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Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of 
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Abstract

LepI is an S-adenosylmethionine (SAM)-dependent pericyclase that catalyzes the formation of 2-

pyridone natural product leporin C. Biochemical characterization showed LepI can catalyze the 

stereoselective dehydration to yield a reactive (E)-quinone methide that can undergo bifurcating 

intramolecular Diels-Alder (IMDA) and hetero-Diels-Alder (HDA) cyclizations from an 

ambimodal transition state, as well as a [3,3]-retro-Claisen rearrangement to recycle the IMDA 

product into leporin C. Here we solved the X-ray crystal structures of SAM-bound LepI and in 

complex with a substrate analog, the product leporin C, and a retro-Claisen reaction transition-

state analog to understand the structural basis for the multitude of reactions. Structural and 

mutational analysis revealed how Nature evolves a classic methyltransferase active site into one 

that can serve as a dehydratase and a multifunctional pericyclase. Catalysis of both sets of 

reactions employs H133 and R295, two active site residues that are not found in canonical 

methyltransferases. An alternative role of SAM, which is not found to be in direct contact with the 

substrate, is also proposed.
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Pericyclic reactions are among the most powerful synthetic reactions for making multiple 

carbon-carbon and carbon-heteroatom bonds in a regio- and stereoselective manner1. 

Despite their prevalence in organic synthesis, only a handful of naturally-occurring enzymes 

have been characterized to catalyze pericyclic reactions and related [4+2] cycloadditions2. 

Structural characterizations of a few of these enzymes, including chorismate mutase (CM), 

isochorismate lyase, precorrin-8x methyl mutase, SpnF, etc., showed Nature has evolved a 

variety of protein folds divergently to accelerate pericyclic reactions and control their regio- 

and stereoselectivity3–11.

Recently we discovered a multifunctional S-adenosyl-L-methionine (SAM)-dependent O-

methyltransferase (OMT)-like pericyclase, LepI, that catalyzes a cascade of reactions 

starting from the 2-pyridone alcohol 2 to form the dihydropyran-containing fungal natural 

product leporin C (10) (Fig. 1)12. In the absence of LepI, the alcohol 2, which is derived 

from the ketoreduction of 1, can undergo dehydration to give either the (E)- or (Z)-quinone 

methide 3 or 4, respectively. The reactive 3 and 4 can undergo intramolecular Diels-Alder 

(IMDA) cycloaddition to yield the endo products 9 and 6, respectively, as well as the exo 
adducts 8 and 5, respectively. The inverse-electron demand hetero-Diels Alder (HDA) 

cycloaddition of 3 and 4, on the other hand, affords the desired product 10 and the 

diastereomeric 7, respectively. Quantum mechanics (QM) calculations revealed that the 

activation energies for the formation of these six products from either 3 or 4 are comparable, 

consistent with 10 being only a minor product in the absence of LepI. We showed that in the 

presence of LepI, 2 is completely converted to 1012. We also demonstrated computationally 

that the endo IMDA and HDA reactions starting from 3 go through an ambimodal transition 

state (TS-1) and that a post-transition-state bifurcation leads preferentially to the IMDA 

product in the absence of enzyme catalysis. Therefore, LepI must catalyze the 

diastereoselective dehydration of 2 to form only 3 and facilitate the subsequent endo 
transition state (TS-1) from 3 while suppressing the exo transition state (TS-3). The active 

site of LepI can also alter the dynamics of the bifurcating potential energy surface from 

TS-1 to favor the HDA product 10 as suggested by computation12. Furthermore, we 

demonstrated that LepI can catalyze the conversion of 9 to 10 via a [3,3]-sigmatropic retro-

Claisen rearrangement TS-2 as a means of kinetically recycling the IMDA shunt 9 to 

product 10. While our biochemical and computational studies unveiled these unexpected 

roles of an enzyme with sequence homology to an OMT, the mechanistic details of catalysis 

and selectivity achieved by LepI were not known.
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Here we report a collection of X-ray crystal structures, which, together with computational 

studies, uncover the origins of catalysis and stereoselectivity of LepI. We obtained X-ray 

crystal structures of holo-LepI i) bound with SAM and complexed with ii) the dehydration 

reaction substrate analogue 1, iii) product leporin C 10, and iv) the retro-Claisen reaction 

substrate analogue 8. Our structures provide insight into the molecular mechanism of LepI 

catalysis, including the E-stereoselectivity of dehydration, the endo-stereoselectivity of 

IMDA/HDA reactions, and the rate enhancement of the retro-Claisen reaction. A possible 

divergent evolutionary relationship with SAM-dependent OMTs and a new role of SAM in 

catalyzing pericyclic reactions are also proposed.

