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Epigraph
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ABSTRACT OF THE DISSERTATION

Stochastic Methods for Machine Learning and their Applications

by

Azar Alizadeh

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Merced, 2024

Dr. Mukesh Singhal, Chair

In the fast-advancing domains of artificial intelligence and machine learning,
the need for models capable of efficiently handling large, complex datasets is in-
evitable. Traditional methods such as decision trees and nearest-neighbor algorithms
often struggle with computational complexity and scalability when applied to high-
dimensional data, especially in domains like agriculture, where large amounts of real-
time data are generated from sensor networks. These challenges require the develop-
ment of more efficient learning algorithms that can reduce computational overhead
while maintaining predictive accuracy.

To address these challenges, in this research, we propose a novel Stochastic Deci-
sion Tree (SDT) model that introduces randomness into the tree induction process,
significantly reducing computational complexity while maintaining or improving ac-
curacy. The proposed method leverages stochasticity to prioritize important features
and efficiently process large datasets. The proposed Neural-SRNN model addresses
class imbalance issues by using a specialized loss function (Focal Loss) to focus on
hard-to-classify instances. We demonstrate the effectiveness of this approach through
empirical evaluations of standard datasets.

In addition, we extend the application of stochastic methods by developing a
Neural-Synthetic Reduced Nearest Neighbor (Neural-SRNN) algorithm, which inte-
grates neural networks into the SRNN framework to improve performance and in-
terpretability in high-dimensional classification tasks. This method combines the
flexibility of neural networks with the computational advantages of the SRNN model,
achieving superior performance on image classification benchmarks such as MNIST
and Fashion-MNIST with an expectation-maximization approach.

To preserve the strength of the proposed Neural-SRNN model and improve ef-

xvii



ficiency and scalability, we proposed a two-layer Neural-SRNN model that builds
on the Synthetic Reduced Nearest-Neighbor (SRNN) architecture. This model uses
a modular approach, employing Mini-Convolutional Neural Networks (Mini-CNNs)
in the first layer to perform class-specific feature extraction, followed by a shallow
neural network for final classification. This two-layer architecture allows for efficient
parallel processing, significantly reducing computational overhead while maintaining
high accuracy. Moreover, it improves generalization and prevents overfitting on com-
plex datasets such as SignMNIST and FashionMNIST. The two-layer Neural-SRNN
model demonstrates superior accuracy and computational efficiency, demonstrating
its scalability and adaptability to complex, high-dimensional data.

The dissertation further explores the application of the Stochastic Decision tree
technique to real-world agricultural problems, particularly in optimizing water usage
in almond and pistachio orchards. By predicting stem water potential using aerial and
ground sensor data, the SDT model improves irrigation efficiency and contributes to
the development of sustainable agricultural practices. This work advances machine
learning by presenting novel and efficient stochastic algorithms and demonstrating
their practical applicability in critical areas such as agriculture.

xviii
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Introduction and Background
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1.1 Introduction

Machine learning (ML) and deep learning are rapidly growing areas of artificial
intelligence (AI), which focus on developing algorithms capable of recognizing patterns
in data, making decisions or predictions based on these patterns, and learning from
the data. Unlike traditional computer programs that follow explicit instructions,
ML models are designed to learn from data and perform tasks autonomously LeCun
et al. (2015), Goodfellow et al. (2016). These models generate hypotheses, reason,
and make decisions without requiring exhaustive rules for every scenario, imitating
human-like decision-making processes.

Machine learning allows computers to generalize past experiences or data. Rather
than memorizing problem examples, ML systems learn lessons from prior data to
tackle new unseen problems. This ability to generalize is the core strength of ma-
chine learning, allowing systems to process new information, generate forecasts, and
improve decision-making Mitchell and Mitchell (1997).

Machine learning algorithms can be divided into several major categories based
on Alpaydin (2020), the most notable being supervised and unsupervised learning.
Supervised and unsupervised learning have succeeded significantly in various fields,
including image and speech recognition, healthcare, predictive analytics, and natural
language processing.

1.2 Supervised Learning

Supervised learning is one of the most fundamental approaches in machine learn-
ing. This approach trains a model on a labeled dataset where each data point (input)
is associated with a corresponding output (label). The objective of supervised learn-
ing is to find a function that maps the inputs X to the outputs Y as accurately as
possible so the model can predict the correct outputs for new unseen data Bishop
(2006).

Supervised learning can be divided into two categories based on the task it focuses
on, which are Classification and Regression Bishop (2006).

Classification refers to a supervised learning approach where the target variable
Y is a discrete label or category. The objective of a classification model is to learn a
relationship from input data X to one of the predefined categories Y . This approach
is extensively applied in practical scenarios, including spam filtering, image recogni-
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tion, medical diagnosis, and speech recognition Hastie et al. (2009), Goodfellow et al.
(2016).

In classification tasks, algorithms aim to minimize the classification error, which
is the proportion of incorrect predictions made by the model. Standard metrics used
to evaluate classification models include accuracy, precision, recall, F1-score, and the
area under the ROC curve. Common models for classification include:

• Decision Trees: These algorithms split the data into branches based on feature
values, assigning class labels at the leaf nodes Quinlan (1986a).

• k-Nearest Neighbors (KNN): A distance-based algorithm that assigns the
label based on the majority vote among the k nearest neighbors Cover and Hart
(1967a).

• Support Vector Machines (SVMs): These algorithms find a hyperplane
that best separates the data into different classes Bishop (2006).

Regression is a supervised learning approach where the output variable Y is con-
tinuous rather than categorical. Regression aims to predict a continuous value based
on the input features X. Regression models are frequently used in financial forecast-
ing, resource allocation, environmental modeling, and agricultural yield prediction
Hastie et al. (2009), Bishop (2006).

In regression tasks, the model’s goal is to minimize the error between the pre-
dicted and actual values of the output variable. A common evaluation metric for
regression models is the Mean Squared Error (MSE), which measures the average
squared difference between predicted values and true values:

MSE = 1
N

N∑
i=1

(
Yi − Ŷi

)2

where Yi is the true value and Ŷi is the predicted value for the i-th data point.
Some common regression algorithms include:

• Linear Regression: This algorithm models the relationship between the input
and output variables by fitting a linear equation to the data. It assumes a linear
relationship between input features and output Bishop (2006).

• Decision Trees for Regression: Like their classification counterparts, the
regression decision trees split data into subsets, with the final output being a
continuous value Quinlan (1986a).
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• k-Nearest Neighbors for Regression: KNN can also be used for regression
by averaging the outputs of the k-nearest neighbors to the input Hastie et al.
(2009).

Supervised learning models require substantial labeled datasets, which can be
costly and time-intensive to acquire Goodfellow et al. (2016), and training on large
datasets can also be computationally demanding LeCun et al. (2015). However, su-
pervised learning models can be over-fitted when dealing with limited datasets or
noisy data Bishop (2006). Nevertheless, when supervised learning models are trained
with an ample amount of labeled data, they tend to generalize well to unseen datasets.
Algorithms like decision trees are typically straightforward to understand, and with
the appropriate model choice and enough labeled data, supervised learning models
can achieve significant accuracy Mitchell and Mitchell (1997).

Supervised learning algorithms are highly varied; they range from very simple to
the most complex systems, such as decision trees, K-Nearest Neighbors, and deep
neural networks. Each algorithm has its own specifications, strengths, and weak-
nesses, including which problems it can or can’t be applied to and how effectively it
can do so. Therefore, the choice of algorithm is a critical factor in determining how
well the underlying structure of the data is captured and applied to new tasks. In ex-
ploring supervised learning algorithms, we need to understand how they work based
on guiding principles. The following sections will detail the Decision Trees, K-nearest
neighbors, and Deep Neural Networks, including their advantages, disadvantages, and
the mathematical formulations that define the learning mechanisms.

Decision Trees

A decision tree is a non-parametric supervised learning algorithm widely used for
both classification and regression. It is structured as a flowchart, where each internal
node represents a decision based on a feature, each branch represents the outcome
of the decision, and each leaf node represents the final output or prediction Quinlan
(1986a).

The process of constructing a decision tree involves recursively splitting the dataset
into subsets based on the value of a feature. In classification, metrics like Gini Im-
purity and Information Gain are used to measure the quality of a split, while in
regression, Mean Squared Error (MSE) is often used Hastie et al. (2009).

The Gini Impurity G(t) for a node t is given by:
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G(t) = 1 −
C∑

i=1
p2

i (1.1)

where pi represents the proportion of instances belonging to class i at node t, and
C denotes the total number of classes. The Gini Impurity calculates the chance of
incorrectly classifying a randomly selected element if it were labeled randomly based
on the subset’s label distribution Quinlan (1986a).

On the other hand, Information Gain is grounded on a discrete but essential
principle, entropy, which informs us about the disorder of the data or its impurity
and the amount of entropy associated with a specific dataset. The entropy H of a
dataset T is defined as:

H(T ) = −
C∑

i=1
pi log2(pi) (1.2)

The Information Gain for a feature X is then given by:

IG(T, X) = H(T ) −
∑

v∈Values(X)

|Tv|
|T |

H(Tv) (1.3)

where Tv is the subset of T for which feature X has value v Quinlan (1986a).
Decision trees are easy to interpret as the decision-making process is visually

representable. They can be used for both categorical and numerical data without
any need for pre-processing. Moreover, unlike distance-based algorithms, such as
KNN, which require feature scaling because the distance between data points can be
distorted if features are on different scales, decision trees do not require feature scaling
since they make decisions based on thresholds. These thresholds are not influenced by
the absolute values of the features. This characteristic makes decision trees simpler
to use with datasets where features have different scales, as there is no need to apply
additional pre-processing like normalization or standardization Loh (2011), Breiman
et al. (1984).

On the other hand, decision trees tend to overfit, especially in terms of inducing
a deep tree, and when the model becomes too complex, Quinlan (1986a). Decision
trees can also be unstable since small changes in the data can significantly change the
tree’s structure. Moreover, decision trees can be biased towards classes with a larger
group of samples in the dataset Hastie et al. (2009).
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Literature Review and Related Work

Decision trees have been widely studied since their inception, providing a robust
and interpretable approach to both classification and regression tasks. Their pop-
ularity comes from their intuitive structure, ease of implementation, and ability to
handle both numerical and categorical data.

The concept of decision trees was first introduced by Quinlan in 1986 with the
ID3 algorithm Quinlan (1986a). This algorithm was based on the use of entropy
and information gain to split nodes. The subsequent development of C4.5, which
extended ID3 to handle continuous attributes and missing values, solidified decision
trees as a popular machine learning method Quinlan (1993). CART (Classification
and Regression Trees), introduced by Breiman et al. in 1984, became another
foundational algorithm for decision trees, supporting both classification and regression
tasks using Gini impurity and mean squared error for node splitting Breiman et al.
(1984).

Decision Trees in Agriculture: Water Management

One of the emerging areas of decision tree applications is in agriculture, partic-
ularly in water resource management. Efficient water usage is crucial in modern
farming, especially given the increasing concerns over water scarcity and the need
for sustainable agricultural practices. Decision trees provide an effective solution
for predicting and managing water needs, irrigation schedules, and optimizing water
usage.

For example, Araya et al. Araya et al. (2016) used decision trees to classify
crop water stress and predict water requirements based on environmental and crop-
specific factors. Their study demonstrated that decision trees could help farmers make
informed irrigation decisions by analyzing weather patterns, soil moisture levels, and
crop growth stages.

