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Preface

Spherekit is a spatial interpolation toolkit that was initiated by Cort Willmott and Mike Goodchild

at the NCGIA. Development of a ‘user-friendly’ and spherically-based interpolation and mapping
package had been a goal of Willmott's for some years, which became feasible during his 1995
sabbatical leave at UCSB. Willmott and Goodchild outlined the desired program structure and
functionality and allocated the necessary funding as part of NCGIA's Initiative 15: Multiple Roles

of GIS in the U.S. Global Change Program. Robert Raskin joined the team and expanded upon the
conceptual structure and software design. Raskin contributed to the development, modification,
and testing of the algorithms and program. Chris Funk was retained as the primary programmer on
the project, and he ulitmately modified, wrote, integrated and/or tested the wide array of
subprograms and interfaces that now comprise Spherekit. In the end, Chris contributed much to
Spherekit's conceptual base, as well as to the programming. Programs and data also were provided
by Scott Robeson (Indiana University), Scott Webber (University of Delaware), and Robert Renka
(University of North Texas). Webber additionally contributed to program testing and refinement
during the summer of 1996. Spherekit relies on GMT (Wessell et al., 1995) for its map and other
graphics, and the authors are grateful to the GMT developers for freely making their programs
available to the scientific community. Spherekit remains a work in progress. Its developers are
continuing to improve it and they welcome feedback from users.



Table of Contents

. Overview

. Examples

2.1. "Smart" interpolation
2.2. Global interpolation
2.3. Error analysis

2.4. Spatial variability

. Tutorial

. Users’ Guide

File

Processing
Interpolation
Cross-Validation
Display

Options

. Interpolation algorithms

5.1 Neighborhood size selection

5.2 Inverse distance methods

5.3 Multiquadrics & thin plate splines
5.4 Kriging

5.5 Triangulation

. Download and installation

. References



1. Overview

Spherekit is a spatial interpolation software toolkit developed at NCGIA as part of Initiative 15:
Multiple Roles of GIS in U.S. Global Change Research. This package features several unique
capabilities and is freely distributed over the internet at:

http://whizbang.geog.ucsb.edu/spherekit/

Spherekit allows interpolation over continental or global scales by computing distances and
orientations (among data and interpolation points) from geodesics on the surface of the globe.
Conventional interpolations typically are based upon Euclidean distance in Cartesian 2-space which
involve planar projections that produce distortions of some kind. In Spherekit, projections are
applied only for display purposes after the interpolation has been carried out using spherical
geometry. Users can select from several interpolation algorithms that have been adapted to the
sphere: inverse distance weighting, thin plate splines, multiquadrics, triangulation, and kriging.
Portions of the GSLIB package have been modified for the sphere and are used in Spherekit to
compute variograms for the kriging algorithms.

Spherekit enables the user to incorporate knowledge or information about the processes that
produce the underlying spatial variations into the interpolation model. A built-in equation editor
and a collection of nonlinear transforms allow the user to create and experiment with new,
physically meaningful variables from the independent and dependent variables available. This
"smart" interpolation capability allows Spherekit to intelligently interpolate using auxiliary
information. One use of the smart interpolation feature is to incorporate elevation information when
interpolating variables that are correlated with height. A digital elevation model (DEM) is included
with the package for this purpose.

Error analysis is an integrated component of Spherekit making the package particularly useful for
comparing interpolation methods and parameters. Interpolation method performance is measured
using cross-validation. Cross-validation error is defined at each observation point as the difference
between its actual value and its interpolated value estimated from the remaining points. The
resulting error field can be displayed either at the data points or by interpolating to a regular grid to
reduce spatial biases. Error difference fields, comparing methods or parameter settings, can be
created and displayed with ease.

The Spherekit package has been compiled and tested on SGI and DEC Alpha workstations and
could be ported to other computers running the UNIX operating system. The software uses Tcl/Tk
for its Graphical User Interface (GUI), Generic Mapping Tools (GMT) for display of output fields,
Ghostview for display of PostScript files, and netCDF for storing the DEM. All of these required
auxiliary packages can be downloaded together with Spherekit.

This report is a reference guide to the software and is not intended to be read from cover to cover.
Chapter 2 presents four examples of the use of the software. Chapter 3 takes a single example and
presents the steps required to carry out an interpolation. Chapter 4 describes each of the menu
options available in Spherekit. Chapter 5 provides a technical description of the interpolation
algorithms. Finally, Chapter 6 describes the download and installation procedures.



2. Examples

2.1 "Smart" interpolation

"Smart" interpolation improves the performance of traditional interpolations by using knowledge of
the processes that produce the spatial variations (Willmott and Matsuura, 1995). In this example we
use the general physical principle that temperature decreases with altitude in the troposphere. This
decrease can be characterized roughly by the mean lapse rate. Standard and topographically
informed interpolations are compared using a sparse network of 160 weather stations in China. The
data set is deficient in that high altitude locations in the Himalayan mountains are
underrepresented.

Figure 2.1 shows a standard interpolated temperature field using the multiquadric method. This
estimate of the temperature field fails to accurately represent the relatively undersampled area of
colder temperatures associated with the greatest elevations.

a0° l

40°

30"

20"

Area-Wid-Pot

-30 -2 -Z20 -13 -10 -3 0 2 10 13 20

Figure 2.1 Standard Multiquadric Interpolation (Degrees C)



Figure 2.2 shows the corresponding topographically informed interpolation (Willmott and
Matsuura, 1995). This interpolation was performed using the following steps:

1. Reduce temperatures to sea-level using the mean environmental lapse rate.
(Sea Level Temp= Temp + Mean Environ Lapse Rate * Elevation)

2. Interpolate the "sea-level" temperature field to a one-degree grid
using the multiquadric method.

3. Reintroduce the elevation effect on the interpolated field.
(Temp= SealevelTemp - Mean Environ Lapse Rate * Elevation)

This final step was carried out automatically by Spherekit by
inverting the operations in Step 1.