RESULTS

Structure of LepI

The structure of LepI was determined by single anomalous diffraction on a 

selenomethionine (Se-Met) derivative crystal diffracting to 2.58 Å resolution, and the phase 

was extended to a native crystal with 2.14 Å resolution by molecular replacement 

(Supplementary Table 1). The overall tertiary structure of LepI consists of an N-terminal 

dimerization domain (residues 1–122) and a C-terminal catalytic domain (residues 123–387) 

that adopts the typical α/β Rossmann fold observed in all class I SAM-dependent 

methyltransferases (Fig. 2a)13. In the asymmetric unit, two LepI monomers intertwine 

through the N-terminal dimerization domains with a dimer interface of ~5,000 Å2 surface 

area per monomer as calculated by PISA (Fig. 2b)14. Such intimate homodimer architecture 

is similar to that of many OMTs2. Unique to LepI dimer is a domain-swapped four-helix 

bundle at the N-terminus. This leucine-rich coiled-coil enables LepI dimers to pack against 

each other and form a dimer of dimers, burying ~1,800 Å2 surface area between the two 

dimers (Supplementary Fig. 1). In comparison, the oxaline OMT OxaC15, the closest 

homologue to LepI as identified by Dali16, also harbors a similar four-helix bundle at the N-

terminus, but it is not domain-swapped and does not further dimerize. The tetramer 

oligomerization of LepI is consistent with sedimentation velocity experiment 

(Supplementary Fig. 2), which showed that LepI exists in an equilibrium between dimer and 

tetramer in solution.

The cofactor SAM is copurified with LepI with >90% occupancy when it is overexpressed in 

Escherichia coli12; no exogenous SAM was supplemented during protein purification and 

crystallization steps. Electron density unambiguously delineates the binding of SAM in each 

LepI monomer at the canonical SAM binding site (Fig. 2c). LepI makes numerous contacts 

with SAM that are observed in bona fide OMTs: the α-amino and α-carboxylate groups are 

recognized through direct and water-mediated hydrogen bond networks; the diol group from 

the ribose ring donates two hydrogen bonds to D252; the adenine ring is sandwiched 

between L253 and F276 via van der Waals and π···π interactions. Notably, the sulfonium 

methyl group makes an unconventional CH···O hydrogen bond with D296, mediated by a 

water molecule (designated as W, the distance between SAM sulfonium methyl carbon and 

W is 3.4 Å). Such CH···O hydrogen bonds involving the SAM sulfonium methyl group are 

prevalent in SAM-dependent methyltransferases and are believed to be important for SAM 

binding specificity and facilitating the methyl transfer reaction17. However, water molecules 
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have rarely been observed as immediate hydrogen bond acceptors for SAM18. The water 

molecule W also makes a hydrogen bond with R295, which resides at the center of a large 

~500 Å3 cavity. This putative active site cavity is outlined by both the catalytic domain 

(monomer A) and the dimerization domain from the other monomer (monomer B) within the 

homodimer unit (Fig. 2d). Adjacent to the adenine ring of SAM is a wide substrate entrance 

tunnel, whereas on the backside of the cavity at the domain interface, multiple water-filled 

tunnels are found to connect the cavity to bulk solvent (Supplementary Fig. 3a). Such 

organization implies that the dimerization event is obligatory for LepI function and that each 

homodimer is a minimal integral functional unit.

