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Behavioral/Cognitive

Expectations Do Not Alter Early Sensory Processing during
Perceptual Decision-Making

X Nuttida Rungratsameetaweemana,1* X Sirawaj Itthipuripat,1,2,3* Annalisa Salazar,4 and X John T. Serences1,4,5

1Neurosciences Graduate Program, University of California, San Diego, La Jolla, California 92093-0109, 2Learning Institute, King Mongkut’s University of
Technology Thonburi, Bangkok, Thailand 10140, 3Department of Psychology, Vanderbilt University, Nashville, Tennessee 37235, 4Department of
Psychology, University of California, San Diego, La Jolla, California 92093-0109, and 5Kavli Institute for Brain and Mind, University of California, San Diego,
La Jolla, California 92093-0109

Two factors play important roles in shaping perception: the allocation of selective attention to behaviorally relevant sensory features, and
prior expectations about regularities in the environment. Signal detection theory proposes distinct roles of attention and expectation on
decision-making such that attention modulates early sensory processing, whereas expectation influences the selection and execution of
motor responses. Challenging this classic framework, recent studies suggest that expectations about sensory regularities enhance the
encoding and accumulation of sensory evidence during decision-making. However, it is possible, that these findings reflect well docu-
mented attentional modulations in visual cortex. Here, we tested this framework in a group of male and female human participants by
examining how expectations about stimulus features (orientation and color) and expectations about motor responses impacted electro-
encephalography (EEG) markers of early sensory processing and the accumulation of sensory evidence during decision-making (the early
visual negative potential and the centro-parietal positive potential, respectively). We first demonstrate that these markers are sensitive to
changes in the amount of sensory evidence in the display. Then we show, counter to recent findings, that neither marker is modulated by
either feature or motor expectations, despite a robust effect of expectations on behavior. Instead, violating expectations about likely
sensory features and motor responses impacts posterior alpha and frontal theta oscillations, signals thought to index overall processing
time and cognitive conflict. These findings are inconsistent with recent theoretical accounts and suggest instead that expectations
primarily influence decisions by modulating post-perceptual stages of information processing.

Key words: cognitive control; decision-making; electroencephalography (EEG); expectation; sensory modulation

Introduction
Selectively attending to relevant sensory inputs (i.e., selective at-
tention) leads to faster and more accurate decisions. In addition,

expectations based on learned statistical regularities in incoming
sensory signals or motor responses can also facilitate decision-
making, even if the expectations concern features or responses
that are irrelevant with respect to current behavioral goals (Sum-
merfield and de Lange, 2014). Selective attention is thought to
improve information processing primarily by modulating the re-Received Dec. 26, 2017; revised April 27, 2018; accepted May 4, 2018.
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Significance Statement

Expectations about likely features or motor responses play an important role in shaping behavior. Classic theoretical frameworks
posit that expectations modulate decision-making by biasing late stages of decision-making including the selection and execution
of motor responses. In contrast, recent accounts suggest that expectations also modulate decisions by improving the quality of
early sensory processing. However, these effects could instead reflect the influence of selective attention. Here we examine the
effect of expectations about sensory features and motor responses on a set of electroencephalography (EEG) markers that index
early sensory processing and later post-perceptual processing. Counter to recent empirical results, expectations have little effect
on early sensory processing but instead modulate EEG markers of time-on-task and cognitive conflict.
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sponse properties of neurons in early sensory areas (Desimone
and Duncan, 1995; Reynolds and Chelazzi, 2004; Maunsell and
Treue, 2006; Serences and Kastner, 2014; Itthipuripat and Ser-
ences, 2016). In contrast, classic theoretical frameworks such as
signal detection theory (SDT) hold that expectations do not in-
fluence early sensory responses, but instead bias later cognitive
operations related to response selection and execution (Wald and
Wolfowitz, 1949; Green and Swets, 1966; Wolfe, 1998; Berti and
Schröger, 2004; Alvarez et al., 2007). Consistent with this idea, a
recent behavioral study has shown that stimulus expectations
modulated decision criteria without affecting the quality of early
sensory signals (Bang and Rahnev, 2017).

Challenging this traditional SDT-based account, recent work
suggests that expectations can improve the efficiency of early
sensory processing, even when expectations are independent of
behavioral goals (Kok et al., 2012a; Wyart et al., 2012b; Summer-
field and de Lange, 2014; Cheadle et al., 2015). On this account,
expectations increase the precision of information processing by
sharpening population-level response profiles in early visual cor-
tex (Lee and Mumford, 2003; Spratling, 2008; Kok et al., 2012a;
Jiang et al., 2013). Accordingly, it has been proposed that
expectation-related modulations in early visual cortex should di-
rectly increase the efficiency of early sensory processing during
perceptual decision-making (Summerfield and de Lange, 2014).

However, previous studies examining the impact of expecta-
tions on early sensory processing used explicit cues to indicate
which stimulus feature had the highest probability of being a
target (Wyart et al., 2012b; Cheadle et al., 2015; Kok et al., 2012a,
2016). Importantly, these explicit cues are similar to cues used in
other studies to direct the allocation of visual attention to behav-
iorally relevant spatial locations or features (Motter, 1993; Mc-
Adams and Maunsell, 1999; Martínez-Trujillo and Treue, 2004;
Scolari et al., 2012, 2014; Itthipuripat et al., 2014a,b; Störmer and
Alvarez, 2014; Ester et al., 2016). Therefore, reported expectation
effects may actually reflect the operation of the same mechanisms
that have been well documented in the selective attention litera-
ture (Motter, 1993; McAdams and Maunsell, 1999; Martínez-
Trujillo and Treue, 2004).

Here we test the classic SDT account and this new sensory
enhancement account to better understand how expectations im-
pact early sensory processing (Kok et al., 2012a; Summerfield and
de Lange, 2014). We manipulated expectations about two differ-
ent low-level sensory features (color and orientation). We also
included two additional conditions: (1) a manipulation of the
amount of sensory evidence available in each stimulus display to
validate electroencephalography (EEG) markers of early sensory
processing, and (2) an independent manipulation of motor ex-
pectation as a point of comparison with feature expectation. Fi-
nally, expectations were established based on implicitly learned
regularities and we independently manipulated expectations
about each component of the task so that statistical regularities in
one feature dimension (e.g., color) would not provide informa-
tion about the relevance of a target defined in the other feature
dimension (i.e., orientation). As a result of these design features,
the task dissociated manipulations of expectations from the ef-
fects of using an explicit cue to provide information about the
behaviorally relevant target feature.

Materials and Methods
Participants. Twenty healthy volunteers (8 males; all participants right-
handed; mean age � 21.8, SD � 3.3) participated in the experiment. All
were neurologically intact and had normal or corrected-to-normal color
vision. Participants gave written informed consent and were compen-

sated $15/h for participation. Ethical approval was granted by the Insti-
tutional Review Board at the University of California, San Diego. Each
participant underwent two EEG recording sessions (sessions were �2 h
each, with 1920 trials collected in total). Three participants were ex-
cluded from data analysis for having �70% artifact-free trials in any of
the conditions of interest (due to excessive muscle movement and eye
movements), leaving 17 participants in the final analyses (see EEG re-
cording and analysis section for details).