Key differences between Figure 2.1 and Figure 2.2 result from the incorporation of the first-order
temperature-elevation relationship (given by the mean environmental lapse rate) into the
interpolator. That is, the "smart" interpolation captures the climatological influences of
topography. Low temperatures associated with the mountains of western China are now visible,
despite the sparsity of high altitude temperature stations.
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Figure 2.2 Topographically Informed Interpolation (Degrees C)



2.2 Global interpolation

This example focuses on interpolation over the entire globe. A 2456 station subset of the Global
Historical Climatology Network (GHCN) (Vose et al., 1992) temperature observations for January
1990 were interpolated to a one-degree global grid. Sparsely populated regions end to be
undersampled, resulting in a station network that is not uniformly distributed around the globe.
Note that the use of spherical surface geometry ensures realistic patterns of isotherms throughout
the polar region (Figure 2.3).
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Figure 2.3 Global Interpolation of GHCN Data (Degrees C)

The interpolation method used is inverse distance weighting. Users specify which of several inverse
distance functions to use and how the neighborhood of influence is determined. A neighborhood
can be defined by a distance (radius) or by a number of points (nearest neighbors). An
extrapolation correction based upon local gradients of the observed field is available to prevent
local extrema (or peaks or valleys) from occurring only at the data points. A spatial bias correction



can be invoked to adjust the distance weights based upon the angular distribution of the nearest
neighbors. The influence of both the extrapolation and spatial bias corrections may be
independently scaled.

The orthographic projection of the interpolated temperature field shown in Figure 2.3 represents a
reimplimentation of Shepard's (1968) interpolator with an average of seven nearest neighbors, a
limited extrapolation capability, and an angular correction.

2.3 Error analysis

Spherekit provides researchers with the ability to quickly and easily compare interpolation methods
and interpolation parameter settings. This example compares two methods: thin-plate spline and
Cressman (an inverse distance weighted method). Figures 2.4 and 2.5 present error analyses of
these methods applied to the Australia portion of the GHCN dataset used in Example 2. Cross
validation is used to generate error estimates at each observation point. These errors are then
interpolated to a grid, reducing spatial bias. The plots below are gridded, revealing the one-degree
granularity of the interpolation.

Further analyses may be carried out using Spherekit's matrix math capabilities. Figure 2.6 displays
the difference field (Cressman-Spline) of the above error plots. It is interesting to note that the
standard deviation of the difference field is greater than both mean absolute errors.

2.4 Spatial variability

Several exploratory data analysis tools are available to examine the spatial variability of a dataset.
Several of the features of the GSLIB software library are integrated into Spherekit. The GHCN
temperature dataset of Example 2 is used again to demonstrate the long-distance correlations
present in climate data. As Spherekit computes distances using great circle distances, distances at
continental and global scales are computed correctly.

Figure 2.7 shows an isotropic semivariogram of the dataset. There is a plateau in the semivariogram
in the 2000-4000 km range and a sharp rise thereafter. This calculation is repeated using anisotropic
semivariograms in the east-west and north-south directions. Figure 2.8 (the east-west
semivariogram) displays the plateau more prominently. This characteristic corresponds to the
common notion that zonal variations in temperature are relatively small. The north-south

variogram (Figure 2.9) shows a more rapid increase in variance with distance, as would be
expected. Interestingly, the semivariogram falls after reaching a peak; presumably this is due to a
return to the same latitude zone at these distances.
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MAE 0.593 (Mean absolute error)
MBE -0.13 (Mean bias error)

RMSE 0.873 (Root mean square error)
MIN -4.568

MAX 3.173

COUNT 1,248

Figure 2.4 Thin-Plate Spline Cross-validation (Degrees C)
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Figure 2.5 Cressman Cross-validation (Degrees O
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Figure 2.6 Difference field (Spline error - Cressman error) (Degrees C)
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3. Tutorial

For this tutorial, you will use a dataset consisting of precipitation, elevation, and
temperature values for 160 locations in China. Spherekit can produce a complete
estimated field for these variables using various interpolation techniques. The package
also can produce a field of error estimates at the estimated points. We will examine this
process as well as the following interpolation methods: Inverse Distance Weighting,
Kriging, Splines, and Multiquadric interpolation.

Getting The Test Data

Begin by downloading the file china.dat from
www.ncgia.ucsb.edu/pubs/spherekit/main.html. Move this file to your Spherekit work
directory. Examine the first few lines of this file by typing: head china.d&te first

few lines should look like this:

51.716667 126.650000 244.000000 3.0 -27.7
48.766667 121.916667 823.000000 4.0 -23.1
49.216667 119.750000 610.000000 2.0 -29.7
50.500000 121.466667  1067.000000 4.0 -30.0
49.166667 125.233333 305.000000 2.0 -28.6
47.383333 123.916667 152.000000 1.0 -23.3
47.433333 126.966667 244.000000 4.0 -22.9
47.233333 131.983333 91.000000 5.0 -20.3
46.816667 130.283333 122.000000 0.0 -22.7
45.283333 130.950000 152.000000 0.0 -20.2

Running Spherekit

From a command prompt, type 'sk’. This should bring up the Spherekit application,
depicted below. If not, consult the README file for guidance. You should have a
window that looks Figure 3.1. Spherekit allows you to manipulate eight different kinds
of objects. Click on the little graphic icons that line up on the left of the Spherekit
window. Read the messages for each of the eight objects. This should familiarize you
with the Spherekit data types.