Structure of LepI-substrate analogue ketone (1) complex (LepI-SAM-1)

To understand how LepI recognizes and orients the substrate alcohol 2 and achieves E-

selective dehydration to yield 3, we cocrystalized LepI with ketone 1, which serves as an 

unreactive substrate analogue. The structure of this pseudo enzyme-substrate (Michaelis) 

complex was determined to 1.70 Å resolution. Electron density clearly reveals the binding of 

1 in the proposed substrate binding site adjacent to SAM, as well as an ethylene glycol 

molecule serendipitously positioned on top of the pyridone ring (Fig. 3a, Supplementary Fig. 

4a). The atomic resolution of the electron density also allows us to determine the absolute 

stereochemistry at the chiral C8 of 3 (S configuration).

The overall LepI-SAM-1 structure is very similar to the ligand-free structure with an root 

mean square deviation (r.m.s.d.) of ~ 0.18 Å for 770 Cα atoms. However, local structural 

changes were triggered upon substrate binding (Fig. 3b, Supplementary Fig. 4b). The 5-

phenyl ring of 1 is locked into a small hydrophobic pocket and participates in favorable 

π···π interactions with H133 and F189, which cause rotation of F189 side chain. The 

pyridone ring is recognized via hydrogen bond interactions with H133 and D296 through the 

4-OH group and amide nitrogen, respectively.

Unexpectedly, instead of being frozen in the near-attack conformation (NAC) for the 

cycloaddition step immediately following dehydration, the diene alkyl chain of 1 is captured 

in an extended conformation projecting into a hydrophobic cleft mainly surrounded by 

residues from monomer B within the homodimer (Supplementary Fig. 5), and 

accommodation of this linear alkyl chain caused a ~3 Å shift of M45(B) side chain. 

Meanwhile, the space left for the diene chain in the NAC is now occupied by the ethylene 

glycol molecule. The electron density reveals that the diene moiety adopts an alternate 

conformation (s-trans and s-cis). In both conformations, the diene could participate in 

favorable π···π interactions with F41(B) (Fig. 3a).

The C7 carbonyl group is oriented in parallel with the amide carbonyl facing towards the 

aforementioned solvent-filled channel and forms an extensive water hydrogen bond network 

mediated by residues T338, R197, R295, and E350 (Supplementary Fig. 3b). Since the C7 

carbonyl group closely mimics the alcohol of substrate 2 that leaves in the elimination 

reaction, such orientation dictates that substrate 2 must undergo anti-elimination exclusively 

to yield (E)-quinone methide 3, which explains our previous biochemical characterization 

that the enzymatic reaction products were derived from (E)-quinone methide intermediate.12 
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The water hydrogen bond network helps to protonate the leaving alcohol group. The 

byproduct water may be transiently trapped by the nearby polar residues and eventually 

exported to bulk solvent through the solvent-releasing channel (Supplementary Fig. 3b).

Even though the substrate binding pocket is in proximity to the cofactor SAM, no direct 

contact was observed between SAM and ketone 1 (the distance between SAM sulfonium 

methyl carbon and the ketone 1 amide carbonyl oxygen atom is about 6.8 Å). Instead, the 

water molecule W remains to bridge the SAM sulfonium methyl group with D296 and 

R295. A structure of LepI-SAH-1 ternary complex (1.84 Å resolution) was also determined 

during the course of the study, in which S-adenosyl-L-homocysteine (SAH), instead of 

SAM, was identified in the active site (Supplementary Fig. 6). Even though SAH lacks the 

sulfonium methyl and a formal positive charge of SAM, the overall structure is essentially 

identical to the LepI-SAM-1 complex with an r.m.s.d. of ~ 0.18 Å for 773 Cα atoms., 

including the active site organization, waters, and substrate binding mode, except that the 

diene exclusively adopts the s-trans conformation; an extra glycerol molecule was also found 

at the exit of the solvent-releasing channel. The similarity between these two complexes 

suggests that the contrasting effects of SAM vs. SAH on LepI catalysis previously observed 

are not attributed to a structural role of SAM or any allosteric effects but rather to the 

hydrogen bonding and positive charge of SAM that is absent in SAH.

