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(2 + &)-dimensional theory of the electromechanics of lipid membranes: Electrostatics

Yannick A. D. Omar,"” Zachary G. Lipel,>" and Kranthi K. Mandadapu?3:*
'Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Department of Chemical & Biomolecular Engineering, University of California, Berkeley, California 94720, USA

3Chemical Sciences Division, Lawrence Berkeley National Laboratory, California 94720, USA

The coupling of electric fields to the mechanics of lipid membranes gives rise to intriguing electromechanical
behavior, as, for example, evidenced by the deformation of lipid vesicles in external electric fields. Electrome-
chanical effects are relevant for many biological processes, such as the propagation of action potentials in
axons and the activation of mechanically gated ion channels. Currently, a theoretical framework describing
the electromechanical behavior of arbitrarily curved and deforming lipid membranes does not exist. Purely
mechanical models commonly treat lipid membranes as two-dimensional surfaces, ignoring their finite thickness.
While holding analytical and numerical merit, this approach cannot describe the coupling of lipid membranes to
electric fields and is thus unsuitable for electromechanical models. In a sequence of articles, we derive an effective
surface theory of the electromechanics of lipid membranes, called the (2 4 §)-dimensional theory, which has the
advantages of surface descriptions while accounting for finite thickness effects. The present article proposes a
generic dimension reduction procedure relying on low-order spectral expansions. This procedure is applied to
the electrostatics of lipid membranes to obtain the (2 4+ §)-dimensional theory that captures potential differences
across and electric fields within lipid membranes. This model is tested on different geometries relevant for lipid

membranes, showing good agreement with the corresponding three-dimensional electrostatics theory.

I. INTRODUCTION

Lipid membranes separate the interior and exterior of a
biological cell and its organelles, serving as barriers that regu-
late the transport of proteins, ions, and other molecules. They
exist in various, dynamically changing shapes, with radii of
curvature ranging from tens to hundreds of nanometers. In
contrast, they comprise only two layers of lipid molecules,
forming a bilayer structure with a thickness of just 3-5 nm.
This makes lipid membranes exceptionally thin materials.

The thin, bilayer structure of lipid membranes gives rise
to peculiar mechanical behavior. In-plane stretch and out-of-
plane bending indicate elastic behavior, while the in-plane
flow of lipids shows signatures of viscous behavior. In addi-
tion, lipid membranes exhibit an intricate coupling between
out-of-plane elastic deformations and in-plane viscous flows.
Consequently, lipid membranes are considered viscous-elastic
materials [1-3].

Lipid membranes also exhibit coupled electrical and me-
chanical behavior. For instance, under the action of an electric
field, membrane vesicles deform into prolates, oblates, and
other shapes [4-10] and even form pores [6,8,9,11-17]. In
addition, the bulk fluid surrounding lipid membranes is often
an electrolyte with varying ionic concentrations across the
boundaries and within the interior of cells and organelles.
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Such concentration differences can give rise to electro-
osmotic flows and expose lipid membranes to local electric
fields, thereby inducing Maxwell stresses and deformations.

Understanding the electromechanics of lipid membranes is
relevant across various disciplines. For example, electropo-
ration, the creation of pores by an external electric field, is
employed in novel procedures for nonthermal food process-
ing, nonthermal tumor ablation, and the delivery of cancer
treatment drugs into cells [18-20]. Furthermore, electropo-
ration of nearby lipid membranes leads to their subsequent
fusion. This so-called electrofusion is used to facilitate cell
hybridization [21] and the creation of microreactors [9].

The electromechanics of lipid membranes is also essential
for understanding many biological phenomena. One fascinat-
ing example is the propagation of an action potential through
an axon. Action potentials constitute localized and transient
depolarizations of the axon caused by ionic currents through
the lipid membrane. They travel along the axon to propagate
signals—for example, between sensory neurons and the brain
[22]. Despite evidence of thermal and mechanical effects
[23-28], the perspective of action potentials as purely electric
phenomena prevails. However, recent attempts challenge the
purely electrical description by accounting for coupled ther-
modynamic, electrical, and mechanical aspects [29-31].

Theoretical models of the electromechanics of lipid mem-
branes are indispensable to understand the above phenomena.
They often involve long time scales and large length scales,
necessitating the development of continuum models. Due
to the small thickness of lipid membranes, continuum the-
ories commonly model them as two-dimensional surfaces
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[3,32,33], an approach well established for the mechanics of
lipid membranes. However, a surface description may not be
suitable for the electromechanics of lipid membranes.

An electromechanical theory that treats lipid membranes
as surfaces suffers from multiple shortcomings. First, surface
descriptions do not resolve potential drops across lipid mem-
branes but instead yield continuous potentials—contradictory
to what is observed in action potentials, for instance. Sec-
ond, arbitrary surface charge densities on the two interfaces
between lipid membranes and their surroundings cannot be
accounted for correctly. Lastly, charged surfaces exhibit dis-
continuities of the electric field along their normal directions
[34]. Consequently, when lipid membranes are treated as sur-
faces, the electric field in their interior is not well defined.
Yet the aforementioned aspects are all required to capture the
Maxwell stresses acting on lipid membranes. Hence, a suit-
able electromechanical theory cannot treat lipid membranes
as surfaces but needs to resolve effects arising from their finite
thickness.

Three-dimensional models naturally account for the finite
thickness of lipid membranes. However, three-dimensional
models are complex and quickly become intractable for
deforming geometries—finding analytical solutions is often
unwieldy, and even their numerical treatment is challenging.
In this work, we propose an effective two-dimensional theory
to describe the electromechanics of lipid membranes. Starting
from a three-dimensional continuum picture, we introduce a
dimension reduction procedure using low-order spectral ex-
pansions. This approach leads to an effective two-dimensional
theory, which explicitly retains the thickness information re-
quired to capture potential differences and Maxwell stresses.
At the same time, the resulting equations are analytically and
numerically less challenging than those of three-dimensional
models and can be analyzed using tools developed for two-
dimensional surface theories. Thus, the proposed theory
combines the advantages of three-dimensional and surface
descriptions of lipid membranes and is referred to as the
(2 4 §)-dimensional theory.

This article is the first in a series of three that derives the
(2 4 8)-dimensional theory of the electromechanics of lipid
membranes. The series of articles is structured as follows.

(1) Part 1: Electrostatics: We introduce a dimension re-
duction technique for partial differential equations based on
low-order spectral expansions of the solution. We then apply
the dimension reduction procedure to the electrostatics of thin
films and show the effectiveness of the dimensionally reduced
theory.

(2) Part 2: Balance laws: We apply the dimension reduc-
tion procedure to the three-dimensional mechanical balance
laws of thin films, while accounting for Maxwell stresses aris-
ing from electric fields. This yields dimensionally reduced,
constitutive model-independent mass, angular momentum,
and linear momentum balance equations.

(3) Part 3: Constitutive models: We propose three-
dimensional elastic and viscous constitutive models for lipid
membranes and derive the governing equations of the (2 +
8)-dimensional theory for the electromechanics of lipid mem-
branes.

The remainder of this article is structured as follows. In
Sec. II we revisit the well-known equations describing an

electric field under quasistatic conditions and introduce the
problem of a thin film embedded in a bulk domain. In Sec. III
we take an abstract perspective and introduce the dimension
reduction procedure for a general differential equation. A
more physically inclined reader may skip Sec. III and imme-
diately proceed to Sec. IV, wherein we apply the proposed
dimension reduction method to the electrostatics of thin films.
Section V concludes the article with analytical and numerical
comparisons of the three-dimensional and dimensionally re-
duced electrostatic theories for different geometries relevant
for lipid membranes.

