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An atlas of cortical arealization identifies 
dynamic molecular signatures

Aparna Bhaduri1,2,5,6 ✉, Carmen Sandoval-Espinosa1,2,6, Marcos Otero-Garcia3, Irene Oh3, 
Raymund Yin3, Ugomma C. Eze1,2, Tomasz J. Nowakowski1,4 & Arnold R. Kriegstein1,2 ✉

The human brain is subdivided into distinct anatomical structures, including the 
neocortex, which in turn encompasses dozens of distinct specialized cortical areas. 
Early morphogenetic gradients are known to establish early brain regions and cortical 
areas, but how early patterns result in finer and more discrete spatial differences 
remains poorly understood1. Here we use single-cell RNA sequencing to profile ten 
major brain structures and six neocortical areas during peak neurogenesis and early 
gliogenesis. Within the neocortex, we find that early in the second trimester, a large 
number of genes are differentially expressed across distinct cortical areas in all cell 
types, including radial glia, the neural progenitors of the cortex. However, the 
abundance of areal transcriptomic signatures increases as radial glia differentiate into 
intermediate progenitor cells and ultimately give rise to excitatory neurons. Using an 
automated, multiplexed single-molecule fluorescent in situ hybridization approach, 
we find that laminar gene-expression patterns are highly dynamic across cortical 
regions. Together, our data suggest that early cortical areal patterning is defined by 
strong, mutually exclusive frontal and occipital gene-expression signatures, with 
resulting gradients giving rise to the specification of areas between these two poles 
throughout successive developmental timepoints.

Understanding when brain regions acquire their unique features and 
how this specification occurs has broad implications for the study of 
human brain evolution, including species-specific developmental dif-
ferences that may have contributed to the expansion of cortical areas 
such as the prefrontal cortex (PFC)2. It is also crucial for unravelling the 
pathology of neurodevelopmental and neuropsychiatric disorders that 
often preferentially affect specific brain regions and/or neocortical 
areas3,4. Early patterning of the developing telencephalon is orches-
trated by morphogenetic gradients of growth factors including bone 
morphogenetic proteins, Wnts, sonic hedgehog and, most prominent 
in the cortex, fibroblast growth factor3,5. However, the molecular pat-
terns that arise as a result of these gradients are less well understood.

Atlas of human brain development
To characterize the emergence of cellular diversity across major 
regions of the developing human brain and across cortical areas, we 
sequenced single-cell transcriptomes from microdissected regions 
of developing human brain tissue during the second trimester, which 
encompasses peak stages of neurogenesis6. We sampled cells from 
10 distinct major forebrain, midbrain and hindbrain regions from 13 
individuals (Fig. 1a, Supplementary Table 1, Methods). In addition, we 
sampled six neocortical areas from the same individuals: PFC, motor, 
somatosensory, parietal, temporal and primary visual (V1) cortex, result-
ing in 698,820 high-quality cells for downstream analysis. Here we refer 

to the subdivisions of the cerebrum and cerebellum as ‘regions’, and to 
subdivisions of the cerebral cortex as ‘areas’. Microdissections were per-
formed carefully to sample target regions. However, it should be noted 
that these regions are putative during development, and small numbers 
of cells from neighbouring regions may have been included. We found 
expected cell populations including excitatory neurons, intermediate 
progenitor cells (IPCs), radial glia, mitotic cells, astrocytes, oligoden-
drocytes, inhibitory neurons, microglia and vascular cells (including 
endothelial cells and pericytes) (Fig. 1b, Extended Data Fig. 1a).

We found genes that were region-specific across all cell types, as 
well as genes that were region-specific for individual cell types (Sup-
plementary Tables 2, 3). We detected previously described markers 
of brain regions, including FOXG1 (cortex)7, ZIC2 (cerebellum, also 
observed in the neocortex)8,9 and NRP1 (allocortex)10 (Extended Data 
Fig. 1b, Supplementary Table 2). We also identified numerous cell type 
and structure-specific transcription factors, including OTX2, GATA3, 
LHX9 and PAX3. Each region contained progenitor and differentiated 
cell types (Extended Data Fig. 1c), leading us to ask whether brain region 
or cell type is a stronger component of regional identity during the sec-
ond trimester. At earlier developmental timepoints, we and others have 
noted that regional signatures are not broadly pervasive and do not 
yet reflect area-specific identities of unique brain substructures11,12. As 
expected, cluster branches were primarily organized by cell type, vali-
dating our annotation approach and highlighting the robustness of cell 
type in driving cluster similarity. However, quantifying the proportion 
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of cells from each region contributing to each cluster showed that the 
majority (115 out of 192) of clusters were strongly enriched for a single 
or related brain region (Extended Data Fig. 1d).

We found that across the whole brain, cell type was the primary 
source of segregation, as visualized in constellation plots13 (Fig. 1c). 
However, in certain cases, such as the ganglionic eminence, cells of 
distinct types from a common region are drawn together in uniform 
manifold approximation and projection (UMAP) space, suggesting 
that regional identity can also be a strong source of variation (Fig. 1c). 
A heat map of area-specific gene score enrichments (Methods) shows 
that some region-specific genes are present across multiple cell types 
within a given region. This suggests that some regional gene-expression 

signatures are highly penetrant across cell types. Of note, we found that 
regionalization is stronger in glial populations (Extended Data Fig. 1e, 
Supplementary Table 3).

The neocortex, allocortex and proneocortex are evolutionarily closely 
related and physically proximal14. We sought to identify distinct regional 
gene-expression programs among these three closely related regions by 
co-clustering these samples independently (Extended Data Fig. 2a). Sur-
prisingly, even within these closely related cortical structures, region was 
still the primary driving force, and again, regional signatures bridged mul-
tiple cell types (Supplementary Table 4, Extended Data Fig. 2b–e). These 
analyses indicate that regional signatures are sufficiently established 
during the second trimester to distinguish cells across brain structures, 
with some signatures extending beyond an individual cell type.

Cell types in the neocortex
The neocortex comprises dozens of functional areas that specialize 
in wide range of cognitive processes15. Longstanding, juxtaposed 
hypotheses propose the existence of either a cortical protomap16, 
where the areal identity of cortical progenitors is cell-intrinsic and 
genetically predetermined, or a protocortex, where newborn neurons 
are not areally specified until extrinsic signals such as those from 
thalamocortical afferents reach the developing cortex17. Recent work 
has shown that while neurons are distinct between V1 and PFC soon 
after their birth18, other cell types do not show robust area-specific 
differences. Studies in the adult mouse have additionally shown that 
while neuronal cell types of the anterior lateral motor cortex (ALM) 
and V1 are transcriptionally distinct from each other1, denser sampling 
of areas between the ALM and V1 reveals a gradient-like transition 
between cell-type profiles19. We sought to expand upon these findings 
by profiling single cells from distinct cortical areas, yielding 387,141 
high-quality cells, after filtering (Methods) (Extended Data Fig. 3a, b). 
We found expected cell types, including Cajal–Retzius neurons, divid-
ing cells (expressing division programs in addition to other cell type 
identities), excitatory neurons, inhibitory neurons, IPCs, microglia, 
oligodendrocyte precursor cells, radial glia/astrocytes and vascular 
cells (Fig. 2a, Supplementary Tables 5, 6). Hierarchical clustering of 138 
neocortical clusters grouped cells by cell type (Fig. 2b) and revealed 
that most clusters (104 out of 138) are composed of cells from multiple 
cortical areas.