Stimuli. Visual stimuli consisted of 200 blue bars and 200 red bars
(length � 1.39°, width � 0.18°) displayed in an annulus (outer diameter,
22°; inner diameter, 2.4°) surrounding a black fixation point on a dark
gray background of 42.68 � 2.20 cd/m 2. Blue and red bars within the
annulus flickered at 33.33 Hz (33.33% on– off duty cycle) and 50 Hz,
respectively (50% on– off duty cycle; or vice versa) for the duration of the
trial, and the location of each bar was randomly reassigned within the
aperture at the beginning of each flicker cycle. The combination of color
and flicker rate was counterbalanced across trials. At the beginning of
each trial, each bar was first randomly assigned to one of eight possible
orientations (0 –157.5° in 22.5° increments). For a target display, 68.5%
of either red or blue lines were assigned a common orientation of either
0° or 90°, whereas all other bars were assigned one of seven remaining
orientations. Participants were instructed to report the predominant ori-
entation of these iso-oriented bars via a USB compatible keypad.

Stimuli were presented on a PC running Windows XP using MATLAB
(MathWorks) and the Psychophysics Toolbox v3.0.8 (Pelli, 1985; Brain-
ard, 1997). Participants were seated in a sound-attenuated and electro-
magnetically shielded room (ETS Lindgren) 60 cm from the CRT
monitor running at 100 Hz with a gray background of 42.68 � 2.20 cd/m2.

Procedures. Participants performed two sessions of an orientation dis-
crimination task in which feature expectation (i.e., color expectation and
orientation expectation) and motor expectation were independently ma-
nipulated on a block-by-block basis (Fig. 1). As described, targets were
red or blue bars coherently oriented at 0° (horizontal) or 90° (vertical),
hence there were four possible target types: red horizontal, red vertical,
blue horizontal, and blue vertical targets. Each response button was as-
sociated with a specific conjunction of color and orientation. Half of the
participants were instructed to map the left button to red horizontal and
blue vertical targets and the right button to blue horizontal and red
vertical targets. The other half of the participants were given the opposite
response-mapping instructions. This stimulus–response mapping was
adopted so that we could completely dissociate expectation about sen-
sory features and expectation about motor responses.

To familiarize participants with the task and the response mapping,
participants performed a behavioral training session before the first EEG
session. During this training session, participants had to complete 10 full
blocks of the experimental task, with each block containing four trials
from each of the four expectation types (neutral, color expectation, ori-
entation expectation, motor expectation; see the next paragraph). The
training session was terminated once participants achieved perfect per-
formance on all blocks, and each block was repeated until participants
reached 100% accuracy.

After training, each EEG session was comprised of 16 experimental
blocks with 60 trials in each block. This yielded four blocks of trials for
each of the four expectation types: neutral, color expectation, orientation
expectation, or motor expectation (Fig. 1). In the neutral blocks, all four
target types were presented equally often. In the remaining blocks, fea-
ture and motor expectations were manipulated orthogonally, such that
feature expectation and motor expectation were never manipulated at
the same time within the same block. Feature expectation was manipu-
lated by presenting either one color more frequently (i.e., color expecta-
tion) or one orientation more frequently (i.e., orientation expectation)
than the other value in that feature dimension. For example, on one type
of color expectation block, the target would be rendered in red on 70% of
the trials and in blue on 30% of the trials. Importantly, on these color
expectation blocks, target identity was perfectly balanced such that 50%
of the target was horizontal and 50% was vertical. In contrast, on an
orientation expectation block, 70% of the targets would be horizontal
and 30% of the targets would be vertical, with an equal number of targets
composed of blue and red lines. Finally, on a motor expectation block,
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targets associated with the left button (e.g., red
horizontal and blue vertical) were presented on
70% of the trials whereas the targets mapped to
the right button (e.g., blue horizontal and red
vertical) were presented on 30% of the trials.
This experimental design thus enabled us to
independently manipulate expectation about
sensory features (i.e., target color and orienta-
tion) and expectation about motor responses.
In addition, we could also control expectation
within the “feature” domain by separately ma-
nipulating expectation about color and orien-
tation of the target stimulus, as both features
provided equal amount of information toward
decision choices (left/right button press) on
each trial. Together, this study design allowed
us to examine the effects of feature expectation
on information processing during decision-
making in the absence of motor expectation
and response bias.

Every block started with four practice trials
that corresponded to each target type (red hor-
izontal/red vertical/blue horizontal/blue verti-
cal) to ensure that participants understood the
assigned stimulus–response mapping. Partici-
pants had to provide correct responses for all
four practice trials before the main task would
proceed; otherwise the practice trials would re-
peat until participants met criterion perfor-
mance. In the main task, each trial began with a
pre-target display consisting of colored bars
flickering at 33.33 and 50 Hz that lasted for
91–127 ms. During this pre-target interval, the

Figure 1. Orientation discrimination task and behavioral results. A, Task schematics. Targets were either coherently oriented
red or blue bars at 0° (horizontal) or 90° (vertical), and participants indicated the target by pressing the left (L) or right key (R). Each
response button was associated with a specific conjunction of color and orientation such that half of the participants were
instructed to map the left button to red horizontal and blue vertical targets and the right button to blue horizontal and red vertical
targets. There were four expectation types to the task: neutral (no expectation), color expectation, orientation expectation, and

4

motor expectation. Expectation types were manipulated on a
block-by-block basis. Each target composed of two features:
color and orientation, and the expectation status of the target
was manipulated in the three expectation conditions by pre-
senting one type of target more frequently than the other tar-
get type within the same target feature. That is, for a given
block (e.g., color expectation block), one target type (e.g., red
target) was expected, whereas the other target type (i.e., blue
target) was unexpected. The other target feature (i.e., orien-
tation) was orthogonal to this expectation manipulation, and
it was equally likely that the target would be vertical or hori-
zontal. Note that the ratio of expected– unexpected trials
within each block is 70:30, such that in a color expectation
block where red target is expected, the probabilities of red
horizontal target, red vertical target, blue horizontal target,
and blue vertical target are 35, 35, 15, and 15% respectively. In
the neutral expectation block, the probabilities of each of the
four possible targets were 25% accordingly. B, Behavioral re-
sults. Accuracy was higher on the expected trials than on the
unexpected trials in all three expectation types (orientation/
color/motor expectation). Accuracy was also higher on trials
where stimuli were presented at a fast compared with a slow
flicker rate. RTs for correct responses were also shorter for fast
flicker-rated stimuli than for slow flicker-rated stimuli. C, Per-
formance as a function of the number of cumulative trials in
each block (i.e., trial 1–10, 1–15, 1–20, etc. within each block
of 60 trials). Data were collapsed across fast and slow flicker
rate trials to examine the temporal dynamics of the expecta-
tion effects on RTs and accuracy. Across the three expectation
types, the effects of expectation on behavior are clearly ob-
served after 20 cumulative trials. Thus, in later EEG analyses
where a null effect of expectation is observed, we ran addi-
tional analyses after discarding the first 20 trials.
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orientation of each bar was pseudorandomly selected from a uniform
distribution such that no coherent global orientation signal was present.
Following the pre-target interval, the orientation target was presented for
850 ms, followed by a 600 ms post-target display in which the orientation
of all bars was again pseudorandomly drawn from a uniform distribu-
tion. The post-target display was followed by a feedback display which
indicated whether the response on that trial was “too early” (made �85
ms after target onset), “correct”, “incorrect”, or “too slow” (made after
trial offset). The feedback display was presented for 300 ms and imme-
diately followed by an 800 –1200 ms blank intertrial interval.

Behavioral analysis. We used a three-way repeated-measures ANOVA
with factors for the expectation type (3 levels: color expectation, orien-
tation expectation, and motor expectation), flicker rate (2 levels: fast and
slow), and the status of the target (3 levels: expected, neutral, and unex-
pected) to test the main effects and interactions on the accuracy and
reaction times associated with correct trials.