II. ELECTROSTATICS OF A THIN FILM

We begin this section by recalling the theory of contin-
uum electrostatics with discontinuities [34]. Subsequently, we
describe the electrostatics equations governing a thin film
embedded in a three-dimensional bulk domain.

Under the conditions of electrostatics, Maxwell’s equa-
tions for a linear dielectric material with constant permittivity
reduce to' [34] (see Sec. 1 of the Supplemental Material [35]
for details)

ediv(e) =g, VX ebB, (1)
curl(é) =0, Vxebk, 2)
n-[eé] =0, VXeS, 3)
ax[e]=0, Vxes, 4)

where 55 denotes the bulk domain, ¢ is the permittivity, é is
the electric field, and ¢ is the free charge density in B. Ad-
ditionally, S denotes an oriented surface, with normal 7z and
surface charge density o, where the electric field is discon-
tinuous. The notation [e] denotes the jump across a surface
of discontinuity, [e] = e+ — e, where o denotes the value
above and below S, respectively.

By Helmbholtz’s theorem [36], Eq. (2) is satisfied by con-
struction if we define the electric potential ¢ such that

¢ = —grad(¢), (5)
which further simplifies Maxwell’s equations to
Ap = —q/e, Vi e B, (6)
[¢] =0, Vi €S, (7)
i - [[8grad(¢v>)]] = —o, V¥ e S, (8)

it x [grad(4)] = 0, Vi e S, )

where A denotes the Laplacian. Equation (6) is Gauss’ law
written in terms of the potential and Eq. (7) describes con-
tinuity of the potential across the surface of discontinuity.
The latter follows from Coulomb’s law for continuous charges
[37]. According to Eq. (8), the normal component of the gra-
dient of the electric potential is discontinuous at a surface of
discontinuity while, according to Eq. (9), components parallel
to the surface of discontinuity are continuous. Note that, given

"H4gek symbols (7) are used to distinguish corresponding quantities
in the dimensionally reduced theory, which do not carry a dedicated
symbol.



FIG. 1. Schematic of a thin film M with thickness § that sepa-
rates the two bulk domains B+ and B~.

Eq. (7), Eq. (9) is trivially satisfied. Next, we consider a thin
film without any free charge in its interior, as is the case
for lipid membranes. The thin film M has thickness § and
is embedded in two bulk domains B* above and below M,
as shown in Fig. 1. The top and bottom bounding surfaces
of M are denoted by ST and are equipped with surface
charge densities o+, making S* surfaces of discontinuity. The
outward-pointing normal vectors on ST are denoted by i*.
The associated three-dimensional electrostatics equations are
given by

Ady- = —qp-/ep-, V¥eB, (10)
[¢] = o, VieS, (11)

i [ee] =07, ViedS, (12)
emAdym = 0, V¥ e M, (13)
at.[e¢] =07, Vi e ST, (14)
[¢] = o0, Vi e ST, (15)
Adg+ = —qg+/Jeg+, V¥ e BT, (16)

where ep+ and gy are the permittivity of the bulk regions and
thin film, respectively. The jump conditions, Eqs. (12) and
(14), are written in terms of electric fields for later notational
convenience. We close the problem with boundary conditions
on the lateral surface S with outward-pointing normal v, as
shown in Fig. 1:

P = du,
—v. grad(d;M) =e,

VX € SHD, (17)
Vx € SHN» (18)

where S” = SHD U SHNs SHD DSHN =, and (]SM and ¢ are
the prescribed potential and electric field component, respec-
tively. The remaining boundary conditions for ¢g= are of no
consequence for the dimension reduction procedure and are
thus omitted here.

In the following, we refer to Egs. (10)-(16) as the
three-dimensional theory. In comparison, an effective, di-
mensionally reduced theory replaces Gauss’ law on the
three-dimensional thin film M, Eq. (13), by an approxi-
mately equivalent equation defined on the two-dimensional
midsurface of M, denoted Sy. To that end, the following sec-
tion introduces a dimension reduction procedure that follows
ideas used in spectral methods by expanding all unknowns and
parameters in terms of orthogonal polynomials.

III. SPECTRAL DIMENSION REDUCTION
FOR THIN FILMS

In this section, we present a general approach to deriving
dimensionally reduced differential equations defined on the
midsurface of a thin film. We begin by revisiting spectral
expansions in Sec. III A and show how they can be used to
derive dimensionally reduced theories in Sec. III B. Note that
the remaining sections are self-contained and that the reader
may immediately proceed to Sec. IV to find the dimensionally
reduced electrostatics equations.

A. Mathematical preliminaries

Let P.(0):(a,b) > R, k € Ny, a,b € R denote a real-
valued polynomial, and let P = {P,(0) : k € Ny} denote the
corresponding set of polynomials. For two sufficiently well-
behaved functions f(0), g(0), 6 € (a,b), we define the
weighted inner product

(), 80)w = f(6)g(0)w(®)do, 19)
(a,b)
where w(60) denotes a weight function. If the polynomials in
P satisfy the relation

(Pk(e)a Pl(9)>w = Ck(skla

we call P an orthogonal set of polynomials. In Eq. (20), ¢y is
some positive constant and &; denotes the Kronecker delta.
Let ||-||lw = +/(*, -)w denote the norm induced by the inner
product defined in Eq. (19) and let Li denote the space of
functions bounded in || - ||y

The Nth-order projection of any function f(6) € L2 onto
P, denoted by fp v, is defined as

VPk, Pl € ]P, (20)

N
fen®) =" fiPi(0), @1)

k=0

where f; is the kth coefficient of the expansion and is given
by

A

Jie = (f(0), Pi(0))w. (22)

The set of polynomials IP is complete with respect to the norm
||| |,y if, for any £(0) € L2, [38]

w?

Jim 1170 — fe v @)llw = 0. (23)

Equation (21) in conjunction with Eq. (23) allows us to ex-
press functions in L? as

fO)="_ fiPu(6). (24)

k=0

Complete and orthogonal polynomials are commonly used
in spectral methods to numerically solve differential equa-
tions. In the following, we briefly revisit the basics of spectral
methods required for our method for dimension reduction;
see Refs. [38—40] for more details. Let L(v(0);p) : U — ng
denote a scalar-valued differential operator, where U C Lﬁ) is
some space of sufficiently smooth functions defined on (a, b)
and p = {p;}=1,..n, is a set of parameters. We write a generic



differential equation as

Lw@);p)=0, 6e(ab), uel, (25)

postponing any discussion on the application of boundary
conditions to Sec. IIIB. Due to the completeness property
of P in Egs. (23) and (24), we can expand the solution
u(0) as

o0
w®) = i Pe(6). (26)

k=0
Thus, finding the solution u(6) is equivalent to finding the
constant coefficients ;. However, any numerical approach
requires truncating the expansion at some finite order N € N,

N
up n(0) =Y iy Pe(0), 27)
k=0
where the subscript N on iy indicates dependence on the
truncation order N. The unknown coefficients iy ; in Eq. (27)
are found by replacing u(6) by up y(6) in Eq. (25) and taking
the inner product with the /th polynomial, resulting in

N
<£ (Z ﬁN,kPk(Q);P> , P1(9)> =0,

k=0

viel0,...,N].

