption of lysosomal* and
endosomal*® compartments and CAD-induced shifts in compartmental pH*6 may further
affect viral entry and propagation*’. For these reasons, targeting the endosomal-
lysosomal pathway has been suggested as a viable strategy against SARS-CoV-2
infection*®, but developing potent and targeted inhibitors remains challenging. Of course,

these mechanisms remain unproven, and currently are supported mostly by correlation,
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but they suggest a route for further research.

The cost to the community of investments in what appears to be a confound merits
consideration for future pandemics. According to the DrugBank*® COVID-19 dashboard,
which draws from U.S. and international clinical trials, putatively antiviral CADs have been
promoted into an astonishing 316 Phase | to Phase Il clinical trials against COVID-19.
While 57% of these study the phospholipidosis-inducing CADs hydroxychloroquine (Fig.
2.3A, top row) or chloroquine, that still leaves 136 trials across 33 other predicted or
known phospholipidosis-inducers. Using conservative estimates®!, the expense of the
clinical trials component alone, over the last year, for phospholipidosis-inducing CADs

may be over $6 billion US dollars (Table 2.S7).

Certain caveats merit airing. First, the correlation between antiviral activity and
phospholipidosis, as strong as it is, does not illuminate the mechanism by which
phospholipidosis is antiviral. Phospholipidosis is itself only partly understood, and there
are no good genetic or chemical ways to either inhibit its induction by drugs nor to promote
it by target-selective reagents. Second, predicting whether a molecule will induce
phospholipidosis remains challenging, and even non-CAD molecules can induce it. Thus,
we have chosen conservative criteria to predict phospholipidosis-inducers, which may
miss many drugs. Third, phospholipidosis is a confound that only affects drugs
repurposed for direct antiviral activity—it is irrelevant for drugs like dexamethasone®? and
fluvoxamine®? that have been repurposed for immunomodulation in COVID-19, nor is it

relevant for CADs whose antiviral activity is well-below the concentration range where
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phospholipidosis occurs. Fourth, our estimates of the clinical trial costs of
phospholipidosis-inducing CADs are obviously rough. Finally, we do not exclude
exploiting phospholipidosis therapeutically, though we suspect that would have to go

through a more target-directed mechanism than that of the CADs studied here.

These caveats should not obscure the central observation of this study. Many
drugs repurposed for antiviral activity against SARS-CoV-2 are cationic amphiphiles, and
despite their diverse structures and multiple targets, many likely have their antiviral effects
via a single shared mechanism: phospholipidosis. Both because of the side effects with
which it is associated, and the limited efficacy to which it leads—rarely better than 100
nM in vitro—drugs active due to phospholipidosis are unlikely to translate in vivo (Fig.
2.5). Many resources will be saved by counter-screening for phospholipidosis in even
simple cellular assays?°, allowing investigators to focus on drugs with genuine promise

as antivirals.
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Figure 2.2. Cellular phospholipidosis may confound antiviral screening results.

A. Examples of NBD-PE quantification of phospholipidosis in A549 cells including dose
response curves. Blue = Hoechst nuclei staining, Green = NBD-PE phospholipid staining,
Red = EthD-2 staining for dead cells. Scale bars = 20 ym. Amiodarone is the positive
control for assay normalization; sertraline and clemastine are two examples of high
phospholipidosis inducing drugs (phospholipidosis (DIPL) > 50% of amiodarone). Images
of DMSO and a non-phospholipidosis inducing molecule (melperone) are included for
reference. (Continued on the next page.)
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(Continued from the previous page.) Thresholds for determining phospholipidosis power
are shaded in dark grey (low phospholipidosis), light gray (medium phospholipidosis) and
no shading (high phospholipidosis). B. Pooled DIPL amounts (mean + SD) at the highest
non-toxic concentration tested for each drug. Results were pooled from three biological
and three technical replicates and were normalized to amiodarone (100%) from the
control wells in the same experimental batches. C. Structures of PB28 and its analog
Z7Y-10-051, the latter of which is inactive on the sigma receptors. D. Viral infectivity (red)
and viability (black) data for PB28 (square) and ZZY-10-051 (circle) in A549-ACE2 cells.
Data shown are mean + SD from three technical replicates. E. Fractional binding of PB28
and ZZY-10-051 against Sigma-1 (purple; S1R) and Sigma-2 (maroon; S2R) normalized
to a buffer control at 1.0 in a radioligand binding experiment. Data shown are mean +
SEM from three technical replicates. PB28 is a strong ligand of both Sigma-1 and Sigma-
2 and has high displacement of the radioligands, whereas ZZ2Y-10-051 is unable to
displace the radioligands to a high degree at 1 uM. F. Dose response curves for PB28
(blue) and ZZY-10-051 (gold) show that these closely related analogs both induce
phospholipidosis.
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Figure 2.3. Quantitative relationship between phospholipidosis and viral amounts.
A. Correlations between phospholipidosis (DIPL), normalized to amiodarone at 100%,
and percent of SARS-CoV-2, normalized to DMSO at 100%, in the RT-gPCR assay in
A549-ACE2 cells. Each dot represents the same concentration tested in both assays. A
strong negative correlation emerges, with R? 2 0.65 and p < 0.05 for all high and medium
phospholipidosis-inducing drugs except ellipticine, which is confounded by its cytotoxicity
in both experiments, ebastine, and ZZY-10-61. The latter two examples are marginally
significant. B. The SARS-CoV-2 viral loads and induced phospholipidosis magnitude for
each compound and dose in A are plotted as sqrt(viral_amount_mean) -~
10%inv_logit(hill*4/10*(log(DIPL_mean)-loglCso). Fitting a sigmoid Bayesian model with
weakly informative priors yields parameters and 95% credible intervals of ICso: 43 [38,
48]%, hill: -5.6 [-7.0, -4.5], and Sigma 2.0 [0.14, 1.78]. Forty draws from the fit model are
shown as blue lines. Salmon points overlaid with the model represent predicted
phospholipidosis inducers from the literature (Fig. 2.S10).
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Figure 2.4. Phospholipidosis and spike protein measurements in the same cellular
context.

