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Abstract

A new continuum damage model is proposed based on homogenization of cohesive
micro-cracks in an elastic representative volume element (RVE). A novel damage
model is developed to model progressive microrupture and material degradation
through cohesive micro-crack coalescence and nucleation. The newly proposed dam-
aged model includes a macro-level yield potential function and the corresponding
damaged evolution law, which describes a pressure-sensitive elasto-plastic material
at macro-level,

The proposed damage theory is distinctly different from existing damage theories,
such as the Gurson’s model, which is based on void growth in a perfectly plastic
medium. The proposed new damage model s based micromechanics analysis of
cohesive crack growth in an elastic medium, which mimics the realistic interactions
among atomistic bond forces at micro-level. The underline assumption is that there
is a random distribution of Dugdale-Barenblatt cohesive cracks in an elastic RVE.
When the RVE is under uniform triaxial tension, the material starts to degrade. The
key assumption on homogenization is the equivalence of the maximum distorsional
energy. The continuum damage model is then derived through homogenization of
a upper bond solution of a cohesive crack embedded in a three dimensional (3D)
elastic medium.
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1 Introduction

Micromechanics modeling, or using homogenization methodologics to derive
macro-level constitutive relations that take into account of micro-damage eve-
lution has been an important subject in reliability analysis to predict material
failure/and degradation. The well-known Gurson’s model (Gurson [16, 17] and
Tvergaard {33]) is such an example, in which the material’s failure mechanism
at micro-level is postulated to be void growth, and the macro-level constitn-
tive relation obtained from homogenization is a pressure sensitive plasticity,
which depends on the velume fraction of the void in a representative volume
element (RVE). The most distinguished feature of the Gurson’s model is that
the constitutive relation at micro-level, perfectly plastic in specific, differs from
the constitutive relation at macro-level, an associative plasticity with damage-
softening. This feature is absent in the carly micro-elasticity, where in both
micro-level as well as macro-level, constitutive equations are the same, i.e.,
the linear elasticity — the generalized Hooke’s law prevails; homogenization
does not produce new constitutive relations at macro-level, which are the pri-
mary objectives that are being sought for {see: Eshelby [11, 12], Hashin and
Shtrikman [18, 19], and Hill {21], or Mura [29], Nemat-Nasser and Hori [31]
for comprehensive review).

In principle, an accurate micromechanics model will lead to an accurate con-
stitutive law at macro-level, provided that a feasible homogenization can be
carried out. For the Gurson’s model, the void growth mechanism is supported
by many experimental observations on failures of ductile materials (see Mc-
Clintock [28]). On the other hand, in most brittle or quasi-brittle materials
such as concrete, rocks, cast irous, and some ceramics, the damage failure
mechanism is usually attributed to coalescence and nucleation of micro-cracks.
Nonetheless, micro-crack coalescence and nucleation may be attributed to the
failure of ductile materials as well (e.g. Rice [33], Rice and Thomson [34] ).
Although several micro-crack based damage models have been proposed to
describe the brittle failure process (e.g. Krajcinovic [26], Nemat-Nasser and
Hori [30]), few micro-crack damage models are available for ductile materials.

Furthermore, the Gurson’s model is a phenomenological micro-mechanics model
in essence, meaning that in micro-level, the physics law is still phenomeno-
logical — the assumption on perfectly plastic medium inside RVE, which is an
over-simplified theory.

It is generally believed that on micro-level, or even meso-level, realistic physical
constitutive laws should be adopted to model real material behaviors. The
cohesive model has been long regarded as a sensible approximation to model
fracture, fatigie, and other failure phenomena. Since ultimately, the separation
of two solid swrfaces is governed by atowmistic bond forces, as well as the




material’s micro-structures at atomistic level.