(28)

This yields N + 1 equations for the N + 1 unknown coeffi-
cients {ity r}x=0,...n. Since the spatial dependence of up y is
entirely contained in the polynomials P (0), any derivative in
Eq. (28) can be carried out explicitly. This leads to a system
of algebraic equations rather than differential equations. Ad-
ditionally, taking the inner product requires integration along
6, which makes Eq. (28) independent of 6. Therefore, the
approximate solution up y(6) to the differential equation in
Eq. (25) can be found by solving a system of algebraic equa-
tions to yield the coefficients {iy i }r—o...n-

B. Dimension reduction procedure for thin films
using spectral expansions

Before introducing the dimension reduction procedure, we
revisit the thin film setup described in Sec. II. The arbitrarily
curved, thin film M has constant thickness § and the mid-
surface Sy divides M into two parts of equal thickness. The
midsurface Sp is equipped with a normal vector n, and the
superscripts “+” and “—” indicate quantities associated with
the regions above and below &y, as defined by the orientation
of n. The top, bottom, and lateral bounding surfaces of M
are denoted by S*, S7, and S, respectively (see Fig. 1).
The lateral bounding surface can be expressed as S = 05y x
(—=38/2,48/2), where 05 is the boundary of Sy. The outward-
pointing normal on &), is denoted by v, as shown in Fig. 1.

J

gn(&®), t%p) =0,
hy(u(¢), ¢'sp) =0,

Vi e Q x 9FE,
Vi e d"Q x &,
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FIG. 2. The midsurface Sy is parametrized using the curvilinear
coordinates {¢', %} € Q.

Finally, the body M is embedded into three-dimensional bulk
domains, referred to as B+ above M and B~ below M.

The thin film M is arbitrarily curved, making it convenient
to formulate the proposed dimension reduction method in a
differential geometry framework. To this end, we introduce a
parametrization of M. The midsurface Sy is endowed with a
two-dimensional, curvilinear parametrization {¢', %} € Q as
shown in Fig. 2, where 2 denotes the parametric domain, such
that we can express any position xo € Sy using the mapping
Xo: 2 — So, (¢1, £%) > xg. Parametrizing the full body M
requires a third parametric direction, ;3 € B, where Z denotes
the corresponding parametric domain. We can then express
any position x € M using the mapping x: Q2 x E - M,
(&', 6%, %) = x with x| = Xo-

We now discuss how spectral expansions can be used to
reduce a differential equation defined on M to a differential
equation defined on the midsurface Sy. For simplicity, we will
continue considering only scalar-valued differential operators
such as the Laplacian, relevant for electrostatics. However,
the ideas presented here can be extended to vector-valued
differential differential operators, as will be discussed in part 2
of this sequence of publications where the mechanical balance
laws are addressed.

Let u(¢") € U denote a scalar-valued function from a space
of sufficiently smooth functions ¢/ defined on Q2 x E, where
we used the short-hand notation ¢’ = {¢', ¢2, ¢3} for the
parametrization. Assume that u(¢) satisfies the differential
equation

L );p)=0, Vi'eQxE, (29)

where L(u(¢%); p) is now a partial differential operator. A set
of appropriate boundary conditions closes Eq. (29):

m e [1,...,N35], (30)
nell,...,Nyal, 31



where we use the short-hand notation ¢ = {¢!, ¢2}.? Here,
gm denotes the mth boundary condition on either ST or §~
while 7, denotes the nth boundary condition on Sjf € §.
Note that the number of boundary conditions, Nyz and Njgq,
is determined by the order of the differential operator.

With Egs. (29)—(31) formulated in terms of the
parametrization ¢, dimension reduction requires eliminating
dependence on the parametric direction ¢3, implying that
the dimensionally reduced equations depend only on the
midplane parametrization ¢“. To this end, the key idea of our

proposed method is to express the solution u(¢*) as
oo

u(Z') = W EPO)), (32)

k=0

where i1, (¢*) denotes the unknown coefficients of the spectral
expansion, and 6 is the mapping 6 : & — (a, b). It should be

J

emphasized that the coefficients #;({*) depend only on the
parametrization of the midplane Sy and not on the paramet-
ric direction ¢3 associated with the thickness. Instead, the
dependence on ¢? is entirely contained in the polynomials
Py (9). Similarly, the parameters p; € p may also depend on
the parametrization ¢, and are thus expanded as

pi(E)) = piCPUOE?)). (33)
k=0

where the coefficients px(¢*) are found by applying Eq. (22)
along the thickness direction.

To obtain a finite-order approximation of the solution, the
expansion in Eq. (32) is truncated at order N,, which reduces
Eq. (29) to

N, o)
LI D @ PUOE?)); Zﬁjk@“)Pk(e(H))} =0, ¥'eQxE. (34)
k=0 k=0 j=L...,N,

As in Eq. (28), we obtain the equations for the unknown coefficients #;(¢*) by taking the inner product with the /th-order

polynomial P; and assuming weighted square integrability:

N, 00
<£ Y @HPOE?)); { > ﬁjk@“)Pk(e(ﬁ))}
J=1

k=0 k=0

.....

,P1(9(§3))> =0, V°eQ, VIiel0,...,N,. (35)

w

In Eq. (35), any differentiation with respect to ¢ can be carried out explicitly, allowing the evaluation of the inner product. Using
the orthogonality condition in Eq. (20), Eq. (35) yields N, + 1 partial differential equations that only depend on the midsurface
parametrization {“. Thus, we obtain a set of dimensionally reduced differential equations for the N, + 1 unknown coefficients
it (¢%) defined on the midsurface of the thin film M.

Due to the potential coupling between higher and lower order coefficients, the coefficients #; (¢“) in Egs. (34) and (35) do not
necessarily coincide with the coefficients of the series expansion in Eq. (32). However, for notational simplicity, we use the same
symbol i (¢%) throughout. We further note that the series expansions of the parameters p; are retained in Eq. (35). However,
truncation of these series can often be physically motivated and might be necessary to obtain an analytically tractable theory, as
will be seen in Sec. IV when applying the proposed method to the electrostatics of thin films.

The original problem, Eq. (29), requires application of the boundary conditions in Eqgs. (30) and (31). However, taking the
inner product in Eq. (35) eliminates the derivatives along the ¢* direction such that the boundary conditions in Eq. (30) need to
be enforced by discarding Nyz equations from Eq. (35) and replacing them by the Njz boundary conditions in Eq. (30). This,
in fact, sets a limit on the minimum order of expansion of the solution, N, > Nyz — 1. The Nyu boundary conditions on the
lateral boundary S, in Eq. (31) are dimensionally reduced analogously to Eq. (35). Substituting the truncated expansion of the
solution into Eq. (31) and taking the inner product with the /th-order polynomial P;, assuming weighted square integrability,
yields boundary conditions defined on the boundary of the midsurface, 05y:

N, 00
<hn D PO, ¢ Zﬁjk<c°‘>Pk(e<z3»} Viell,....,Nsal.  (36)
j=1,....N

k=0 k=0

,H(9<c3))> =0,

----- P w

(

This fully eliminates the parametric direction ¢3 from
Egs. (29)-(31) such that the dimensionally reduced problem
is given by the first N, + 1 — Nz differential equations in
Eq. (35), the boundary conditions on S* in Eq. (30), and
the boundary conditions on 95y in Eq. (36). In the following,

2Greek and Latin letters are used to denote indices taking values
{1, 2} and {1, 2, 3}, respectively.

we refer to this dimensionally reduced theory as a (2 4 §)-
dimensional theory.