Similarly, Tsoumakas and Vlahavas Tsoumakas and Vlahavas (2002) applied
decision trees to predict water consumption for various crops in Greece. They used
historical weather data, crop types, and soil characteristics to train decision trees
that helped optimize irrigation schedules. This method improved water efficiency by
ensuring that crops received the appropriate amount of water at the right time.

In another study, Aqeel-ur-Rehman et al. Aqeel-ur Rehman et al. (2009) used
decision trees for precision irrigation by predicting soil moisture levels based on
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real-time sensor data. This approach allowed for more accurate predictions of when
and how much water should be applied, reducing water wastage and increasing crop
yield. The flexibility of decision trees in handling both continuous and categorical
data made them an ideal choice for managing the various factors involved in water
management.

In a related study, Al-Ghobari and Mohammad Al-Ghobari and Mohammad
(2011) used decision trees to develop a decision support system (DSS) for opti-
mizing water use in irrigation. The system provided real-time recommendations for
irrigation based on soil, weather, and crop data, significantly improving water-use
efficiency. Their findings suggest that decision trees can contribute to sustainable
water management practices in agriculture.

In addition to irrigation, decision trees have also been applied to forecast drought
conditions. Pereira et al. Pereira et al. (2002) applied decision trees to predict
drought risks in Portugal based on climate data and historical patterns. This al-
lowed farmers to anticipate water shortages and plan their water usage accordingly,
preventing crop loss during droughts.

The versatility of decision trees in managing various environmental and crop-
related factors has been demonstrated in other agricultural water management con-
texts. For instance, Singh et al. Singh et al. (2015) developed a decision tree-
based model to predict water demand for different crops based on climatic conditions
and soil type in India. Their model helped farmers optimize their water usage during
different growing seasons, resulting in better crop yields and more sustainable water
consumption.

Despite the success of decision trees in water management, the models must be
adapted to local environmental conditions. Fan et al. Fan et al. (2019) highlighted
that decision trees, when combined with other techniques such as remote sensing
and machine learning ensembles, can improve water-use efficiency in large-scale
farming operations by providing region-specific irrigation recommendations.

K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) is a simple but powerful instance-based learning algo-
rithm used for both classification and regression tasks Cover and Hart (1967a). Unlike
many other algorithms, KNN does not build an explicit model during the training
phase. Instead, it memorizes the entire training data set and makes predictions based
on the k closest data points (neighbors) to a new input.
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In a classification problem, KNN predicts the most common label among the k

nearest neighbors. For regression, KNN predicts the average output of the k nearest
neighbors. Mathematically, for a new instance x, the prediction in classification is:

ŷ = mode{yi : xi ∈ Nk(x)} (1.4)

and for regression:

ŷ = 1
k

∑
xi∈Nk(x)

yi (1.5)

The K-Nearest Neighbors (KNN) is highly plausible, simple, intuitive, and easy
to implement and grasp. There is no training phase requirement for it (apart from
storing the dataset); therefore, it is a lazy learning algorithm. KNN is a highly flexible
method that can be applied to classification and regression tasks. It is efficient in
many cases where data distribution is characterized by a decision boundary with
high-level irregularity, and it naturally adapts to non-linear relationships. KNN is a
non-parametric model that does not assume that the data comes from any particular
distribution or fits a specific functional form. It does not try to “learn” a global model
of the data; instead, it simply stores the training data and bases its predictions on
the local neighborhood of the new data point Hastie et al. (2009).

K-Nearest Neighbors (KNN) is computationally demanding in terms of both mem-
ory and time, particularly for large datasets, as it requires storing and comparing all
data points even after making predictions Cover and Hart (1967a). This makes the
choice of k (the number of neighbors) crucial. Additionally, KNN’s performance tends
to degrade in high-dimensional spaces due to the curse of dimensionality. Overall, the
scale of the data significantly affects how KNN functions. Features with larger ranges
can dominate the distance calculation, leading to biased predictions. Therefore, it is
essential to normalize the features correctly to avoid bias toward features with larger
scales Bishop (2006).

Literature Review and Related Work

KNN has been applied in several domains due to its versatility and simplicity. For
instance, Hand et al. Hand and Vinciotti (2001) utilized KNN in biomedical clas-
sification, particularly for cancer diagnosis using microarray data. The simplicity of
KNN allowed it to handle high-dimensional biomedical datasets, though the curse of
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dimensionality posed challenges, as discussed later.
In finance, KNN has been applied to predict stock market trends. Liao and

Wang Liao and Wang (2010) showed that KNN could be used to forecast financial
markets by analyzing historical price trends and using neighboring data points for
predictions. In such applications, the flexibility of KNN in adapting to non-linear
relationships between variables made it suitable for highly volatile and dynamic data.

KNN has also been successfully used in image recognition. For example, Zhang
et al. Zhang and Luo (2006a) applied KNN to the MNIST digit classification
dataset, demonstrating its ability to classify handwritten digits. However, they noted
that the algorithm’s performance degraded as the number of features increased, illus-
trating KNN’s sensitivity to the curse of dimensionality.

Several improvements have been proposed to address the computational inef-
ficiencies and curse of dimensionality associated with KNN. One common issue
with KNN is that it requires storing and searching through the entire training dataset
for each prediction, which can be computationally expensive for large datasets.

To address this, Ball and Tree-based structures have been introduced to
optimize nearest neighbor search. Omohundro Omohundro (1989) developed Ball
Trees to reduce the time complexity of finding nearest neighbors by partitioning the
dataset into hierarchical clusters. This approach significantly improves the search
time, especially for large datasets.

KD-Trees are another popular data structure used to optimize KNN search, par-
ticularly in low-dimensional spaces. Bentley Bentley (1975) introduced KD-Trees,
which divide the data into hyperplanes for efficient neighbor searching. However, KD-
Trees perform poorly in high-dimensional spaces due to the curse of dimensionality.

Another notable improvement to KNN is the use of distance-weighted KNN.
Dudani Dudani (1976) proposed assigning weights to neighbors based on their dis-
tance from the query point, giving more influence to closer neighbors in the prediction.
This helps improve the algorithm’s accuracy in cases where the nearest neighbors are
not equally informative.

A major challenge for KNN is the curse of dimensionality, which refers to the
phenomenon where the distance between data points becomes less meaningful as the
number of dimensions increases. Bellman Bellman (1966) first described this issue in
the context of optimization and decision theory, and it remains a significant challenge
for KNN.

High-dimensional data often results in neighbors that are equidistant from the
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query point, leading to poor classification or regression performance. One solution
to this problem is the application of dimensionality reduction techniques such
as Principal Component Analysis (PCA) and Linear Discriminant Analysis
(LDA). Bennett and Mangasarian Bennett and Mangasarian (1994) used PCA
to reduce the dimensionality of the feature space before applying KNN, significantly
improving its performance.

Feature selection is another approach to combating the curse of dimensionality.
Guyon and Elisseeff Guyon and Elisseeff (2003) reviewed various methods for
selecting the most informative features in high-dimensional data. Their work empha-
sized that by eliminating irrelevant or redundant features, the performance of KNN
could be enhanced in tasks such as image recognition and text classification.

Several studies have explored hybrid models that combine KNN with other ma-
chine learning algorithms, particularly neural networks. The motivation behind
this combination is to leverage the non-parametric nature of KNN and the feature
extraction capability of neural networks.

For instance, Zhang et al. Zhang and Luo (2006a) combined KNN with a neu-
ral network for digit recognition, where the neural network was used to extract
features from the image data, and KNN performed the final classification based on
these features used CNNsdel improved performance compared to using either KNN or
neural networks alone, highlighting the advantages of using KNN for decision-making
in feature space defined by neural networks.

Similarly, Wu et al. Wu et al. (2019) proposed a model that integrated Con-
volutional Neural Networks (CNNs) with KNN for image classification. In
theTheirach, CNNs were used for feature extraction from raw images, and KNN was
employed as the final classifier. This hybrid model achieved state-of-the-art results
on several image datasets, demonstrating the complementary strengths of CNNs and
KNN.

The primary advantages of KNN include its simplicity, versatility, and ability to
adapt to non-linear relationships in data. However, the algorithm suffers from limita-
tions related to high-dimensional data, computational complexity, and sensitivity to
the choice of k. Various improvements, such as distance weighting, Ball Trees, KD-
Trees, and hybrid models with neural networks, have been proposed to address these
issues. Despite these challenges, KNN remains a popular algorithm for classification
and regression tasks across a wide range of applications.
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Deep Neural Networks (DNNs)

Deep Neural Networks (DNNs) are powerful supervised learning models inspired
by the structure of the human brain. DNNs comprise multiple layers and are designed
to perform a long sequence of interoperator nodes or neurons. The input in the first
layer will be converted into a higher-level abstract representation. From this point on,
the model visualizes the relations developed that are not recognizable by the human
eye. In turn, the model learns which inputs can generate the most probable outputs.
DNNs have greatly improved dealing with high-dimensional information in datasets,
such as picture recognition, speech recognition, and machine text understanding.
Goodfellow et al. (2016).

A DNN comprises an input layer, multiple hidden layers, and one output layer.
Each neuron in the layers of this network is connected to every other one via the next
layer. The synapse strengths, represented by the links in the sense of the connecting
body’s segments, are continuously adjusted during the learning process to reduce the
prediction error.

Mathematically, the operation of a single neuron can be described as follows. Let
x = [x1, x2, . . . , xn]⊤ be the input vector to a neuron, w = [w1, w2, . . . , wn]⊤ be the
corresponding weight vector, and b be the bias term. The neuron computes a weighted
sum of its inputs, adds the bias, and passes the result through a non-linear activation
function σ(·) to produce the output:

z = w⊤x + b =
n∑

i=1
wixi + b (1.6)

y = σ(z) (1.7)

Common activation functions σ(·) include the sigmoid function, hyperbolic tangent
(tanh), and Rectified Linear Unit (ReLU). The output of each neuron in a layer is the
input to the neurons in the subsequent layer. The output layer produces the network’s
result, which, depending on the task, can be a classification label, a regression value,
or any other prediction type.

The training process of a DNN involves minimizing a loss function L(y, ŷ), where
y is the true output and ŷ is the predicted output. The loss function measures the
difference between the predicted and actual values. For example, in a classification
task, the cross-entropy loss is commonly used.
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L(y, ŷ) = −
C∑

i=1
yi log(ŷi) (1.8)

where C is the number of classes, yi is the true label (usually encoded as a one-hot
vector), and ŷi is the predicted probability for class i.

To optimize the network’s parameters (weights and biases), gradient-based opti-
mization algorithms such as stochastic gradient descent (SGD) are employed. The
gradients of the loss function with respect to the network’s parameters are computed
using backpropagation, a process that applies the chain rule of calculus to propagate
errors backward from the output layer to the input layer, updating the weights along
the way:

θt+1 = θt − η∇θL(y, ŷ) (1.9)

where θt represents the network’s parameters at iteration t, and η is the learning rate.
One of the most significant strengths of the deep neural network is its high flex-

ibility to model complex nonlinear functions with high accuracy. However, at the
same time, they also include large computational resources, an enormous amount of
labeled data, and the careful tuning of hyperparameters such as the learning rate,
the number of layers, and the number of neurons per layer. In addition, DNNs ex-
hibit the phenomenon of overfitting, particularly in cases of deep architecture and
insufficient data. Problems such as dropout, batch normalization, and data augmen-
tation are regular methods to deal with overfitting and increasing DNN efficiency. In
a nutshell, Deep Neural Networks are a very useful method in the field of machine
learning, capable of solving a wide range of complex tasks. However, they also bring
about training complexity, computational costs, and the risk of overfitting LeCun
et al. (2015), Goodfellow et al. (2016), Bishop (2006).