We found strong transcriptional proximity between clusters of the 
same cell type, suggesting that borders between clusters are fluid 
(Extended Data Fig. 3c). To quantify intra-cell type and inter-cell type 
similarity, we calculated the magnitude of transcriptional proximity 
between nodes (Methods), and found, not surprisingly, that clusters 
of each cell type connected most strongly to each other (Extended 
Data Fig. 3d). However, we also found that IPC subclusters connected 
much more strongly with excitatory neurons than with radial glia 
subclusters (Extended Data Fig. 3d). We then defined gene signatures 
characteristic of radial glia, IPCs and excitatory neurons using a dif-
ferential gene-expression approach (Methods). These signatures (Sup-
plementary Table 7) were scored using a module-eigengene calculation 
(Methods). We found that radial glia had the highest up-regulation of 
the progenitor signature, but lower down-regulation of the IPC and 
neuronal signatures (Extended Data Fig. 3e).

Dynamic areal signatures
To explore areal differences amongst cells in the developing neocortex, 
we looked for differentially expressed genes for each cell type in the 
excitatory lineage (radial glial (RG), IPCs and excitatory neurons) across 
cortical areas. We validated cortical area sub-dissections by quantify-
ing the expression of NR2F1, which has a posterior-high to anterior-low 
expression gradient in neocortex19, as well as other previously described 
area-specific genes (Fig. 3a, Extended Data Fig. 3f).

Oligodendrocyte Interneuron Microglia Vascular

Excitatory neurons
IPC
Radial glia
Dividing
Astrocytes Oligodendrocytes/

OPCs

Interneurons
Microglia
Outliers
Vascular

Cell type or state

Shared connectivity
(fraction of cluster)

50

25

12.5

≤ 5.0

OLIG1 GAD1 C1QC CLDN5

HES1 MKI67EOMES AQP4 NEUROD6

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

PFC
Par

T

M S
CPFC

P

T

M S

Par
PCx
ACx

CB

GE
CL

Th
HT

S
tr

V
1MB

Dorsal

Ventral
Anterior Posterior

Allocortex Cerebellum

Claustrum
GE

Hypothalamus
Midbrain

Neocortex

Proneocortex

Striatum

Thalamus

Brain region

a

In
d

iv
id

ua
l

8.68.6 0.10.1 88 1.91.9 2.52.5
44

6.46.4 22.622.6 5.15.1 54.454.4 4.34.3
8.18.1 5.85.8 20.220.2 77 70.170.1 2.42.4
4.44.4 1313 33 77.577.5 77

4.84.8 9.69.6 8.68.6 37.237.2 5.15.1 1818
2.72.7 16.116.1 10.210.2 18.718.7

21.121.1 2.72.7 26.126.1 10.610.6 2.32.3
26.426.4

17.917.9 2.82.8 1212 44
2.22.2 7.37.3 1.11.1 69.869.811.211.2

GW14
GW17
GW18

GW18_2
GW19
GW20

GW20_31
GW20_34

GW22
GW22T

GW25

Thalamus

Stria
tum

Proneocorte
x

Neocorte
x

Midbrain

Hyp
othalamus

GE

Claustr
um

Cerebellum

Allo
corte

x

Cells per sample and brain region (×103)

GW14
GW17

GW18
GW19

GW20
GW22

GW25
GW16

GE
GEGE

ACx

Cl

NCxPCx

GE

HT

Cl

NCx
ACx

Th Str NCx
ACx PCx

Th

GE
HT

MB
Str MB

Str Cl
PCx

NCx
CB

HT
Th

NCx

ACx

ACx

MB
Str

Th
PCxHT

CB
NCx CB

CB
MB

Str
GE ThHTCl

GE

c
Number of cells

235,000

63,000
25,000
10,000
5,000
1,000

Min

Max

b
IPC Radial glia AstrocytesDividing Excitatory neurons

Fig. 1 | Single-cell analysis of gene-expression signatures across regions of 
the developing human brain. a, Left, schematic showing the anatomical brain 
regions sampled for this study. The timeline below highlights the number of 
individuals sampled at each gestational week. Right, matrix showing the final 
count (after quality control) of cells from each individual distributed across 
regions sampled. b, Single cells from all brain regions sampled are represented 
in UMAP space. Cells are colour-coded by their region of origin. Insets show  
the expression profile of canonical genes representative of each identity. 
 c, Top left, distribution of cell types and states in UMAP space. Constellation 
plot of cells grouped by type or state and brain region highlights the interplay 
between cell type (node colour) and regional identity (node label). Nodes are 
scaled proportionally to the number of cells in each group. Edge thickness at 
each end represents the fraction of cells within a group with neighbours in the 
opposite group. Node colour corresponds to cell type or state; node label 
corresponds to the brain region from which cells were sampled. ACx, 
allocortex; CB, cerebellum; CL, claustrum; GE, ganglionic eminences; HT, 
hypothalamus; M, motor cortex; MB, midbrain; NCx, neocortex; Par, parietal 
cortex; PCx, proneocortex; S, somatosensory cortex; Str, striatum; T, temporal 
lobe; Th, thalamus.
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Consistent with prior observations17, the specificity of neuronal 
areal markers was significantly higher compared with RG (Extended 
Data Fig. 3g). Surprisingly, however, more genes were differentially 
expressed in RG across areas than in neurons (Extended Data Fig. 3h, 
i, Supplementary Table 8). In addition to novel area-specific genes, our 
dataset also contains area-specific genes that overlap with those found 
in previous studies (Extended Data Fig. 3j). To explore the relationships 
between cell types from distinct cortical areas, we built constellation 
plots between nodes corresponding to each area and cell type combina-
tion. RG nodes were connected predominantly to each other, whereas 
IPCs and excitatory neurons were frequently interconnected, especially 
within the same neocortical area (Fig. 3b, c). Of note, neuronal nodes 
of different areas show robust area-specific transcriptional proximity 
to their IPC counterparts, suggesting that some degree of the areal 
specification seen in neurons may be already present in IPCs (Extended 
Data Fig. 4a, b). We did not find edges between PFC and V1 cell-type 
nodes (Fig. 3c, Extended Data Fig. 4b), pointing to a model of strong 
mutual exclusivity between these two gene-expression programs. Cell 
subtypes also followed this pattern; PFC and V1 outer radial glia cells are 
already mutually exclusive, and newborn neurons connect primarily 
to more mature neurons from the same area. These patterns persist 
across broader cell type annotations (RG and excitatory neurons), 
as well as across individual developmental stages (early, middle and 
late second trimester) (Extended Data Fig. 4a–h). These observations 
indicate that markers of areal identity are already detectable in RG but 
become more pronounced as differentiation proceeds: we found that 
area-specific gene-expression signatures change substantially across 
cell types, with small numbers of areal markers preserved throughout 
differentiation (Extended Data Fig. 3i).