Creating a SK Project Directory

Spherekit allows you to organize your work into projects, each project corresponds to a
sub-directory off of your Spherekit work directory. Create a new work directory by
selecting:

File->Environment->Create New Project



== Spherekit Interpolation System  Version: Alphal .0 ==

File Processing Interpolation Cross—Validatation Display Options Project: MAR

ohs1 ghcn.nam ghcn.rock ghcn.rock.net.dem
east.nam ne.nam sB.nam

rock.grd

Metwrork netl ghcn.nam.net ghch.rock.net east.nam.net
ne.nam.net se.nam.net

Method

ghcn.nam.map ghcn.rock.map rock.z.map interpZ.map

Interpolation interp2

Figure 3.1 Main Screen

That is, selecFile from the Main MenuEnvironment from theFile submenuand

Create New Projectfrom theEnvironment submenu. When prompted for a name,
enter 'tutorial’ and hit returtutorial will now become the current project, and all data
objects will be stored in this directory. If you would like to return to this workspace in a
later session, choose:

File->Environment->Set Project

Next we will create a Location object. Spherekit stores locations independently of sets of
values. This allows multiple sets of values to refer to the same set of locations. To load
(import) a set of locations that are irregularly spaced, choose:



File->Import Data->Locations->Network

When the dialog box appears:

l. Enter China.net in the first field.

A. Click on the 2nd field, and use the file dialog to find the 'china.dat’ file,
B. Click OK.
[I. Click Okay again.

This should generate a Network object called China.net that should appear in the
Network section. Click on the object's name 'China.net’, and examine its metadata. Every
new object should be examined in this manner.

Now we're ready to read some data values. Go to:

File->Import Data->Values

Spherekit's generic symbol for 'need this value'. Select china.net from the drop down
menu. If the ‘china.dat' file is not specified, select that file. Then click OK.

This should generate an Observations object called temperature. Clieknperature
and examine the metavalues.

Two “objects"” should now be in the interface window. One is named "Temperature"”
which is a temperature dataset for 160 weather stations in China. The second is called
"China.net" which is the latitude and longitude of the nodes of the weather station
network.

Generating a Temperature Plot
Now we will create a dot map of the temperature field. Click:
Display->Field

This opens a dialog box that looks like Figure 3.2.



Figure 3.2 Display Field Dialog Box

Under the Display Field heading click on th@??7??
and select Temperature. Under the Projection heading
Display Mame Pick an appropriate projection for China. You may

. have to experiment with this parameter until you get a
projection you think is good. Click OK when you have
) ' selected the display field and the projection. You
Lisplayifield should get a map of the Temperature data points for

temperature | China that will look similar to the Figure 3.3.
This is the data from which you will be generating
Graph Type interpolated fields of Temperature. At this point you
must create amterpolation method and agrid.
Mone | Creating an interpolation method involves selecting
one of several predefined methods, such as inverse
distance, and specifying some parameters, such as the

oy =t | spatial extent of the data included in the estimation.
For example, if we are interpolating temperature in the
Projection continental United States how many points do we want
to use to interpolate a temperature value in Tucumcari
Mollweide | New Mexico? Should we use data from Seattle? This
problem is called the "Neighbor Selection problem"”,
and the user provides parameters to identify the
neighborhood size. Another parameter to be set is the

exponent of the inverse distance weighting. The default
_| exponent is 2.0 (in analogy to the effect of gravity), but

o e you may experiment with the value of this parameter.

Options




‘Ghostview, version 1.5

2072 2580 2048 <1536 -10.24 -512 DDO 512

1024 1536

Ob=ervational Field

name temperature
avg -2.54

aid 10.64

min -30.0

max 16.5

count 160

Figure 3.3 Display of original (pre-interpolated) data

This figure shows a set of 160 weather stations from the Geophysical Historical Climate

Network, for the month of December.




Creating an Interpolation Method

To create your interpolation method, select:

Interpolation->Create Method->Inverse Distance Weighting
This should produce a dialog box that looks like Figure 3.4.

1 T 2lll The “Range Modes” identifies how the
neighborhood size is specified. It is described

Meighbor Selection in detail in Section 5.1. For now, use the

default settings, which will select a

2| neighborhood size of between 4 and 10 points,

FELDERG DL TR R el depending on the density of data in the vicinity

: of the interpolation point.

Radius-Pts |7

The “Function Definition” specifies the nature
Min-Pts of the mathematical inverse distance function

M| (see Section 5.1 for details). These defaults are
fine. Click OK to accept them. This creates a
new method called Shepl that should appear in
the Spherekit window.

Max—Pts

Function Definition

Algorithm Shepard

Exponent

Angle Adj

Extrapolate

kMame

Figure 3.4 Define Method Dialog Box



Creating an Interpolation Grid

In Spherekit a grid is simply a set of locations arranged at a regular distance (in degrees)
from one another. To create a grid, select:

Interpolate->Create Grid

You should see the Grid Definition Dialog Box as shown in Figure 3.4.

Please Enter Grid Definition -}

Grid Name grd2 I
East — west; degrees longitude

Resolution

Morth—south; degrees latitude

Dimensions Of Mone Apply Mask File
754816 S
Western longitude: [75.0 | Morthern latitude:

Eastern longitude: Southern latitude:

Include ~~ Land and Sea “* Land Qnly “~ Sea Only

I

Figure 3.5 Define Method Dialog Box

You could play with these parameters, i.e. the resolution of the grid, the extent of area
that you want to interpolate to, etc. For this example just accept the defaults by clicking
OK. This will create an object called Grd1 that will show up in the Spherekit window.