EEG recording and analysis. EEG data were recorded using a 64 � 8
channel BioSemi ActiveTwo system at a sampling rate of 512 Hz. Two
reference electrodes were placed at the mastoids. We monitored vertical
eye movements and blinks via two pairs of electrodes placed above and
below the eyes. Horizontal eye movements were monitored via another
pair of electrodes placed near the outer canthi of the eyes. The EEG data
were referenced online to the BioSemi CMS-DRL reference, and all off-
sets from the reference were maintained �20 �V. The data were prepro-
cessed with a combination of EEGlab 11.03.1b (Delorme and Makeig,
2004) and custom MATLAB scripts.

After data collection, we re-referenced the continuous EEG data off-
line to the mean of the left and right mastoid electrodes and applied 0.25
Hz high-pass and 58 Hz low-pass Butterworth filters (third order). An
additional 10 Hz low-pass filter was applied before plotting the data, but
all reported statistics were performed on the 58 Hz low-pass filtered data
(Luck, 2005; for similar methods, see Hickey et al., 2010; Itthipuripat and
Serences, 2016). The data were then segmented into epochs extending
from 1500 ms before to 4000 ms after the trial onset. Prominent eyeblink
artifacts were first rejected by independent component analysis (Makeig
et al., 1996). We then visualized data from each trial and discarded ep-
ochs contaminated by residual eye blinks and vertical eye movements
(��80 –150 �V deviation from 0, with thresholds chosen for each sub-
ject), horizontal eye movements (��75–100 �V deviation from 0), ex-
cessive muscle activity, or drifts. This procedure resulted in the rejection
of 12.25% of trials on average (� 1.07% SEM across subjects; ranged
from 3.9 to 21.8% of trials). Data from three participants were excluded
from further analysis due to the rejection rate of �30% of trials (31.35,
60, and 89%, respectively).

Next, we sorted artifact-free EEG epochs into different experimental
conditions based on expectation type (color expectation, orientation ex-
pectation, and motor expectation), the status of each target in the context
of a given block (expected, neutral, or unexpected), and on the flicker
rate of the target (fast or slow). To compute event-related potentials
(ERPs), the EEG data from each experimental condition were first
baseline-corrected from 200 to 0 ms before the onset of a target or a
response. ERPs were then computed by averaging target-locked and
response-locked EEG data for each experimental condition. In addition,
the EEG data for individual subjects were also wavelet-filtered using a
Gaussian filter with a 0.2 factional bandwidth centered on eight frequen-
cies in 1 Hz incremental steps from 4 to 12 Hz, yielding analytic ampli-
tude estimates for oscillatory EEG components in the theta (4 – 8 Hz) and
alpha frequency bands (9 –12 Hz; for similar methods, see Canolty et al.,
2006; Itthipuripat et al., 2013a). Next, the single-trial alpha and theta data
were sorted into different experimental conditions (just like the ERPs).
Maximal time-domain SDs of the Gaussian wavelet filters were com-
puted separately for alpha and theta (i.e., alpha: SD � 208 ms; theta:
SD � 468 ms). Alpha and theta data were then baseline-corrected across
a time window extending 200 ms before their respective time-domain SD
(i.e., alpha data were baseline-corrected from 408 to 208 ms before target
onset and theta data were baseline-corrected from 668 to 468 ms before
target onset).

We then examined the impact of expectation type, flicker rate, and the
expectation status of target on two ERP components: the occipital

negative-going component recorded from the Oz electrode and the cen-
tral parietal positive (CPP) component recorded from the central poste-
rior (CPz) electrode. We used three-way repeated-measures ANOVAs
with within-subject factors for expectation type (3 levels: color expecta-
tion, orientation expectation, and motor expectation), flicker rate (2
levels: fast and slow), and the expectation status of the target (3 levels:
expected, neutral, and unexpected) to evaluate the influence of these
factors on the amplitude of the ERP components. These ANOVAs were
performed on the mean ERP amplitudes across consecutive 50 ms win-
dows from 250 ms before to 1500 ms after target onset for the target-
locked data and from 300 ms before to 100 ms after the response onset for
the response-locked data. Corrections for multiple comparisons was im-
plemented using the false discovery rate (FDR) method (Benjamini and
Hochberg, 1995) based on both target-locked and response-locked data
from CPz and Oz electrodes. The impact of expectation type, flicker rate,
and expectation on the CPP slope was examined on both target- and
response-locked data. The CPP slope was measured as the slope of a
straight line fitted to the ERP waveform for each subject, using the inter-
val 200 to 550 ms for the target-aligned CPP and �350 to 0 ms for the
response-aligned CPP (for similar methods, see Kelly and O’Connell,
2013). We then performed t tests to examine the impact of flicker rate and
a one-way ANOVA to assess the impact of expectation on the CPP slope.
In the case of no significant main effects, follow-up one-tailed t tests and
Bayes factor analyses were performed on the signals collapsed across
consecutive 50 ms windows.

The same ANOVA analyses were then performed on the induced pa-
rietal alpha amplitude recorded from the Pz electrode and frontal theta
amplitude recorded from the FCz electrode. These electrodes were cho-
sen as they displayed maximum response amplitude in the alpha and
theta range respectively. ANOVAs were performed on the mean theta
amplitudes across consecutive 50 ms windows from 700 ms before to
1500 ms after target onset for the target-locked data and from 300 ms
before to 100 ms after the response onset for the response-locked data.
The same ANOVAs were performed on the mean alpha amplitudes from
450 ms before to 1500 ms after target onset for the target-locked data and
from 300 ms before to 100 ms after the response onset for the response-
locked data. In addition, we performed follow-up one-tailed t tests to
compare the impact of flicker rates and a one-way ANOVA to assess the
impact of expectation on both ERP components as well as theta and alpha
amplitude from each individual expectation type (color expectation/
orientation expectation/motor expectation). Note that corrections
for multiple comparisons were computed separately for alpha and
theta based on its target-locked and response-locked data from the Pz
and FCz electrode respectively. In the case of significant main effects
of either flicker rate or expectation, one-tailed follow-up tests were
performed on individual expectation type signal amplitudes averaged
across significant time windows.

To further examine the impact of expectation, we performed a post hoc
Bayes factor t tests (Edwards et al., 1963; Wagenmakers, 2007; Rouder et
al., 2009) on VN amplitude, CPP slope, and CPP amplitude during the
time windows where the effect of flicker rates was significant. We report
Bayes factors expressing the probability of the data given H1 (i.e., there
was an expectation effect) relative to H0 (i.e., there was no expectation
effect). Although Bayes factors are not evaluated against a fixed threshold
to determine significance, a Bayes factor �3 is generally considered to
indicate positive evidence in favor of H1, whereas a value �0.33 is gen-
erally considered evidence for H0.

Results
Behavioral results
In the present study, participants performed an orientation dis-
crimination task in which feature expectation and motor expec-
tation were independently manipulated on a block-by-block
basis (Fig. 1). Targets were red or blue bars coherently oriented at
0° (horizontal) or 90° (vertical), and participants indicated the
target by pressing the left (L) or right key (R). Each response
button was associated with a specific conjunction of color and
orientation. Half of the participants were instructed to map the
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left button to red horizontal and blue vertical targets and the right
button to blue horizontal and red vertical targets (this mapping
was reversed for the other half of the participants). There were
four main conditions in the task: neutral (no expectation), color
expectation, orientation expectation, and motor expectation.
Each target was composed of two features: color and orientation,
and the expectation status of the target was manipulated by pre-
senting one type of target more frequently than the other target
type within the same target feature. That is, for a given block of
trials (e.g., a color expectation block), one target type (e.g., red
target) was expected, whereas the other target type (i.e., blue
target) was unexpected. The other target feature was orthogonal
to this expectation manipulation (i.e., it was equally likely that the
target would be vertical or horizontal).