Since Barenblatt [1, 2] and Dugdale’s pioneer contribution [10]. the cohesive
models have been extensively studied by many authors, e.g. Bilby, Cottrell,
and Swinden [7], Becker and Gross [3], Weertman [36], and Feng and Gross
123
[13j

In reality, cohesive zone has a very small length scale, and how to assess
the overall effect of cohesive zone degradation is important for study brit-
tle/ductile fracture in macro-level. Recently, the Barenblatt-type model has
been implemented in finite element based numerical computations (e.g. Xu
et al [37] and Ortiz et al [32]}. In their approach, no homogenization proce-
dure has been taken into consideration, and cohesive force only exists between
finite element edges. In latest development, some new cohesive maodels with
homogenization features have also been proposed in literature, e.g. Gao and
Klein’s Internal Cohesive Bonds model [14]. Most of these homogenized co-
hesive models follow a numerical homogenization procedure, i.e. numerical
averaging procedure.

In this paper, an analytical homogenization procedure is developed to homog-
enized an elastic solid with randomly distributed cohesive cracks — Dugdale-
Barenlatt crack. The homogenization of cohesive micro-cracks leads to a new
damaged evolution law at macro-level. A new pressure sensitive elasto-plastic
constitutive relation is obtained. which reflects the accumulated damaged ef-
fect due to the distribution of micro-cracks.

2 Cohesive Penny-shaped Crack Under Triaxial Tension

Penny-shaped Dugdale crack growth problem has been studied by several au-
thors. The early contribution was made by Keer and Mura [25], who used the
Tresca yield criterion to link the maximum axial stress in cohesive zone to the
vield stress, or cohesive stress. In their study, only uniaxial tension loading
is considered. The problem was studied again by Becker and Gross [3], who
studied the cases under both shear and triaxial loadings. In their study. the
Von Mises criterion is used in cohesive zone to link the maximum axial stress
with the yield stress (cohesive stress). More recently, Chen and Keer [8, 9]
revisited the problem, and they obtained the general results for a crack under
mixed-mode loading.

On the other hand, however, the problem has not heen thoroughly studied
from micromechanics perspective. Therefore, the available relationships be-
fween maximum tensile stress in process zone as well as vield stress in process
zone {cohesive zone) have not been linked to the remote stress on the boundary
of a representative volume clement — the macro stress,




Fig. 1. A penny-shaped cohesive crack in representative volume element (the shaded
region: process zone-yielded ring).

By examining a cohesive penny-shaped crack model in a RVE, it may pro-
vide complete links among the physical cohesions, yield stress, and remote
stresses acting on the boundary of the RVE, which establishes a foundation
in homogenization process.

2.1  Three-dimensional penny-shaped crack problem

Consider a three-dimensional penny-shaped Dugdale crack of radius a with
a ring-shaped process zone of width b-a in a representative volume element,
which may be viewed as an infinite isotropic space by the dwellers in the
micro-space. '

Let the normal crack surface parallel to Z (X3) axis (see Fig. 1) and a uniform
triaxial tension stress is applied at the remote boundary of the RVE, 5 =
3%%9;;. In cylindrical coordinate, the remote traction boundary conditions and
displacement boundary condition are expressed as

G22(7, 8, 00) =5

(1)
(00, 8, 2) = 8% {2)
0’99(0(3,6; Z):EOC (3)
u,(r, 8,0y =0, b<r G6<8<27 (4)

The stress distribution on the crack surface and process zone
0. (18,0 =c"H(r—a), 0<r<b 0<§<2r (5)




b ittty P ittdrs
:: :E‘E': :: Gc_zmi;i
. —~ = — ottt
b8 I S T o
bl | o . 9291{92
z -
-] - ] - 2
NERERE EEREERE:
= =

Fig. 2. Illustration of superposition of cohesive crack problem

where ¥ is the remote stress, H(r — ) is the Heaviside function, and &°
is the magnitude of cohesion in the process zone, which is different from the
vield stress in general. The problem can he viewed as superposition of of two
problems: a wholesome RVE with uniform triaxial tension at remote boundary,
and a RVE with crack that is subjected the following boundary conditions (see