To further investigate the relationship between cell differentiation 
and areal signature dynamics, we inferred lineage trajectories using 
RNA velocity20,21 (Extended Data Fig. 5a). For each cortical area, we 
identified the most dynamic genes across the differentiation cascade 

as the top-loading RNA velocity genes (Extended Data Fig. 5b). We 
found a large enrichment of genes in excitatory neurons, but not in RG 
or IPC populations, leading us to question how areal signatures might 
change as cells differentiate. We defined areal signatures of excitatory 
neurons as gene networks and evaluated their strength in RG across 
cortical areas by calculating their module eigengene scores. We found 
a strong early binary V1 expression, while the PFC signature emerged 
only later (Extended Data Fig. 5c).

Within each set of areal marker genes, we identified genes encod-
ing transcription factors that were robustly enriched in cells of a 
specific area as well as transcription factors with a broad frontal or 
caudal enrichment (Fig. 3d). A subset of area-specific transcription 
factors showed consistent specificity through early, middle, and 
late second trimester (Extended Data Fig. 6a). We detected genes for 
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transcription factors with known roles in arealization, such as NR2F1, 
which confers positional identity across the rostro-caudal axis19, and the 
gene encoding BCL11A, which interacts with NR2F1 and represses motor 
cortex identity22. Both genes are implicated in neurodevelopmental 
disease23,24. Additionally, we detected genes encoding transcription 
factors that have not been implicated in cortical arealization. In V1, 
these include NFIA, NFIB and NFIX, which are important regulators of 
brain development implicated in macrocephaly and severe cognitive 
impairment25. They also include ZBTB18 (also known as RP58), a puta-
tive driver of brain expansion involved in neuron differentiation and 
cortical migration26,27. In the PFC, area-specific transcription factors 
include HMGB2 and HMGB3, which are differentially expressed by 
neural stem cells at distinct stages of development28 and are thought 
to be key regulators of differentiation. Of note, HMGB3 mutations 
can result in severe microcephaly. We also found upregulation of the 
genes encoding the transcription factors NEUROG1 and NEUROG2 in 
PFC neurons. Although these PFC-specific genes have been previously 
described as regulators of neuronal differentiation, they have not been 
implicated or studied in the process of cortical arealization.

Consistent with proposed models of extensive transcriptional 
remodelling during the second and third trimesters20, we observed 
that while area-specific gene signatures are composed of significant 
and specific marker genes, they also change substantially throughout 
this period (Extended Data Fig. 6b, c). Concordantly, we only found a 
small overlap of area-specific gene signatures, and low cluster corre-
spondence, between this dataset and that of the adult brain (Extended 
Data Fig. 7a–c). We thus find strong evidence for a partial early cor-
tical protomap, which is then further refined as proposed by the  
protocortex model.

In situ validation of neuronal markers
Our single-cell data uncover a large diversity of cell types and tran-
scriptional profiles across six areas of the developing human cortex. 
We selected candidate markers of excitatory neuron clusters that were 
enriched in one or more sampled areas for validation by multiplexed 
single-molecule fluorescent in situ hybridization (smFISH) (Fig. 4a). 
We quantified the expression level of 31 RNA transcripts per tissue 
section in four cortical regions from a gestation week (GW)20 sample 
(Fig. 4b). We used DAPI staining along with kernel density expression 
(KDE) plots21 of canonical cell type marker genes (SOX2, SATB2 and 
BCL11B) to identify the ventricular zone and cortical plate (Fig. 4c, 
Extended Data Fig. 8, 9). We confirmed previously described areal pat-
tern dynamics between the neuronal genes SATB2 and BCL11B, which 
are co-expressed in frontal regions but mutually exclusive in occipital 
areas18 (Fig. 4c). These spatial datasets are available at https://krieg-
steinlab.ucsf.edu/datasets/arealization (Supplementary Tables 9–12).

Across all areas, we explored novel candidate subpopulation markers, 
including predicted subplate markers NEFL, SERPINI1 and NR4A2. All 
three markers showed largely equal intensity levels across cells in PFC, 
somatosensory, temporal, and V1 cortex, but their relative spatial distri-
bution changed substantially (Fig. 4d). These genes were co-expressed 
in PFC, but were mutually exclusive across all other regions. However, 
in the somatosensory cortex, these markers were expressed in upper 
cortical layers rather than in the subplate. Similarly, the spatial expres-
sion patterns of three frontally enriched marker genes, PPP1R1B, CBLN2 
and CPLX3, revealed higher signal in PFC and somatosensory cortex 
(Fig. 4d). Caudally, we observed higher intensities of LOH12CR12, ZFPL1 
and PALMD (Fig. 4d). We found marked differences in the laminar dis-
tribution of gene expression, suggesting that in addition to variable 
gene-expression levels across the rostro-caudal axis, laminar cell type 
distributions are also spatially dynamic (Extended Data Fig. 10a). While 
this observation may be reflective of differences in maturation states 
across the developing cortex, cell types may express genes in a different 
manner across distinct cortical areas.

We calculated co-expression relationships between single cells to 
generate networks that show the frequency of two genes expressed by 
the same cell (Extended Data Fig. 10b). The resulting networks highlight 
that the most stringent markers of areal identity are binary—that is, 
they are either included or excluded from the gene network. In most 
cases, however, we found remodelled co-expression patterns across 
cortical areas rather than elimination or inclusion of single genes from 
the network. Even when using all 31 genes to construct the networks, 
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Fig. 4 | Spatial RNA analysis identifies distinct spatial patterns of area 
specific clusters. a, Automated spatial RNA transcriptomics workflow used to 
validate the expression patterns of candidate marker genes in situ across four 
distinct cortical areas. Tissue blocks from 4 cortical areas of a GW20 and a 
GW16 sample were sectioned (7–10 µm in thickness) onto coverslips and 
mounted into a fluidic chamber, in which iterative smFISH was performed in 
batches of 3 genes at a time. RNA molecules were quantified and assigned to 
individual cells by automated spot detection and nuclei segmentation.  
b, Representative merged images of smFISH for 31 candidate marker genes in a 
GW16 (left) and GW20 (right) somatosensory cortex section. Zoomed in 
images of the ventricular zone (left) and cortical plate (right). White circles 
indicate segmented nuclei. This analysis was performed once for each of the 
four regions. Scale bar, 444 µm. c, Top left, nucleus staining outlines tissue 
architecture, with the ventricular zone at the bottom and the cortical plate at 
the top. Top right, KDE plots for positive-control genes. CP, cortical plate; IZ, 
intermediate zone; SP, subplate; SVZ, subventricular zone; VZ, ventricular 
zone. Scale bar, 444 µm. d, KDE plots for neuronal genes of interest. Genes were 
chosen as candidate markers for specific neuronal subclusters. Clusters being 
explored are named below the histogram and the gene marker for the cluster is 
shown below its name. Stacked histograms show the expected ratio of clusters 
as a fraction of total composition. Right, KDE plots are quantified as intensity 
divided by the number of spots to reflect both the intensity of signal and the 
pervasiveness of the marker to not artificially bias the analysis owing to rare 
but intense signals.
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we see substantial co-expression remodelling across cortical areas. 
We replicated our spatial transcriptomics experimental workflow and 
analysis in a second individual (GW16), with the same results (Extended 
Data Figs. 11–14, Supplementary Tables 13–16).