We manipulated the flicker rate of the stimuli to manipulate
the amount of sensory information being presented per unit
time, with more information about the stimuli available as the
flicker rate increased. Consequently, participants should have
higher accuracy and faster reaction times on trials where stimuli
were rendered at a fast compared with a slow flicker rate. In
addition, we also predicted better performance when the target
feature or its corresponding motor response was expected.

As shown in Figure 1, there was a significant main effect of the
flicker rate manipulation on behavioral performance such that
participants were faster and more accurate on trials where stimuli
were presented at a fast (50 Hz) compared with slow (33.33 Hz)
flicker rate (RT: F(1,16) � 152.73, p � 0.001, accuracy: F(1,16) �
12.69, p � 0.003). This effect of flicker rate on behavior confirms
that our manipulation successfully impacted the amount of sen-
sory evidence available on each trial. Also, shown in Figure 1 was
a significant main effect of expectation on both RT and accuracy
(expected/neutral/unexpected, RT: F(2,16) � 97.51, p � 0.001;
accuracy: F(2,16) � 77.26, p � 0.001). Post hoc t tests revealed that
participants were faster in the expected compared with the neu-
tral (t(16) � 8.21, p � 0.001) and unexpected conditions (t(16) �
12.60, p � 0.001). Similarly, accuracy was higher in the expected
compared with the neutral (t(16) � 5.81, p � 0.001) and unex-
pected conditions (t(16) � 10.09, p � 0.001). Participants were
also faster (t(16) � 6.64, p � 0.001) and more accurate in the
neutral compared with the unexpected conditions (t(16) � 8.18,
p � 0.001). However, there was no significant interaction be-
tween expectation and flicker rate on either RT or accuracy (ex-
pected/neutral/unexpected vs fast/slow flicker, RT: F(2,16) � 0.59,
p � 0.56; accuracy: F(2,16) � 1.36, p � 0.27). Finally, there was no
main effect of expectation type on RT or accuracy (expectation
about color/orientation/motor response, RT: F(2,16) � 1.01, p �
0.38; accuracy: F(2,16) � 0.64, p � 0.54), and there was no inter-
action between expectation type and flicker rate (color expecta-
tion/orientation expectation/motor expectation versus fast/slow
flicker rate, RT: F(2,16)max � 1.20, pmin � 0.32; accuracy: F(2,16)max �
0.34, pmin � 0.85).

EEG results
The early visual negative (VN) potential
We used an early visual negative potential (VN), which peaked �150 –
300 ms after target onset at the central occipital electrode (Oz) to index
the magnitude of early sensory-evoked visual responses. The amplitude
of this early sensory ERP increases as the amount of sensory evidence
increases (e.g., visual contrast or motion coherence: Johannes et al., 1995;
Wyart et al., 2012a; Itthipuripat et al., 2014b, 2017; Loughnane et al.,
2016) and we used Oz because the visual stimuli were presented at the
center of the screen. We predicted that presenting stimuli at a fast, com-
pared with a slow flicker rate, should lead to an increase in the amount of
sensory evidence per unit time and thus greater sensory-evoked re-

sponses as indexed by an increase in VN amplitude. According to the
sensory enhancement account, expectation about stimulus features or
associated motor responses should also increase the VN amplitude if
expectation improves the efficiency of early sensory processing. The clas-
sic SDT account, on the other hand, would predict expectation to have no
effect on this neural measure of early sensory processing.

Fast flicker rate increases VN amplitude
We analyzed differences in both target-locked and response-locked VN
amplitude in sliding 50 ms windows and corrected for multiple compar-
isons using FDR method based on both target-locked and response-
locked data from CPz and Oz electrodes (see Materials and Methods).
We found that VN amplitude was significantly larger on fast compared
with slow flicker rate trials from 200 to 300 ms after target onset (F(1,16) �
10.43–20.20; p � 0.0004 – 0.0052, FDR-corrected threshold � 0.0059; see
Fig. 2A, left). This flicker rate effect was consistent across expectation
type (t(16) � �3.98, �4.65, �4.89 with all p values �0.001 for color
expectation, orientation expectation, and motor expectation, respective-
ly; Fig. 2A, right).

Expectation does not affect VN amplitude
In contrast, expectation had little impact on the VN, with only 1 of 35
time windows showing a trend toward significance that occurred out-
side the peak window of the VN and did not survive FDR correction
(F(2,16) max � 4.45, pmin � 0.02, FDR-corrected threshold � 0.0059; Fig.
2B). Note also that during this time window, VN amplitude was margin-
ally higher on unexpected compared with expected trials. This marginal
effect is in the opposite direction from that predicted by the sensory
enhancement account. A post hoc analysis of the Bayes factor indicated
either slightly positive or equivocal evidence in favor of the hypothesis
that expectation had no effect on VN amplitude (BF10 � 0.33–1.35 across
all comparisons; Table 1).

We then examined the interaction between flicker rate and expecta-
tion on the amplitude of the VN and found that although one time window
showed a trend toward an increased VN amplitude on fast-flickered ex-
pected trials, none survived correction for multiple-comparison (Fmax �
4.66, pmin � 0.02, only one time window had a p value �0.05, FDR-
corrected threshold �0.001).

Excluding the first 20 trials following a change in expectation type
does not influence the null effects of expectation on the VN
We next examined whether these null effects of expectation on the VN
could be caused by a failure of participants to build an expectation until
the end of each experimental block. To evaluate this account, we first
examined the time course of expectation effects on behavioral accuracy
and RT. We found that expectation had a relatively fast impact on RT and
accuracy early in each block (Fig. 1C). Specifically, after excluding the
first 20 trials following a change in expectation types, we found signifi-
cant effects of flicker rate and expectation on RT (flicker rate: F(1,16) �
125.29, p � 0.001; expectation: F(2,16) � 118.29, p � 0.001) and accuracy
(flicker rate: F(1,16) � 11.19, p � 0.0004; expectation: F(2,16) � 77.22, p �
0.001) across expectation type.

Moreover, we replicated our main findings with respect to VN ampli-
tude after discarding the first 20 trials from each experimental block
(Fig. 3). VN amplitude was greater on fast compared with slow flicker
rate trials from 200 to 300 ms after target onset (F(1,16) � 4.99 –11.01; p �
0.004 – 0.04, FDR-corrected threshold � 0.0043; Fig. 3A, left). This effect
was consistent across expectation type (t(16) � �3.76, �4.84, �6.52 with
all p values � 0.001 for color expectation, orientation expectation, and
motor expectation, respectively; Fig. 3A, right). In contrast, manipula-
tions of expected target features did not impact the VN amplitude
(F(2,16)max � 3.36, pmin � 0.05, FDR-corrected threshold � 0.0043; Fig.
3B). A post hoc analysis of the Bayes factor indicates either slightly posi-
tive or equivocal evidence in favor of the hypothesis that expectation had
no effect on VN amplitude (BF10 � 0.25– 0.48 across all comparisons).
Finally, we examined an interaction effect between flicker rate and
expectation on CPP amplitude and found that no time window sur-
vived correction for multiple comparisons (Fmax � 5.92, pmin � 0.007,
FDR-corrected threshold �0.001). Together, these results demonstrate
that even though the VN is a sensitive marker of the amount of sensory
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Figure 2. Expectation does not affect early VN amplitude. VN amplitude was computed on data from all trials of each block. A, VN plotted from 250 ms before target onset to 1500 ms after target
onset. VN plotted as a function of flicker rate (fast/slow) and (B) as a function of the expectation status of the target (expected/neutral/unexpected). Left, VN collapsed across expectation type
(color/orientation/motor). Right, VN from individual expectation type. Fast flicker rate induced a significantly more negative VN from 200 to 300 ms after target onset. Significant main effect of flicker
rate, ***p � 0.001.
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evidence available in the display, manipulating expectations about target
features or motor responses has a negligible impact on its magnitude.