Fig. 2)
a..(r,8,00) =0
oreloo, 8, 2) =0
099(00,9, Z}:O
0::(r,8,0) ==X + 6°H(r —a), O<r<b 0<#<2r
uy{r, 6,0) =0, b<r, 0<8 <27
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Introducing Papkovitch-Neuber displacement potential (see Green and Zener

[15] and Kassir and Sih [24]), one may express displacements as follows

9
2pat, = —{1 — 2;/)% — z%
189 =z 8¢
y = — — Qi —
2 = =1 = 20) g a6
o o badin
Z;J.quz =2(1 — .V)B:Z— ~ o5

(13)

where the potential function is harmonic, i.e. V?® = 0. Subsequently strain

and stress components may be found as

re PP
¢ = — — 2w R
e =L =255 ~ 5
e (1m0 20 (-] = 5
[L€gg = P 2902 2000
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By Hankel transform and only consider the symmetric mode, one may have

O

e 2) = [ ro(r, 2) Jo(er)dr
G

Dlr,z) = [ e 2} Io(er)de

19

and
d2

Vo =0 = (E ~§2)cf>(5,z) =0.

Eq. (27) vields solution

O(g,2) = A(g) exp(~&€2) + Bg) explez) (&> 0)

Consider the remote boundary conditions and let




B(£) =0

{29)
Ay =-£"24(g) . (30)
The displacement potential may be expressed as
Dlr.2) = = [ €7 A(E) exp(—€2)Jo(er)ae (31)
5 .

Then the boundary conditions {9} and (10) render the following dual integral
equations

f EA(E)o(Er)dE = £% — ®H{r —a), 0<r<b
0

(32)
o5

[ A€y nieras = o,
\ D

Let

b
Alg) = / o(t) sin Etdt (33)
0

where ¢(t) is yet to be determined. The arrangement will automatically satisfy
displacement boundary condition,

o0

2t (r, 6,0) = 2(1 — ») / AEVIGlEr)dE =0, Y 7 > b (34)
i

Solving (32}

, one may obtain

2
—3%¢ t<a
T

oit) =

;(Ecoz‘,—-o'o tE—a?) a<t<h

The size of the process zone, a/b, remote stress £, and cohesion, % are
related through expression to ensure stresses at the crack tip to be finite,

Or T e

(36




There are several ways to determine the critical cohesion in the process zone:
(1) Let 0° = oy, where oy is the vield stress of virgin material under uniaxial
tension; (2) Use Tresca criterion in the process zone [23, 29]; and (3) Use Von
Mises criterion in the process zone [6].

In this paper, the third approach is adopted to link the physical coliesion oV
with the true yield stress of a virgin material, gy,

After some calculation. one may find that in the vield ring (process zone),
z=0and a<r <b,

0 =0" —E% o
Grp=—{1— ?I/)%if + 21 g?j}
zwl-;f—’f/zoc_i_{1—2911(1—,—%2)%240’@ (38)
. 2
oo=-(220 0,20
= e [ - Gy e ) o

2 2
a a roq
Assume that W ~ 1land ¢ <7y < b Thug — 7= 1. Within the process zone,
2

the total stresses are

Ty =00 ' (40}
— 92

- 2‘”2@0 +of (41)
1-2

o= — Yo 4 9y60 (42)

Following Lu and Chow [27] to link the physical cohesion to the true vield
stress oy inside the process zone, we substitute Eqs. 40-42 into the von-Mises
criterion,

[(Urr - Jzz)2 + (0'93 - 022)2 =+ (grr - 569)2} = Cr;g’ (43)

[RE I

[t leads the following quadratic equation,

0

(E) 2 1= (5 ) = =

roe 3 I—2pi=
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Fig. 3. Projection domain of crack surface and process zone.
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Solving the quadratic equation for = vields two roots. The positive root is