Discussion
Our results provide a granular understanding of the gene-expression 
signatures of distinct cell types across neocortical areas throughout 
the second trimester of development. We find that across major brain 
structures, regional identity is highly pervasive among distinct cell 
types. By contrast, areal identity in the neocortex is highly specific 
and restricted to individual cell types. Furthermore, we find that in 
addition to cell-type identity, the developmental stage of cells (that is, 
gestational week) is a strong determinant of gene-expression signature 
composition. Together, these observations suggest that the dynamics 
of area-specific gene-expression signatures are surprisingly fast mov-
ing and cell-type-specific (Extended Data Fig. 15). This is in contrast to 
previous models of areal patterning, in which gene-expression pro-
grams have generally been assumed to be persistent once established.

We find strong evidence for the presence of a partial early cortical 
protomap between cell populations, including progenitors, at the fron-
tal and occipital poles of the neocortex (Extended Data Fig. 15a, b). We 
see evidence of transcriptional regulation programs that may prime 
more differentiated and mature cells to acquire either a rostral or caudal 
identity. For example, even though progenitor clusters in the neocor-
tex show little molecular diversity reflective of the multiple cortical 
regions that will eventually emerge, we do observe strong specification 
of PFC and V1 molecular identity among progenitor cells. In a previous 
study, we noted that radial glia were characterized by a small number of 
transcriptional differences that cascade into strong area-specific gene 
expression in excitatory neurons18. The analysis of a much larger number 
of cells and more cortical areas reveals a strong difference between PFC 
and V1 radial glia, while confirming that glutamatergic neurons are even 
more distinct between cortical areas. Our data suggest that cells located 
in between the prefrontal and occipital poles are less specified towards 
a particular areal identity, an observation that is more consistent with 
the protocortex hypothesis.

Characterizing the dynamic diversity of cell populations during the 
development of a structure as complex as the brain involves disentan-
gling multiple axes of variation. Transcriptomic data can only provide 
hypotheses of how arealization occurs; mechanisms of actual specifica-
tion cannot be tested without the use of model organisms and in vitro 
systems. This continues to present a challenge in the field because of the 
increased areal complexity of the human brain compared with rodent 
counterparts. The data we present here provides a spatially and tempo-
rally detailed molecular atlas of human brain and neocortex specification 
upon which future experimental characterizations can expand.

Online content
Any methods, additional references, Nature Research reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
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Methods

Sample acquisition
De-identified tissue samples were collected with previous consent 
in strict observance of the legal and institutional ethical regulations. 
Protocols were approved by the Human Gamete, Embryo, and Stem Cell 
Research Committee (institutional review board) at the University of 
California, San Francisco. Two sets of samples included twins: GW20_31 
and GW20_34; GW22 and GW22T.

Single-cell RNA sequencing capture and processing
Brain dissections were performed under a stereoscope with regards 
to major sulci to identify cortical regions. Of note, all dissections were 
performed by the same individual (T.J.N.) to enable reproducibility and 
comparison between samples. Tissue was incubated in 4 ml of papain/
DNAse solution (Worthington) for 20 min at 37 °C, after which it was 
carefully triturated with a glass pipette, filtered through a 40-µm cell 
strainer and washed with HBSS. The GW22 and GW25 samples were addi-
tionally passed through an ovomucoid gradient (Worthington) in order 
to minimize myelin debris in the captures. The final single-cell suspension 
was loaded onto a droplet-based library prep platform Chromium (10X 
Genomics) according to the manufacturer’s instructions. Version 2 was 
used for all samples except for GW19_2, GW16, and GW18_2 for which 
version 3 chemistry was used. cDNA libraries were quantified using an 
Agilent 2100 Bioanalyzer and sequenced with an Illumina NovaSeq S4.

Quality control and filtering
We filtered cells using highly stringent quality control (QC) metrics. In 
brief, we discarded potential doublets using the R package scrublet29 
for each individual capture lane, then required at least 750 genes per 
cell and removed cells with high levels (>10%) of mitochondrial gene 
content. These strict metrics for quality control preserved no more 
than 40% of cells for downstream analysis, and re-analysis of the data 
for specific brain structures or cell types may benefit from less stringent 
QC for additional discovery. Our goal was to obtain clean populations 
with a high validation rate for a better understanding of arealization 
signatures. The resulting ~700,000 cells passing all thresholds were 
used in downstream analyses.

Clustering strategy
We used a recursive clustering workflow to understand the cell types 
present in our dataset. In order to minimize potential batch effects and 
to increase detection sensitivity of potential rare cell populations, we 
performed Louvain–Jaccard clustering on each individual sample first. 
After initial cell type classification, we sub-clustered all the cells belong-
ing to a cell type to generate the most granular cell subtypes possible. We 
then correlated subtypes between individuals based upon the gene scores 
in all marker genes to bridge any batch effects, and iteratively combined 
clusters across all individuals and cell types. For this study, we combined 
the clusters within a single cell type across all individuals once, and again 
with all clusters from all individuals and cell types, resulting in two itera-
tive combinations. The annotations at each step are preserved in the sup-
plementary tables to enable reconstruction at any point in the pipeline.

Hierarchical clustering of clusters
Cluster hierarchies are generated from matrices correlating all clus-
ters to one another using Pearson’s correlation in the space of gene 
scores for all marker genes across all groups. Hierarchical clustering 
is performed within Morpheus (https://software.broadinstitute.org/
morpheus) across all rows and columns using one minus the Pearson 
correlation for the distance metric.

Constellation plots
To visualize and quantify the global relationships and connectedness 
between cell types, cell type subclusters, or cell type-area groups, we 

implemented the constellation plots described in ref. 1, by adapting 
the code made available at https://github.com/AllenInstitute/scrattch.
hicat/. In brief, we represented each group of cells as a node, whose size 
is proportional to the number of cells contained within it. Each node is 
positioned at the centroid of the UMAP coordinates of its cells. Edges 
represent relationships between nodes, and were calculated by obtain-
ing the 15 nearest neighbours for each cell in principal component 
analysis space (principal components 1:50), then determining, at each 
cluster, the fraction of neighbours belonging to a different cluster. An 
edge is drawn between 2 nodes if >5% of nearest neighbours belong to 
the opposite cluster in at least one of them. An edge’s width at the node 
is proportional to the fraction of nearest neighbours belonging to the 
opposite node, with the maximum fraction of out-of-node neighbours 
across all clusters represented as an edge width of 100% and equal 
to node width. The full code adaptation and implementation of this 
analysis is described in the function buildConstellationPlot in this 
paper’s associated Github repository.