The centro-parietal positive potential (CPP)
The CPP recorded from the CPz electrode is an established ERP
marker thought to track a running sum of sensory evidence over time
(Squires et al., 1973, 1975a,b; O’Connell et al., 2012; Kelly and O’Connell,
2013; Itthipuripat et al., 2015; Loughnane et al., 2016; Twomey et al.,
2015). Thus, we predicted an increase in CPP amplitude and slope before
its peak when stimuli were rendered at a fast flicker rate. The sensory
enhancement account would also predict this pattern of results when the
feature of the target or its associated motor response is expected. On the
other hand, the classic SDT account would not predict any expectation-
related modulations of either the amplitude or slope of the pre-peak CPP.

Fast flicker rate increases the pre-peak amplitude and decreases
the post-peak amplitude of the CPP
We found a significant increase in CPP amplitude on trials where stimuli
were rendered at a fast compared with slow flicker rate (Fig. 4A, left). The
increases in the amplitude of the CPP were most pronounced from 200 to
750 ms after target onset (F(1,16) � 10.43– 47.74; p � 0 – 0.0052, FDR-
corrected threshold � 0.0059); and from 300 to 200 ms and from 100 to
0 ms before response onset (F(1,16) � 13.21–13.36; p � 0.0021– 0.0022,
FDR-corrected threshold � 0.0059; F(1,16) � 10.08 –12.36; p � 0.0029 –
0.0059, FDR-corrected threshold � 0.0059, respectively; Fig. 4A, left).
Post hoc t tests revealed that the effects of flicker rate on CPP amplitude
were consistent across expectation type (from 200 to 750 ms after target
onset: t(16) � 5.49, 4.27, 6.98 with all p � 0.001 for color expectation,
orientation expectation, and motor expectation, respectively; from 300
to 200 ms before response onset: t(16) � 2.36, 1.04, 5.55 with p � 0.02,
0.16, and �0.001 for color expectation, orientation expectation, and
motor expectation, respectively; from 100 to 0 ms before response onset:
t(16) � 2.76, 1.56, 3.99 with p � 0.01, 0.07, and � 0.001 for color expec-
tation, orientation expectation, and motor expectation, respectively; Fig-
ure 4A, right). In addition, after the peak of the target-locked CPP, there
was a significant decrease in CPP amplitude from 1050 to 1100 ms after
target onset (F(1,16) � 11.57; p � 0.004, FDR-corrected threshold �
0.0059), suggesting that decision-making associated with the faster
flicker rate target required less processing time as evidenced by the earlier
offset of the post-peak CPP amplitude. Post hoc t tests revealed that the
flicker rate effect during this time window was consistent across expec-
tation type (t(16) � �2.78, �2.19, �2.07 with p � 0.01, 0.02, 0.03 for
color expectation, orientation expectation, and motor expectation, re-
spectively).

Expectation does not impact the pre-peak amplitude of CPP but
violations of expectation modulates the post-peak amplitude of
CPP
We next evaluated the impact of expectation on CPP amplitude. We
found no effect of expectation on target-locked CPP amplitude before
the peak or on response-locked CPP amplitude. A post hoc Bayes factor
analysis was generally consistent with these null results (BF10 � 0.25–
0.42; Table 1). While there was no effect of expectation on target-locked
CPP amplitude before the peak amplitude, expectation did have an im-
pact on the amplitude of the CPP after the peak amplitude from 950 to
1200 ms after target onset (F(2,16) � 11.53–17.08; p � 0 – 0.0002, FDR-

corrected threshold � 0.0059; Fig. 4B, left). During this interval, the
amplitude of the CPP was higher on unexpected compared with neutral
(t(16) � �5.17, p � 0.001) and expected trials (t(16) � �5.08, p � 0.001).
Follow-up repeated-measures one-way ANOVAs also showed that this
expectation effect was consistent across expectation type (F(2,16) � 3.65,
13.77, 8.15 with all p � 0.05 for color expectation, orientation expecta-
tion, and motor expectation, respectively; Fig. 4B, right). Finally, we
examined the interaction between flicker rate and expectation on the
amplitude of CPP and found that no time window survived correction
for multiple comparisons (target-locked: Fmax � 3.17, pmin � 0.06; re-
sponse-locked: Fmax � 0.78, pmin � 0.46, FDR-corrected threshold
�0.001).

Fast flicker rate increases the CPP slope but expectation does not
We then more directly examined the rise-time (or slope) of the target-
locked CPP, which was computed over an interval from 200 to 550 ms
after target onset (see Materials and Methods). We found a higher slope
when targets were rendered at a fast compared with slow flicker rate
(mean slopes � 1 SEM � 0.032 � 0.003 and 0.027 � 0.004 �V/ms for fast
and slow flicker rate, respectively; t(16) � 3.52, p � 0.003). Post hoc t tests
also revealed that the effect of flicker rate on CPP slope was consistent
across expectation type (t(16) � 2.46, 2.82, 2.67 with all p � 0.05 for color
expectation, orientation expectation, and motor expectation respec-
tively). Given this demonstration of the CPP’s sensitivity to changes in
sensory evidence, we tested whether expectation also impacted the effi-
ciency of early sensory processing in a manner similar to increasing the
amount of sensory evidence. However, unlike the flicker rate effect, we
found no effect of expectation on the slope of the CPP (mean slopes � 1
SEM � 0.029 � 0.004, 0.031 � 0.004 and 0.028 � 0.004 �V/ms for
expected, neutral, and unexpected conditions, respectively; F(2,16) �
1.91, p � 0.16), and this was true for all manipulations of expectation
type (F(2,16) � 2.67, 1.86, 1.75 with p � 0.08, 0.17, 0.19 for color expec-
tation, orientation expectation, and motor expectation, respectively).
Further, post hoc Bayes factor analysis indicated either slightly positive or
equivocal evidence in favor of the hypothesis that expectation had no
effect on CPP slope (BF10 � 0.28 –1.01; Table 1).

Excluding the first 20 trials following a change in expectation type
does not influence the effects of expectation on the CPP
Discarding the first 20 trials from each block following a change in ex-
pectation type did not influence the CPP effects reported above (Fig. 5).
The amplitude of pre-peak CPP was greater on fast compared with slow
flicker rate trials from 250 to 750 ms after target onset and from 250 to
200 ms before response onset (target-locked: F(1,16) � 11.01–33.05; p �
0.001– 0.0043; response-locked F(1,16) � 11.50; p � 0037, FDR-corrected
threshold � 0.0043, respectively; Fig. 5A, left). These flicker rate effects
were consistent across expectation type (from 250 –750 ms after target
onset: t(16) � 5.38, 2.40, 4.68 with all p � 0.05 for color expectation,
orientation expectation and motor expectation, respectively; from 250 to
200 ms before response onset: t(16) � 2.11, �0.02, 4.77 with p � 0.03,
0.51, and � 0.001 for color expectation, orientation expectation, and
motor expectation, respectively; Figure 5A, right). In addition, the post-
peak amplitude of the CPP was lower on fast compared with slow
flicker rate trials from 1050 to 1100 ms after target onset (F(1,16) �
11.11; p � 0.004, FDR-corrected threshold � 0.0043). This decrease