R
(7_0 1%\/(1—21/%)23

2.2 Crock opening displacement
Consider
b
ab 1 —v A(t)
Qpeu(r,6.0) = 2(1 — ) I0 = / S
L (?, : ) ( Z/) a; T J /t-,z _ T?_
4 ) &
2,1— V2 —a?
—( 1’)(300\/3)2_,7,2_(70/_. a{ dt) G<r<a
n i s V2 R
S ('—16)
b
2,1-— 12— q?
—( y) (E“\/ﬁw P ‘ ~mdi‘) a <<
i 1 J fz g2
Define
) =l —ul = 2u, {(17)

The integration s over the projected area of elustic crack surface on X, (X
=1 H 2

plane, £, (0 < < a) is
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/; AJdA = el (E /) ‘“’”/\/b)——r 7(!7ﬁ00// ! [i_ r(_iz"rir)
0 o

73
_8(13; D Lol = (02— )] - o0 ( - ) - 07 - s+ 2]}
(18)

8( NG
(u,]dA= VOO b2 — rirdr — o rrdfd’r]
= [ JIE
1 - . 3 . .
= _—8( —) (0 — 017 = o"(1" — 3% + 24%)] (49)
31

The volume of a single crack opening is integrated over the projection of the
entire crack surface on X OX, plane, Q = Q, U Q.

V= [ ,)dA = [ [u,]dA + / l,)d A
Q fll] i1y

8(1 ~ V) 31oe oo
= = (1= (5)]
8(1 — D31 ¥
- () - o5
— Soc
:8@3;1. Mot T o0

3 Average Theorem

Since the cohesive crack is not a traction-free defect, the available averaging
theorem for traction-free defects may not be applicable to homogenizations of
cohesive defects,

In this section, an averaging theorem is proved for elastic solids having process
zones with constant cohesion.

Betore proceed to prove a general averaging theorem. we consider the average
o o oy : o

stress In an three-dimensional (3D) elastic representative volume element with
a single penny-shaped Dugdale-Barrenblatt crack at the center of the RVE.

10




Denote the elastic crack surface as 9V, = V... U 9V, and its projection
onto XXy plane as Q. Denote the cohesive process zone (ring shape) as
OV = OV, U OV, aud its projection onto X, X, plane as Q.. In addition.
Vo= Vo UV and © = Q) U Qy Assume that there is no bods force present.

Using divergence theorem, it is straightforward that

1 r 1 .
< Ty > :?/OE}CJ¥ = ?{[(U;ﬂjﬁfi):kdX'

1 !
=7 /E;’;R:inkds — f 0-ax;nedS — f O dS
L 8l G
1 r 1
ZE?W;/%MMﬂIE?—ﬁgfﬁﬁ (51)
at,. ot

where t? is the constant cohesive traction. If thie cohesion does not have shear
component, then {fJ} = (0,0, 0% where 5° is the magnitude of physical cohe-
sion in the process zone. J

Since the cohesive ring lies on X, X, plane,

/xMS:Q (52)

a {"E;J;

By symmetry, inside the cohesive ring

/ zdS =10, 1=1,2 (53)

Ve

Therefore, the average stress inside the RVE will equal to remote stress

1, _ i
o,
Now consider an 310 RVE with N random distributed cohesive cracks with the

same size. Bach of them is associated with a same size cohesive ring. Suppose
that they are all aligned in X3 direction. The average stress inside the RVE
then would be

1 R i
< Oy > = ‘[- / Ul,ﬁ'(ﬂ = ? /((T'I"-j'i'jz)_k(”

i 3

11




1 ,
m‘—« /ﬂ\jlmds Z / 0. xznedsS — Z / Tp g dS

=Lov, a=1gv,.,
N . ..
=57 - — Thi Uit dS 55)
iy { o)
a=1 a‘pzo
J LN -
_pe_ Ly 649 [ s (56)
= Vaa

Assume that the center of a cohesive ring is located at (Tals Taz, Tas). Introduce
local coordinate wj such that z, = 4 + 2!, Eq. (56) becomes