Performing an Interpolation

Now we are ready to perform an interpolation. This will estimate a value at each of the
cells in the grid you have just defined. To do this choose the following:

Interpolation->Begin Interpolation
This produces, you guessed it: yet another dialog box that looks like Figure 3.6.

Figure 3.6 Interpolation Dialog Box
Fill in this dialog as follows:

l. Choose a name that makes sense for the output field name. e.g. TemplnvDist
Il. Click on all the fields witl?????7?in them and choose the appropriate objects.
M. Then click "OK". This will produce a new object with the output field name you supplied.

After interpolation occurs, the display dialog box will appear. Sel&isplay Field that

is the interpolated field object that you just created (It should be the default), Select a
Graph Type that appeals to you (fool around here, grid plots and Isolines are different).
Grid plots simply provide the value of the grid cell, while a contour plot smooths the
image based on a Delaunay triangulation procedure.

Now choose th®©ptions that appeal to you. We suggest “Superimpose Data Values”,
and “Base Scale on Source. Then click OK. An image will appear. This can be printed if
you like, by selecting print from the ghostview file menu.

Generating Error Fields

Spherekit contains a rather limited set of online help topics. Begin this section by
selecting:

Display->Help
This will bring up a list of the available help topics. Se{éxiss-Validation-At-Net and
read the help message. Repeat thiimss-Validation-At-Grid .

To make an image of the estimated error field select the following:

Cross-Validation at Grid



Complete these steps to fill in the field:

M.
V.

V.

VI.

Enter a meaningful (but conscise!) name for this error field.

In theinterpolation menu heading select one of your interpolation methods.

In theinterpolate from menu select Temperature.

In theerror interpolation method select Shepl.

In theinterpolate errors to field select the same grid you created earlier (probably Grd1).
Click OK.

When the display dialog window shows up just click OK. This should bring up a
ghostview representation of the estimated error.



4. Users’ guide

This section describes screen displays and menu options that you will encounter
when using the package. When starting Spherekit, the display is divided into eight
types of variables: Observation, Grid, Network, Method, Error, Display,
Interpolation, and Derived variables. These areas will be filled in with file names
as fields of these types are read in or created. Clicking on any field name displays
all known metadata for that field.

Throughout a Spherekit session, windows will pop out as options are selected.
The method of closing windows will vary depending on the version of X-
Windows that you are running. Generally, an icon in the upper left corner can be
clicked to close or exit from the window.

The main screen of Spherekit is shown in Figure 4.1. Six main menu options
appear along the upper periphery of the screen. Each of these options contains
suboptions that are described in this section. The default Project Name: “Work”
also appears on the upper right corner of the screen.

_.i =] Spherekit Interpolation System  Version: Alphal.0 = iJ

File Processing Interpolation Cross—Validatation Display Options Project: Work

Hetwork

Display

Derived

Figure 4.1 Main screen



As files are entered or created by the user, the filenames appear as shown in Figure
4.2. Clicking on any of the file names displays metadata associated with that file.
The Figure shows a session with the Project Name: “NAM”. Seven data files
(denoted “Observations”) have been loaded; two Grids and six Networks have
been defined. These Grids and Networks may represent locations being
interpolated from or interpolated to. One interpolation Method has been created.
Four have been created in the example. The example also shows that two
Interpolations and one Derived variable have been defined. The Interpolation files
contain a description of the combination of Observations, a Grid or Network, and
Method used to define the interpolation. The resulting output files appear as
Display files with a default suffix of .map. The Display files can be converted to
and saved as PostScript filesA Derived variable contains the output of a
mathematical formula or function.

== Spherekit Interpolation System  Version: Alphal .0 ==

File Processing Interpolation Cross—Validatation Display Options Project: MAR

Observations ohs1 ghcn.nam ghcn.rock ghcn.rock.net.dem
east.nam ne.nam sB.nam

rock.grd

netl ghcn.nam.net ghch.rock.net east.nam.net
ne.nam.net se.nam.net

Display ghcn.nam.map ghcn.rock.map rock.z.map interpZ.map

Interpolation rock.z interp2
-

Figure 4.2 Main screen during sample session

In the remainder of this chapter, the menu options are explained; bold face is used
to denote a specific menu item. The six major subheadings in this chapter directly
correspond to the six main menu options in Spherekit. The submenu selections



from the main menu appear below with an arrow synmibdbr each level below
the main menu.

File
O Environment

O O Set Project Directory

This option allows the user to return to a working environment that was left at an
earlier time. Upon return, all variables are reloaded and the status of the program
is restored. To use this option, the user is prompted for the names of all saved
projects.

O O Create Project Directory

This option creates a new workspace into which a user can load data. Upon
return, all variables are reloaded and the status of the program is restored. To use
this option, the user is prompted to enter a name of the current project. The initial
project directory has the default name: Work.

O O Delete Project Directory
This option deletes a previously created working environment. The user is
prompted for the name of an existing project environment.

O Import Data
Use this selection to load your data and/or the built-in DEM into Spherekit. These
features are described below.

O O Locations
A set of locations is classified either as a network (irregularly spaced) or a grid
(regularly spaced).

O O O Network (irregularly spaced points)

If you select Network, you are prompted for the column numbers of the latitudes
and longitudes in the input file. You also are prompted for the file name and the
format of the file (binary or ASCII). For ASCII files, you can enter a delimiter
other than a blank space. A final option is available to read in a location index for
each location. This allows the observation values to be referenced by location
number. To use this option, you are prompted for the column number of the index
in the location file.

oono Grid (regularly spaced points)

If you select Grid, you are prompted for the starting location and the grid
resolution in east-west and north-south directions, either in km or degrees. You
are asked for a name to assign to the grid, so that it can be referenced later.