Table 1. Bayes factor analyses of flicker rate and expectation status of the target

Flicker rate comparison Expectation comparisons

Neural measures Fast vs slow flicker rate Expected vs unexpected Expected vs neutral Neutral vs unexpected

VN amp, tg-locked,
200 to 300 ms t � �5.51, p � 0.001, BF10 � 545.62 t � 0.91, p � 0.38, BF10 � 0.36 t � 2.06, p � 0.06, BF10 � 1.35 t � �0.81, p � 0.43, BF10 � 0.33

CPP slope t � 3.52, p � 0.003, BF10 � 15.34 t � 0.48, p � 0.64, BF10 � 0.28 t � �1.64, p � 0.12, BF10 � 0.76 t � 1.85, p � 0.08, BF10 � 1.01
CPP amp, tg-locked,

200 to 750 ms t � 7.36, p � 0.001, BF10 � 11,528 t � �0.93, p � 0.37, BF10 � 0.36 t � �0.001, p � 1.00, BF10 � 0.25 t � �0.64, p � 0.53, BF10 � 0.30
CPP amp, resp-locked,

�300 to �200 ms t � 3.75, p � 0.002, BF10 � 23.55 t � �1.10, p � 0.29, BF10 � 0.42 t � �0.47, p � 0.65, BF10 � 0.27 t � �0.53, p � 0.60, BF10 � 0.28
�100 to 0 ms t � 3.45, p � 0.003, BF10 � 13.69 t � 0.18, p � 0.86, BF10 � 0.25 t � �0.60, p � 0.56, BF10 � 0.29 t � 0.81, p � 0.43, BF10 � 0.33
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Figure 3. Excluding the first 20 trials following a change in expectation types does not influence the null effect of expectation on the VN. VN amplitude was computed on data after the first 20
trials from each block were discarded. Similar to Figure 2, VN was plotted from 250 ms before target onset to 1500 ms after target onset. A, VN was plotted as a function of flicker rate (fast/slow) and
(B) as a function of expectation status of the target (expected/neutral/unexpected). Left, VN collapsed across expectation type (color/orientation/motor expectation). Right, VN from individual
expectation type. Fast flicker rate induced a significantly more negative VN from 200 to 300 ms after target onset. Significant main effect of flicker rate, ***p � 0.001.
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in post-peak CPP amplitude with the fast flicker targets was consis-
tent across expectation type (t(16) � �3.03, �2.24, �1.93 with p �
0.004, 0.02, 0.04 for color expectation, orientation expectation, and
motor expectation, respectively).

Similar to the null result obtained when we included all trials, we
found no effect of expectation on the pre-peak target-locked CPP ampli-

tude or on response-locked CPP amplitude. Post hoc Bayes factor analysis
was generally consistent with these null results (BF10 � 0.25– 0.34). In-
stead, expectation had an impact on the post-peak amplitude of the CPP
from 950 to 1100 ms and from 1150 to 1200 ms after target onset (950 –
1100 ms: F(2,16) � 6.97–11.74; p � 0 – 0.0002; 1150 –1200 ms; F(2,16) �
11.53–17.08; p � 0 – 0.0002; FDR-corrected threshold � 0.0043, respec-

Figure 4. Expectation does not impact the pre-peak CPP amplitude but violations of expectation modulate the post-peak CPP amplitude. CPP amplitude and slope were computed on data from
all trials of each block. A, Target-locked CPP was plotted from 250 ms before target onset to 1500 ms after target onset, whereas response-locked CPP was plotted from 300 ms before response onset
to 100 ms after the onset. CPP was plotted as a function of flicker rate (fast/slow) and (B) as a function of expectation status of the target (expected/neutral/unexpected). Fast flicker rate induced
higher CPP amplitude from 200 to 750 ms after target onset, and from 300 to 200 and from 100 to 0 ms before response onset. Additionally, after the peak of the target-locked CPP, the CPP amplitude
dropped faster on trials where stimuli were presented at the fast flicker rate from 1000 to 1100 ms after target onset. The effect of expectation on the CPP amplitude emerged from 950 to 1200 ms
after target onset where the CPP amplitude was lower for unexpected compared with neutral and expected trials. Significant main effects of flicker rate and expectation: #p � 0.1, *p � 0.05, **p �
0.01, and ***p � 0.001.
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tively; Fig. 5B, left). During these intervals, the amplitude of the CPP was
higher on unexpected compared with neutral and expected trials (950 –
1100 ms: t(16) � �3.26, p � 0.01; t(16) � �3.56, p � 0.01, respectively;
1150 –1200 ms: t(16) � �3.52, p � 0.01; t(16) � �2.89, p � 0.01, respec-
tively). Further, this expectation effect was consistent across nearly all
expectation types (950 –1100 ms: F(2,16) � 2.33, 5.19, 4.84 with p � 0.11,

0.01, 0.01 for color expectation, orientation expectation, and motor ex-
pectation, respectively; 1150 –1200 ms: F(2,16) � 0.27, 7.66, 9.10 with
p’s � 0.76, 0.002, �0.001 for color expectation, orientation expectation,
and motor expectation, respectively; Fig. 5B, right). In addition, we ex-
amined the interaction between flicker rate and expectation on the am-
plitude of the CPP and found that no time window survived correction

Figure 5. Excluding the first 20 trials following a change in expectation types does not influence the CPP effects. The amplitudes and slopes of the CPP were recomputed after the first 20 trials from
each block were discarded. Similar to Figure 4, CPP was plotted from 250 ms before target onset to 1500 ms after target onset, whereas response-locked CPP was plotted from 300 ms before response
onset to 100 ms after response onset. A, CPP was plotted as a function of flicker rate (fast/slow) and (B) as a function of the expectation status of the target (expected/neutral/unexpected). The faster
flicker rate induced higher CPP amplitude from 250 to 750 ms after target onset, and from 250 to 200 before response onset. Additionally, after the peak of the target-locked CPP, the CPP amplitude
dropped faster on trials where stimuli were presented at a fast flicker rate from 1050 to 1100 ms after target onset. The effects of expectation on the CPP amplitude emerged from 950 to 1100 ms
and from 1150 to 1200 ms after target onset where the CPP amplitude was lower for unexpected compared with neutral and expected trials. Significant main effects of flicker rate and expectation:
*p � 0.1, **p � 0.05, ***p � 0.001.
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for multiple comparisons (target-locked: Fmax � 3.33, pmin � 0.05; re-
sponse-locked: Fmax � 0.29, pmin � 0.75, FDR-corrected threshold
�0.001).

Finally, discarding the first 20 trials from each block following a
change in expectation types did not influence the effects of flicker rate
and expectation on the CPP slope. We found a higher slope when targets
were rendered at a fast compared with slow flicker rate (mean slopes � 1
SEM � 0.031 � 0.004 and 0.025 � 0.004 �V/ms for fast and slow flicker
rates, respectively; t(16) � 4.17, p � 0.001). This flicker rate effect was
consistent across expectation types (t(16) � 2.97, 2.59, 2.65 with all p �
0.05 for color expectation, orientation expectation, and motor expecta-
tion, respectively). Similar to what we previously reported when all trials
were included, there was no effect of expectation on the slope of the CPP
(mean slopes � 1 SEM � 0.027 � 0.004, 0.029 � 0.003 and 0.028 � 0.004
�V/ms for expected, neutral, and unexpected conditions, respectively;
F(2,16) � 0.33, p � 0.72), and this was true across expectation type
(F(2,16) � 1.55, 2.01, 0.02 with p � 0.23, 0.15, 0.98 for color expectation,
orientation expectation, and motor expectation, respectively). Further,
post hoc Bayes factor analysis indicated slightly positive or equivocal ev-
idence in favor of the hypothesis that expectation had on effect on CPP
slope (BF10 � 0.26 – 0.43), as Bayes factor revealed no substantial evi-
dence in favor of H1.