A. Representative images from a co-staining experiment measuring phospholipidosis and
SARS-CoV-2 spike protein in infected and uninfected A549-ACE2 cells. Five molecules
(1 and 10 yM) and DMSO were measured; see Fig. 2.S9 for Bix 01294. Blue = Hoechst
nuclei staining, Green = NBD-PE phospholipid staining, Red = SARS-CoV-2 spike protein
staining; Yellow = coexpression of spike protein and NBD-PE. Scale bar = 20 ym. B.
Concentration-response curves for phospholipidosis induction measured by NBD-PE
staining in infected cells for three characteristic CADs. C. Spike protein in infected cells
decreases as phospholipidosis increases. For B. and C., data are mean + SEM from four
biological replicates.
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Figure 2.5. Phospholipidosis-inducing drugs are not efficacious in vivo.

A. Three-day dosing of six different drugs with a two-hour preincubation before SARS-
CoV-2 treatment. Lung viral titers were quantified and groups were compared using the
Kruskal-Wallis test (H(7) = 22.76, P = 0.002) with Dunn’s multiple comparison correction
indicated (vehicle N = 5; remdesivir N = 4, *P = 0.02). All other groups N = 4, ns = not
significant. B. Fifteen-day dosing of amiodarone (50 mg/kg) compared to 3-day
remdesevir dosing. Lung viral titers were quantified and groups were compared with a
two-way ANOVA (main effect of treatment F£(2,9) = 19.66, P = 0.0005; no main effect of
mouse, F(5,9) = 1.21, P = 0.38). Individual group comparisons determined using
Dunnett’'s multiple comparison test are indicated (vehicle N = 6; remdesivir N = 6, ***P =
0.0008, amiodarone N = 5, ns = not significant). C. Histopathology scores after 15-day
(amiodarone) or 3-day (remdesivir) treatments as in panel B. See Materials and
Methods for scoring breakdown. Groups were compared with a two-way ANOVA (main
effect of treatment F(2,9) = 19.05, P = 0.0006; no main effect of mouse, F(5,9) = 0.78, P
= 0.59). Individual group comparisons determined using Dunnett’'s multiple comparison
test are indicated (vehicle N = 6; remdesivir N = 6, **P = 0.0014, amiodarone N = 5, ns =
not significant). All data are mean + SEM.
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Figure 2.S1. Correlation analyses for sigma receptor affinity and antiviral activity.

A. pKi at Sigma-1 was correlated with pIC50 in the RT-gPCR assay in A549-ACE2 cells.
pKi at Sigma-2 is denoted by the colors. (Continued on the next page.)
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(Continued from previous page.) B. pKi at Sigma-1 was correlated with pIC50 in the anti-
NP immunofluorescence viral infectivity assay in VeroE6 cells. Abbreviations: CQ:
chloroquine; HCQ: hydroxychloroquine; DOX: doxylamine; PSE: pseudephedrine; CHP:
chlorpheniramine; DXCHP: dexchlorpheniramine; DXM: dextromethorphan; DPH:
diphenhydramine; DTG: ditolylguanidine.
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