Quantification of constellation plots
Constellation plots were quantified by using a summary of the input 
values described above. For each cell type or area connection, the num-
ber of edges between two groups was multiplied by the average fraction 
of cells meeting the threshold for a connection within the group. This 
resulting number was called the connectivity index.

Module eigengene calculations
Module eigengenes were calculated for numerous gene sets using the 
the R package WGCNA30. Scores were generated for each set of up to 
10,000 randomly subsetted cells from the group using the function 
moduleEigengene function, Scores were calculated based on the inter-
section of the gene set of interest and genes expressed in the subset 
of cells. For the area-specific signatures, differential expression was 
performed as described above, and the gene signatures from late stage 
neurons across all areas were used to calculate module eigengenes for 
the radial glia and IPC populations.

Area-specific markers and gene score calculations
The expression profiles of cells from each subcluster or cortical area 
were compared to those of all other cells using the two-sided Wilcoxon 
rank-sum test for differential gene expression implemented by the 
function FindAllMarkers in the R package Seurat and selected based 
on an adjusted P-value cut-off of 0.05. Adjusted P-values were based on 
Bonferroni correction using all features in the dataset. We performed 
this step separately for each cell type and each individual, since we 
observed that gene specificity was highly dynamic throughout the 
developmental process. We then combined the individual gene lists of 
each cell type and area, and annotated the stage(s) at which each gene 
appeared to be specific. We binned individuals into three stages: early 
(GW14, GW16 and GW17), middle (GW18, GW19 and GW20) and late (GW22 
and GW25). We ranked upregulated genes by specificity by calculating 
their gene score, which we defined as the result of a gene’s average log 
fold-change × enrichment ratio, in turn defined as the percentage of cells 
expressing the gene in the cluster of interest divide by the percentage of 
cells expressing in the complement of all cells. Dot plots used to visualize 
the expression of distinct marker genes across cell types and/or cortical 
areas were generated the custom function makeDotPlot available in our 
code repository, which makes use of the Seurat function DotPlot. In brief, 
for each gene, the average expression value of all non-zero cells from each 
group (cortical area) is scaled using the base R function scale(), yielding 
z-scores. Scaling is done to enable the visualization of genes across vastly 
different expression ranges on the same colour scale.

Transcription factor annotation
Areally enriched marker genes obtained as described above were 
annotated against a comprehensive list of 1,632 human transcription 
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factors described in31 and downloaded from the transcription factor 
database AnimalTFDB332, available at http://bioinfo.life.hust.edu.cn/
static/AnimalTFDB3/download/Homo_sapiens_TF.

Gene signature overlap and Sankey diagrams
To quantify the degree of (dis)similarity of molecular signatures across 
distinct cell types, cortical areas, and/or developmental stages, we 
calculated the overlap between all sets of cell type and area-specific 
gene markers at each stage, and visualized these comparisons using 
Sankey diagrams using the function ggSankey from the ggvis R pack-
age. We then calculated the proportion of genes for each node shared 
with every other node, and clustered nodes hierarchically by calculat-
ing their euclidean distances based on their proportions of shared 
genes. The code used to construct the overlap matrices, create the plots 
and quantify the results is described in the functions buildSankey and 
buildHeatmap in our Github repository.

RNA velocity
Velocity estimates were calculated using the Python 3 packages Velo-
cyto v0.1722 and scVelo v0.2.223. Reads that passed quality control after 
clustering were used as input for the Velocyto command line imple-
mentation. The human expressed repeat annotation file was retrieved 
from the UCSC genome browser. The genome annotation file used was 
provided by CellRanger. The output loom files were merged and used 
in scVelo to estimate velocity. For the combined cortical analysis, cells 
underwent randomized subsampling (fraction = 0.5), and were filtered 
based on the following parameters: minimum total counts = 200, mini-
mum spliced counts = 20 and minimum unspliced counts = 10. The final 
processed object generated a new UMI count matrix of 18,970 genes 
across 195,775 cells, for which the velocity embedding was estimated 
using the stochastic model. The embedding was visualized using UMAP 
of dimension reduction. The velocity genes were matched by corti-
cal area and were estimated using the rank velocity genes function in 
scVelo. Computational analysis of the transcriptomic data described in 
detail above were performed using R 4.024 and Python 3, the R packages 
Seurat (version 2 and version 3)25,26, googleVis27, dplyr and ggplot228, 
the Python packages Velocyto v0.1722 and scVelo v0.2.223 as well as the 
custom-built R functions described. Our reproducible code is available 
in the Github repository associated with this manuscript.

Validation marker gene selection
Marker genes for validation with the spatial omics platform were chosen 
first by identify useful cell type markers within the dataset. SOX2 was 
chosen to mark radial glia, EOMES was chosen to mark IPCs, and BCL11B 
and SATB2 were chosen to marker excitatory neuronal populations 
with previously validated changing co-expression patterns. POLR2A 
was used as a positive control for the technology. The remaining genes 
were selected based upon their status as a specific marker gene for 
excitatory neuron clusters of interest.

Rebus Esper spatial ‘omics platform
Samples for spatial transcriptomics were dissected from primary 
tissue as described above. Samples were flash frozen in OCT follow-
ing the protocol described in the osmFISH protocol33. Samples were 
then mounted to APS-coated coverslips, and fixed for 10 min in 4% 
PFA. Samples were then washed with PBS, and processed for spatial 
analysis. The spatially resolved, multiplexed in situ RNA detection 
and analysis was performed using the automated Rebus Esper spatial 
omics platform (Rebus Biosystems). The system integrates synthetic 
aperture optics (SAO) microscopy34, fluidics and image processing soft-
ware and was used in conjunction with smFISH chemistry. Individual 
transcripts from target genes were automatically detected, counted, 
and assigned to individual cells, generating a cell × feature matrix that 
contains gene-expression and spatial location data for each individual 
cell, as well as registered imaging data, as follows.

Rebus Biosystems proprietary software was used to design primary 
target probes (22–96 oligonucleotides) and corresponding unique 
readout probes (assigned and labelled with Atto dyes) for each gene. 
The oligonucleotides were purchased from Integrated DNA Technolo-
gies and resuspended at 100 µm in TE buffer. Coverslips (24 x 60 mm, 
no. 1.5, catalogue (cat.) no. 1152460, Azer Scientific) were functionalized 
as previously published33. Fresh frozen brain tissue sections (10 µm) 
were cut on a cryostat, mounted on the treated coverslips and fixed 
for 10 min with 4% paraformaldehyde (Alfa Aesar, catalogue no.) in 
PBS at room temperature, rinsed twice with PBS at room temperature 
and stored in 70% ethanol at 4 °C before use. The sample section on the 
coverslip was assembled into a flow cell, which was then loaded onto 
the instrument. The hybridization cycles and imaging were done auto-
matically under the instrumental control software. In brief, primary 
probes for all target genes were initially hybridized for 6 h and probes 
not specifically bound were washed away. Readout probes labelled with 
Atto532, Atto594 and Atto647N dyes for the first 3 genes were then 
hybridized, washed, counterstained with DAPI and then imaged with 
an Andor sCMOS camera (Zyla 4.2 Plus, Oxford Instruments) through 
a 20×, 0.45 NA dry lens (CFI S Plan Fluor ELWD, Nikon) with a 365-nm 
LED for DAPI and 532-nm, 595-nm and 647-nm lasers configured for SAO 
imaging. Multiple fields of view (FOVs) were imaged for each channel 
within the region of interest (ROI). Single z-planes with 2.8 µm depth of 
field were acquired for each FOV. After imaging, the first three readout 
probes were stripped and the readout probes for the next three genes 
were then hybridized, imaged and stripped. This process was repeated 
until readout was completed for all genes.