Structure of LepI enzyme-product (10) complex (LepI-SAM-10)

To gain more insight into how LepI catalyzes cycloaddition, we next determined the crystal 

structure of LepI-SAM complexed with leporin C (10) to 1.78 Å resolution. As expected, no 

major conformational change was introduced to LepI upon binding of the product. The 

crystal structure of enzyme-product complex reveals that 10 is accommodated in a manner 

similar to 1 in the LepI-SAM-1 complex (Fig. 3c), through hydrophobic and hydrogen bond 

interactions. Notably, residue R295 now adopts a different conformation to form a bifurcated 

hydrogen bond with the amide carbonyl of 10. The amide carbonyl group concurrently 

accepts a hydrogen bond donated from a water molecule (W’), which likely originates from 

the leaving alcohol group in the dehydration. This water molecule also participates in the 

hydrogen bond network at the solvent-releasing channel. The direct hydrogen-bond 

interaction between the amide carbonyl and guanidinium group of R295 is reminiscent of 

the electrostatic catalysis predicted previously by our computational study: a sulfonium ion 

or ammonium ion interacts with the amide carbonyl in the ambimodal TS-112. Such 

electrostatic catalysis was predicted to decrease the C-O bond length and increase the C-C 

bond length in TS-1. This contributes to the observed preference for LepI to catalyze the 

HDA reaction versus endo-mode IMDA in the presence of LepI as compared to 

nonenzymatic reaction in water. In addition to the amide carbonyl, a lone pair from cyclic 

ether oxygen of 10 is shown to accept a hydrogen bond from the side chain of H133. 

Considering that the general base H133 is inevitably protonated after dehydration in the 

reaction cascade, H133 is most likely present as the imidazolium form, which makes it an 

ideal hydrogen-bond donor for catalysis in the following pericyclic reactions. The positively-

charged imidazolium ring of H133 maintains hydrogen bonding with the C4-carbonyl of 3 
and TS-1 to enhance the electrophilicity of the pyridone ring. In the [3,3]-sigmatropic retro-

Claisen rearrangement, this interaction also stabilizes the developing partial oxyanion in 
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TS-2. Together, hydrogen bonds from R295 and H133 to C2 and C4 carbonyl groups 

activate the quinone methide 3 and the retro-Claisen substrate 9 by stabilizing the polarized 

transition state.

Superimposing the LepI-SAM-10 complex onto LepI-SAM-1 complex reveals that 

cycloaddition of the diene chain causes the conformational change of M45(B), which swings 

back to the original position as seen in the unliganded structure (Fig. 3d). The previously 

observed ethylene glycol molecule overlays well with C14-C16 of 10, which illuminates 

how the linear portion of quinone methide 3 rearranges to the NAC preceding TS-1: the 

diene alkyl chain of quinone methide 3 is induced by the enzyme binding site to rotate and 

fold on top of the 2-pyridone ring, leaving the C8-C13 region preorganized into a chair-like 

conformation with C8 methyl group in the equatorial position and the diene moiety in s-cis 

conformation. Accordingly, we docked the ambimodal endo TS-1 and the [3,3]-sigmatropic 

retro-Claisen rearrangement TS-2 into the LepI-SAM-10 structure omitting ligand 10 
(Supplementary Fig. 7). Including the two well-defined water molecules (W and W’) and 

SAM in the structure greatly facilitated docking the ligands in productive poses, thereby 

supporting the hypothesis that they may play important structural roles in defining the active 

site binding environment.

The basis for LepI diastereoselectivity (endo vs exo) in the IMDA/HDA reaction was further 

supported by modeling the hypothetical LepI-SAM-TS-3 complex with the assumption that 

the 5-phenyl group and pyridone ring are bound in a similar fashion as TS-1 to maintain 

similar interactions with LepI (Supplementary Fig. 7). To allow for the exo TS-3 to bind, the 

hydrophobic diene group (C13-C14) is positioned on the hydrophilic side of the active site, 

which may potentially cause steric clashes with water W’ and R295; whereas in the endo 
TS-1 model, the diene is positioned on the hydrophobic side of the binding site. Thus, the 

diastereoselectivity likely arises from preference of the diene to avoid the hydrophilic “wall” 

formed by polar residues (D296, R295, R197, T338) and W’. More insights regarding LepI 

binding of retro-Claisen reaction substrate 9 were provided by the structure of the LepI-

SAM-8 ternary complex (1.66 Å resolution), where 8 is the unreactive spirocyclic product of 

nonenzymatic exo TS-3 serving as a mimic of the diastereoisomer spirocyclic 9 (see 

Supplementary Fig. 8 and Supplementary Discussion).