1 & e
<oy >=Ey =5 3 47 (ail0Val + [ 414S) (57)
a=]

Vyen

In each local coordinate svstem, / 23S = 0, because of the symunetry.
BVipce

Assume that the crack distribution is uniform (axisymmetric) in the RVE. A

reasonable assumption would be

S =0, i=1,2,3 (58)
o

In fact, one can assume that there is an axisvmmetric crack distribution func-
tion w(x) = w,{z)w, (r)ws(8) with wy(8) = 1 such that

o0 e
/zL( )dv = wy(2)dz [ w, (rirdr = N (59)
o=z [t |

where N is the total number of cracks and wy(f) = 1. It is then statistically
equivalent

Z.raj = [:cajw(x)di-f (GO)

It is trivial to show that the last integral is actually zero, becanse w.(z) must
be an even function, and w.{z)z has to be an odd function. Thercfore,

+o0

/ w(z)edz =0 = / Toyw{x)dl =0, {61)
. J

—o0

S e

s




provided w,{z)z is integrable. In addition, it is also obvious that

27 2r
Tt cos @ ‘
[ d6 = /7‘ 8 =0 (62)
2 | Taz 4 sin 6
Considering |0V}.q] = 101,;| = const., for = 1,2, .-+ N, one may conclude
that
<L T4 »= E;O (63)

In general, cracks in a RVE may not to be aligned with Z or X, direction. In
this case, we have the following statement.

Theorem 3.1 Suppose that an elastic representative volume element contains
N traction-free cracks and N cohesive damaged process zomes with constant
cohesive traction. Suppose that the cohesive crack distribution is isotropic and
there is no shear cohesive force on the surface on the process zone. If the
traction on the remote boundary of the RVE is generated by o constant stress
tensor, LY, t.e, 7% = ny25, the average stress inside the RVE satisfies

< Oy = Eio? (64)

Proof:

As shown above

1 N ) £y
<oy >=YE v Z / ?"}-mﬂfﬂ'?‘ds (65)

e=lgil .

Let z; = 24 + 75, where z,; is the coordinate for the center of process zone
c. By symmetry,

al;dS = 0 (66)
81’;32.(1

This is valid in any crack orientation. Therefore

}- N N ] -
< Tij = Zzojo - F Z t; )GxailaI"ﬁzag ((Hj

a=1

Suppose that the distribution, or probability of the crack orientation is ran-
dom, or isotropic for a given crack o {sce Fig. 4). Eq. (67) may be rewritten




L X3

Sao =0'n
0 X2
7y
X"
s
i X3 Xe )
X2
X1
o

O
Fig. 4. Isotropic distribution of cracks with different orientations
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av,,
<O'.,5j>22?0** I it &ia
ooy Am

/ ?L(&)ﬂ .(”

ij T*
1 v 8 fid 2(?
—5® 2 _Ta OVl / / £ Gin BB dey (68)
H ) EJ G

Here 5, 1s a unit sphere surrounding the cohesive ring, o, at center 7.

Let the out normal of crack surface point at x,, be n. And t = on, where ¢¥
1s the physical cohesion. By assumption that there is no shear cohesive force,
ohe may write the components of t@¢ g5

£999 = 5% gin 0 cos o {69)
£$%° — 5% sin @ sin ¢ (70)
#£990 = 59 cos 0 (71)

It is trivial to show

s
//< sinfdfde = 0. j=1.2.3 (79
—l/{ ! o

14




Thereby,

< Oy 2= E?j (1_3)

On the other hand, for a fixed crack orientation, ie. t{@® = ¢099 for o 2 3,
One may show that there exists a spatial distribution function, such that

N
/ S e (x)dV = 0 (74)

v a=1
which is the case of aligned crack distribution proved above. &

4 Additional Strain Formula

For an elastic solid containing cohesive cracks, it can no longer be viewed
as a medium containing traction-free defects, because constant tractions are
present on the surfaces of process zones, Hence the conventional elastic addi-
tional formula (Vakulenko-Kachanov formula),

€ = 2%— /(n ®ul+ue n)dV {75)
L9}

can not be applied in this situation.