Literature Review and Related Work

Deep Neural Networks (DNNs) are a cornerstone of modern artificial intelligence,
enabling breakthroughs in areas such as image recognition, speech processing,
and natural language understanding. NNs are highly expressive models capable
of learning complex representations from data. Their performance on tasks such as
speech recognition and natural language processing (NLP) has significantly
surpassed traditional methods. Krizhevsky et al. demonstrated the power of deep
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learning with their AlexNet architecture, which won the ImageNet competition in
2012 and sparked widespread adoption of deep learning for computer vision tasks
Krizhevsky et al. (2012).

While DNNs have demonstrated exceptional performance in many areas, combin-
ing them with other machine learning models can further enhance their capabilities by
exploiting the strengths of different approaches. Hybrid models combine the feature
extraction power of DNNs with the decision-making capabilities of traditional
machine learning algorithms, offering improvements in performance, robustness, and
interoperability Zhou (2012), Kontschieder et al. (2015), Roy and Kar (2021).

One of the most common combinations is between DNNs and Support Vector
Machines (SVMs). SVMs are effective in classification tasks where maximizing the
margin between classes can lead to better generalization, while DNNs excel in feature
extraction from complex datasets. By combining the two, the model can learn more
powerful representations while ensuring that classification is based on maximized
margins between classes Ding et al. (2014).

Another prominent hybrid approach combines DNNs with Decision Trees or
Random Forests. Decision trees are highly interpretable and perform well on small
datasets, while DNNs excel with large-scale, high-dimensional data. The combination
of these models seeks to exploit the interpretability and low-dimensional effi-
ciency of decision trees while retaining the feature learning capabilities of DNNs
Kontschieder et al. (2015).

Several studies have explored the combination of k-Nearest Neighbors (KNN)
with Neural Networks to leverage the strengths of both approaches. Zhang et al.
(2006) proposed a hybrid model that combined a Neural Network with KNN for
handwritten digit recognition. In this approach, the Neural Network was used to
extract high-level features from images, and KNN was applied in the feature space
for classification based on proximity. This method improved classification accuracy by
combining the feature extraction capabilities of the Neural Network with the instance-
based decision-making of KNN Zhang and Luo (2006b).

Wu et al. (2019) introduced a hybrid CNN-KNN model for image classifi-
cation. The Convolutional Neural Network (CNN) component was responsible for
deep feature extraction, and KNN was used in the final classification stage to re-
fine the decision-making process. Their experiments on datasets such as MNIST and
CIFAR-10 showed that combining CNN’s deep learning capabilities with KNN’s lo-
cal classification significantly enhanced performance, particularly in cases where fine
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decision boundaries were required Wu et al. (2019). These studies demonstrate that
integrating KNN with Neural Networks can improve performance by exploiting both
the generalization ability of Neural Networks and the local decision-making of KNN.

1.3 Unsupervised Learning

Unsupervised learning is a machine learning paradigm in which the algorithm is
trained on unlabeled data, which means that the model does not have access to ex-
plicit input-output pairs during the training process. The objective of unsupervised
learning is to discover hidden patterns or structures within the data, such as clusters,
anomalies, or correlations Murphy (2012). This approach is especially useful in sce-
narios where labeled data are difficult or expensive to obtain and is widely used in
applications ranging from data exploration to anomaly detection.

Unlike supervised learning, unsupervised learning focuses on understanding the
inherent structure of the data without predefined labels. It aims to infer the natural
distribution or groupings within the dataset. Two of the most common tasks in
unsupervised learning are Clustering and Dimensionality Reduction.

Clustering involves grouping similar data points into clusters based on their fea-
tures. The goal is to partition the dataset into distinct subsets (clusters), such that
data points within the same cluster are more similar to each other than to those in
other clusters Hastie et al. (2009). This technique is frequently used in customer
segmentation, market analysis, image segmentation, and bioinformatics. Some pop-
ular clustering algorithms include K-Means Clustering, Hierarchical Cluster-
ing, Gaussian Mixture Models (GMMs) Lloyd (1982a), Johnson (1967), Bishop
(2006).

Dimensionality reduction is one of the key tasks in unsupervised learning. It
aims to reduce the number of input features in a dataset while preserving as much
information as possible. This is particularly useful for high-dimensional datasets,
where reducing the feature space can improve computational efficiency and visual-
ization. Common techniques include Principal Component Analysis (PCA), t-
Distributed Stochastic Neighbor Embedding (t-SNE) Jolliffe (2002), van der
Maaten and Hinton (2008)

One notable algorithm often used in the context of unsupervised learning is the
Expectation-Maximization (EM) algorithm. It is particularly useful in proba-
bilistic models that involve latent variables or missing data. EM iteratively refines
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the estimates of model parameters by alternating between an expectation step (E-
step) that computes the expected value of the latent variables, and a maximization
step (M-step) that updates the model parameters to maximize the likelihood of the
observed data Dempster et al. (1977). This flexibility makes EM widely applicable in
fields like clustering (e.g., Gaussian Mixture Models) and image segmentation Bishop
(2006).

Unsupervised learning is invaluable for tasks where labeled data is unavailable,
making it especially useful in exploratory data analysis and large-scale datasets Mur-
phy (2012). These models are adept at discovering hidden structures, such as clusters
or patterns, without prior knowledge of the data. This flexibility allows unsupervised
learning methods to excel in tasks like data compression, anomaly detection, and rec-
ommendation systems, where identifying underlying patterns is critical Hastie et al.
(2009). By not relying on labels, these methods open up a range of possibilities for
working with complex, high-dimensional data Bishop (2006).

Nonetheless, unsupervised learning presents various challenges. A major issue is
the absence of evaluation metrics, since there is no labeled data to verify model perfor-
mance, complicating the assessment of accuracy Bishop (2006). Additionally, these
models can be quite sensitive to initial conditions, as algorithms such as K-Means
and Expectation-Maximization (EM) depend heavily on starting points, influencing
both convergence and results Lloyd (1982a), Dempster et al. (1977). Despite these
hurdles, unsupervised learning remains crucial for processing unstructured data, pro-
viding robust tools for exploration and generalization in numerous domains Hastie
et al. (2009).

The Expectation-Maximization (EM) Algorithm

The expectation maximization (EM) algorithm is a computational method used
to find maximum-likelihood estimates of parameters in probabilistic models, mainly
concerning the cases of latent variables and incomplete data. The expectation max-
imization (EM) algorithm is one of the most popular methods for such types of
problems, where the likelihood cannot be computed directly due to the hidden states,
which are the latent variables Dempster et al. (1977).

The EM algorithm works iteratively and involves two steps Neal and Hinton
(1998):

1. Expectation Step (E-Step): In this step, the algorithm computes the ex-
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pected value of the complete-data log-likelihood, which includes both the ob-
served data X and the hidden variables Z. This is done based on the current
estimate of the model parameters θ(t). Specifically, the expected value of the
log-likelihood is computed with respect to the conditional distribution of the
hidden variables Z given the observed data X and the current parameters θ(t).
This expectation can be written as:

Q(θ|θ(t)) = EZ|X,θ(t) [log p(X, Z|θ)] (1.10)

Here, EZ|X,θ(t) denotes the expected value over the hidden variables Z condi-
tioned on the observed data X and the current parameters θ(t) Dempster et al.
(1977).

2. Maximization Step (M-Step): In this step, the algorithm updates the pa-
rameter estimates by maximizing the expected complete-data log-likelihood
Q(θ|θ(t)) with respect to θ. Mathematically, this is represented as:

θ(t+1) = arg max
θ

Q(θ|θ(t)) (1.11)

This maximization step produces updated parameter values θ(t+1), which are
then used in the next iteration of the algorithm Neal and Hinton (1998).

The process repeats until convergence, which occurs when changes in parameter
estimates θ between successive iterations become negligibly small Dempster et al.
(1977), Neal and Hinton (1998).

The EM algorithm is extremely effective in certain scenarios that are common in
clustering using Gaussian Mixture Models (GMMs) or in scenarios where the parame-
ters of Hidden Markov Models (HMMs) are being estimated. Although this algorithm
achieves a local maximum of the likelihood function, it may fail to find the largest
one globally. The selection of the initial parameter values can play a dominant role
in the convergence and, eventually, the solution obtained.

The EM algorithm is particularly useful in scenarios involving missing data or
latent variables, which is one of the key advantages of this approach, especially in
real-world problems where missing values are common. EM is flexible and can be
applied to various probabilistic models. Moreover, EM guarantees an improvement in

16



the likelihood function with each iteration, eventually converging to a local maximum
Dempster et al. (1977).

Although the Expectation-Maximization (EM) algorithm offers several advan-
tages, it also has certain drawbacks. Depending on the initial parameter values,
EM may converge to local optima rather than the global maximum. Additionally,
the algorithm can suffer from slow convergence and be computationally intensive,
often requiring many iterations to reach convergence Dempster et al. (1977).

Literature Review and Related Work

Several studies have employed the Expectation-Maximization (EM) algo-
rithm across diverse applications. Dempster et al. (1977) Dempster et al. (1977)
introduced the EM algorithm, which has since been widely adopted for problems
involving missing or incomplete data. Following this, McLachlan and Krishnan
(1997) McLachlan and Krishnan (1997) explored its use in Gaussian Mixture
Models (GMMs), providing a detailed extension of the EM algorithm for cluster-
ing tasks. Their work highlighted EM’s effectiveness in soft clustering, where data
points can belong to multiple clusters probabilistically.

In speech recognition, Rabiner (1989) Rabiner (1989) applied the EM-based
Baum-Welch algorithm for training Hidden Markov Models (HMMs). This
work has had a profound influence on sequence prediction tasks, setting the foundation
for modern speech-to-text systems. Shepp and Vardi (1982) Shepp and Vardi
(1982) pioneered the use of EM in tomographic image reconstruction, specifically
in Positron Emission Tomography (PET). Their method improved the accuracy
of reconstructing images from incomplete or noisy projection data, which is critical
in medical imaging.

In the field of Natural Language Processing (NLP), Brown et al. (1993)
used the EM algorithm in the development of the IBM Models for statistical ma-
chine translation, focusing on estimating word alignments between two languages.
This method laid the groundwork for many advancements in machine translation.
Additionally, Blei et al. (2003) Blei et al. (2003) applied EM to Latent Dirichlet
Allocation (LDA), enabling the discovery of hidden topics within large corpora of
text. This work has been pivotal in text mining and topic modeling.

Several variants of the EM algorithm have also been proposed to address its limita-
tions. Neal and Hinton (1998) Neal and Hinton (1998) introduced modifications
like Generalized EM (GEM) and Stochastic EM (SEM), aimed at improv-
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ing computational efficiency and convergence properties. These variants have been
applied to large-scale problems such as social network analysis and big data
clustering. Jordan et al. (1999) Jordan et al. (1999) proposed the Variational
EM (VEM) algorithm, an extension that approximates the posterior distribution
of latent variables, making it suitable for more complex probabilistic models, such as
Bayesian neural networks.