Catalytic mechanism of LepI

To verify our interpretations of likely modes of catalysis, we performed site-directed 

mutagenesis on the implicated residues and examined the enzyme activity in A. nidulans. In 

the presence of upstream enzymes that produce the alcohol 2¸ a fully active LepI yields only 

the product 10, while a completely inactive LepI (or absence of LepI) leads to a mixture of 

5–10 (Fig. 4a). Consistent with our structural conclusion, removal of the essential general 

base H133 is detrimental to LepI activity; all four mutations (H133A, H133F, H133Q, 

H133N) completely abolished enzyme activity (Fig. 4a). As observed in the LepI-SAM-1 
structure, R295 may act as a general acid and indirectly protonate the leaving alcohol. 

Substitution of R295 with A/Q/F/Y significantly compromised the dehydration activity, but 

it was effectively rescued by R295H/K/N. Mutation of other residues structurally implicated 

in the protonation step during dehydration (T338A, T338S, R197A, and R197K) did not 
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affect the activity, suggesting that they are not essential for catalysis. Residue D296 plays a 

major role in binding and polarizing the substrate in order to lock it in the 2-pyridone form 

rather than its tautomeric 2-hydroxypyridine form. Substitution of residue D296 with A led 

to notable increase in shunt products 5–9, and the activity can be restored by D296N and 

D296E, both of which can accept similar hydrogen bonds from the pyridone NH. Although 

substantial conformational change was observed on M45 accompanying the cycloaddition of 

3, M45A mutation did not affect LepI function in vivo, which strongly suggests that folding 

of the diene chain of 3 to the NAC preceding TS-1 occurs spontaneously.

To examine the contribution of these active site residues to the catalysis of retro-Claisen 

rearrangement reaction, we assayed the enzymatic activity of the purified mutants using 9 as 

the substrate in vitro (Fig. 4b). Consistent with the in vivo results, mutation of non-catalytic 

residues (T338A, M45A) did not affect the pericyclic activity. Alanine substitution for the 

substrate binding residue D296 caused a 10-fold loss of activity, although the activity was 

restored to 75% and 90% of the wild-type LepI by replacing A296 with N and E, 

respectively. In contrast, mutation of the hydrogen bonding catalyst H133 significantly 

compromised the pericyclase activity of LepI: H133F decreased the activity by 200-fold, and 

replacing H133 with other neutral hydrogen-bond donors (e.g. H133Q and H133N) did not 

restore the activity, which demonstrates that the positively-charged imidazolium group is 

essential for LepI to catalyze the retro-Claisen rearrangement. Substituting R295 with A or 

Q also completely abolished the activity, while R295N and R295K mutants were active at 

10% level of the wild type. Introducing H at position 295 improved the R295A/Q mutant 

LepI activity to 30% of the wild type, suggesting that the partial rescue of inactive mutants 

by R295H may be attributed to the imidazolium ring that can be stabilized by the nearby 

second-shell residue E350 and donate a favorable hydrogen bond to the amide carbonyl to 

catalyze the retro-Claisen rearrangement. R197, which makes a water-mediated (W’) 
hydrogen bond to the same amide carbonyl, plays a minor catalytic role in this reaction, as 

R197A mutant retained 50% activity.