In fact, Becker and Gross [4] have studied the additional strain formula for
solids containing cohesive cracks by analyzing energy release density for a solid
containing cohesive cracks. However, after all the analvsis, they derived the
same additional strain formula just as in the case of traction-free defect.

In this paper, present authors revisited the problem by using the same energy
release density approach. An entirely different additional strain f{ormula is
obtained.

To derive the additional strain formula for an elastic solid containing defects
with constant traction, we assume that there exit average potential energy
density and average complementary potential energy deusity, which are po-
tential functions of average strain and average stress. Consider the potential
energy density for a RVE with a single cohesive erack. Following Becker and
Gross [4], the average potential energy density may be viewed as inner product
the average stress and average strain subtracting the average complementary
potential energy density of undamaged RVE in a uniform stress state and the
average energy release density (see Fig. 2)

15
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1o

1 .
/Eocgu,]dS ! ‘— / (J'{"][I[;E(.'.is

ai«'H Gl .

i
=L Oy >l gy > _QD(JAFL.';‘;‘SSEC{
(76)

where X = £%6;, and the bracket < - > is the standard average operator
defined as

1oy -
<A >i= I—J Ad¥ (77

By Legendre transform, the average complementary potential energy will be

e =L Oy > ey > - (?8)
Therefore,
ire 1 TOC N0 1 ' oG 1 ‘ 0 1
W = S Dy TS5 + / £ fuldS — / o*[,]dS (79)
I Etn

By the hypothesis that 77 is a potential function of < o;; > and by the
averaging Theorem 3.1, ¥ =< 0;; >, one may find

owe g

< i = ot
i d < i3 > GE;};
9 1 - 1 o
= Dzjkng?é + Yoo (F / Ex[ugde —_ 1— / O‘Gi?égde)
T e, Voo
=, + € (80)
where €, = Djjpp < 04 > and
L8 1 , 1
= v (F/VmiuziidS— chrg[uz}dS)
H Q )
1 oc : 0 g
0 i :
%) 1 7. i 1 I
- a;x (T/ ¥l - = / .} dS) 4, (81)

Y [
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R

Considering an upper bound approximation by neglecting the dissipation term

1 g \ -
2

and utilizing the result obtained in Eq. {30), one may derive that

Finally, the additional strain formula for a RVE with cohesive defects under
uniform triaxial tension is obtained,
»ee

TR (84)

- (—})2)”

FaiaN

_8(1—v)d® 2~
A Y

If there are N randomly distributed cracks in an RVE, the additional strain
will be

2
N 2 —|{—
¢ 1 _ U _C%’t ( O'O ) I 5
“i = Vo RS e YU (85)
a=1 " I
1-))
Define crack opening space volume fraction
N 3
a
=27 (86)
a=1

Note that @ is not the exact crack opening volume of the a-th crack, and it
may be only proportional to the crack opening volume of the a-th crack, but
it serves well as an index for the measurewent of crack opening volume. or
being a pseudo crack opening volume.

17
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Fig. 5. An RVE with randomly distributed micro-cracks

5 Micro-crack damage model

Using Voigt notation and following Nemat-Nasser and Hori [1999], one may
derive an expression for H tensor

5 [1o00000] [

€3 oo, (10000 T
7R .

€ 8(1 — = 001000 | =%

€=H:T = ; ::(%”U* ;ﬁng . 1(87)

- (G jeoan

0 0000R0|| 0

0 | 00000h|| 0 |

where parameter & is yet to be determined. From (87), H tensor is deduced
in a matrix form

100000
010000

1y
&ﬂ_gﬁ_y”‘Qw(;g) 001000 88)
tR T Ty '[Iﬁﬁ(%gg)?S” G00HOD |

0000ho
00004040
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Fig. 6. Damaged yield surfaces with different Poisson’s ratio

Remark 5.1 1. Since the far-field is isotropic and hydrostatic, there is no
shear deformation inside the RVE.