1.4 Stochastic Processes in Machine Learning

Stochastic processes are integral to addressing real-world problems where either
the environment is inherently random or the solution must employ stochastic tech-
niques. Many machine learning algorithms, such as decision trees and nearest neigh-
bors, can incorporate stochasticity by introducing randomness during the learning
process. Stochastic methods play a vital role in handling large datasets to reduce com-
putational expenses and managing limited or noisy data to avoid overfitting Hastie
et al. (2009), Goodfellow et al. (2016). By introducing randomness, these methods
improve machine learning models’ robustness and generalization capabilities, making
them more adaptable to unseen data Bottou (2010a), Breiman (2001).

Using stochastic methods in machine learning is a statistical approach that in-
corporates randomness into the learning process. This randomness helps manage
uncertainty and variability in both data and algorithms. The stochastic approaches
can generally be grouped based on how they introduce randomness at various stages.
For instance, Stochastic Gradient Descent (SGD) is one of the most widely
used stochastic methods. In SGD, model parameters are updated iteratively using a
randomly selected subset of data (often called a mini-batch) rather than the entire
dataset. This introduces variability into the optimization process, which can help the
algorithm escape local minima and speed up convergence, making it a popular choice
for large-scale optimization Robbins and Monro (1951), Bottou (2010a).

Another group of methods involves ensemble learning techniques, such as Ran-
dom Forests and Bootstrap Aggregating (Bagging). These methods introduce
randomness during the training phase by using different random subsets of the train-
ing data or by selecting different random subsets of features Breiman (2001). In
Random Forests, for example, each tree in the ensemble is trained on a bootstrap
sample (a random sample with replacement) of the training data, and a random sub-
set of features is considered at each split. This randomness helps to decorrelate the
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models, reducing variance and improving the generalization of the ensemble Friedman
(2001), Hastie et al. (2009).

Stochastic methods are essential for building scalable, robust, and efficient ma-
chine learning models. By introducing flexibility and randomness, these approaches
can effectively handle the inherent complexities of real-world data, helping models
generalize beyond the training data. One of the key advantages of stochastic meth-
ods, such as mini-batch Stochastic Gradient Descent (SGD), is faster convergence
compared to traditional full-batch gradient descent, which is especially valuable when
dealing with large datasets Bottou (2010b). Additionally, the introduction of random-
ness reduces overfitting by allowing the model to escape local minima and explore
a broader range of possible solutions, enhancing its ability to generalize Goodfellow
et al. (2016), Breiman (2001).

Stochastic methods also offer significant scalability, making them ideal for large-
scale machine learning problems. The inherent randomness allows models to process
smaller batches of data simultaneously, significantly reducing computational costs
while still achieving effective learning. However, the stochastic nature of these algo-
rithms presents challenges. Stochastic updates can sometimes introduce noise into
the learning process, making it harder to fine-tune the model and achieve precise
optimization. Furthermore, these algorithms tend to be sensitive to hyperparameters
such as learning rate and batch size, which require careful tuning to avoid convergence
problems Bottou (2010b).

Despite their strengths, stochastic methods can converge to suboptimal solutions
if not properly managed. The randomness that helps models avoid overfitting can also
lead to noisy updates, potentially hindering the model’s performance. Ensuring that
the learning process remains stable requires careful tuning of the hyperparameters,
and improper settings can lead to suboptimal convergence. However, with proper
calibration, stochastic methods remain a cornerstone of modern machine learning due
to their adaptability, efficiency, and ability to handle complex data environments.

Literature Review and Related Work

The stochastic approach has been applied in various ways to handle massive
datasets. For example, Abdufattokhov et al. Abdufattokhov et al. (2019) applied
a stochastic Gaussian process to manage large-scale data in big data environments.
Their approach leverages the uncertainty and probabilistic nature of Gaussian pro-
cesses, making them more scalable for extensive datasets. However, the computational
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complexity of Gaussian processes, even in stochastic settings, remains a limiting factor
for extremely large datasets.

Naik and Patel Naik and Patel (2021) presented a stochastic approach for au-
tomating the collection of training data from remote sensing images. Their method
introduced stochastic elements into the data collection process, allowing for more
efficient data gathering in unpredictable environments, such as natural scenes. How-
ever, the precision of the collected data is still subject to the inherent noise and
unpredictability of the remote sensing process, suggesting the need for more robust
filtering and noise-reduction techniques.

Nguyen et al. Nguyen et al. (2017) introduced the SARAH algorithm, a variance-
reducing stochastic recursive gradient algorithm, which combines several existing op-
timization techniques to achieve better performance. SARAH reduces variance in
gradient estimates, improving the stability and convergence of stochastic optimiza-
tion. While the algorithm demonstrates promise in various applications, more work
is required to integrate SARAH with other machine learning algorithms and models,
particularly those that operate in real-time or require fast adaptation to changing
data.

In another notable contribution, Ranganath et al. Ranganath et al. (2014) in-
troduced stochastic variational inference (SVI) for large-scale Bayesian models. This
approach allows for scalable inference in models that would otherwise be computa-
tionally infeasible to train, such as in complex graphical models. While SVI signif-
icantly improves the scalability of Bayesian inference, it still requires careful tuning
and approximation methods, which can introduce biases into the results.

Liu et al. Liu et al. (2020) conducted a survey on stochastic computing for neural
networks, emphasizing the trade-off between hardware efficiency and model accuracy.
Their work showed that stochastic computing could reduce the hardware costs of
neural networks while maintaining a reasonable level of accuracy. However, this ap-
proach introduces additional sources of error and variance, which need to be carefully
managed to ensure that the model’s performance does not degrade beyond acceptable
limits.

Alaghi and Hayes Alaghi and Hayes (2013) reviewed stochastic computing tech-
niques, particularly in the context of neural networks and hardware-efficient machine
learning models. Their work highlights the potential for stochastic computing to
drastically reduce power consumption and hardware resources, but also points out
that the loss of precision and increased error rates are significant challenges that need
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further attention.
Decision trees have also been explored in the context of stochastic approaches.

Gouk et al. Gouk et al. (2019) applied stochastic methods to gradient-based deci-
sion trees, showing improvements in model flexibility and accuracy. However, the
reliance on gradient information makes these approaches less suitable for highly non-
differentiable or discrete problems.

Earlier work by Hespos and Strassmann Hespos and Strassmann (1965) introduced
stochastic decision trees that combine the strengths of risk analysis and conventional
decision tree methods. They provided a method to handle uncertainty in decision-
making processes, particularly in fields such as finance and risk management. How-
ever, their approach was limited by the computational complexity of handling large,
branching decision trees with many stochastic elements.

Hazen Hazen (1992) extended the stochastic tree framework to medical decision-
making problems, demonstrating that rollback techniques could be used to determine
optimal decisions. While this work laid a foundation for applying stochastic methods
to decision trees, it remains primarily theoretical, with limited applications in modern
machine learning.

1.5 Problem Statement

The rapid growth in data volume and complexity has revealed significant limi-
tations in the efficiency of traditional machine-learning algorithms. For example, in
agriculture, where sensor networks, satellite imagery, and other data sources generate
vast, high-dimensional datasets, the scalability and robustness of these algorithms
are critical. Among these, decision trees and nearest-neighbor algorithms—despite
their popularity—face specific, well-documented challenges in handling large-scale,
high-dimensional data.

Decision trees, widely valued for their interpretability and flexibility, encounter
severe computational bottlenecks when applied to big data. The computational com-
plexity of tree induction, which scales with O(DN log N), becomes unmanageable as
both the size of the dataset (N) and the number of dimensions (D) increase. While
there have been advancements in improving the efficiency of tree-based algorithms,
current methods largely fall short of delivering effective solutions that reduce com-
putational costs without compromising accuracy or model performance. This limita-
tion is particularly problematic in agricultural contexts, where the need for real-time

21



decision-making and large-scale deployment is essential.
In addition to decision trees, nearest-neighbor algorithms struggle with the no-

torious “curse of dimensionality.” As the number of features (dimensions) increases,
the concept of proximity—critical to nearest-neighbor methods—becomes less mean-
ingful, significantly degrading performance. While data structures like KD-Trees,
R-Trees, and clustering methods like k-means offer partial solutions, they do not
fully address the scalability and optimization issues inherent in these models, espe-
cially in environments where data is both high-dimensional and noisy. In fields such
as agriculture, where data is often multi-dimensional and subject to high variability
due to environmental factors, these limitations pose significant barriers to effective
application.

These challenges underscore the urgent need for developing new, scalable ma-
chine learning approaches that can overcome the computational and interpretative
difficulties of both decision trees and nearest-neighbor methods. The limitations of
traditional methods, particularly in the agricultural domain, motivate the exploration
of stochastic methods that introduce randomness into the learning process, thus re-
ducing computational overhead while preserving model accuracy and interpretability.

This dissertation aims to tackle these critical issues by proposing novel stochastic
decision tree and synthetic reduced nearest-neighbor (SRNN) models that address
the computational and scalability challenges of existing approaches. Specifically, the
work focuses on improving the robustness and efficiency of these algorithms in high-
dimensional, real-world datasets, with a particular emphasis on agricultural applica-
tions. By advancing the scalability of decision trees and enhancing the performance
of nearest-neighbor algorithms in noisy, high-dimensional environments, this research
contributes to both the theoretical development of machine learning methods and
their practical applicability in precision agriculture, where predictive accuracy and
computational efficiency are paramount. The summary of key challenges addressed
are as follows:

1. High Computational Demand of Decision Trees: The computational
complexity of tree induction, which grows with both the number of features
(D) and the dataset size (N), poses scalability issues that hinder the effective-
ness of decision trees in large-scale and real-time applications. This dissertation
develops methods to handle this scalability issue that arises as a result of dealing
with a large number of features and large data size.
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2. Curse of Dimensionality in Nearest-Neighbor Methods: As dimension-
ality increases, the concept of proximity loses meaning, undermining the perfor-
mance of nearest-neighbor algorithms. Current partial solutions like KD-Trees
and clustering methods cannot fully address the demands of high-dimensional,
noisy data environments. This dissertation presents solutions for solving this
issue that arises from noisy and highly dimensional data.

3. Need for Scalable, Efficient, and Interpretable Models in Precision
Agriculture: Agricultural data often exhibits high variability due to envi-
ronmental factors, and traditional methods struggle to deliver both real-time
responsiveness and computational efficiency in such contexts. This disserta-
tion develops methods to deliver both real-time response and computational
efficiency for agricultural data.

The focus of this research, therefore, is on developing new stochastic methods that
address these challenges by enhancing computational efficiency and interpretability
without compromising on model performance.

1.6 Motivation and Objectives

This research is motivated by the need to address critical gaps in the current ma-
chine learning methodologies, particularly with respect to scalability, computational
efficiency, and the ability to handle high-dimensional datasets in real-world applica-
tions such as agriculture. While effective in controlled or smaller-scale environments,
existing methods lack the robustness required for large-scale agricultural datasets that
are often noisy and dynamic. The motivation comes from three primary areas:

• Handling Large Datasets: As data grows in both size and complexity, tra-
ditional decision trees and nearest-neighbor algorithms struggle with high com-
putational costs. Despite some efforts to improve efficiency, there has been lim-
ited success in reducing the complexity of tree induction and nearest-neighbor
searches in high-dimensional spaces. This research aims to tackle this issue by
introducing stochastic methods into decision trees and synthetic nearest neigh-
bors, leveraging randomness to improve scalability and reduce computational
overhead.
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• Improving Theoretical Foundations: Theoretical understanding of the lim-
itations of nearest neighbor algorithms in high-dimensional environments and
the under-explored potential of non-gradient-based stochastic decision trees
motivates this work. By extending the Synthetic Reduced Nearest Neighbor
(SRNN) approach through neural network integration and stochastic optimiza-
tion techniques, this research seeks to improve the inference capabilities and
computational efficiency of KNN models. Additionally, it introduces a novel
stochastic approach to decision tree induction that addresses the scalability
issues inherent in high-dimensional datasets.