Taken together, this structure-activity relationship study provides mechanistic insights into 

LepI catalysis (Fig. 5). The dehydration step likely proceeds via the E1-cb mechanism: 

H133 acts as the key general base to deprotonate the 4-OH group and stabilize the 

corresponding enolate anion intermediate, while the leaving hydroxyl group is ejected anti-
periplanar and protonated by water molecules from the water hydrogen bond network, a 

process that is facilitated by R295. The leaving water molecule (W’) could be transiently 

trapped by these residues and maintain a hydrogen bond with the amide carbonyl. The lack 

of a dedicated general acid residue to facilitate dehydration presumably is to prevent the 

newly-formed highly-reactive (E)-quinone methide intermediate 3 from being quenched by 

W’, since a good general acid residue could in principle act as a general base in the reverse 

reaction. Residue D296 is important for substrate binding and favoring the 2-pyridone 

tautomer. Overall, the dehydration specificity (1,4-anti-elimination) is accomplished through 

positioning the general base and acid in trans configurations and trapping the linear alcohol 

substrate 2 in the corresponding trans-conformer.

In the following cycloaddition reaction, spontaneous bond rotation of diene is driven by 

filling up the void volume over pyridone ring, and better shape-complementarity in the 

Cai et al. Page 7

Nat Chem. Author manuscript; available in PMC 2020 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



active site when poised for reaction. The diastereoselectivity was achieved by aligning 

hydrophilic residues at the exo side, which in turn favors the endo TS-1 (hydrophobic 

effect). Residues H133 and R295 act as hydrogen bond donors to lower the transition-state 

energy barrier and stabilize both TS-1 and TS-2. In particular, the highly polarized transition 

state TS-2 (i.e. the oxyanionic 4-carbonyl oxygen) can be electrostatically stabilized by the 

positively-charged imidazolium side chain of H133. The cofactor SAM is required for 

defining the active site shape but not for directly interacting with the substrate. The catalytic 

role of SAM during the reaction as shown by previous biochemical experiments, and the 

necessity of a positively-charged analog to effect catalysis is indicative of the electrostatic 

role of the SAM sulfonium moiety for catalysis, but it is too remote from the substrate for 

direct hydrogen bonding.

DISCUSSION

A common theme found in pericyclases2 that catalyze [4+2]-additions is that cyclization 

follows an initial priming/deprotection reaction that activates the substrate to create/unmask 

the reactive functional groups20. This priming/deprotection reaction may be catalyzed by a 

separate enzyme (e.g. tandem reaction catalyzed by SpnM and SpnF) or the cyclase itself 

(e.g. solanapyrone synthase), which generates the reactive intermediate in situ. The second 

scenario is most often encountered when the liberated intermediate is too reactive and 

readily forms undesired cyclized products without enzymatic control. Therefore, by devising 

such a cascade scheme, the unstable intermediate generated in situ undergoes cyclization 

immediately inside the cyclase.

LepI also follows this principle, and our studies here provide the structural basis and 

mechanistic insight into LepI catalysis, such as 1) positioning the general base (H133) and 

general acid (water facilitated by R295) in the trans-configuration to cause the substrate 2 to 

undergo stereoselective anti-elimination to yield (E)-quinone methide 3; 2) setting the 

“amphiphilic” active site to favor the endo-conformation during cycloaddition; 3) 

repurposing the two cationic residues (H133 and R295) as hydrogen bonding catalysts to 

lower the transition state barrier and to electrostatically stabilize the polarized transition 

state; 4) repurposing SAM that normally functions as a methyl donor in methyltransferases 

to play an electrostatic role in non-methyltransfer catalysis.

In both natural and artificial enzymes that catalyze Diels-Alder reactions, it has been found 

that a strategy for rate enhancement is to donate specific hydrogen bonds to the dienophile in 

order to lower its LUMO energy21,22 and to stabilize the polarized transition state. In LepI 

catalysis, H133 and R295 are vivid examples of hydrogen bond catalysts that simultaneously 

donate hydrogen bonds to both the amide carbonyl and quinone methide carbonyl groups. 

Such hydrogen bonding effectively lowers the LUMO energy of quinone methide and 

stabilizes the transition state that involves charge transfer to this moiety.

While many standalone pericyclases utilize binding energy to preorganize the linear 

substrate in a restricted NAC to overcome the rotational entropic barrier, LepI apparently 

does not function as an “entropy trap” to increase reaction rate7,8,10,20,21,23,24. The 

undehydrated substrate is bound in the extended conformation by LepI in order to minimize 
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the π···π repulsion between the diene and the electron-rich phenolate prior to dehydration. 