Together, the lack of expectation effects on the CPP slope and the
significant post-peak expectation-related modulation of CPP amplitude
suggest that expectation did not directly impact the efficiency of early
sensory processing during perceptual decision-making. Instead, viola-
tions of expectation may slow down decision-making by affecting pro-
cessing after sensory evidence has already been accumulated.

Parietal alpha activity
The duration of poststimulus reductions in alpha amplitude over parietal
cortex has been previously established as an index for alertness and task
engagement (von Stein et al., 2000; Fries et al., 2001; Sauseng et al., 2005;
Klimesch et al., 2007; Rihs et al., 2007; Hanslmayr et al., 2008; Busch et al.,
2009; Kelly et al., 2009; Mathewson et al., 2009; Zhang et al., 2010; Foxe
and Snyder, 2011; Bosman et al., 2012). If expectations primarily impact
total time on task without modulating early sensory processing, then
alpha modulations should build over the course of the trial and track
response times.

Flicker rate does not affect parietal alpha activity
First, we examined the effect of flicker rate on alpha amplitude. We found
that a few time windows showed a trend but did not survive correction
for multiple comparisons (target-locked: Fmax � 9.92, pmin � 0.01, FDR-
corrected threshold � 0.002; response-locked: Fmax � 2.62, pmin � 0.13,
FDR-corrected threshold � 0.002; Fig. 6A, left). Overall, this result sug-
gests that parietal alpha does not reflect the efficiency of early sensory
processing.

Violations of expectation induces reductions in parietal
alpha amplitude
We found significant expectation effects on alpha amplitude from 800 to
1150 ms following target onset (F(2,16) � 7.52–10.48; p � 0.0003– 0.002,
FDR-correct threshold � 0.002; Fig. 6B, left). During these time win-
dows, alpha amplitude was significantly lower in the unexpected com-
pared with the expected condition (t(16) � 3.42, p � 0.002) and the
neutral condition (t(16) � 2.71, p � 0.008). Follow-up one-way ANOVAs
showed that these expectation effects were consistent across expectation
type (F(2,16) � 6.57, 3.94, 9.21 with p � 0.01, � 0.05, � 0.001 for color
expectation, orientation expectation, and motor expectation, respective-
ly; Fig. 6B, right). Note that the expectation effect on the alpha activity
emerged after the CPP peaked. This suggests that the violations of expec-
tation occurred only after early sensory processing had been completed,
thus violations of expectation may induce surprise, higher vigilance and
more prolonged task engagement (Zimmer et al., 2010; cf. Talsma et al.,
2012; Wessel and Aron, 2017).

Frontal theta activity
Last, we examined the amplitude of frontal theta activity, which has been
previously used to index multiple attributes of executive function in the

prefrontal cortex, including novelty detection, conflict-monitoring, er-
ror detection, response inhibition, and working memory (D’Esposito et
al., 1995; Carter et al., 1998; Curtis and Esposito, 2003; Kane and Engle,
2003; Ridderinkhof et al., 2004; Cavanagh et al., 2011, 2012; Itthipuripat
et al., 2013b; Aron et al., 2004, 2014, Botvinick et al., 1999, 2001, 2004;
Cavanagh and Frank, 2014; Wessel and Aron, 2017). According to the
classic SDT account, unexpected targets or motor responses should lead
to higher theta amplitude because unexpected events put greater de-
mands on several aspects of executive functions including novelty detec-
tion and conflict monitoring. In contrast, the sensory enhancement
account would not predict an expectation effect on this neural measure
of post-sensory processing.

Fast flicker rate increases frontal theta amplitude
We found significant increases in frontal theta amplitude on trials with a
fast compared with slow flicker rate over a temporal window extending
from 400 to 900 ms after target onset (F(1,16) � 10.76 –20.95; p � 0.0003–
0.005, FDR-correct threshold � 0.007; Fig. 7A, left). This flicker rate
effect was consistent across nearly all expectation conditions (t(16) �
1.64, 3.60, 2.43 with p � 0.06, � 0.01, 0.05 for color expectation, orien-
tation expectation, and motor expectation, respectively; Fig. 7A, right).
This is consistent with the idea that presenting more sensory information
per unit time leads to an earlier and stronger engagement of frontal
executive control processes.

Violation of expectation increases frontal theta amplitude
The effect of expectation on frontal theta activity was found from 300 –50
ms before response onset (F(2,16) � 5.90 –7.98; p � 0.002– 0.007, FDR-
correct threshold � 0.007; Fig. 7B, left). During these time windows,
theta amplitude was significantly higher in the unexpected compared
with the expected (t(16) � �3.17, p � 0.003) and the neutral condition
(t(16) � �1.97, p � 0.03). Follow-up ANOVAs showed that these expec-
tation effects were consistent across most expectation types (F(2,16) �
3.07, 9.71, 3.46 with p � 0.06, � 0.001, � 0.05 for color expectation,
orientation expectation, and motor expectation, respectively; Fig. 7B,
right). These results are consistent with the notion that violations of
expectation engaged the frontal executive control network, which in turn
led to the slowing of motor responses.

Discussion
Expectations about likely sensory features and motor responses
can modulate the speed and accuracy of decision-making. Ac-
cording to classic accounts, expectation about a motor response
should reduce the amount of evidence needed to trigger a deci-
sion (i.e., introduce a response bias; Wald and Wolfowitz, 1949;
Green and Swets, 1966; Ratcliff, 1978; Voss et al., 2004; Mac-
millan and Creelman, 2005; Bogacz et al., 2006; Ratcliff et al.,
2016). However, the impact of expectations about sensory fea-
tures on decision-making is controversial. Some accounts hold
that expectation about low-level sensory features such as color,
orientation, and motion direction improves sensory encoding by
modulating the quality of sensory responses in early visual cortex
(Lee and Mumford, 2003; Spratling, 2008; Kok et al., 2012b,
2014). If modulations of sensory responses in visual cortex im-
pact decision-making, they should do so by increasing the effi-
ciency of sensory processing (Diederich and Busemeyer, 2006;
Summerfield and de Lange, 2014; Cheadle et al., 2015; Forstmann
et al., 2016). However, previous studies of the effect of expecta-
tion on sensory processing often used an explicit cue that pro-
vided information about a relevant stimulus feature. However
cues about the relevance of an impending target lead to the deploy-
ment of selective attention, which is well known to influence early
sensory responses (Moran and Desimone, 1985; Hillyard and Anllo-
Vento, 1998; McAdams and Maunsell, 1999; Treue and Martínez
Trujillo, 1999; Reynolds et al., 2000; Martínez-Trujillo and Treue,
2002; Cohen and Maunsell, 2009; Störmer et al., 2009; Scolari et
al., 2012; Anderson et al., 2013; Itthipuripat et al., 2014a,b, 2017;
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Saproo and Serences, 2014; Störmer and Alvarez, 2014). As an
alternative to this sensory enhancement account, violations of
expectation might influence behavior by interfering with later
stages of response selection and response execution, thus leading
to slower overall responses.