0O O Values

To load the data values associated with the grid or network that you've defined,

enter the file name where they may be found and the column number. You are
also asked for the associated grid or network name. If an indexed location is

associated with each observation, select that option and enter the column number
for the location index.

U 0 DEM

A digital elevation model (DEM) is built into Spherekit. Its coverage is global,
including elevations both above and below sea level. To access the DEM, enter
the name of the grid or network on which elevation values are desired. Assign a
file name to the created values and use the data set as any other observational data
set.

O Export Data
To save a field, enter the field name, the desired file format (ASCIl or native
binary), and the desired file name.

O Delete Variable

Spherekit saves all created objects in external files. Any of the following can be
deleted with this selection: observation file, grid or network description,
interpolated field, error field, or postscript display.

O Quit
Exits Spherekit and returns to the operating system.

Processing

O Derived variable

A wide range of mathematical transforms can be applied using this option. The
selected operation is applied to all elements of the data set. The dataset may be
observations, an interpolated surface, cross-validation errors, or a previously
transformed variable.

O O Linear transform
Change the units or rescale the data by specifying a constant (offset) and slope
(scale factor).

O O Nonlinear transform

This option can be used to reduce the skewness or kurtosis in the data. The inverse
transform is applied automatically following interpolation as a default. This
inverse operation can be disabled if desired when the Begin Interpolation option is
selected. The available nonlinear transforms are:



Log [In(x)]

Exponential [exp(x)]

Power [x7]

Box-Cox [(x?)/p]

Logistic [In[x/(1-x)]]

Angular [arcsin(sqrt(x))]
Trigonometric [sin(x) or cos(x)]

—=Average

Use this option to average the corresponding values in multiple data objects (or
files). Each file must have the same dimension. This option can be used to create a
monthly or annual average of a quantity prior to (or subsequent to) interpolation.

—=Formula

Using a built-in equation editor, you can create new variables and perform the
interpolation directly on these new variables. Each file must have the same
dimension. The inverse transform of the created formula is applied automatically
following interpolation as a default. This inverse operation can be disabled if desired
when the Begin Interpolation is selected. An example of the use of the Formula
operation is described in Section 2. The example discusses the creation of a variable
"temperature reduced to sea level.” The formula is used to obtain a corresponding
sea level value for the interpolation. Following the interpolation, the formula is
inverted to restore physical meaning to the interpolated field.

=Variograms

A variogram depicts the autovariability of a data set or the cross-variability of a pair
of data sets. Viewing a semivariogram is the initial step in using the kriging
interpolation method.

== Variogram Type
Several types of variograms can be computed. For complete details, see Deutsch
and Journel (1992). :

—==Semivariogram
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=== General relative semivariogram
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=== Pairwise relative semivariogram
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=== Semivariogram of logarithm
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==Variable

Enter the variable name.

== Variable 2
If cross-semivariogram has been selected above, enter the name of the second

variable.



==# lags
The number of lags is the number of x-values along the ordinate of the variogram
graph.

== Length unit lag (km)
The length is the increment or distance between points along the ordinate of the
variogram graph.

== () Isotropic () Anisotropic

Check the isotropic box for a variogram based upon pairwise distances without
orientation considerations. Check the anisotropic box if there are variations in
correlation with direction. For example, some natural phenomena show greater
variations in the north-south direction than in east-west because climatic variables
often show greater variability along the meridians.

If anisotropic has been selected the following options apply:

== Angle (Clockwise from N-S)
The angle is the major axis of the anisotropy.

== Cone (1/2 angle)
This option allows you to exclude points lying outside of a cone centered on a point
and whose center line is directed in the angle selected above.

—= Maximum distance (km)
This option allows you to exclude points lying greater than the specified distance
from the center line of the cone.

== View Variogram
Select this option when you have completed the entry of the variogram parameters.

== Superimpose Model

If you selected semivariogram, you have the option of superimposing a
semivariogram model on the data. To fit a model, the name of the model
(exponential, Gaussian, spherical, or linear), and a first guess at the range and sill.
Spherekit will provide first guesses for these values.

===Nugget
The nugget is value of the model f(d) as d-> 0.

===Model
The choices are exponential, Gaussian, spherical, and linear. The range and sill are
the parameters. For the linear model, slope and power are the parameters.



== =  Isotropic/Anisotropic
For an anisotropic model, enter the angle offset for the major axis and the anisotropy
factor.

=== Add Additional Model

Some datasets display very different spatial variability properties at close and far
distances. To accommodate this characteristic, Spherekit permits a variogram
function to be the sum of two models. Typically, the range parameter of the two
models would be set quite differently in the two models.

== Constrain Lat/Lon
The domain of a dataset can be limited to a rectangle in the latitude-longitude plane.
To use this option, the user enters a bounding pair of latitudes and longitudes.

== Constrain Values

The range of values in a dataset can be constrained to lie within specified minimum
and maximum values. For example, chemical mixing rations can be constrained to
lie between zero and one using this option.

Interpolation

= Create Grid/Locations:

==Grid (regularly spaced set of points)

Enter the latitude and longitude of the northwest corner of the grid as well as the
north-south grid spacing in degrees. The grid can be masked to exclude sites over
the ocean and other water bodies or can be masked to exclude land sites.

==Network (irregularly spaced set of points)
Enter the file name _containing the network locations.

= Create method
Refer to Section 3 for a complete description of the interpolation methods and
parameters available.

=Begin Interpolation
Selection of this option initiates the interpolation. A check is performed to ensure
that a method and grid/network have been chosen. You are asked to provide a name

for the output field.
Cross-validation

Cross-validation refers to the process of removing one of the n observation points
and using the remaining n-1 points to predict its value. This process is repeated at



each data point, with each estimate using n-1 points.