The slight loss in entropy that occurs when the linear substrate rotates from extended 

conformation to the restricted NAC can be compensated by the gain of enthalpy from 

interaction between the diene and electron-deficient quinone methide and the enthalpic 

change that eventually results from the cycloaddition reaction. This may be a general feature 

of all dehydration-promoted pericyclases.

This feature is also reminiscent of another well-characterized pericyclase, chorismate mutase 

(CM), which catalyzes the [3,3]-sigmatropic Claisen rearrangement of chorismate to 

prephenate. Unfavorable decreases in ΔS‡ have been consistently observed for natural CMs 

and catalytic antibodies, which suggests that CM does not act as an entropy trap25. Instead, 

the strategy for CM catalysis is a combination of both reactant destabilization and transition 

state stabilization25. It has become clear that transition state stabilization is the more 

important contributor to CM catalysis: donation of favorable hydrogen bond from cationic 

residue (such as Arg) to the vinyl ether oxygen in chorismate can effectively stabilize the 

developing partial negative charge on transition state26. By replacing this critical arginine 

with its neutral analogue citrulline, which donates hydrogen bond but is incapable of 

favorable electrostatic interactions, it has been estimated that this positively-charged arginine 

can contribute 5.9 kcal/mol to transition state stabilization versus 0.6 kcal/mol to the binding 

energy of the ground state.

Strikingly similar to CM, LepI uses cationic residues (H133 and R295) as major contributor 

for catalyzing [3,3]-sigmatropic retro-Claisen rearrangement of 9 to 10. Substrate ground-

state destabilization does not contribute, since the spirocyclic substrate 9 is essentially being 

frozen in the NAC like conformation, and no significant bond rotation is required to 

preorganize this substrate to be shape complementary to the LepI active site. The major 

contribution to catalysis must come from hydrogen bonding and electrostatic interaction. 

Substitution of H133 by neutral hydrogen bonding residue Q and N reduces the catalytic 

activity by 50-fold. This severe loss of catalytic efficiency implies that H133 exists in the 

positively charged imidazolium form, which underscores the importance of electrostatic 

complementarity. The importance of positively-charged R295 to this pericyclic reaction has 

also been demonstrated by both QM studies and our current mutagenesis study12. Consistent 

with this prediction, R295A/Q mutants are devoid of retro-Claisen rearrangement activity 

(>1,000-fold decrease, undetectable), whereas activity is partially retained with similar 

cationic mutants such as R295H (30%) (Fig. 4b).

Although the precise catalytic role of SAM remains unclear, we have now found that the 

sulfonium does not contact the amide carbonyl. Nevertheless, the electrostatic effect of the 

sulfonium or the ammonium analog can stabilize the transition state. Given that the positive 

charge of SAM is required for optimal activity of LepI, we propose that SAM serves as an 

electrostatic catalyst that stabilizes the transition state, which has a higher dipole moment 

than the reactant. This type of catalysis is well known through the work of Warshel, was 

demonstrated in solution chemistry by Wilcox, and has gained recent prominence under the 

name “electric field catalysis” through the work of Boxer, Shaik, Coote, and Head-

Gordon27–32.
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Our structural study of LepI also suggests an interesting evolutionary origin, that a 

methyltransferase ancestor of LepI has been co-opted to a multifunctional dehydratase and 

pericyclase. The protein folds and SAM binding pockets of LepI are nearly identical to the 

methyltransferase OxaC (Supplementary Fig. 10). Comparison of the LepI active site with 

that of the OMT OxaC, along with structure-based sequence alignment (Supplementary Fig. 