2. Since cohesive cracks are uniformly distributed inside RVE, the demaged
conlinuum remains isotropic. There is no need for rotational operation, i.e.
Kachanov [1992,1994] (22, 23], Nemat-Nasser and Hori [1999] [31]. to ho-

maogenize the H tensor.

Since H tensor is isotropic, the damaged compliance tensor can then be ob-
tained in straightforward fashion,

D=D+H (89}

19




The Vogit representation of compliance tensor is

o1 v i
— 200
RN
= ~ 200
E % -
[
- ——= = = (300
Dl=| E E E (90)
G 0 0g00
0 0 00a0
0 0 0004
and
Pl 7Y 7
E—};—EOOG
~Z Lo
-~ 2 ~ 009
D=\ E E E (91)
0 0 0p0o0
0 0 00p0
0 0 000

Since the continuum is isotropic before damage, during damage, and after
damage, it is reasonable to assume that

ft = 2047) {(92)

From (92), one can determine A from h = 1 — p.

Solving Eq. (89) vields
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E E
Therefore,
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(a) Cohesive micro-crack model (b) The Gurson’s model
Fig. 7. Comparison between cohesive crack damage model and the Gursen’s model
(I): Yield surfaces in 3D stress space
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Based on Hencky’s maximum distortional energy theory [20], the threshold of
vielding for a material entering plastic state is measured by its ability to store
certain amount of elastic distortional energy. This measure may be reflected in
certain equivalency by the true yielded stress , oy: the material’s vield stress
in the virgin state, i.e.

' 1 1
Udistortion = I‘Z‘;[(El - 22)2 + (22 - E3)2 + (EB - 21)2} = 6—,!;0-% (96)

Define macro-equivalent stress

\
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After damage.

w2
- ~eq £
L'disz‘.m'tizm = (9‘5)
6/
The maximum distortional energy criterion becomes
T2 Iy
2 4
[ 4
« (99)
yooH

To this end, a new continuum damage model, in specific a damaged vield
surface, is obtained

2 1
v s (100)
. 16(1 2 - (75)
‘ 3 {1 X% 18/2
—( 70 ) }

Note that the cohesive stress ¢¥ is linked to vield stress oy by Eq. {(45). For
uniform triaxial loading, ¥ = X, the micro-crack damage model becomes

i} = = = (101)
b su-wy 27 G
i 3 {1 B {Em)z] 3/2
(%
and
Vim 4
i _ : (102)
0 E]
0 1_}_[(1—2!/;;)2_3]1/2

Let ¥ be the damaged yield function acting as a potential for the plastic

flow. Combining Eqs. (101) and (102}, one may derive the following presure-
sensitive plastic potential,

T3

w2 32(1 = ) f
\II(EEQ: Sm: (-7}‘) = —" {] + _———(—.—H)f

(97)
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where ¥ = £,,e; ® e; is the macro-stress tensor, and 1 = b8, @ e; is the
second order unit tensor.

Cousider
2 3 dev dev
£2,=Jwee p (104)
1
D=3 gtracc(i})l (105)

The macro plastic flow direction may be given by the associative rule

i/, )
where D¥ = 5(?15 ;+ ’tz-ii) e; ® e;. and
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where
4

A= (108}

The scalar plastic flow rate can be determined by cousistency condition as
usual,

{r:C: Dy

A:—@q-h%n-C‘n

(109)
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where C is the elastic tensor, and < - > is the Macauley bracket, and g are
internal variables that are specified as

¢ = Mh(T q) (110)

The damage evolution law for micro-cracks in a cohesive elastic environment
may be significant from that of voids in a perfectly viscoplastic environment.
By assuming that the total rate change of the crack volume is proportional to
the volume rate chunge in a RVE, ie. '