Using the Rebus Esper image processing software, the raw images 
were reconstructed to generate high-resolution images (equivalent 
or better than images obtained with a 100× oil immersion lens). RNA 
spots were automatically detected to generate high fidelity RNA spot 
tables containing xy positions and signal intensities. Nuclei segmenta-
tion software based on StarDist35 identified individual cells by finding 
nuclear boundaries from DAPI images. The detected RNA spots were 
then assigned to each cell using maximum distance thresholds. The 
resulting cell × feature matrix contains gene counts per cell along with 
annotations for cell location and nuclear size.

Kernel density estimation plots
Kernel density estimation plots were created from individual gene spot 
location maps retrieved from the spatial transcriptomics pipeline. 
They were created using the seaborn kdeplot function in Python with 
shading and cmap colouring. They were merged together for Fig. 4 with 
the Adobe Illustrator overlay and darken features, using 50% opacity.

Spatial co-expression analysis
Using the cell × feature matrices, we eliminated all spots with less than 
ten counts for signal. Pearson’s correlations were then performed 
across the genes within each dataset and filtered for self-correlation. 
Positive control (POL2RA) and non-excitatory neuron cell type markers 
(SOX2, EOMES and DLX6) were removed from the analysis. Interactions 
of 0.05 or more were preserved and visualized with Cytoscape v3.8.2 
using a force-directed biolayout. Individual nodes were coloured by 
their colour in the merged image file in Fig. 4b.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data analysed in this study were produced through the Brain Initia-
tive Cell Census Network (BICCN: RRID:SCR_015820) and deposited 
in the NeMO Archive (RRID:SCR_002001). All counts matrices are  
freely available at https://data.nemoarchive.org/biccn/grant/u01_ 
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devhu/kriegstein/transcriptome/scell/10x_v2/human/processed/counts/, 
and are organized together at  https://assets.nemoarchive.org/
dat-9jd8xw6. Source data are provided with this paper.

Code availability
All code and datasets used in this study, along with single-cell and 
spatial transcriptomics browsers are available at kriegsteinlab.ucsf.
edu/datasets/arealization and https://github.com/carmensandoval/
singlecell-neocortex-arealization.
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Extended Data Fig. 1 | Single-cell analysis across the whole developing 
human brain. a, UMAP plots showing the representation of samples by 
individual and brain region. There is strong intermixing across individuals, but 
more segregation by stage. b, On the left, violin plots of known and novel brain 
region-enriched marker genes. On the right are feature plots of cell type 
specific transcription factors. c, Histogram depicting the cell type 
composition as determined by the single-cell analysis for each sampled brain 
region, showing similar distributions across regions, but with known 
enrichments for inhibitory interneurons in the ganglionic eminences, and 
other small enrichments for specific cell types in other regions. d, Hierarchical 

clustering of 210 neocortex clusters based upon Pearson correlations across 
cluster markers. Each bar is colored based upon the major cell type assigned to 
that cluster. Beneath the clusters are histograms showing the fraction of cells 
from each area contributing to the cluster, and below that is a barchart showing 
the relative number of cells in each cluster (log2 transformed numbers ranging 
from 0 to 20). e, Heatmap representing the universe of area-specific genes for 
each cell type. Gene score, a metric that combines specificity and fold change, 
is shown from blue to red. Rows are grouped by brain region, and reveal that in 
many structures, area-specific genes cross cell types.



Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Single-cell analysis of regional identities across 
distinct cortical structures. a, UMAP projection of neocortex, allocortex and 
proneocortex cells alone, using cell type annotations from the previous 
analysis. Left UMAP plot shows integration of neocortex and allocortex cells 
(green and salmon, respectively), but exclusion of proneocortex cells (blue). In 
the middle UMAP plot, cells are colored by individual. Right UMAP plot shows 
the distribution and strong segregation by cell type. b, Marker genes (columns) 
specific to distinct cortical regions by cell type. Rows and columns are 
hierarchically clustered columns using one minus Pearson correlation for the 
distance metric. Heatmap reflects strong regional transcriptional identities, 

even among these 3 cortical structures. Additionally, it highlights expression 
signatures that cross cell type boundaries. c, Marker genes (columns) specific 
to distinct cortical regions analyzed in progenitors only. Rows and columns are 
hierarchically clustered columns using one minus Pearson correlation for the 
distance metric. d, Marker genes (columns) specific to distinct cortical regions 
analyzed in excitatory neurons only. Rows and columns are hierarchically 
clustered columns using one minus Pearson correlation for the distance 
metric. e, Marker genes (columns) specific to distinct cortical regions analyzed 
in mature glia only. Rows and columns are hierarchically clustered columns 
using one minus Pearson correlation for the distance metric.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Single-cell analysis across the developing human 
neocortex. a, Matrix showing the distribution of the number of cells across 
areal dissections for each of the individuals samples. Number of cells is shown 
in boxes sized proportionally to the number of cells from that individual and 
region, times 1000. b, UMAP plots showing the representation of samples by 
age (GW) (left) and brain region (right). There is strong intermixing across 
individuals, but more segregation by stage. c, Constellation plot shows the 
relationships between clusters of the excitatory lineage and oligodendrocytes, 
highlighting the strong relationships between clusters of the same cell type 
and lineage, but not between those of different groups. Nodes are scaled 
proportionally to the number of cells in each group. Edge thickness at each end 
represents the fraction of cells within a group with neighbors in the opposing 
group. Nodes are colored by cell type/state, and labelled by the brain region 
from which cells were sampled. d, Constellation plot quantification, with 
‘towards cell type’ connectivity as columns and ‘from cell type’ connectivity as 
rows. The connectivity index integrates the number of connections between 
two distinct cell types, as well as the average fraction of contributing cells from 
each cluster. e, Differential expression was performed at the cell type level 
between radial glia, IPCs, and excitatory neurons. Each set of cell-type-
enriched genes was used to create a network and scaled module eigengenes 
were calculated for each cell type. n = 50,000 cells subsampled from full 