Note that when deriving a (2 4 §)-dimensional theory, N,
can, in principle, be chosen arbitrarily large. However, the
algebraic complexity significantly increases with the order of
the expansion. This can be seen in the detailed derivation of
the (2 4 §)-dimensional theory of the electrostatics of thin
films in Sec. 2.3 of the Supplemental Material [35]. Hence,
a (2 4 §)-dimensional theory generally remains analytically
tractable only for low-order expansions of the solution. Thus,
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FIG. 3. Plot of the first three Chebyeshev polynomials.

for the proposed method to yield meaningful results, we re-
quire the exact solution to be well approximated by low-order
polynomials along the thickness. This, however, is a common
and often reasonable approximation for thin bodies. Thus,
given the validity of the low-order expansion of the solution,
our proposed method is exact and does not require additional
approximations.

For the remainder of this paper, we specialize our deriva-
tions to Chebyeshev polynomials. Chebyeshev polynomials
are defined on the interval (a, b) = (—1, 1) and are orthogonal
with respect to the inner product in Eq. (19) when the weight
function is

w(@):l;, 0 e(—1,1). (37)
b4

1—62

The first three Chebyeshev polynomials are

Po(0) = 1, (38)
Pi(0) =90, (39)
Py(0) =207 — 1 (40)

and are plotted in Fig. 3. Chebyshev polynomials are com-
monly used in spectral methods and are amenable to analytical
derivations. However, the procedure presented in this sec-
tion is sufficiently general and can be similarly followed using
any other set of complete and orthogonal polynomials defined
on a bounded domain.

IV. A DIMENSIONALLY REDUCED THEORY
FOR THE ELECTROSTATICS OF THIN FILMS

In this section we present the (2 + §)-dimensional theory
of the electrostatics of thin films, obtained by applying the
dimension reduction procedure proposed in Sec. III to the
problem setup in Sec. II, Egs. (10)—(16). While the detailed
derivations are shown in Sec. 2 of the Supplemental Material
[35], the key assumptions of the (2 + §)-dimensional theory
are discussed here.

To obtain a dimensionally reduced equation in place of
Eq. (13), we introduce low-order expansions of the position

vector x € M and the electric potential in the membrane ¢y
in terms of Chebyeshev polynomials F:

1
x =) xOPROC)), (41)
k=0
2
dv =) B(CIPOC)), (42)
k=0

where ¢ = {¢!, ¢?} € Q indicates the parametrization of the
midsurface Sy with Q being the parametric domain, ¢3 €
(—6/2,6/2) is the parametrization along the thickness di-
rection, and 6 is the mapping 6 : (—§/2,6/2) — (—1,1). In
Egs. (41) and (42), x and ¢y no longer carry a ha¢ek symbol to
distinguish them from their respective exact quantities, ¥ and
éu. The order of expansion of the position vector x is moti-
vated by the common choice of Kirchhoff-Love kinematics,
which is suitable for thin materials such as lipid membranes.
Kirchhoff-Love kinematics assumes that any point along the
normal to the midsurface remains on the normal to the mid-
surface and maintains the same distance to the midsurface
upon deformation [41]. Using these kinematics assumptions,
the expansion of the position vector becomes

)
x =x0P(0(5) + 1P 0(2?)), (43)

where x( € Sy denotes a point on the midsurface and n is the
normal vector of the midsurface. Equation (43) further implies
At = —i~ = n. According to the discussion in Sec. III B,
the electric potential must be expanded to at least first order
to enforce two boundary conditions on the top and bottom
surfaces, S*, consistent with the differential order of Eq. (13).
However, to preserve the differential nature of Eq. (13), we
expand the potential to second order. Furthermore, to make
the dimensionally reduced theory tractable, we introduce two
further crucial assumptions:

SK)* < 1, (44)

(/L) < 1, (45)

where « is the principal curvature with the largest magnitude
and ¢ is a characteristic in-plane length scale for the potential
and curvature (see Sec. 3.2 of the Supplemental Material [35]
for details). Equation (44) implies that the radius of curvature
must be much larger than the thickness of the membrane, and
Eq. (45) implies that the potential and geometry of the thin
film change over length scales much larger than the thickness.
Thus, Eqgs. (44) and (45) are also conditions for the applica-
bility of the theory proposed here.

Using Eqgs. (42)-(45), applying the dimension reduction
method proposed in Sec. III to Eq. (13) yields the dimension-
ally reduced equation

16
emAs¢o(£%) —4Cue1 (¢*)H + ?Cquz(Ca) =0, Vi*eQ,
(40)

where Gyt = &y1/8 is the membrane capacitance per unit area
[42] and H is the mean curvature of the midsurface. The
surface Laplacian is defined as A(e) = ((o),a)zﬂa"‘ﬂ, where
the colon indicates the surface covariant derivative of a vector,



a®P denotes the contravariant components of the identity ten-
sor on the midsurface, and Einstein’s summation convention is
used (see Sec. 2 of the Supplemental Material [35] for details).

We consider Eq. (46) as an equation for the coefficient
¢0(¢*) and choose the coefficients ¢;(¢*) and ¢,(¢*) such
that some of the interface conditions on S* are satisfied. To
that end, we can select one of the interface conditions on S,
Eq. (11) or (12), and one of the interface conditions on S+,
Eq. (14) or (15). The remaining two interface conditions need
to be enforced as boundary conditions for Egs. (10) and (16)
such that all interface conditions are satisfied. In this article,
we choose the jump conditions, Eqgs. (12) and (14), to find
expressions for ¢;(¢%) and ¢,(¢%), and impose continuity of
the potential, Egs. (11) and (15), as boundary conditions in the
two bulk domains, Egs. (10) and (16). As detailed in Sec. 2.3
of the Supplemental Material [35], this choice yields

1 1
¢1(§°‘)=—E|}1 - (enen)™ — 5(0+ —0_)}, Vit eQ,
(47

(%) =—

[n-[eses]™ — (0t +07)], Ve¥e,

where eg:+ is the electric field in B*, and (sBeB)M =

%(EB+EB+|3+ + ep-ep-|s-) and [[EBeB]]M = gprep+|st —
ep-ep-|s- denote averages and jumps across the thin film M,
respectively.