Vo =al (111)
Then

: d V. LV o

Jorowin = 7 (37) = (@ = )35 = (@~ f)trace(D) (112)

It the material is incompressible at macro-level (¢ = 1}, and plastic rate of
deformation is dominant, the conventional damage evolution law is recovered

f=(1- fitrace(D7) (113}

On the other hand, an argument can be made that sinee the volume fraction of
cohesive cracks is obtained by integrating elastic crack opening displacement

(CODY, ie., f= C{— (for single crack). if one assumes that V, = 1

f=01- o~ fitrace(D®) = (1 — o™ fitrace(D — DP)

=(1—a" fitrace ((1 - _E; :.n}f ji(l“ :CC‘_)H) : D) (114)

6 Discussions

A distinct nature of this new damage model is that vield loct for different
micro-crack volume fraction all arrive at the same point in stress space when
Yeo/oy = 0, ie. on Ym/oy axis (see Figure 7 and 8 ). which is significantly
different from other continnmn damage models. for instance. the Gurson’s
model.
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Fig. 8. Comparison between the cohesive crack damage model and the Gurson's
model (IT) (v = 0.30}.
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Fig. 8. Damaged yield loci for dilute cohesive crack distributions.

A plausible explanation of this phenomenon is as follows: if 0% — Yon
o9, the macro-stress reaches the value of cohesion. At that point, the size of
the process zone will be infinite, 5 — oo, then the material totally losses its

physical strength. As shown in Eq. (101), as &, — oy,

Eeg%(} S Lt (115)
— ¥
Ty Oy V12(1 — 20}

The continuum damage model derived in this paper is under the assuption
that the distribution of cohesive micro-crack is dilute, so that the interaction
among cracks can be neglected. The assumption will be longer held if the
crack volume fraction exceeds certain limit. Under those situations, interac-
tion among cohesive cracks becomes important, and it has to be taken into
consideration because it directly leads to crack coalescence,

Based on this argument, when % — % and b — oc, the cobesive micro-
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Fig. 10. Relaticnship between physical cohesion and true vield stress

crack distribution can no longer be viewed as a dilute distribution, discretion
on applicability of the damage model in this range is advised.

On the other hand, if cohesive crack distribution is dilute, from Eq. (101), one
may adopt the following approximation

b
£2 1601 - 2= (=7
B(5 Sy = S 10005 | _o? L —140(f) =0,
o3 3 | (2 3/
()]

where the parameter ¥, /c° is determined by Eq. 102. Interestingly, this ap-
proximated solution is probably more closer to reality than the closed form
solution presented in (101), since it confines itself under the restriction of dilute
crack distribution. whereas Eq. 101 is only justified in dilute crack distribution
while attemping to cover a large range of crack volume fraction.

Under this approximation, the damaged vield loci do not converge to one point
as they approach to the ¥, /oy axis (see Fig. 9).

In fact, the damage due to interaction of cohesive micro-cracks has been at-
tracted some attentions, e.g. Feng and Gross [13]. We speculated that in gen-
eral by considering interaction induced coalescence among cohesive cracks, the
vield loci with different micro-crack volume fractions will not converge to a

same point in stress space as Yo /oy = 0. The continunm damage model, or
evolution with rich micro-crack distribution is currently under investigation.

Finaily, one may notice that Eq. (45) gives a relationship between physical
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cohesion, o, and the true (micro) vield stress, oy,

o 4 _
e (117)

" 1_}\/(}_421/;;)2“3

It gave an impression that the relationship between the two parameters de-
pends on the macro-hydrostatic stress state, %%

1o provide the insight of this relationship, Eq. (117) is plotted with different
Poisson’s ratio in Fig. 10. One may find that when Y% /oy < 2, the plivsical
cohesion is almost proportional to vield stress,

0, 4

- , 118
ViR 2} )

Therefore for all practical concerns, oy being constant will imply the constancy
of physical cohesion, or vice versa.
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