dataset. Mean with standard deviation error bars are shown. f, Dot plot of area-
specific genes as identified in Cadwell, et al 2019 as they are expressed in our 
dataset. Most genes show expected expression patterns, though some deviate 
from these expectations, likely because many of these genes have been 
characterized in the rodent. g, Quantification of the number of differentially 
expressed areal genes from each cell type, using a union of all genes as 
calculated across each individual in the dataset. The gene score, an integration 
of fold change and specificity is quantified in the lower graph, with mean plus 
standard deviation shown. Neurons vs radial glia p-value = 0.000011; IPC vs 
radial glia p-value = 0.000435 (one-sided t-test). For both analyses, n= 5446 
(radial glia), 2426 (IPCs), 4170 (Neurons). h, Quantification of the number of 
differentially expressed areal genes from each cell type, using a union of all 
genes as calculated across each individual in the dataset normalized by the 
average number of genes expressed within that cell type. i, Sankey plots show 
the proportion of area-specific gene groups shared between cell types and 
cortical areas. The number on each block line indicates how many genes are 
represented by that stream as the stream sizes are not to scale. The “central” 
area encompasses motor, parietal, and somatosensory areas. j, Venn diagram 
showing the overlap between the PFC/V1 genes in the Nowakowski, et al 2017 
dataset and this study. p-value = 0.00231, Chi-square test.



Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Constellation plots cell types and developmental 
stages. a, Constellation plots of excitatory lineage and oligodendrocyte 
lineage cell grouped by type and cortical area highlight similarities between 
groups of frontal and occipital cortical areas. Each dot is scaled proportionally 
to the number of cells represented by that analysis. The thickness of the 
connecting line on each end represents the fraction of cells within each group 
with neighbors in connected groups. Dot color represents cell type while text 
over the dot marks cortical area. b, Quantification of the constellation plots, 
with ‘towards area’ in columns and ‘from area’ in rows. The connectivity index 

from white to red integrates the number of connections between two cell types 
as well as the average fraction of cells from each cluster contributing to each 
connection. c, Constellation plots of excitatory lineage grouped by cortical 
area within early (GW14 – GW17) samples. d, Quantification of the early 
constellation plots. e, Constellation plots of excitatory lineage grouped by 
cortical area within mid-stage (GW18 – GW20) samples. f, Quantification of the 
mid-stage constellation plots. g, Constellation plots of excitatory lineage 
grouped by cortical area within late-stage (GW18 – GW20) samples.  
h, Quantification of the late-stage constellation plots.



Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Trajectories of differentiation and changes in gene 
signatures. a, RNA velocity analysis was performed using all necortical cells 
from the dataset. Stream arrows depict predicted differentiation trajectories. 
Cells are shown in UMAP space, and are colored by cell type (left panel) and by 
cortical area (right panel). In the second row, zoomed in streams are shown for 
individual cortical areas PFC, motor and V1 only colored by cell type.  
b, Normalized counts for area-specific genes (rows) that were detected by the 
RNA-velocity algorithm are shown across a random subset of 20,000 cells 
(columns). Rows and columns were hierarchically clustered using a one minus 
pearson correlation distance matrix. Cell type and region are shown for each 
cell (top color bar), and highlight cortical area specific excitatory neuron 

populations. c, Module eigengenes were calculated for radial glia (left) and 
IPCs (right) based upon the area specific gene signatures identified in neurons 
of that area. For both sets of plots, the gene-expression signature of PFC 
neurons is shown on the left and the V1 signature is shown on the right. Lines 
indicate the signature strength for progenitors of each region across the 
timepoints sampled. Early in development, PFC radial glia are defined by a low 
V1 signature strength, while V1 radial glia are defined by a strong V1 signature 
and minimal signal for all other areal signatures. IPCs from the PFC and V1 are 
generally defined by the lack of a strong signature for any of the areas 
calculated. Range shows 95% confidence interval.



Extended Data Fig. 6 | Gene-Expression Dynamics Across Areas and 
Developmental Stages. a, Dot plots transcription factors enriched across 
areas in radial glia (left) and excitatory neurons (right) relative to other cortical 
areas. Enrichment can occur via an increase in the number of cells expressing a 
given gene, an increase in the average expression level of expressing cells, or 
both. b, Sankey plots show the proportion of area-specific excitatory neuron 
genes shared across developmental stages. The number on each block line 

indicates how many genes are represented by that stream as the stream sizes 
are not to scale. The “central” area encompasses motor, parietal, and 
somatosensory areas. c, Sankey plots show the proportion of area-specific 
radial glia genes shared across developmental stages. The number on each 
block line indicates how many genes are represented by that stream as the 
stream sizes are not to scale.
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Extended Data Fig. 7 | Signature Correspondence Between Developmental 
and Adult Samples. a, Correlations were performed between the neuronal 
clusters in this dataset and the area specific identities calculated from adult 
human cortical areas as obtained from the Allen Institute Brain Map dataset.  
b, Module eigengene calculations of adult areal signatures show minimal to no 
correspondence to the signatures we identify in this study based upon low 
module eigengene values. n = 50,000 cells subsampled from full dataset. Mean 

with standard deviation error bars are shown. c, Module eigengene values of 
Allen excitatory neurons layer specific signatures in each of the developmental 
stages within our dataset. n = 50,000 cells subsampled from full dataset. Upper 
layer signatures emerge at late stages, while a small signal for deep layer 
identities can be observed at the earliest stages. Mean with standard deviation 
error bars are shown.



Extended Data Fig. 8 | Spatial Expression Patterns of Cell Type and 
Neuronal Cluster Marker Genes GW20 Part 1. Kernel density plots of each 
gene assayed using spatial RNA in situ analysis. Plots are made from all spots, 

and are shown across all four sampled cortical areas of a GW20 individual. 
Color is for emphasis of expression, but individual colors have no specific 
meaning.
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Extended Data Fig. 9 | Spatial Expression Patterns of Cell Type and 
Neuronal Cluster Marker Genes GW20 Part 2. Kernel density plots of each 
gene assayed using spatial RNA in situ analysis. Plots are made from all spots, 

and are shown across all four sampled cortical areas of a GW20 individual. 
Color is for emphasis of expression, but individual colors have no specific 
meaning.