11), reveals how key residues have been evolved to catalyze the reactions shown in Fig. 1 

instead of a SN2 methyl transfer reaction. In all functional O-MTs, the charge relay system 

of the His-Glu catalytic dyad is strictly conserved; the histidine acts as the general base that 

deprotonates the substrate nucleophile (hydroxyl group), and glutamate acts as the second 

shell residue to elevate the pKa of histidine. In LepI, the glutamate is conserved as E350, 

whereas the corresponding general base histidine is replaced with arginine. This substitution 

is beneficial for LepI in two ways. First of all, as discussed above, arginine is a better 

hydrogen bond donor and electrostatic catalyst in LepI relative to histidine. Secondly, 

arginine is a poor general base due to its high pKa (12.5) and thus remains protonated in the 

resting state. Therefore, removing this key general base in LepI may be a strategy to 

eliminate adventitious methyltransferase activity.

In summary, our structural studies of LepI presented here provide mechanistic insight into 

enzymatic dehydration-triggered IMDA and HDA reactions, as well as hydrogen bonding 

and electrostatic catalysis of the retro-Claisen rearrangement. A proper understanding of the 

molecular mechanism of LepI is important for designing new pericyclases de novo and also 

provides a template for the discovery of novel functions of OMT-like enzymes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Leporin C biosynthesis pathway highlighting LepI-catalyzed reaction cascade.
In the absence of LepI, spontaneous dehydration of alcohol 2 yields a (E/Z)-mixture of 

quinone methides (3/4), which nonenzymatically form Diels-Alder and hetero Diels-Alder 

adducts. The compounds used in structural study are highlighted by maroon boxes.
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Fig. 2 |. LepI structure and the SAM binding site.
(a) The overall tertiary structure of LepI is shown in cartoon model, with the N-terminal 

dimerization domain and C-terminal catalytic domain colored in blue and red, respectively. 

Simulated-annealing omit map (grey mesh, contoured at 2.5 σ) indicates binding of SAM at 

the canonical SAM binding site. (b) Intimate LepI homodimer featured by an intertwined 

dimer interface. (c) Close-up view of SAM binding site. Hydrogen bond interactions are 

indicated with black dashes. (d) Next to SAM is a large substrate binding cavity and its 

entrance tunnel (shown together as green surface). The volume of cavity was calculated 

using POCASA.19
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Fig. 3 |. Crystal structure of LepI pseudo enzyme-substrate complex and enzyme-product 
complex.
Simulated-annealing omit maps are shown in black mesh and contoured at 3.0 σ. Hydrogen 

bond interactions are indicated with black dashed lines. (a) Crystal structure of LepI-SAM-1 
(pseudo enzyme-substrate complex). Note that two rotamers of R295 and M45(B) are 

observed, and two conformations of diene (s-trans and s-cis) are modeled according to the 

electron density. Residues from monomer A are colored in salmon, whereas residues from 

monomer B are colored in light blue and labeled with B in parenthesis. (b) Superposition of 

LepI-SAM-1 complex (colored as in (a)) with unliganded LepI-SAM (residues are colored 

in dark green while SAM is colored in black). Substantial conformational changes are 

observed for F189, R295, R197, and M45(B). (c) Crystal structure of LepI-SAM-10. 

Residues and ligands are color coded as in (a). (d) Superposition of LepI-SAM-10 (residues 

are colored in white, SAM is colored in gray, ligand is colored in orange) with LepI-SAM-1 
(color coded as in (a), note that ethylene glycol is not shown here for clarity).
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Fig. 4. LepI Mutant activity.
(a) In vivo activity of LepI or mutants to synthesize leporin C (10) starting from the alcohol 

substrate 2. 2 is synthesized by upstream biosynthetic enzymes; for details of pathway see 

Ref. 12. (b) In vitro retro-Claisen rearrangement activity using 9 as the substrate. Asterisks 

indicate mutants with no measurable activity. Error bars show square deviation (s.d.) of three 

independent experiments (n = 3).
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Fig. 5 |. Proposed catalytic mechanism of LepI.
Dashed straight lines indicate hydrogen bonds.

Cai et al. Page 17

Nat Chem. Author manuscript; available in PMC 2020 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	RESULTS
	Structure of LepI
	Structure of LepI-substrate analogue ketone (1) complex (LepI-SAM-1)
	Structure of LepI enzyme-product (10) complex (LepI-SAM-10)
	Catalytic mechanism of LepI

	DISCUSSION
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4
	Fig. 5 |