= Cross-validation to Network

The interpolation error at each data point is the difference between its observed and
predicted values. This difference field can be displayed and manipulated as any
other field in Spherekit. The user is prompted for a field name for the generated
network. The display of an error field includes the error field, a table of error
summary statistics, a histogram, and a scatterplot. The overall error is computed
both as the mean absolute error (MAE) or the root mean square error (RMSE).

= Cross-validation to Grid

This option is used to interpolate the error field to a uniform grid (using a user-
specified method). This second interpolation has the effect of reducing spatial bias
in the estimate of the error. The output is an error field that can be displayed and
manipulated as any other field in Spherekit. The display of an error field includes the
error field, a table of error summary statistics, a histogram, and a scatterplot. The
overall error is computed both as the mean absolute error (MAE) or the root mean
square error (RMSE).

Display

=Field
Any field may be displayed using this selection. There are many different ways to
display the field using the descriptions below:

== Display Name
Give a name to the display of the field so that it can be referenced at a later time.

== Display Field
Select the name of the field to be displayed.

== Graph Type

===Isoline
This graph type is a smoothed contour plot.

=== Grid Plot
This graph type is an unsmoothed plot that shows the resolution of the underlying
data.

===None
Selecting this option will display no field. It is used to show data locations,
triangulation, etc. (see Superimpose options) without any overlying data.



==0ptions

= ==Superimpose
Any of the following can be superimposed on a displayed field. The default is no
superimposed features.

—==== Data Values
—===Triangulation
==== Regular Grid

===7Zoom
The size of the displayed image can be set smaller or larger using this option.

====50%
====100% (default)
====150%

==>=Masking
Ocean or water-covered locations can be masked out using this option.
Alternatively, land areas can be masked.

===>=> No masking (default)
—=== Mask out sea
—==== Mask out land

===Palette
The palette determines the range of color used in the display. Options are:

Topographic

Tan Blue

Tan Violet

Green Yellow
Red Blue

Blue Red
Chromatic (default)
Red

Blue



Green
Gray (for black and white display)

=== # of Bins

- \S 00 ~1 &

0 (default)

=== # of Decimals

0
1
2 (default)
3

===Orientation
This option permits a change from horizontal to portrait orientation.

—====Landscape (default)
—=—===Portrait
===Scale

—=== Base Scale on Field (default)
The scale will be selected based on the values of the interpolated field.

—=>—>=> Base Scale on Source
The scale will be selected based on the values of the observations.

===Projections
Select a projection appropriate to your data set. You will be prompted for any needed
information associated with the projection.

Mercator

Orthographic

Mollweide

Albers Conic

Robinson

Plate Carree
Stereographic North Pole



Stereographic South Pole
Stereographic General

=Help
This selection accesses the on-line help for Spherekit

=Metadata
Using this selection, the metadata for any field can be displayed.

=Overview
Using this selection, the overview information for Spherekit is displayed.

=How To
This selection contains hints on performing certain functions in Spherekit.

= Read Me
This selection displays the README file that accompanies Spherekit.

=Log File
This selection displays the current log file.

=Credits

This selection displays the opening screen of Spherekit containing the credits.

Options

=Echo Commands

With this option disengaged, the commands that you select are written to the default

window (the one from which you started Spherekit).

=Log Commands

With this option engaged, the commands that you select are written to a log file.

=Suppress GMT Commands

With this option engaged, all GMT commands are written to the window from

which you started Spherekit. The default value is to suppress this display.

=>Create Scale

This option allows the user to create a set of bins to use as a scale in the display of
fields. To use this option, enter a desired number of bins and a desired minimum

and maximum value associated with each bin.



5. Interpolation algorithms

The primary purpose of Spherekit is to estimate an interpolation function f(x) ona
network or grid of points using observed values f(x) at other points x. The term
interpolation implies that the estimated function agrees with the observations at those
points:

~

f(x,)= f(x,) for all observations i . (D

Use of (1) is equivalent to assuming the observations to be error-free. If (1) were
not to hold, the estimation function would be a smoothing rather than an
interpolation function. Smoothing functions are not presently included in Spherekit.

Because of (1), Spherekit includes a preliminary check to determine if any
interpolation point coincides with an observation point. If so, or if the two points lie
within a small tolerance of one another, the interpolated value is set to that of the
observation. Spherekit also will extrapolate, if an interpolation point is outside the
convex hull of the observations. Extrapolation should be used with caution as
accuracy will be poor in many instances.

Five classes of interpolation methods are available in Spherekit:

* Inverse distance weighting
* Triangulation

* Multiquadric

* Thin plate spline

* Kriging

Methods vary in terms of the number of observation points used in the estimate, the
smoothness of the interpolation field, and the computational speed and storage
requirements. Each method has been modified for use on the sphere by utilizing
geodesic distance in lieu of Euclidean distance. Additional modifications for the
sphere are used where possible.

5.1 Neighborhood size selection

Interpolation methods can be categorized as either global or local. A global method
uses all observations to estimate an interpolated value. This strategy is not feasible
when the number of observations is relatively large. A local method uses only
observations lying within a specified neighborhood of the interpolation point. Most
of the Spherekit interpolations can be carried out using either strategy.

The neighborhood size of a local method is specified as & radius (in kilometers) or a
number of included points. An override can be invoked to put lower and upper
bounds on the variable that was not specified. Use of the override will expand or



contract the neighborhood size if needed to meet the criteria. Spherekit also permits
the specified radius to be computed as the average radius of a specified number of
points.