• Agricultural Applications: Efficient water management in agriculture is crit-
ical given the sector’s high demand for freshwater resources. This research fo-
cuses on developing intelligent, data-driven systems that can predict crop water
needs using stochastic methods applied to large-scale sensor data. By com-
bining stochastic methods’ scalability with decision trees’ interpretability and
the precision of nearest neighbor algorithms, this work aims to contribute to
sustainable agricultural practices through more efficient resource management.

These objectives reflect the need for more adaptable and scalable machine learning
methods capable of addressing the specific challenges posed by large, high-dimensional
datasets, particularly in sectors like agriculture, where the impact of such advance-
ments can be substantial.

1.7 Dissertation Outline

The rest of the thesis is organized as follows:
In Chapter 2, we introduce the foundational concepts and notations necessary for

understanding the proposed stochastic methods. This chapter presents an in-depth
exploration of the Stochastic Decision Tree (SDT) model, which applies stochastic
processes to enhance the learning of Haar trees. We thoroughly examine the struc-
ture and mechanics of decision trees and demonstrate how stochasticity can reduce
computational complexity while maintaining or improving accuracy. This chapter
also includes experimental results validating the efficacy of the proposed method on
several datasets.

Chapter 3 presents a novel approach to synthetic reduced nearest-neighbor
(SRNN) classification, leveraging neural networks to improve performance and in-
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terpretability in high-dimensional data settings. We address the limitations of tra-
ditional nearest-neighbor algorithms, particularly the challenges posed by the curse
of dimensionality, by integrating neural networks into the SRNN framework. This
chapter details the architecture of the proposed method, its theoretical foundations,
and the results of applying the approach to benchmark datasets.

In Chapter 4, we extend the SRNN framework by proposing an advanced Two-
Layer Neural Network model. This chapter explores how the introduction of a modu-
lar, two-layer architecture enhances the generalization capabilities of SRNN models,
especially in the context of image classification tasks. The chapter details the ar-
chitectural choices, the learning process, and the computational benefits achieved
through parallelization and modularization. We present experimental results demon-
strating the superior performance of this model in reducing error rates while main-
taining computational efficiency on high-dimensional image datasets like MNIST and
Fashion-MNIST.

Chapter 5 focuses on applying stochastic decision trees in real-world agricultural
problems. Specifically, we propose a predictive analysis model that utilizes stochastic
decision trees to estimate stem water potential in almond and pistachio orchards.
This chapter provides a comprehensive discussion of how the SDT model can optimize
water usage in agricultural practices, contributing to sustainable water management.
We analyze the experimental results using aerial and ground sensor data, highlighting
the model’s ability to make accurate predictions and improve irrigation efficiency.

Finally, Chapter 6 provides a summary of the key contributions and findings of
this dissertation. We highlight the advancements made in both the theoretical devel-
opment of stochastic methods for decision trees and nearest-neighbor models, as well
as their practical applications in high-dimensional data environments, particularly
in the context of agriculture. The chapter concludes with a discussion of potential
avenues for future research and improvements to the methods proposed in this work.
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Chapter 2

Stochastic Induction of Decision
Trees with Application to Learning
Haar Trees

For every supervised learning task, decision trees are a convenient and well-
established solution. Decision trees are utilized in a variety of applications, including
medical imaging and computer vision. Decision trees are trained by greedily splitting
leaf nodes into a split and two leaf nodes until a halting requirement is met. Finding
the best feature and threshold that minimizes a criterion is the technique for dividing
a node. An exhaustive search algorithm is generally used to solve the criterion mini-
mization problem. This exhaustive search strategy, however, is expensive, especially
when the number of samples and features is large. To address this issue, a novel
stochastic technique for criteria minimization is presented in this chapter. Asymptot-
ically, the suggested approach is several orders of magnitude faster than a traditional
exhaustive search. It is also demonstrated that the proposed method minimizes an
upper bound for the criterion. The algorithm is tested against various state-of-the-
art decision tree learning approaches, including the baseline non-stochastic approach.
Despite being non-deterministic, the suggested method surpasses every existing de-
cision tree learning strategy (including online and fast). It performs as well as the
baseline algorithm in terms of accuracy and computational cost. We use the proposed
technique to learn a Haar tree over the MNIST dataset, which contains more than
$200, 000 features and $60, 000 samples, for empirical evaluation. This tree achieved
a test accuracy of 94% on the MNIST dataset, surpassing any other known axis-
aligned tree by 4%. Its performance is comparable to that of oblique trees while
offering substantial improvements in both inference and training times.
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2.1 Introduction

Decision trees are among the most well-established machine learning models in the
scientific community, and they have been widely employed in a variety of applications
such as computer vision and medical imaging Criminisi and Shotton (2013), Freund
et al. (1999), Breiman (2001), Tavallali et al. (2019). Decision trees are widely applied
as a sub-procedure in ensemble models such as boosting and random forests. Training
a decision tree entails iteratively splitting a leaf node into one split and two leaf nodes
Breiman et al. (1984), Gehrke et al. (1999). The split node is made up of a decision
stump that sends samples to either its left or right child. A leaf node is divided by
choosing the best feature and threshold that minimizes a given criterion.

Decision trees can be broadly categorized into two types: classification trees and
regression trees, each serving different purposes in machine learning tasks. Classifica-
tion trees are designed to categorize input data into predefined classes. For instance,
a classification decision tree might be used to determine whether an email is spam or
not spam. This type of tree is built by selecting splits that maximize the homogeneity
of the categories within the resulting nodes. Common criteria for selecting the best
split in classification trees include the Gini index and cross-entropy.

The Gini index is a measure of node impurity, with lower values indicating purer
nodes. It is calculated as follows:

Gini(t) = 1 −
k∑

i=1
p2

i (2.1)

where pi is the probability of a particular class at node t, and k is the total number
of classes. The Gini index’s goal is to find the split that results in the lowest impurity,
thereby creating nodes that are as homogeneous as possible.

Cross-entropy, also known as information gain, is another criterion used to eval-
uate splits. It measures the difference between the true class distribution and the
predicted distribution at a node:

Cross − Entropy(t) = −
k∑

i=1
pi log(pi) (2.2)

Like the Gini index, cross-entropy seeks to minimize impurity, but it does so by
maximizing the reduction in uncertainty after a split.

On the other hand, regression trees are used to predict continuous outcomes, such
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as house prices, based on features like square footage and location. The objective of
a regression tree is to minimize the variance of the target variable within each node
after a split.

The criterion for splitting nodes is an impurity function, such as the Gini index
Breiman et al. (1984), cross-entropy Quinlan (1986b), uniform piece-wise constant
densities Ram and Gray (2011), Gaussian differential (continuous) entropy Criminisi
and Shotton (2013), and others Yang and Wong (2014), Liu and Wong (2014), Sheikhi
and Babamir (2018, 2016). The best feature and threshold are chosen using an in-
cremental algorithm that assesses every potential feature and threshold combination
Breiman et al. (1984). However, this approach becomes computationally expensive if
the dataset is large or high dimensional. The computational complexity of solving the
criterion minimization problem is O(DN log N), where D and N represent the dimen-
sionality and the number of samples, respectively. Because D and N are multiplied
in the computational complexity expression, the computational complexity increases
dramatically. In this study, we address the aforementioned issue by employing the
splitting technique in an iterative and stochastic manner, removing less important
features at each iteration.

Many proposals for speeding up the training operations of various learning algo-
rithms may be found in the literature. Pre-processing the dataset by lowering the
sample size or applying some feature selection technique is a popular approach Dash
and Liu (1997), Jović et al. (2015), John et al. (1994). Pre-training feature selection
may result in a less computationally expensive learning procedure Jović et al. (2015),
Kohavi and Sommerfield (1995), Koller and Sahami (1996), Korn et al. (2001).

Filter, wrapper, and embedded techniques are the three feature selection ap-
proaches. The filter approaches involve picking features based on a desired criterion
Jović et al. (2015). Filter techniques often employ statistical metrics such as mini-
mum Redundancy Maximum Relevance (mRmR) Tang et al. (2014), correlation Yu
and Liu (2003), chi-square Moh’d A Mesleh (2007), information gain Bhattacharyya
and Kalita (2013), gain ratio Witten and Frank (2002), and so on. The wrapper
approaches involve jointly selecting features and minimizing the loss function Bhat-
tacharyya and Kalita (2013), Bradley and Mangasarian (1998), Maldonado et al.
(2014), Hastie et al. (2009). However, because features are not guaranteed to con-
tribute to the lower loss, feature selection as a preprocessing strategy may not result
in an accurate final model Jović et al. (2015). Wrappers, on the other hand, are only
applicable to quick modeling algorithms or greedy search methods, such as linear
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SVM, Naive Bayes, and Extreme Learning Machines Liu et al. (2014), Cortizo and
Giraldez (2006), Benôıt et al. (2013). Embedded techniques employ a filter approach
to choose a subset of features, followed by a wrapper approach to select the best
candidate feature Guyon and Elisseeff (2003), Das (2001). As embedded methods,
several decision tree algorithms such as CART, C4.5, and random forest are often
utilized Breiman et al. (1984), Quinlan (2014), Sandri and Zuccolotto (2006). Em-
bedded methods typically produce highly accurate results by combining filters and
wrappers to improve accuracy.

Using feature selection as a preprocessing method reduces the computational cost
of the training procedure. However, it is unsatisfactory in terms of the training’s ob-
jective function and inefficient for big datasets because it does not reduce computation
over the number of samples Rodriguez-Lujan et al. (2010).

Online learning is a well-known method for dealing with huge datasets Utgoff
(1989). Several studies examine integrating online learning with decision trees, in-
cluding Utgoff (1989), Schlimmer and Fisher (1986) and Wang et al. (2003). Such
algorithms are simple yet fast and usually make few statistical assumptions. Online
learning aims to update and train the model from a data stream Shalev-Shwartz
et al. (2011). The model optimally gets updated at each time step regarding the
most recently collected samples. Online learning is more computationally efficient
than offline learning, which uses the full trainset for training Shalev-Shwartz et al.
(2011). However, upon accessing a new batch of data, these techniques expand the
size of the tree.

Despite the widespread use and application of decision trees, few techniques have
focused on lowering the high computing cost of forming a tree Criminisi and Shotton
(2013), Yates et al. (2018), Loh and Nowozin (2013). However, there is a lack of
research when it comes to dealing with the high computational complexity of inducing
the decision tree and examining potential improvements. None of the prior studies
propose the computational cost of their algorithm, nor do they provide any analysis
of the usefulness of features chosen at the split node. To fulfill this void, we evaluated
SDT’s computational complexity as well as its efficiency in locating near-optimal
features at the split node. The authors of Zheng et al. (1998) proposed randomly
selecting a subset of features at the split node and then determining the best feature
among the set utilizing all samples present at the node. However, this method’s
optimality is not guaranteed due to its random nature.
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2.2 Problem Statement and Basic Idea

The high computational cost derives directly from the exhaustive search algorithm
being used to solve the split criterion. This approach becomes particularly compu-
tationally intensive when the dataset is huge and multidimensional. This is due to
the computational cost of solving the splitting criterion, which is O(DN log N) Hoare
(1961), Breiman et al. (1984).