Deformations of the body M stretch and compress the
bounding surfaces ST, leading to changes in surface charge
densities o*. For a deforming body, it is thus convenient to
express the surface charge densities with respect to a flat ref-
erence configuration. To this end, we introduce infinitesimal
area elements on ST, denoted by da*, and a correspond-
ing area element on the midsurface, denoted by day. Their
counterparts in the reference configuration are dA* and dAy,
respectively. Since the reference configuration is assumed flat,
these area elements must satisfy dA* = dA,. In contrast, the
area elements da*t are expressed in terms of the midsurface
as da® ~ (1 3 H6)day [43,44]. Given the charge densities in
the reference configuration, 03[, charge conservation implies
o*da* = o;"dA*, which subsequently yields

1
o~ —of(1 £ HS), (49)
Jo

16Cy where Jy = dag/dAy is the midsurface stretch. Substituting
(43) these expressions into Egs. (47) and (48), we find
J
N 1 M | _ Hs _ o
$1 (&) = _ﬂ[" - (epep)” — 2—10(60 —0y)— Z_JO(% +0, )}, Vi € Q, (50)
$2(5) = — 16ch [" - [epes]™ — JLO(UJ +0y) — Ij—j(UJ - 00)], Vi e Q. (51)

While Egs. (50) and (51) are more useful in practice, Eqs. (47) and (48) are used for simplicity in the remainder of this article.
We now apply the dimension reduction procedure to the boundary conditions on &) in Egs. (17) and (18). Upon expanding
the prescribed potential, ¢y = ZZO:O oM (COPO(23)), Eq. (17) becomes

(2% = dmo(C*),

V¢ € 3Qp, (52)

where dQp is the part of the parametric domain corresponding to dSop = 9Sp N S)p. Similarly, with the series expansion of
the electric field component, e = Z/fio e (CHPO(C?)), Eq. (18) becomes

1) 82
—v <¢o,u(c°‘) + Z¢1,ﬂ(c°‘>b,‘; + Rqﬁz,ﬁ(c“)bﬁbz) =2&0(£%), V%€ I, (53)

where 0Qqy is the part of the parametric domain correspond-
ing to dSon = 0S5y N )N, vV and bg are the components of
v and the curvature tensor, respectively, and Einstein’s sum-
mation convention applies. A detailed derivation of Egs. (52)
and (53) is provided in Sec. 2.3 of the Supplemental Material
[35]. Equations (10), (11), (15), (16), (46), (47), and (48)
together with the boundary conditions in Eqgs. (52) and (53)
form a closed set of equations that is independent of the para-
metric direction ¢3, while explicitly preserving effects due to
the finite thickness of M. This set of equations constitutes
the dimensionally reduced, (2 4 §)-dimensional theory of the
electrostatics of thin films and is summarized in Table 1.

The expansion of the potential in Eq. (42) allows finding
the potential drop across the thin film,

o™ = 2¢1(5%)

1 1
= —a[n - (epe)™ — §(U+ - G_):|7 54

(

which is a generalization of an expression derived in
Refs. [45-47]. Equation (54) can also be written as

o e (£)
[pee = =L, (55)
M
with the effective surface charge density Xep = —n -

(ege)M + %(cﬁr — 07), indicating an analogy to a parallel
plate capacitor. Similarly, for two parallel, charged surfaces
a distance § apart and with constant charge density ¢ in the
space between the plates, the second-order Chebyshev coef-
ficient of the potential is ¢, = —%, where Q = g6 and C is
the capacitance per unit area. This motivates the definition of

an effective charge density Qeg:

Qe (¢%) = —16C\p2 (%) = n - [epes]™ — (6 +07),
(56)



TABLE I. Corresponding equations between the three-dimensional and (2 4 §)-dimensional theories. Note that the equations for ¢, and
¢, have not been assigned a location in the physical domain, due to the electric field being evaluated on both S* and S~ in the expressions for

¢1 and ¢,.
Three-dimensional theory (2 + 8)-dimensional theory

Aq;l?; = —(gB- /SBf xeB Aﬁ%, = —(gB- /SBf xeB
] =0 xeS8” [6] =0 e S

At [ed] = o~ xeS8” ¢ = —zn - (epes)™ — L(o* —07)]
emAgy =0 xeM 0 = emAspo — 4Cud H + LCu¢s xeS,

n - [eé] =07 xeSt ¢ = —ﬁ[m [eses]™ — (0 +o07)]
[[(5]]:0 xeSt [[d?]]:O xeSt
AéB* = —(gp+ /&‘B+ X € B+ A(i;BJr = —(gp+ /SB+ X € BJr

which, upon substitution in Eq. (46), yields

Qe (¢%)
—

where Q.s/8 appears like a charge density in Gauss’ law.

We conclude this section with a few additional remarks.
First, we consider the limit of vanishing thickness, § — 0, in
Egs. (46)—(48). By substituting the definitions of ¢; and ¢, in
Egs. (47) and (48) into Eq. (46), we find that the latter yields
lims_, o Cm¢> = 0. Hence, when § — 0, Eq. (48) implies

eMAso(£%) — ACup1 (C)H = vt e @, (57)

n-[ege] =0t +07, ass— 0. (58)

Thus, in the limit of vanishing thickness, the (2 + §)-
dimensional theory recovers the usual jump condition for
surfaces of discontinuity (cf. Eq. (3)). Equation (58) has
been used as an interface condition for lipid membranes in
Refs. [48,49]. However, we generally do not consider this
limit and instead employ the full expression in Eq. (46).
Lastly, note that we have defined Eqs. (46)—(48) on the
midsurface Sy. However, the average (sgep)™ and jump
[eses]™ in Eqs. (47) and (48), respectively, require evaluation
of the electric field on ST and S~ as shown in Fig. 4(a). In
practice, when solving the governing equations numerically,
the membrane could be treated as a surface such that the
interface conditions would be enforced on either side of S
instead. This viewpoint is illustrated in Fig. 4(b). Treating the
lipid membrane as a surface when creating the discretization

introduces an error of order O(5x). However, the (2 4 6)-
dimensional theory is truncated at order O((8« )?), suggesting
that the error resulting from treating the lipid membrane as a
surface can become dominant at large curvatures.

V. COMPARISON TO THREE-DIMENSIONAL GAUSS LAW

In this section the accuracy of the (2 + §)-dimensional the-
ory is tested on flat geometries, cylinders, and spheres, which
are common lipid membrane geometries encountered in both
theory and experiments [7,50-53]. Section V A considers ex-
amples with analytical solutions while Sec. VB presents a
numerical comparison for examples without analytical solu-
tions but relevant for lipid membranes.

A. Analytical comparison

We begin by applying the (2 + §)-dimensional theory to
examples of thin films embedded in dielectric bulk media with
univariate potentials. In the interest of clarity, many of the
details of the analytical solutions are described in Sec. 3 of
the Supplemental Material [35]. For the examples considered,
we find that the pointwise, relative error between the exact and
(2 + §)-dimensional theories does not exceed 2%. For cylin-
ders and spheres, the error decreases rapidly with increasing
radius.
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FIG. 4. When solving the (2 4 §)-dimensional theory numerically, a discretization that explicitly accounts for the finite thickness of the

membrane, as shown in (a), may be cumbersome to implement, in particular for moving meshes. Alternatively, the mesh on the bounding
surfaces, S~ and ST, can be collapsed onto the membrane midsurface S, as shown in (b).
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FIG. 5. Setup for the flat geometry (a), cylinder and sphere (b). The bulk domains are dielectric materials without any free charge. On one
boundary, an electric field is prescribed, while the potential is fixed on the other.

1. Flat geometry

Consider the flat, thin film shown in Fig. 5(a), where the
potential depends only on the x direction and gg+ = 0. The
electric field is prescribed on the left-hand-side boundary of
the domain and the potential is fixed on the right-hand-side
boundary of the domain:

ddn-
- i‘j =e, x=-8/2—L", (59)
g+ =0, x=8/2+L+3 (60)

By simplifying Eq. (13), it becomes apparent that the so-
lution to the exact theory is at most linear in x within the
thin film. Since linear solutions can be represented exactly in
the (2 + §)-dimensional theory, the (2 + §)-dimensional the-
ory recovers the exact solution. The governing equations and
solutions for both the exact and (2 + §)-dimensional theory
for this case can be found in Sec. 3.1 of the Supplemental
Material [35].