Extended Data Fig. 10 | Laminar and network changes across cortical areas 
(GW20). a) We quantified the laminar distributions of each gene in each GW20 
sample. The distributions are shown by laminar region, as annotated in Fig. 4, 
and are represented as fraction of signal for each gene in each bin. b) Using cell 
identities for individual gene spots, we computed co-expression networks for 

each sample to visualize changes in the co-expression patterns of the 31 genes 
analyzed across areas of the cortex. Gene pairs were classified as coexpressed 
if their Pearson correlation was >=0.05. Networks are shown in a force-directed 
layout reflective of interaction strength. Only neuronal marker genes are 
shown, colored as in panel (b).
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Extended Data Fig. 11 | Spatial analysis of GW16 sample. a) Top left: Nucleus 
staining outlines tissue architecture, with the ventricular zone at the bottom 
and the cortical plate at the top. Top right: KDE plots of positive control genes. 
SOX2 marks radial glia and the ventricular zone, while SATB2 and BCL11B mark 
the cortical plate. As previously described, SATB2 and BCL11B are co-expressed 
in frontal regions, but are mutually exclusive in occipital regions. Scale 
bar = 444 µm. This analysis was performed once for each of the four regions.  
b) KDE plots of neuronal genes of interest. Genes were chosen as candidate 
markers for specific neuronal subclusters. Clusters being explored are named 

below the histogram each gene marker for this cluster is below its name. 
Stacked histograms show the expected ratio of clusters as a fraction of total 
composition. To the far right in each row, the quantification of the KDE plots is 
shown as intensity divided by the number of spots in order to reflect both the 
intensity of signal but also the pervasiveness of the marker to not artificially 
bias the analysis by examples of rare but intense signal. We see strong 
correspondence between the predicted spatial distribution of clusters and the 
signal in our spatial RNA analysis.



Extended Data Fig. 12 | Spatial Expression Patterns of Cell Type and 
Neuronal Cluster Marker Genes GW16 Part 1. Kernel density plots of each 
gene assayed using spatial RNA in situ analysis. Plots are made from all spots 

and are shown across all four sampled cortical areas of a GW16 individual. Color 
is for emphasis of expression, but individual colors have no specific meaning.
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Extended Data Fig. 13 | Spatial Expression Patterns of Cell Type and 
Neuronal Cluster Marker Genes GW16 Part 2. Kernel density plots of each 
gene assayed using spatial RNA in situ analysis. Plots are made from all spots, 

and are shown across all four sampled cortical areas of a GW16 individual. Color 
is for emphasis of expression, but individual colors have no specific meaning.



Extended Data Fig. 14 | Laminar and network changes across cortical areas 
(GW16). a) We quantified the laminar distributions of each gene in each GW16 
sample. The distributions are shown by laminar region, as annotated in Fig. 4, 
and are represented as fraction of signal for each gene in each bin. b) Using cell 
identities for individual gene spots, we computed co-expression networks for 

each sample to visualize changes in the co-expression patterns of the 31 genes 
analyzed across areas of the cortex. Gene pairs were classified as coexpressed 
if their Pearson correlation was >=0.05. Networks are shown in a force-directed 
layout reflective of interaction strength. Only neuronal marker genes are 
shown, colored as in panel (b).
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Extended Data Fig. 15 | Summary Schematic of Proposed Model of 
Arealization. In this study, we find that in addition to their neuronal progeny, 
radial glia from distinct cortical areas are already distinct from each other (A). 
At early second trimester timepoints, the strongest contrast is seen radial glia 
at the frontal and occipital poles of the neocortex (B). The gene-expression 

signatures of cells at different cortical areas are highly dynamic across 
developmental time (C) and across the differentiation axis (RG → IPC → 
excitatory neuron) (D). As differentiation progresses, these dynamic gene 
signatures give rise to other major cortical areas, and further refinement 
occurs, likely as sensory input to the cortex begins to take place.
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Data collection We used Cell Ranger to align and generate raw count matrices.

Data analysis Single-cell RNAseq:  
Single-cell alignment and counts was performed with cellranger v2.0.0. Doublet removal was performed with scrubleet v0.1. Computational 
analysis of the transcriptomic data were performed using R 4.0 (R Core Team, 2020) and Python 3, the R packages Seurat (Butler et al, 2019) 
(version 2 and version 3), googleVis (Gessman, 2011), dplyr and ggplot2 (Wickham et al, 2020; Wickham, 2009), the Python packages Velocyto 
v0.17 (LaManno, 2018) and scVelo v0.2.2 (Bergen, 2020), as well as the custom-built R functions described.  
Hierarchical clustering is performed within Morpheus (https://software.broadinstitute.org/morpheus). 
 
Our reproducible code is available in the Github repository associated with this manuscript.  
 
Spatial transcriptomics:  
RNA spot detection, thresholding, cell segmentation, and spot assignment were performed with the Rebus Esper imaging processing software 
(Rebus Biosystems, Inc., Santa Clara, CA). 
Kernel density estimation plots were created from individual gene spot location maps using the kdeplot function implemented in the Python 
library seaborn. KDE plots were merged with Adobe Illustrator’s overlay and darken features, using 50% opacity. 
To derive gene co-expression networks from the spatial transcriptomics data, Pearson’s correlation between each pair of genes was 
calculated within each dataset and filtered for self-correlation. Interactions of 0.05 or more were preserved and visualized with Cytoscape 
v3.8.2 using a force-directed layout.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Single-cell RNA sequencing data has been deposited at the NeMO archive under dbGAP restricted access (RRID:SCR_002001) and metadata for all cells is included in  
STables 1-2). Counts tables are provided by NeMO without restriction at https://data.nemoarchive.org/biccn/grant/u01_devhu/kriegstein/transcriptome/
scell/10x_v2/human/processed/counts/, but raw data is protected to ensure patient privacy.  
Spatial transcriptomic data are available for exploration and analysis in STables 9 - 12.
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Sample size Because of the scarcity of intact second trimester human samples, we included as many samples per age range as possible. This resulted in at 
least 3 samples per age range. Sample size was determined by sample availability of rare samples, no sample calculation analysis was 
performed. However, these samples were sufficient because 3 per age were obtained and all expected major cell types were identified.  

Data exclusions In all the single-cell analyses, we excluded all cells that had fewer than 750 genes per cell and had greater than 10% mitochondrial content. 
However, these cells re available in the raw dataset. Exclusion criteria were pre-determined based upon published metrics from other single-
cell studies.

Replication All smFISH primary human data had one replicate per area due to the scarcity of the tissue. Replicates for single-cell analysis included at least 
3 samples per age range studied. All attempts at replication were successful. 

Randomization No randomization was used. Covariates were not controlled and are not relevant to this study because no covariates were statistically 
analyzed.  

Blinding No blinding was used. Blinding was not used because all analysis was performed on all relevant samples in reproducible ways so no bias could 
have been removed by blinding. 
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Population characteristics 13 intact deidentified human brain tissue samples from second-trimester specimens spanning gestational weeks 14 to 25. 
We microdissected 10 major brain structures as available: neocortex, proneocortex (cingulate), allocortex (hippocampus), 
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claustrum, ganglionic eminences (GE), hypothalamus, midbrain, striatum, thalamus and cerebellum. No demographic 
information was collected, including gender, genotype or other treatment history and thus was not analyzed in any co-variate 
manner.

Recruitment De-identified tissue samples were collected with previous patient consent in strict observance of the legal and institutional 
ethical regulations. This was performed by the clinic and no recruitment criteria were used. Because we have no 
demographic information about either our samples or the patient population, we cannot comment on how any bias may or 
may not be present. While this would be scientifically helpful, this wall is essential for the patient confidentiality of sensitive 
procedures and patient privacy trumps our interest.

Ethics oversight Human Gamete, Embryo, and Stem Cell Research Committee (Institutional Review Board) at the University of California, San 
Francisco.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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