To address the challenges mentioned above, we offer a precise and fast Stochastic
Decision Tree (SDT) induction approach that efficiently optimizes the splitting crite-
rion. The suggested method begins at a node with an empty set St and all D features.
The method iteratively picks a small random collection of samples from Sj (in order
of 2−C × |Sj|) and dismisses half of the less important features concerning St. The
set and number of samples at the jth node are denoted by Sj and |Sj|, respectively.

SDT monotonically minimizes an upper bound of the splitting criterion for the
best feature and threshold obtained at each iteration. Overall, the algorithm descends
steeply toward the criterion function’s minimum. The outcomes of the experiments
section also indicate this. Mathematically, we demonstrate that the algorithm prior-
itizes more distinct features. Essentially, the more distinct a feature, the more likely
it is to be chosen in the final iteration.

The algorithm for inducing a tree of depth ∆ has a computational cost of
O(∆DN log N

2C

2C ), where C is a hyperparameter that we set to 10 in our experi-
ments. SDT’s computational cost is several orders of magnitude less than that
of the original approach (with O(∆DN log N)), and its optimum implementation
(O(∆DN + DN log N)). Our method is faster because it focuses on reducing the
computational complexity caused by a large number of samples and features. SDT
has a numerical advantage over other implementations when the sample and feature
sizes are large (ND is very large).

Stochastic decision trees are a variation of traditional decision trees that incorpo-
rate randomness into the tree-building process to reduce computational complexity
and enhance model generalization. Unlike traditional decision trees that exhaustively
search for the best feature and split at each node, stochastic decision trees intro-
duce randomness by either selecting a random subset of features or using a random
threshold for splits. This randomness helps to avoid overfitting and reduces the com-
putational cost, particularly in large datasets.

The concept of introducing randomness into decision trees gained popularity with
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the development of ensemble methods like Random Forests Breiman (2001), where
each tree in the forest is built on a randomly selected subset of features and data
samples. This approach reduces the model’s variance and improves its robustness by
ensuring that no single tree dominates the decision-making process.

Recent research has explored various aspects of stochastic decision trees. For in-
stance, Scornet et al. Scornet (2016) analyzed the consistency and convergence rates
of Random Forests, demonstrating that stochastic elements can lead to both compu-
tationally efficient and statistically robust models. Fan et al. Fan et al. (2003) studied
the asymptotic properties of stochastic decision trees, highlighting their potential for
dealing with high-dimensional data and complex decision boundaries.

In this study, we build on these ideas and propose a Stochastic Decision Tree
(SDT) induction method that efficiently optimizes the splitting criterion while main-
taining a low computational cost. Our approach iteratively refines the set of features
and samples considered at each node, thereby focusing computational resources on
the most informative parts of the dataset. This iterative refinement leads to a sig-
nificant reduction in the overall computational complexity, making SDT particularly
suitable for large-scale applications.

In experiments, we found the proposed method achieved the same or higher accu-
racy as the original greedy algorithm Breiman et al. (1984), while outperforming all
other relevant state-of-the-art algorithms by several orders of magnitude in terms of
accuracy and complexity. We used our technique to learn a Haar tree over MNIST
for empirical evaluation, and Haar Viola and Jones (2001) filters were used to extract
200, 000 features from the dataset. While its inference time was much lower, the
Haar tree could reach competitive accuracy to more complex trees such as oblique
and optimal oblique trees. In theory, an oblique tree requires O(D∆) operations to
produce a prediction, whereas a Haar tree only requires O(D + ∆) operations. In
terms of size, the Haar tree requires O(2∆) space, whereas the oblique tree requires
O(D2∆) space.
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2.3 Preliminaries

2.3.1 Induction of a decision tree

The objective function that every decision tree tends to minimize is:

Lα(T ) = L(T ) + α × leaves(T ), α > 0, (2.3)

where, L(T ) represents the tree’s (T ) loss function over a train set, leaves(.) is the
number of leaves in a tree, and α > 0 shows the coefficient of the cost complexity.
Following the tree’s construction, pruning is carried out to minimize the cost func-
tion Lα(T ) over the validation set. Finding the optimum value of the cost function
is NP-complete Laurent and Rivest (1976). As a result, state-of-the-art tree-inducing
algorithms involve greedily splitting a leaf node into a split and two leaf nodes. As-
sume a dataset S with N pairs of observations {(xi, yi)}N

i=1 where xi ∈ RD and
yi ∈ {1, 2, 3, ..., M}. At the jth split node, the function fj(x) consists of a decision
stump fj(x) = sign(xp − th), where superscript p and th indicate the pth feature and
the threshold, respectively. During the growth phase of a decision tree, p and th are
optimally found in terms of specified criterion Breiman et al. (1984). Typically, the
tree is expanded until a stopping point or maximum depth is reached. A split node
is constructed by minimizing the desired criterion over the samples of each child of
the node.

min
fj

∑
fj={−1,1}

|Sfj

j |
|Sj|

H(Sfj

j )

s.t fj(x) = sign(xp − th)
(2.4)

where, S
fj

j presents the set of samples at the left child (fj = −1) or right child (fj = 1)
of a node j. Sj shows the set of samples present at the jth node, and |.| returns the
number of samples at its input set. H is an entropy function. The optimum value
of problem (2.4) can be found in O(DNjlogNj) where D and Nj are features and
number of samples at node j (|Sj|), respectively. This is accomplished by sorting
all samples along each feature and finding the optimum threshold for each feature
graduallyBreiman et al. (1984).
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2.4 Proposed Method

Solving (2.4) has a considerably high computational complexity, particularly when
the number of features and samples is big. In this section, we suggest a method that
minimizes the problem (2.4) by several orders of magnitude quicker than the original
approach Breiman et al. (1984).

Basic ideas: The problem (2.4) includes finding the appropriate feature to opti-
mally divide the space into two halves. State-of-the-art algorithms use the exhaustive
search described in Section 2.3.1 to select the optimal feature Breiman et al. (1984).
In this subsection, we present a low-cost stochastic exhaustive search approach for
solving (2.4). The concept is based on 3 ideas.

Idea #1 Each feature can be roughly ranked based on the objective function of
(2.4) over a small randomly selected subset of the samples.

Idea # 2 A bigger group of samples is required for a precise ranking of the
features.

Idea # 3 The good news is that only the most competitive features necessitate
high precision. As a result of merging Ideas #1-3, the algorithm, at each iteration,
consists of removing less significant attributes and randomly selecting more samples
from the dataset. This technique progressively improves the ranking precision for
immensely important features. This approach is known as the stochastic induction
of decision tree (SDT).

The algorithm Considering the above-mentioned ideas, we are describing the pro-
posed algorithm to solve criterion problem (2.4). The process starts by an empty
set Sjt , where Sjc = Sj, and set of features Dt = {p}D

p=1. p is the pth feature. The
algorithm is as follows:

Step 1 Randomly select and remove Nj

2C samples from Sjc and add them to set
Sjt . C is a user-defined hyperparameter.

Step 2 ∀p ∈ Dt, at kth iteration, find feature importance of pth feature (FIk
p )

by solving

(FIk
p )−1 = min

th

∑
fj={−1,1}

|Sfj

jt |
|Sjt |

H(Sfj

jt )

s.t fj(x) = sign(xp − th)

(2.5)

33



where, S
fj

jt is the set of samples from Sjt directed to the left child (fj = −1) or the
right child fj = 1. FIk

p shows the feature importance of pth feature at kth iteration.
It should be noted that the optimization occurs just over th in (2.5) and (FIk

p )−1

is equal to the optimum of the objective function in (2.5). Problem in (2.5) can be
addressed efficiently in O(|Sjt |log(|Sjt |)) Breiman et al. (1984).

Step 3 Based on FIk
p , sort all the features in Dt and discard half of the features

in Dt with lowest FI.
Step 4 For α times iterate over steps 1-3 . α is a user-defined hyperparameter.
Step 5 For only the remaining features in Dt over the Sj, solve problem (2.4)

Practically, depending on the dataset, we choose C to be about 10 and α to be around
7 − 10. Intuitively, C and α are the hyper-parameters that control the algorithm’s
computational complexity. C specifies the number of samples to be utilized in each
iteration, while α specifies the number of features to be utilized in the final iteration.
The computational complexity drops further as C and α are increased. However,
there is a concern that the model will lose accuracy with excessively high C and α

values. To reduce computational complexity, we retain the samples in Sjt sorted for
the remaining features (Dt) from the last iterations in Step 2. Only the new samples
from Step 1 must be sorted and merged with Sjt . The merging will take at most |Sjt|.
This process will preserve the computational complexity of step 2 on O(2D Nj

2C log(Nj

2C ))
for all α steps (assuming α → ∞).

2.5 Analysis of the Proposed Algorithm

This section provides the theoretical properties of the algorithm and their analysis.

2.5.1 Computational Complexity

The computational complexity of splitting a node and induction of a tree are
analyzed in this section. Assume that the samples of Sjt from past iterations are
NOT kept sorted. Following the theorem, we will demonstrate how keeping samples
sorted affects node training complexity and storage overhead Alizadeh et al. (2022a).

Theorem 1 (node training complexity). The computational complexity of splitting
the node using SDT is O(4DN0logN0), where N0 = Nj

2C .

Proof. At each iteration, N0 samples are added to the set Sjt , and half of the features
are discarded. To solve (2.5), samples along each remaining feature have to be sorted,

34



which takes O(|Sjt|logSjt). At the kth iteration, |Sjt | is (k + 1)N0. Therefore, the
total complexity of steps 1-4 is as follows:

α∑
k=0

D

2k
(k + 1)N0log(k + 1)N0 (2.6)

The summation in (2.6) can further be simplified to:

α∑
k=0

D

2k
(k + 1)N0(logN0 + log(k + 1)) ≤ DN0(logN0 + log(α + 1))

α∑
k=0

k + 1
2k (2.7)

Using the formula for the geometrical series of ∑∞
k=0

k+1
2k = ∑∞

k=0
1

2k + ∑∞
k=1

1
2k +∑∞

k=2
1

2k + ... = 2 + 1 + 1
2 + 1

4 + ... = 4 in the right hand side of inequality of (2.7), we
have:

DN0(logN0 + log(α + 1))
α∑

k=0

k + 1
2k

≤ 4DN0(logN0 + log(α + 1)) (2.8)

Asymptotically speaking, the computational complexity is being driven by the term
4DN0logN0. Note that log(α+1) is relatively very small compared to logN0 (Numer-
ically speaking, N0 is in order of 100 − 200 while α is in order of 7 − 10). Therefore,
the computational complexity asymptotically becomes O(4DN0logN0).

The computational complexity of the state-of-art algorithm for solving equation (2.4)
is O(DNjlogNj), which is 2C times larger than the proposed stochastic approach.

Effect of keeping the Sjt sorted: Effect of keeping the Sjt sorted is that the term
k + 1 is removed from the formula (2.6). Therefore, the computational complexity
changes to O(2DN0logN0). However, it will increase the space usage slightly because
((k + 1)N0 new variables need to be saved to keep the label of samples along each
feature).