Here we tested these accounts by orthogonally manipulating
expected and relevant feature (e.g., expectation was about target
color, but target was defined by orientation). In addition, we also
independently manipulated amount of available sensory evi-

dence and motor expectation. We found that increasing the
amount of sensory evidence led to faster and more accurate re-
sponses, as did manipulations of expectation with a comparable
magnitude. Moreover, manipulations of sensory evidence in-
creased the amplitude of the VN and the amplitude and slope of
the CPP. However, feature and motor expectation had no impact
on either of these components. This suggests that even though
expectation impact behavior, it does not directly modulate early
sensory processing. Note that although interpreting null ef-

Figure 6. Violations of expectation induce reductions in parietal alpha amplitude. A, Target-locked alpha was plotted from 450 ms before target onset to 1500 ms after target onset, whereas
response-locked alpha was plotted from 300 ms before response onset to 100 ms after the onset. The parietal alpha amplitude was plotted as a function of flicker rate (fast/slow; B) as a function of
the expectation status of the target (expected/neutral/unexpected). Expectation had an effect on parietal alpha amplitude from 800 to 1150 ms after target onset such that alpha amplitude was
higher on expected trials during this period. Significant main effects of flicker rate and expectation: *p � 0.05, **p � 0.01, and ***p � 0.001.
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fects is often difficult, the lack of expectation effects on the VN
and the CPP cannot be easily explained as a simple lack of
sensitivity. We reported comparable effects of flicker rate and
expectation on RT and accuracy, yet only found an impact of
flicker rate on the VN and the CPP. Furthermore, we found no
interaction effects between these two factors on performance
or on ERP components.

Note that we did not assess participant’s awareness of the
expectation manipulation at the end of each block as we wanted
to keep the block-by-block manipulation implicit throughout the
experiment. We also did not ask participants to report their
awareness after the very last block because each participant per-
formed two sessions of the task and we felt that a single response
about which feature occurred more frequently in the last block of

Figure 7. Violations of expectation increase frontal theta amplitude. A, Target-locked theta was plotted from 700 ms before target onset to 1500 ms after target onset, whereas response-locked
theta was plotted from 300 ms before response onset to 100 ms after the onset. The frontal theta amplitude was plotted as a function of flicker rate (fast/slow; B) as a function of the expectation
status of the target (expected/neutral/unexpected). The theta amplitude was higher on trials where stimuli were rendered at the fast flicker rate from 400 to 900 ms after target onset. In addition,
theta amplitude was higher on unexpected trials from 300 to 50 ms before response onset. Significant main effects of flicker rate and expectation: #p � 0.1, *p � 0.05, **p � 0.01, and ***p �
0.001.
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Session 2 would not be a robust indication of their overall per-
ception of the experimental manipulation. That said, if the par-
ticipants were aware of the expectation manipulation, our
observed null effects of expectation on VN and CPP would be
even more compelling.

The lack of expectation-related modulations of early sensory
responses in our dataset stands in contrast to other recent reports.
Using fMRI, one previous study reported that expectation about
the orientation of an imperative stimulus improved the quality of
stimulus representations in human primary visual cortex (V1;
Kok et al., 2012a). However, the design of that study did not
clearly disentangle expectations about selective attention to rele-
vant sensory features (the auditory cue used to convey informa-
tion about expectation also indicated the relevant stimulus
feature i.e., an oriented stimulus rendered at 45 or 135°). Note
that this was not the case in the present study, because expecta-
tion was always built on one feature (e.g., color) without provid-
ing additional information about overall target relevance since
the target feature (i.e., orientation) was equally likely across ex-
pected and unexpected trials. In addition, fMRI lacks the time
resolution necessary to establish whether early modulations in V1
influence behavior. Related experiments also provide behavioral
evidence that expectation may selectively enhance sensitivity to
low-level stimulus features (Wyart et al., 2012a; Cheadle et al.,
2015). Although consistent with a sensory enhancement account,
it is notoriously difficult to use behavioral evidence alone to dis-
tinguish between early sensory processing and a reweighting, or
selective readout, of sensory information during decision-
making (Palmer et al., 1993; Shimozaki et al., 2012; cf. Eckstein et
al., 2002, 2013, Law and Gold, 2008, 2009).

Finally, complementing the present report, another recent
study also provides evidence that expectations do not impact
early sensory signals but instead affect later cognitive processes by
shifting decision criteria (Bang and Rahnev, 2017). This study
manipulated expectations by using pre-cues, post-cues and a re-
verse correlation method to examine the effects of expectation on
a perceptual decision process. Their results demonstrate that
both pre- and post-cueing expectations about the stimuli affected
decision criteria but not early sensory processing. In line with this
finding, Mulder et al., 2012 manipulated the prior probability of
a specific direction of motion and used fMRI to examine the
effect of expectation on decision-making. Although expecta-
tion improved performance, modeling of the behavioral data
combined with fMRI data suggest that this effect was likely due
to a shift in the starting point of sensory accumulation pro-
cesses rather than a change in the drift rate (i.e., rate of sensory
evidence accumulation). Given the lack of temporal resolu-
tion in fMRI, the present EEG data provide complementary
and more direct evidence that manipulations of expectation
do not affect early sensory processing during decision-
making.

Although expectation did not impact the amplitude of the
VN or the slope or peak-amplitude of the CPP, expectation did
lead to a decrease in CPP amplitude after the peak amplitude.
In addition, expectation influenced the pattern of alpha/theta
oscillatory signals previously used to index task effort and
cognitive control. Parietal alpha power showed a sustained
decrease on trials in which targets were presented on unex-
pected features or when unexpected motor responses were
required. This is consistent with the notion that violations of
expectation require more and prolonged task engagement
(Zimmer et al., 2010; Talsma et al., 2012; Wessel and Aron,
2017). Further, we found an increase in frontal theta ampli-

tude when the target appeared on unexpected features and
when an unexpected motor response was required. This pat-
tern is consistent with the hypothesis that unexpected stimuli
require greater executive control during later stages of
decision-making and response planning and execution (Ca-
vanagh et al., 2012; Cavanagh and Frank, 2014). For instance,
frontal theta, which is thought to be generated from medial
frontal cortex, has been implicated in novelty detection and
the resolution of response conflict that can cause motor slow-
ing (Botvinick et al., 2001, 2004; Wessel et al., 2012; Cohen and
Donner, 2013; Zavala et al., 2014; Voytek et al., 2015; Wessel
and Aron, 2017). In sum, our findings suggest that expecta-
tions about low-level sensory features, even when the expec-
tations do not provide information about the behavioral
relevance of sensory stimuli, primarily impact later decision-
and response-related processing. These findings are in line
with earlier reports that unexpected stimuli and motor re-
sponses lead to global cognitive interruption and motor sup-
pression (Alvarez et al., 2007; Eckstein, 2011; Wessel et al.,
2016; Wessel and Aron, 2013, 2017). This suggests that viola-
tions of expectation about sensory features influence global
networks that modulate late-stage processes including choice
evaluation, conflict resolution, and/or motor execution. In the
context of the present design, this interpretation is consistent
with the fact that participants do not know whether stimuli
being presented are “expected” or “unexpected” until they
have already integrated sufficient evidence (i.e., the temporal
sensory accumulation has reached the associated decision
threshold). This situation mirrors real world decision-making
in the sense that the importance of learned regularities in the
environment, independent of additional information about
their behavioral relevance, is not known until a target of visual
search is detected. That said, beyond the broad distinctions
between relatively early sensory processing and later decision-
related processing, the present EEG measures do not reveal the
specific neural mechanisms that are impacted by violations of
expectation. In addition, the optimal means of using prior
expectations during decision-making likely depend on the
structure of the task as well as overall difficulty levels (Mulder
et al., 2012). Finally, given the well documented effects of
selective attention to relevant features on early visual process-
ing, simultaneously and orthogonally manipulating both at-
tention and prior expectations during the same task is a critical
future direction.
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