2. Cylinders

The next example is similar to the one discussed in the pre-
vious section but with the flat geometry replaced by a cylinder
with midsurface radius Ry. The setup, depicted in Fig. 5(b),
is axisymmetric and homogeneous along the cylinder’s axis
such that the potential depends only on the radial direction.
Similar to before, we fix the potential to be zero at r = Rg
and impose the electric field at r = Ry > 0, with Rg and R
shown in Fig. 5(b):

ddn-

9 R 61)
dr
dgr =0, r=Rg. (62)

The simplified equations and corresponding solutions for both
the three-dimensional and (2 + §)-dimensional theories are
presented in Sec. 3.2 of the Supplemental Material [35]. In

3Equations (59) and (60) hold analogously for the (2 + 8)-
dimensional theory.

contrast to the flat geometry, the potential is no longer linear
within the membrane and the (2 + §)-dimensional theory does
not reproduce the exact solution. To assess the differences
between the exact and (2 + §)-dimensional solutions, we in-
troduce the following nondimensional quantities:

r &M EB
rf= -, 8 =1, e =—, &p=—,
M B
1) &0 €0
:t -
o = Peo Gi*za E*Zeso
Sot’ ot’ ot’

This nondimensionalization does not carry physical meaning
but is chosen merely for convenience. We consider two dif-
ferent parameter choices, cases A and B, defined in Table II.
For case A, the dielectric constants are the same throughout
the entire domain but the surface charge densities on the inner
and outer surfaces of the thin film differ in magnitude and
sign. For case B, the dielectric constants in the thin film and
bulk domains differ, and the surface charge densities have
different magnitudes. The nondimensional midsurface radius
Rj is varied and thus not listed in Table II

Figures 6(a) and 6(b) show the potential and error profiles
for cases A and B, respectively, with R; = 5 and the pointwise
relative error defined as

g 2% (63)
o]

The potential profiles from the exact and (2 + §)-dimensional
theory agree closely for both cases, with a maximum error of
less than 1%. We note that in Figs. 6(a) and 6(b) the radius of
the midsurface is only five times the thickness, even though, in
the derivation of the (2 + §)-dimensional theory, we used the
assumption that the thickness is small compared to the radius

TABLE II. Nondimensional quantities for the two analytical test
cases for cylinders and spheres.

Case &}y & o™ o7* e* R} R},
A 1 1 1 ~1 1 1 R;+10
B 2 80 1 100 —10 1 R;+ 10
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FIG. 6. Comparison between the exact and (2 + §)-dimensional theories on the cylinder for case A (a) and case B (b), described in Table II.
Note that the lines depicting the potentials obtained from the two theories overlap for both test cases.

of curvature [Eq. (44)]. Figure 7(a) shows that the L, error in
the potential decreases quadratically with the nondimensional
curvature [,

_48/2
=R
consistent with Eq. (44). In Sec. 3.2 of the Supplemental

Material [35], this result is confirmed by comparing the exact
and (2 + §)-dimensional solutions analytically.

" (64)

3. Spheres

We consider a sphere with axisymmetry along both the
azimuthal and polar angle, such that the potential depends
only on the radial direction, similar to the setup described for
the cylinder in Sec. V A 2, Fig. 5(b). The boundary conditions
are the same as in Eqgs. (61) and (62) and the governing
equations and corresponding solutions for both the exact
and (2 + §)-dimensional theory are shown in Sec. 3.3 of
the Supplemental Material [35]. To compare the exact and

(2 + 8)-dimensional solutions, we again consider the two test
cases in Table II. For cases A and B, the potential profiles
and relative errors are plotted in Figs. 8(a) and 8(b), respec-
tively. As for the cylindrical case, the pointwise, relative error
does not exceed 1% in either case and the L, error decreases
quadratically with the nondimensional curvature u, as shown
in Fig. 7(b).

B. Numerical solutions

We now test the (2 + §)-dimensional theory numerically
on examples without analytical solutions that are motivated
by lipid membranes. Namely, we consider flat, cylindrical,
and spherical lipid membranes—typical shapes in biological
systems—embedded in a symmetric, monovalent electrolyte.
The lipid membranes are equipped with spatially varying
surface charge densities, modeling charged lipids or charges
accumulated on the interfaces between the electrolyte and
lipid membrane [54]. The surface charge densities are
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FIG. 7. Dependence of the L, error on the nondimensional curvature ; = §/(2Ry) for the cylinder (a) and sphere (b) for cases A and B.
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FIG. 8. Comparison between the exact and (2 + §)-dimensional theories on the sphere for case A (a) and case B (b), described in Table II.
Note that the lines depicting the potentials obtained from the two theories overlap for both test cases.

screened by charges in the electrical double layers in the elec-
trolyte, as described by the Poisson-Boltzmann equation [55].
Accordingly, the charge densities in the bulk domains, re-
quired in Egs. (10) and (16), are given by

SBkBT . eqb
———~ sinh —
ekD kBT

q9= ; (65)
with e being the elementary charge and Ap the Debye length,
determined by the bulk electrolyte concentration [55]. In
physical systems, the surface charge densities on lipid mem-
branes can vary spatially, consequently leading to in-plane
variations of the electric potential. To test the accuracy of the
(2 4 §)-dimensional theory under different characteristic in-
plane length scales, we prescribe the surface charge densities
by univariate functions along the direction s:

ot :goi 4 le_i|:1+ In (Cosh Lz—z) — In (COsh ?)}
In (cosh L_s) ~In (cosh L_S)

2
(66)

schematically shown in Fig. 9. The surface charge densi-
ties change from their constant value o(f to varying linearly
over a length L until reaching the constant value croi + Ac®.
The transition between constant and linearly varying surface
charge densities is smoothed over the length L. By varying L
and Lg, we can study the effects of different in-plane length
scales on the accuracy of the (2 4 §)-dimensional theory. A
more detailed description of the setup is presented in the
respective geometry sections, Secs. VB 1-V B 3. The differ-
ential equations governing the exact and (2 + §)-dimensional
theories are solved using a second order finite difference
scheme, with the interface conditions evaluated on S*, as
described in Fig. 4(a).

1. Flat geometry

Consider a flat lipid membrane whose midsurface lies in
the x-y plane, schematically shown in Fig. 10(a). The surface
charge densities vary only along the x direction, i.e., x = s in

Eq. (66), rendering the potential independent of the y direc-
tion. The problem is subjected to the boundary conditions

¢
o = O» ¢|Z=8/2+L52 = 09 (67)
0z 7=—8/2—Lg»
0 0
_¢ =0, _¢ =0, (68)
dx x=0 ox x=Lp

where L is the domain size along the x direction and Lp;
is the domain size above and below the membrane, with the
midsurface located at z = 0. We consider two different cases:
In case A, the charge densities are constant while in case B, the
charge densities on the top and bottom surfaces change from
+1 mC/m? to +40 mC/m? along the x direction, centered
at x = Ly /2. The two cases A and B are summarized in
Table III, and the remaining geometric and material param-
eters are listed in Table I'V.