Assuming a maximum depth of ∆ for the tree, the computational complexity of
inducing the whole tree will be O(∆4DNlog N

2C

2C ). It is simple to demonstrate by utilizing
the fact that each node’s offspring receives a separate set of samples from its parent
and the fact that total samples at the same depth are at most N . This complexity is
less than the complexity of the baseline technique Breiman et al. (1984) by orders of
magnitude (2C).

35



2.5.2 Relation to Objective Function

This section presents the evaluation of the value of the objective function in (2.4)
using the best combination of feature and threshold found by the SDT at each itera-
tion over Sjt . For simplicity purposes, in this section, the objective function of (2.4)
is represented by L(Sj). Consequently, L(Sjt) represents error over the set Sjt . In
this section, we assume the used criterion is misclassification error H(Sfj

j ) = 1 − p
fj

m∗ ,
where p

fj
m and m∗ represent the ratio of class m in the fj child and majority class in

the partition, respectively. All the theorems and analyses can be readily extended
to Gini-index and Cross-entropy Breiman et al. (1984) by applying their correspond-
ing differences. The differences and how to apply them are explained after the next
theorem.

Theorem 2 (Monotonic decrease of an upper bound). The algorithm will monoton-
ically decrease an upper bound over the objective function of (2.4).

Proof. At each iteration k, the following equality holds:

|Sj|Lk(Sj) = |Sk
jt|Lk(Sk

jt) + |Sk
jc|Lk(Sk

jc) (2.9)

where, the superscript k for sets and Lk(.) represents the set of samples at the kth

iteration and the value of error with optimum parameters for Sk
jt over the input set,

respectively. The loss L(.) is always bounded from above (e.g., for misclassification, it
is 1) by a constant value Lmax. By replacing Lk(Sk

jc) with Lmax in (2.9), for iteration
k we have

|Sj|Lk(Sj) ≤ |Sk
jt |Lk(Sk

jt) + |Sk
jc|Lmax = |Sj|Lk

upper(Sj) (2.10)

At each iteration, the first term in (2.10) is minimized. Therefore, the new optimum
parameters at each iteration provide lower error to the first term of (2.10) than the op-
timum parameters of previous iteration which is |Sk+1

jt |Lk(Sk+1
jt ) ≥ |Sk+1

jt |Lk+1(Sk+1
jt ).

Note that the superscript of the loss L is different for both sides of the inequality.
Also, |Sk+1

jc | < |Sk
jc |. Therefore,

|Sk+1
jt |Lk+1(Sk+1

jt ) + |Sk+1
jc |Lmax

|Sj|
= Lk+1

upper(Sj) ≤ Lk
upper(Sj) (2.11)
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For the case of Gini-index or Cross-entropy, formula (2.9) should be replaced with
Lk(Sj) ≤ Lk(Sk

jt) + Lk(Sk
jc). The reason for this change is that the algorithm finds

optimum over Sk
jt and min(Lk(Sk

jt), Lk(Sk
jc)) ≤ Lk(Sj) ≤ max(Lk(Sk

jt), Lk(Sk
jc)).

Average Decrease The Theorem (2) is based on worst case scenario. The proof
of Theorem (2) assumes that the samples selected at each iteration do not have any
correlation with the rest of the samples. In reality, this is not necessarily correct,
and a set of Sjt can partially represent the whole trainset Sj, and as the size of Sjt ,

increases through iterations, the FIp is measured more correctly. In our experiments,
we observed a very steep decrease in Lk(Sjt) after each iteration, and after several
iterations, it almost converged to the loss of the best possible feature and threshold.

Theorem 3 (Probability of discarding a feature). Assume a binary classification
dataset where samples are generated from some distribution along each feature, and
features are independent. We assume the samples of both classes have varying degrees
of overlap along each feature. The probability of a sample being generated from the
overlap area is P p

o for pth feature. The probability of discarding a feature depends on
P p

o .

Proof. Picking N0 samples randomly from an infinitely large dataset (Nj) is equivalent
to direct sampling from the distribution itself. Selecting samples is the same as
flipping a coin with a probability of P p

o to be 1 and 1 − P p
o to be 0. The expectation

of observing 1 is P p
o , and essentially, on average, we expect to observe P p

o × N0

samples from the overlap area, which is the region along a particular feature where
the samples from two different classes are not clearly distinguishable from each other.
The probability of deviating from the average case and observing FIk

p being worse
than the true FIp (please note that FI corresponds to the goodness of a feature)
over the whole trainset is equivalent to the probability of observing at least 1 extra
(observing P p

0 × N0 + 1 from overlap area) sample from the overlap area. Therefore,
P (FIk

p < FIp) = 1 − (1 − P k
o )N0(1−P k

o ) (or 1− probability of observing no extra
sample from overlap area), which is an upper bound to the probability of discarding
a feature.

Since samples with lower overlap area (lower P p
o ) are more distinctive, conse-

quently, such features have greater FIk
p , and the probability of overlap area P p

o is
inversely related to FIk

p . According to the Theorem 3, features with greater true
FIp are more likely to stay in iterations on average. Assume a feature that totally

37



separates samples from both classes (P p
o = 0); any random group of samples will rep-

resent this differentiation because there is no overlap. Such a feature will accomplish
FIk

p = ∞. Therefore, it will remain in the Dt.

Theorem 4 (Consistency of SDT). The SDT is consistent and can learn the function
that generated the classes. This theorem is a result of theorem 20.1 and Lemma 20.1
in Devroye et al. (2013).

Proof. The consistency of the Stochastic Decision Tree (SDT) can be established by
leveraging the results from Theorem 20.1 and Lemma 20.1 in Devroye et al. (2013).
Theorem 20.1 shows that the k-spacing classifier is consistent under the condition
that k → ∞ and k/n → 0 as the number of samples, n increases. This implies that
the expected classification error of the classifier converges to the Bayes risk L∗ as the
sample size grows indefinitely.

In the context of SDT, the partitioning of the input space is analogous to the
k-spacing partitioning in Theorem 20.1, where the partitions are formed based on
a small subset of the data. Lemma 20.1 further supports this by showing that for
any binary tree classifier constructed on k regions, the number of data points in each
region grows sufficiently large as n increases, provided that k/n → 0. This ensures
that the SDT can accurately estimate the class distributions within each region.

By satisfying these conditions, the SDT effectively captures the underlying struc-
ture of the data, allowing it to learn the true function that generated the classes.
Therefore, the SDT is consistent, as it asymptotically approaches the optimal deci-
sion rule, thereby proving Theorem 4.

Theorem 5 (Decrease of the cost). The objective function of (2.4) decreases as new
nodes are added.

Proof. Assuming the data is IID (Independently and Identically Distributed), the
objective function in equation (3.4) is bounded below by 0, since impurity measures
like entropy or Gini index are non-negative. At each node in the decision tree, the
algorithm selects a partition that minimizes the objective function by finding the
optimal feature and threshold. This process ensures that the impurity of the child
nodes is lower than or equal to that of the parent node, resulting in a decrease
in the overall objective function. As new nodes are added, the objective function
decreases progressively, thereby reducing the overall error. This confirms the validity
of Theorem 5
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It is worth mentioning that both the theorems of 4 and 5 are true for original
decision trees (such as CART) under some mild assumptions, and here we show that
SDT follows them too.

2.6 Experiments, Results, and Discussion

In this section, we give experimental results to demonstrate the effectiveness of
our proposed approach. The SDT is compared to numerous other cutting-edge al-
gorithms, as well as the baseline tree induction. The Figures 2.1 through Figure 2.6
show the error ratio of the train set and test set versus the computational complex-
ity of each considered algorithm on different datasets mentioned in Table 2.1. The
studied existing methods include adaptive re-sampling Iyengar et al. (2000), feature
selection as a pre-training procedure Tang et al. (2014), Moh’d A Mesleh (2007), C4.5
Quinlan (2014), and CART Breiman et al. (1984). The studied adaptive re-sampling
approach consists of training a tree from scratch iteratively with respect to a small
collection of samples and increasing the set with incorrectly classified samples at each
iteration by the tree. We used adaptive re-sampling in two different scenarios. In one
configuration, we used adaptive re-sampling of Iyengar et al. (2000) until the algo-
rithm achieved higher or comparable accuracy to SDT (Adaptive re-sampling 1). We
performed the same processes in the second setup as Iyengar et al. (2000) (Adaptive
re-sampling 2). We used ChiSquare and mRmR Tang et al. (2014), Moh’d A Mesleh
(2007) as a pre-training setup for feature selection. The pre-training feature selections
were used to choose 1%, 50%, and 90% of the features.

The C4.5 was trained using the same configuration as Quinlan (2014). The CART
algorithm Breiman et al. (1984) is represented by the decision tree curve. All of the
trees were trained for depths ranging from 5 to 12. The number at each point on
the curve in Figure 2.1 through Figure 2.6 represents the depth of the tree. The
error ratio is displayed on the vertical axis, and the computational complexity of the
trained model is displayed on the horizontal axis. We set N0 = 20 for all experiments
for SDT. The SDT iterating terminates when only around 0.5% of the total features
remain in Dt.
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Figure 2.1: Training and Testing Error ratio versus computational complexity for MNIST
dataset.
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Figure 2.2: Training and Testing Error ratio versus computational complexity for FASH-
IONMNIST dataset.
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Figure 2.3: Training and Testing Error ratio versus computational complexity for COVER-
TYPE dataset.
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Figure 2.4: Training and Testing Error ratio versus computational complexity for ISOLET
dataset.
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Figure 2.5: Training and Testing Error ratio versus computational complexity for SATIM-
AGE dataset.
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Figure 2.6: Training and Testing Error ratio versus computational complexity for SIGNM-
NIST dataset.
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SDT outscored competing rapid tree training techniques in both accuracy and
computational complexity, as shown in 2.1 and 2.2. SDT’s training complexity is
several orders of magnitude smaller (102−3). We should remark that SDT has the same
accuracy as CART while using less computing cost. As a result, SDT accomplished
its goal of reducing training complexity while preserving accuracy.

2.6.1 Haar Tree

Haar-like features are well-known in image processing literature and have been
widely employed for face detection Viola and Jones (2001), Jones and Viola (2003),
Demirkir and Sankur (2004), Mita et al. (2005), Pham and Cham (2007), object
detection Lienhart and Maydt (2002), Park and Hwang (2014), Chen et al. (2007),
Choi (2012) and ensembles Moghimi et al. (2018), Kwak et al. (2013), Larios et al.
(2010). The Haar-like features are created by convolving various sizes of the Haar
filters with the image. The next section contains more detailed information about
Haar’s features. However, because Haar-like features extract a large number of fea-
tures, training a model with these features can be difficult and expensive. SDT is
meant to handle such a difficult task, and we used it to train trees over Haar-like
features. We call such a tree a “Haar tree.” To extract additional features, we applied
Haar-like features to MNIST and FMNIST. The size of each Haar filter region is
(3n, 3m) for m, n = 1, 2, ..., 8. 121000 features were retrieved from images of 28 × 28.