5.2 Inverse distance weighting

Inverse distance weighting is the simplest interpolation method considered. In this
method, a weighted average is taken of the observed values (neighbors) falling
within the neighborhood of the interpolation point. The weights are an inverse
function of distance. The user has control over the mathematical form of the
weighting function, the size of the neighborhood, a bias correction, and an
extrapolation/gradient correction. The description of the neighborhood size
selection was given in Section 5.1.

The estimation function is obtained using:

2 wldxx))f(x)

fx) == )
> wld(x,x,)]
i=]

where w[] is the inverse function of the geodesic distance d between the
interpolation point X and one of its x;. There are m neighbors, where m usually is

much less than 7.
Weighting function

The simplest weighting function is inverse power:

w(d)= 1/d’ p>0

The value of p is specified by the user; p= 2 is a common choice. If p is too large,
the interpolated value tends towards that of the nearest neighbor, with little influence
of other points in the neighborhood. If p is too large, the interpolated value tends
towards that of its average neighborhood value, with little variation within the

neighborhood.

Shepard's weighting function (Shepard, 1968) differs from inverse power in the
outer region of the neighborhood. For distances within 1/3 of the neighborhood
radius, the function is inverse power with p=2. In the outer 2/3 of the
neighborhood, the function is a quartic. The quartic produces a more rapid falloff
than inverse square would produce in the outer region. The resulting function is
continuous and differentiable at the region interface and goes to zero at the
neighborhood boundary.



The other weighting function available is Cressman’s function. This function differs
from all others in as it is a smoothing, rather than an interpolative function. Its
functional form is:

w(d)= (p* - EW(p*+ &)

where p is a user defined distance constant with p>d for all d.

Anisotropy correction

The function in (2) is entirely distance-based; all points lying at a particular distance
are given equal weight. No consideration is given to the angular distribution of
neighbors relative to the interpolation point. Points that are angularly clustered are
weighted nearly equally to points which are angularly separated. Neglecting the
anisotropic distribution of neighbors can introduce spatial bias in the estimate.

Spherekit includes an anisotropy corrector to adjust weights based on their angular

distribution. The correction is based on Shepard (1968) with spherical angles
replacing planar angles. The modified weight w; for the interpolation at point X, is

computed from:

iwj[l— cos(£LX XX ;)]
w,(d,0) = w(d)| 1+ L=

Z w;

j=1
where w;(d) is the weight based upon distance alone. The parameter o is included
for sensitivity studies and can be set to values between zero and one. A value of
zero produces no correction, while one (the default value) produces its full effect.

Gradient correction

A characteristic feature of the inverse distance weighting method is that the
interpolation function is forced to have its local extrema at the observation points (or
on a boundary). That is, the interpolation function has zero gradient at the observed
points and nowhere else. Spherekit's gradient corrector adds a "trend" term f*(x;)
to each observation value. The method is described below. Further justification for
the steps can be found in Shepard (1968) and Willmott et al. (1985).

The trend term is obtained from the gradient of the observed field. The gradient at
an observed point is estimated as:



i ‘(X,'—xj)[f(x,')_f(xj)]
= [ﬂ&xﬂz
Vf(x,) =+ m

where w; is the weighting factor determined above. If x is the interpolation point,
the trend term associated with observation point X; is:

1%
F*(x) = VF(x,)®(x—X,)—————
v+d(x,x;)

The final term on the right varies from zero to one for positive v which is determined
from:

_ , max[f(x;)] - min[f(x,)]
max|Vf(x,)|

where the max and min functions are taken over all observation points, and o is a
user-specified parameter. For a=0, there is no gradient correction, as f*(x)= 0.
For large 0. , the quotient in the definition of f* is one, and the gradient corrector has
its full effect.

This correction method should be used with care because extrapolated estimates may
exceed the range of realistic values when data networks are deficient. The default

value of o is 0.1.
5.3 Multiquadrics and thin-plate splines

The next two interpolation methods produce estimates of a surface function f(x)
rather than estimates at individual points. These functions represent linear
combinations of some function of distance to the data such that:

fx) = wld(x,x)]a, 3)
=1

where w[] is a specified function of the geodesic distance d between the interpolation
point x and an observation point X; and m denotes the number of points used in the

estimate. The multiquadric and spline methods differ from one another in the

functional form of w[]. The observed values do not appear explicitly in (3) Instead,
they are reintroduced when the coefficients aj are computed by Spherekit to satisfy

(1). There are two distinct methods of fitting the surface to the observed values.



The “traditional” surface fit methods use all n observations (m=rn) to obtain the
interpolated field. Such global methods require the solution of n simultaneous
equations and the inversion of an nxn matrix. The coefficients are computed once
and can be stored for later use. To use the traditional method, select "Use all points”
for the neighborhood size. Spherekit cannot perform the matrix inversion required
by the traditional method when n is greater than several hundred. A warning is
displayed if such an operation is requested by the user.

An alternative approach is to solve (3) using only observations within a specified
neighborhood of each interpolation point. Using this local method, a new set of
coefficients is obtained for each interpolation point and coefficients are not saved.
Section 5.1 describes the neighborhood size selection procedure.

Multiquadrics

Multiquadric methods (Hardy and Gofert, 1975) express the interpolation function
as a linear combination of quadric (e.g.. hyperbolic or conical) functions.
Modification for the sphere has been formulated by Pottmann and Eck (1990). The
functions in (3) are of the form:

w(d)=~1+R*-2Rcos d

where R is a user-specified tension parameter and d is the angular distance between
the observation and interpolation points. Values equal to or slightly less than 1 are
recommended.

An option is available to use reciprocal multiquadric interpolation. In this case, the
above function is replaced by its reciprocal.