The potential profile corresponding to case A, shown in
Fig. 10(b), is linear within the membrane and exponentially

FIG. 9. The surface charge density is changing from 00i to

(70i + Ac* over a length L. L denotes the length of the smooth
transition region between the constant and linearly varying surface
charge density.
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FIG. 10. Schematic setup of a flat lipid membrane with spatially varying surface charges on the top and bottom surfaces embedded in
a symmetric monovalent electrolyte (a) and potential profiles for the case of constant surface charge densities for the exact and (2 4+ §)-
dimensional theories. The exact and (2 + §)-dimensional theories agree to machine precision.

decays to zero in the bulk domains. Due to the nonzero sur-
face charge density and different permittivities in the bulk
and membrane, the slope of the potential is discontinuous on
the top and bottom boundaries of the membrane. Since the
solution is linear in the membrane, the exact and (2 + §)-
dimensional theories agree to machine precision.

In Fig. 11 the results for case B are presented. Figure 11(a)
(top) shows the potential in the region of varying surface
charge densities at discrete values of x. The exact theory
is plotted with full lines while the (2 + §)-dimensional the-
ory is plotted with dashed lines and x markers, revealing
excellent qualitative agreement between the exact and (2 +
8)-dimensional theories across all values of x. Figure 11(a)
(bottom) shows the corresponding relative, pointwise error,
which remains below ~ 20% throughout the entire domain.
To find where the error is largest, Fig. 11(b) shows the po-
tential and error where the surface charge densities change
from constant values of +1 mC/m? to varying linearly along
x. In this narrow transition region of length L, the potential
is small and the deviations from the exact solutions are large
compared to other regions of the domain. However, the qual-
itative behavior of the potential is still well captured by the
(2 + &)-dimensional theory.

According to Table IV, the length over which the surface
charge densities vary linearly, L, as well as the smoothing
length, L, are on the order of the thickness §. This vio-
lates the assumption of the (2 4+ §)-dimensional theory that
the characteristic in-plane length scale is much larger than
the thickness, Eq. (45). This motivates examining the error
in the (2 4 §)-dimensional theory under varying L¢ and L.
Figure 12(a) shows that the L, error decreases linearly with
L while Ly = 2.5 nm is fixed. To show that this is due to the
decrease in the error in the transition region between constant

TABLE III. Surface charge densities on the top (o) and bottom
(o 7) surface for cases A and B.

and linearly varying surface charge densities, Fig. 12(b) shows
the L, error along z as a function of x, defined as

§/2+L, Y
Lot (= ¢z

8/2+Lpy Yo
ffs/szBZ ¢*dz

E(x) =

) (69)

where we find that the peak in the error in the transition
region decays quickly as L is increased. Similarly, varying
the smoothing length L; while fixing L = 20 nm yields an
error that decreases with order 1/2 [Fig. 12(c)]. As seen in
Fig. 12(d), this is again a result of the decrease in error in
the transition region between constant and linearly varying
surface charge densities. Thus, we conclude that the error
of the (2 4 §)-dimensional theory becomes small when the
characteristic in-plane length scales become large compared
to the thickness of the membrane.

2. Cylinder

Consider a cylindrical lipid membrane with midsurface
radius Ry, schematically shown in Fig. 13(a). We choose a
surface charge density that varies only along the z direction of
the cylinder such that the setup is axisymmetric, i.e., s = z in
Eq. (66). The boundary conditions remain similar to the flat
case:

d¢

arl_y 0 @ pyrspirm = O (70)
a d

9 99 =0. (71)
0z z=0 9z z=Lp

TABLEIV. Geometric and material parameters for the flat, cylin-
drical, and spherical test cases. The length scales and parameters are
typical for lipid membranes.

Case o, [mC/m?] o, [mC/m?] Ac*[mC/m?] Ao~ [mC/m?]

A 40 —40 0 0
B 1 —1 39 —39

Lp, Lp, Ry 8 L L g &M AD
[nm]  [nm] [nm] [nm] [nm] [nm] [ge] [go] [nm]

75 12 25 5 5 25 80 2 1
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FIG. 11. Potential profiles (top) and relative errors (bottom) plotted at discrete values of x for case B of the flat membrane. The full lines
represent the exact theory and the dashed lines [nearly indistinguishable in (a)] represent the (2 + §)-dimensional theory. The error is plotted
only down to 107, In (a) the values of x are taken from the entire region of varying surface charge densities, while (b) shows potential profiles
from the left transition region between constant and linearly varying surface charge densities.

As compared to the flat case, however, the first boundary
condition is replaced by a symmetry condition in the center
of the cylinder. All geometric and material properties remain
as before and are listed in Tables III and IV. Additionally,
the midsurface radius is fixed at Ry = 25 nm, unless stated
otherwise.

The potential profile for case A is shown in Fig. 13(b) (top).
Due to the cylinder’s curvature, the solution is no longer linear
in the membrane and the (2 + §)-dimensional theory does not
capture the solution exactly. However, the relative error, plot-
ted in Fig. 13(b) (bottom), does not exceed 0.2%. Figure 14(a)
shows that the L, error decreases quadratically with increasing
midsurface radius Ry. This is consistent with the assumption
of the (2 + §)-dimensional theory that the radius of curvature
is large compared to the thickness, Eq. (44).

In Fig. 15(a) (top), the potential profiles for case B are
plotted at discrete values of z along the cylinder. Again, the
qualitative behavior of the potential is well approximated by
the (2 4 §)-dimensional theory. The relative error is plotted
in Fig. 15(a) (bottom) and, as before, does not exceed 20%
anywhere in the domain despite the additional error intro-
duced by the curvature of the geometry. The largest error again
appears in the transition region where the potential is small,
as is shown in Fig. 15(b). Similar to the flat case, the L, error
decreases with order 1 and about 1/2 with increasing L and
L, respectively, as shown in Figs. 12(a) and 12(c). The error
&,(r) decreases similarly to Figs. 12(b) and 12(d) and is thus
omitted here. Therefore, we conclude, as before, that the error
is small when the characteristic in-plane length scale is large
compared the thickness of the membrane. Figure 14(b) shows

how the error for case B changes with increasing radius, for
L =20 nm and Ly = 10 nm. As compared to case A, the error
does not converge quadratically but instead saturates. This is
a result of the error due to in-plane surface charge density
changes dominating over the error due to the curvature of the
cylinder, and we expect the same scaling as in Fig. 14(a) for
larger radii of curvature.

3. Spheres

Consider a sphere with midsurface radius Ry, shown
schematically in Fig. 16(a). The surface charge density is cho-
sen to only depend on the ® direction, s = ®R, in Eq. (66),
and is thus axisymmetric along the & direction. Similar to
the cylindrical membrane, the problem is closed with the
boundary conditions

¢

ol 0 Ol _pyrsriim =0 (72)
d 0
99 _o 2 —0. (73)
90 ORy=(TRy—Lp1)/2 S} ORy=(TRo+Lp51)/2

The radius of the sphere’s midsurface is chosen as Ry =
25 nm and the remaining geometric and material parameters
are listed in Tables IIT and IV.

For case A, Fig. 16(b) (top) shows excellent qualitative
agreement between the exact and (2 + §)-dimensional theo-
ries while Fig. 16(b) (bottom) shows that the relative error
does not exceed 0.5%. As with the cylinder, the error reduces
quadratically with increasing radius, as shown in Fig. 14(a).
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the length over which the surface charge densities vary linearly is fixed at L = 20 nm. The remaining parameters are given in Tables III

and IV.