1

w(d) =
J1+ R*—2Rcos d

In most of our test cases, the standard multiquadric method outperformed the
reciprocal multiquadric method.

Splines

In the thin-plate spline method, the functions in (3) can be any of the following
forms:

w(d)=d’log d

w(d) = d*log d°
w(d) =d*(log d—1)



where d is the angular distance between the observation and interpolation points. A
general reference is Watson (1992). More technical references are: Franke (1982),
Harder and Desmarias (1972), and Sandwell (1987).

5.4 Kriging
Kriging differs from the other methods in that spatial variability information is used

in the estimation procedure. Many forms of kriging are possible; Spherekit uses
simple kriging, computed as:

Fx) =Y wld(x,x)If(x)

where d is the angular distance between the observation and interpolation points.
The weighting function is one or some combination of the following:

w(d)=a+ce?” (Exponential)
w(d) = a+oc’e ™ (Gaussian)

3
w(d) =a+0o(1 —%%+%; (Spherical)
w(d)=a—-cd (Linear)

The free parameters a, o2 and r are known as the nugget, sill and range,
respectively. For the linear model, ¢ is the slope. All parameters are estimated
through an iterative process. The resulting weights are determined by minimizing
the variance of the estimate among all possible linear unbiased estimates. Such
values are obtained using the covariance structure (or semivariogram) of the field.

The sill equals the variance of the observations at the limit of large distances. That
is, the sill is the non-spatial component of the variability of the observations. The
range refers to the range of distances for which there is significant covariance. The
description of the variogram is given below in Section 5.2.

The semivariogram calculation is carried out using the GSLIB library software
package (Deutsch and Journel, 1992). The semivariogram is defined as:

y(s) = % Var[f(x,)-f(x,)] such that d(x,,X,)=s .

The kriging interpolation produces both the estimated field and the expected error
about this estimate. The latter is the expected error assuming that the model
specification is correct.



5.5 Triangulation

The triangulation method begins by connecting the observation points into a network
of triangles. The purpose is to identify a neighborhood of nearby observation
points to be used in the interpolation. There are many possible triangle networks
that can be produced, among them the Delaunay triangulation. Spherekit uses
Renka's algorithm and source code (Renka, 1984) to carry out a Delaunay
triangulation (Okabe et al., 1992) of the observation points.

Once the triangulation is obtained, there are two ways that the interpolation can be
performed. The simplest method is to take a linear interpolation of the values at the
vertices of the triangulation. The resulting interpolation function is continuous, but
not differentiable across an edge.

The second triangulation method uses a polynomial fit within each triangle (Renka,
1984). This method requires an intermediate step of fitting a cubic spline on each
triangle edge. The interior values are taken as weighted averages of the edge values.
In the intermediate step of fitting the spline, approximations to the gradient at each
point must be computed. The user has the option to specify which of two gradient
estimation methods is used. The local method uses only a few neighboring points,
while the global method uses all points. The latter method may not be possible if the
number of points is larger than a few hundred.



6. Download and installation
Spherekit is available for download from the Spherekit web page at:

http://www.ncgia.ucsb.edu/pubs/spherekit/main.html .

Binary versions currently are available for the DEC Alpha and SGI (IRIX 6.2). We expect
to add other platforms in the future. Alternatively, the full source code is available for use
on other platforms and for users who wish to modify the code. Several auxillary software
packages are required to use Spherekit: GMT3.0, TclTk, ghostview, and netCDF, and
these tools are included in both the binary and source code distributions.

An optional digital elevation model (DEM) also is available with the package. The DEM
has global coverage over both land and sea, with 5 minute resolution. It is used for
carrying out topographically assisted interpolation. The required Spherekit executable code
takes up 20 Mb while the optional DEM requires an additional 37 Mb.

Binary Distributions (currently available only for DEC Alpha and SGI - IRIX 6.2)

To install the binary executables:

1. Download and uncompress the files for your system.

2. Run ./make_sk in the Spherekit directory

3. Run ./test_sk to ensure the accuracy of Spherekit's interpolations
4. Add the SK directory to your path statement

5. (Optional)

a. Download the DEM file
b. cd to the Spherekit directory and run set_sk_demdir

Source Code Distribution

With the source distribution you can compile Spherekit from the ground up. As a
convenenience for you, we have also included the source files for netCDF, Tcl/Tk, a subset

of GMT3.0, and ghostviewl.5.
Since Spherekit has been tested with these modules, it is strongly suggested that you use
the source files provided in this distribution. We have gone to a lot of work to bring these

components together into one application framework. Please take advantage of this labor.
Spherekit will probably not be kept forward compatible with later versions of these

packages.
You will need to “make” these programs and libraries in addition to Spherekit.



The compilation process for the source distribution is comprised of these major steps:

L Download and uncompress the source distribution file

II. cd to SKv1/netcdf-3.3/, read the README file there, and make the netCDF
library

III. cd to SKv1/GMT3.0, read the README file there, and make the GMT3.0
executables

Iv. cd to SKv1/TclTk, read the README file there, and make Tcl and then Tk

V. cd to SKv1/ghostview1.5, read the README file there, and make ghostview

VL cd to SKv1, read the README file there, and make Spherekit

VII.  run .ftest_sk to test the interpolators

VIII. add the SK directory to your path statement

IX.  (Optional) Load the DEM according to Step 5 in the binary distribution above.
Porting Spherekit to a new platform is a fairly involved task, requiring ANSII C and
FORTRAN 77 compilers. If you port Spherekit, please let other users benefit from your

efforts by contacting a member of the Spherekit team and making the binaries available to
us. We will add your binaries to those listed above, and credit your work.

Questions or comments about the installation procedure should be directed to:
chris@geog.ucsb.edu .
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