For case B, the potential profiles for the exact and (2 +
8)-dimensional theories at discrete values of ® are plot-
ted in Fig. 17(a) (top), showing good qualitative agreement.
Figure 17(a) (bottom) shows that the corresponding relative
error does not exceed 10%, with the error again being largest
in the transition region, as seen in Fig. 17(b). The decrease
in error with increasing L, Ls, and Ry is consistent with the
results for the flat and cylindrical geometries, as shown in
Figs. 12(a), 12(c), and 14(b), respectively.

VI. CONCLUSION AND OUTLOOK

A theory describing the electromechanics of lipid mem-
branes requires resolving the electric potential across their

thickness. This requirement is incompatible with treating lipid
membranes as strictly two-dimensional surfaces, a common
approach to modeling lipid membrane mechanics. Nonethe-
less, surface theories have both analytical and numerical
advantages, motivating the derivation of an effective surface
theory for the electromechanics of lipid membranes in this
sequence of articles.

We start from a three-dimensional model and propose
a dimension reduction procedure that assumes a low-order
solution expansion along the lipid membrane thickness.
Expanding using orthogonal polynomials allows us to derive
differential equations for the expansion coefficients. These
equations are not dependent on the thickness direction but
account for the finite thickness of lipid membranes. Therefore,



3%%(

¢
—
o

&

0.18%

15 20 25
7 [nm]

(b)

30 35

FIG. 13. Schematic setup of a cylindrical lipid membrane with spatially varying surface charges on the top and bottom surfaces embedded
in a symmetric monovalent electrolyte (a) and potential profiles (top) and corresponding error (bottom) for the case of constant surface charge
densities for the exact and (2 + §)-dimensional theories. Note that the lines depicting the potentials obtained from the two theories coincide

(b, top).

we refer to such dimensionally reduced, effective surface the-
ory as (2 4 §)-dimensional. Applying the proposed dimension
reduction procedure to the electrostatics of lipid mem-
branes yields an effective surface form of Gauss’ law. Using
both analytical and numerical comparisons, we show ex-
cellent qualitative agreement between the three-dimensional
and (2 + §)-dimensional theories. The two theories also
show excellent quantitative agreement when the electric
potential changes over length scales larger than the lipid
membrane thickness, consistent with the assumptions of the
2 + § dimensional theory.
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Similar approaches to derive dimensionally reduced theo-
ries for the electromechanics of thin films were proposed by
Green and Naghdi [56] and Khoma [57] based on Legendre
polynomials. However, the authors do not make their order
of expansion precise, only giving general equations for the
expansion coefficients. This generality makes their theories
largely intractable, and we are unaware of any practical ap-
plications beyond the examples discussed in Ref. [56].

Edmiston and Steigmann [58] also derive a dimension-
ally reduced theory for the electrostatics of thin films
but consider the limit of vanishing thickness, § — 0. The
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FIG. 14. Error convergence in the L, norm with respect to the nondimensional curvature u = 2‘370 for cylinders and spheres for cases A

(a) and B (b), with L = 20 nm and L; = 10 nm. For case A, the expected quadratic convergence is observed while for case B, the error saturates
as a result of the dominating error from the spatially varying surface charge densities.
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FIG. 15. Potential profiles (top) and relative errors (bottom) plotted at discrete values of x for case B of the cylindrical membrane. The
full lines represent the exact theory and the dashed lines [nearly indistinguishable in (a)] represent the (2 + §)-dimensional theory. The error is
only plotted down to 107>, In (a), the values of x are taken from the entire region of varying surface charge densities, while (b) shows profiles
from the left transition region between constant and linearly varying surface charge densities.

authors assume equal and opposite surface charge densities fields. This allows comparing the Edmiston-Steigmann theory
on St and S~ and neglect fields external to the thin film. to the (2 + §)-dimensional theory in the limit of vanishing
However, their theory can be easily generalized to account  thickness. In this limit, the (2 + §)-dimensional theory pro-
for arbitrary surface charge densities and external electric duces the same normal component of the electric field as
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FIG. 16. Schematic setup of a spherical lipid membrane with spatially varying surface charges on the top and bottom surfaces embedded
in a symmetric monovalent electrolyte (a) and potential profiles (top) and corresponding error (bottom) for the case of constant surface charge
densities for the exact and (2 + §)-dimensional theories. Note that the lines depicting the potentials obtained from the two theories coincide

(b, top).
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FIG. 17. Potential profiles (top) and relative errors (bottom) plotted at discrete values of x for case B of the spherical membrane. The full
lines represent the exact theory and the dashed lines (nearly indistinguishable) represent the (2 4 §)-dimensional theory. The error is plotted
only down to 107>, In (a) the values of x are taken from the entire region of varying surface charge densities, while (b) shows profiles from the
left transition region between constant and linearly varying surface charge densities.

the Edmiston-Steigmann theory. The ¢,(¢%) contribution in
Eq. (46) does not appear in the Edmiston-Steigmann theory,
which is expected considering ¢»(¢%*) — 0 as § — 0. How-
ever, the ¢ (%) contribution in Eq. (46) is also absent in the
Edmiston-Steigmann theory even though it remains nonzero
in the limit of vanishing thickness. Thus, we find that gener-
alizing the theory of Edmiston and Steigmann [58] does not
correspond to the (2 + §)-dimensional theory in the limit of
vanishing thickness.

The leaky dielectric model (LDM), originally devised by
Melcher and Taylor for droplets in weak electrolytes [59,60],
is often invoked to describe lipid vesicles in an external elec-
tric field [10,61]. The LDM describes a droplet or vesicle with
radius R much larger than the Debye length Ap, exposed to
an electric field that is large compared to the thermal voltage
(Baygents-Saville limit). The Baygents-Saville limit allows
for a macroscopic description that coarse grains the gen-
uine interface and its diffuse layer into an effective interface
[62,63], thus not capturing electrokinetic effects on the length
scale of the diffuse layer. In contrast, the (2 4 §)-dimensional
theory takes a microscopic perspective and describes a mate-
rial interface without making any assumption about the bulk
fluid domains. Hence, the LDM and (2 + §)-dimensional the-
ory describe electric field effects on different length scales
and are thus not comparable. Instead, the (2 + §)-dimensional
theory should serve as a starting point for deriving the LDM
for lipid vesicles, a derivation currently missing from the
literature.

Recently, Ma et al. [64] proposed a model similar to
the LDM, specific to lipid vesicles but valid in the strong
electrolyte limit—as opposed to the LDM which is valid in
the weak electrolyte limit. Their microscopic electrostatics
model assumes equal and opposite surface charge densities
and continuous electric displacements across the membrane.
However, according to the (2 + §)-dimensional theory, the
latter would be valid only in the limit of vanishing thickness.
Furthermore, their microscopic electrostatics model is not
consistent with the potential drop derived in Eq. (54). The
effect of adopting the (2 + §)-dimensional theory as a starting
point in the derivation of the model by Ma et al. [64] as well
as the LDM (see [62,63,65-67]) currently remains an open
question and merits future investigation.

This article is the first in a series of three that sys-
tematically derives the governing equations describing the
electromechanics of lipid membranes. In subsequent articles,
the dimension reduction procedure proposed in this article
is applied to the mechanical balance laws and appropriate
constitutive equations, yielding a complete and self-consistent
theory of the electromechanics of lipid membranes.
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