2.6.2 Haar Features

Figure 2.7 shows the exact haar features utilized to generate new features. The
sizes of row pixels and column pixels are written next to each filter. For each filter,
different filters with every conceivable row and column pixel combination are produced
and convolved with the image to extract new features.
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Figure 2.7: Haar Filters

Figure 2.8 and Figure 2.9 present the Impurity reduction over different iterations
of SDT for MNIST. In the context of decision trees, the term “reduction in impurity”
refers to the decrease in the measure of how mixed the classes are within a node
(as defined by the criterion in formula 2.4). The horizontal axis shows the iteration
number of SDT for a single node. The vertical axis shows the impurity. The dashed
line represents the impurity of the best feature and threshold. The points on the
curves represent the exact impurity of the best split found by the algorithm at that
iteration. The text above each plot shows the classes used for creating the split node.
As can be seen, at each iteration, the loss function has decreased drastically and
eventually has converged to the true best feature and threshold.
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Figure 2.8: Impurity reduction at each iteration for (a) 1 versus 0, (b) 1 versus 7.
49



(a)

1 2 3 4 5 6 7
Iteration

0.28

0.3

0.32

0.34

0.36

0.38

0.4

0.42

0.44

L
ea

st
 I

m
pu

ri
ty

0.43466
0.42841

0.39772

0.36076

0.32867

0.30469

0.28880.2846

(b)

1 2 3 4 5 6 7
Iteration

0.86

0.862

0.864

0.866

0.868

0.87

0.872

0.874

L
ea

st
 I

m
pu

ri
ty

0.87349

0.86793

0.86495

0.8631

0.86182
0.86129 0.86107

0.86027

Figure 2.9: Impurity reduction at each iteration for (a) 5 versus 8, (b) all classes.
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Figures 2.10 and 2.11 present the feature importance at each iteration of inducing
a single split node for the two class pairs (0 vs. 1 and 1 vs. 7) from the MNIST dataset.
In these figures, feature importance quantifies the contribution of each feature to the
predictive power of the model, indicating how influential a particular feature is in
determining the split decision at each iteration of the Stochastic Decision Tree (SDT).
The feature importances were normalized to a range between 0 and 1, where brighter
pixels represent higher importance values, and darker pixels represent lower values.

As the iterations progress, the figures illustrate how SDT effectively prioritizes
more informative features while gradually reducing the weight assigned to less relevant
ones. This process is visualized through the increased brightness of certain regions
in the plots, corresponding to features that are consistently selected as critical for
decision-making. The clear differentiation in the feature importance patterns across
iterations demonstrates that SDT is capable of honing in on the most discriminative
features for each specific class pair, thereby improving the accuracy and efficiency of
the model.

Moreover, these figures serve as visual proof that SDT’s iterative process not only
identifies but also emphasizes the most compelling features for classification while
discarding those that contribute minimally to the decision boundary. This selective
emphasis on influential features ensures that the model becomes more robust and
interpretable as it converges to an optimal set of features, highlighting SDT’s ability
to balance computational efficiency with predictive accuracy.
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Figure 2.10: Feature importance (FI) of features by SDT at each iteration for the problem
of 0 versus 1. Brighter pixels show a higher value of FI, and darker pixels show a lower
value of FI.
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Figure 2.11: Feature importance of features by SDT at each iteration for the problem of 1
versus 7. Brighter pixels show a higher value of FI, and darker pixels show a lower value of
FI.
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The computational complexity versus error ratio for both training and testing is
presented in Figures 2.12 through 2.17. These figures analyze the performance of the
Stochastic Decision Tree (SDT) model across different datasets by exploring the effect
of varying N0, the hyperparameter that determines the subset size and influences the
final tree structure.

Each curve in these figures is color-coded according to the N0 value, which is
defined in the plot’s legend. The numbers along the curves indicate the depth of the
tree at various points, providing insight into how the tree’s complexity evolves during
training. These visualizations highlight how computational complexity influences
error rates and show the interaction between tree depth and N0 in optimizing model
performance. The patterns observed across different datasets underscore the SDT’s
ability to balance computational efficiency with predictive accuracy by fine-tuning N0

and tree depth.
The results demonstrate that SDT consistently achieves low error rates across a

variety of datasets while maintaining computational efficiency. As N0 increases, the
overall error—both training and testing—tends to decrease, though at the cost of
higher computational complexity. This trend is particularly evident in datasets like
MNIST and FashionMNIST (Figures 2.12 and 2.13), where increasing N0 results in
deeper trees that improve prediction accuracy, though with an accompanying rise in
computational burden. However, SDT excels at finding an optimal balance, where
modest increases in computational cost lead to significant improvements in accuracy,
outperforming simpler models at comparable complexity levels.

The tree depth annotations on the curves offer additional insights into the relation-
ship between tree depth, complexity, and accuracy. For instance, deeper trees improve
performance on high-dimensional datasets like ISOLET (Figure 2.16), but gains di-
minish beyond a certain point, raising concerns about overfitting. This flexibility in
tree depth allows SDT to adjust model complexity based on dataset characteristics,
thereby preventing overfitting while still capturing essential patterns in the data.

Overall, these figures illustrate that SDT is highly adaptable across datasets with
varying characteristics. The balance between error minimization and computational
complexity can be fine-tuned by selecting the appropriate N0 value, depending on the
specific needs of the application. This adaptability makes SDT suitable for both small-
scale problems, where computational efficiency is critical, and large-scale problems,
where predictive accuracy is paramount.
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Figure 2.12: Test Error versus Computational Complexity for Different Values of Hyperpa-
rameter N0 on MNIST
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Figure 2.13: Test Error versus Computational Complexity for Different Values of Hyperpa-
rameter N0 on FASHIONMNIST
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Figure 2.14: Test Error versus Computational Complexity for Different Values of Hyperpa-
rameter N0 on SIGNMNIST
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Figure 2.17: Test Error versus Computational Complexity for Different Values of Hyperpa-
rameter N0 on COVERTYPE
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2.6.3 Haar Tree Results

For each model, the relationship between inference complexity and error ratio is
illustrated in Figure 2.18 for the MNIST dataset and Figure 2.19 for the FashionM-
NIST dataset. In these figures, Haar trees are compared against oblique trees Heath
et al. (1993), axis-aligned trees Breiman et al. (1984), RBF-SVM, KNN, and k-means.
The RBF-SVM model was constructed by training an SVM on Radial Basis Functions
(RBFs), where the centers of the RBFs were determined using the k-means clustering
algorithm. The width of the RBFs was optimized using a validation set, with the
training data split into 80% training and 20% validation. The k-means model was
further refined by training a k-means algorithm and then using the resulting centroids
as a nearest neighbor model, similar to the approach in Tavallali et al. (2020a). The
label of each centroid was determined by the majority label of the samples assigned
to that centroid.

Our results demonstrate that Haar Trees achieve superior accuracy compared to
other tree-based models and offer comparable or improved accuracy relative to other
nearest neighbor-based models. Notably, Haar Trees represent the first instance of
axis-aligned trees achieving an accuracy greater than 90% on the MNIST dataset,
reaching up to 93%. This performance is significant as traditional axis-aligned trees
have historically not exceeded the 90% accuracy threshold on MNIST. Furthermore,
the induction of a Haar Tree is asymptotically efficient, with a complexity of O(D+∆),
due to the use of integral images to compute features at each node efficiently Viola
and Jones (2001). In contrast, the inference complexities for oblique trees (OC1),
k-means, and RBF-SVM are O(D∆), O(DK), and O(D(K + 1)) respectively. These
findings highlight that Haar Trees not only deliver faster inference times compared
to other models but also achieve lower test errors, underscoring their effectiveness in
high-performance classification tasks.

Furthermore, the Stochastic Decision Tree (SDT) implementation of the Haar Tree
leverages stochasticity during the tree induction process, which allows for better han-
dling of complex, high-dimensional datasets by introducing controlled randomness
at each split. This stochastic approach enables the model to explore a more com-
prehensive solution space compared to traditional deterministic methods, reducing
overfitting and improving generalization. In Figures 2.18 and 2.19, SDT’s superior
balance between inference complexity and error ratio is clearly demonstrated, as it
consistently outperforms other models, including oblique trees and RBF-SVM, in both
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accuracy and efficiency. The stochastic nature of SDT, combined with the computa-
tional advantages of Haar features, ensures both robust performance and efficiency,
particularly in scenarios where model accuracy and inference speed are critical.

These results further highlight the adaptability of SDT across different datasets,
as its performance remains consistent when transitioning from MNIST to Fashion-
MNIST, underscoring the model’s capacity to generalize well across distinct image
classification tasks. The combination of stochastic induction and efficient feature ex-
traction makes SDT particularly well-suited for large-scale applications, where balanc-
ing computational complexity and accuracy is paramount. This adaptability across
varying data characteristics establishes SDT as a powerful tool for both real-time
inference tasks and more complex high-dimensional problems, further enhancing its
appeal for a range of practical applications.
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Figure 2.18: Inference complexity versus error ratio over train and test set for different
models on MNIST. 63
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2.7 Chapter Summary

Decision trees are widely used and convenient methods for supervised learning
problems. The exhaustive search approach used in a decision tree algorithm to de-
termine the ideal feature and threshold that minimizes a given criterion for splitting
a node is relatively expensive, especially when the number of samples and features is
enormous. This issue has not been adequately addressed in the past. We addressed
the issue in this study by offering a novel stochastic technique for inducing a tree.
The SDT is the first stochastic algorithm developed for the greedy approach to tree
induction. Asymptotically, the SDT reduces the complexity of decision tree induc-
tion by several orders of magnitude. The experimental results illustrated that the
algorithm minimizes the criterion problem’s upper bound.

Despite being non-deterministic, experimental results suggest that, compared to
various other similar state-of-the-art decision tree approaches, SDT can perform bet-
ter than online and fast tree induction algorithms. Furthermore, SDT has the po-
tential to achieve the same accuracy and computational cost as baseline algorithms.
The results of applying SDT to datasets of different sizes show that SDT can train a
tree several orders of magnitude faster than other approaches. SDT is used to extend
the Haar tree across the MNIST dataset, which contains over 200,000 features and
60,000 samples, for empirical evaluation. The 94% accuracy achieved by the Haar tree
is not only 4% more than other complex machine learning algorithms such as oblique
trees and nearest neighbor-based models but also dramatically reduces inference and
training duration.

2.8 Limitation and Future Work

This study presents the first stochastic technique for decision tree induction. As
a result, the model and proposed method suffer from the same restrictions as a de-
cision tree. However, in the context of decision tree and ensemble models, it has
the potential to improve the state-of-the-art because the approach enables faster and
more computationally efficient decision tree and forest model generation. The method
essentially paves the way for the implementation of tree-based convolution filters.
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Chapter 3

A Novel Approach For Synthetic
Reduced Nearest-Neighbor
Leveraging Neural Networks

Synthetic Reduced Nearest Neighbor is a nearest neighbor model that is restricted
to synthetic samples (i.e., prototypes). The main concept of such models consists of
approaches for improving the interpretability and optimization of Synthetic Reduced
Nearest Neighbor models using expectation maximization. Inspired by the potential
of this paradigm, using a neural network, we offer a novel Expectation Maximization
strategy for Synthetic Reduced Nearest Neighbors. The performance of our proposed
method is compared to a random forest and ensemble models as classical state-of-the-
art machine learning methods. The empirical results show the benefits of utilizing
neural networks instead of an expectation maximization technique.
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3.1 Introduction

Clustering a dataset is a key task in both supervised and unsupervised learning.
In the context of classification, identifying the sub-clusters of each class is especially
interesting since it enables the finding of sample variations within each class. Proto-
type nearest neighbor, also known as Synthetic Reduced Nearest Neighbor (SRNN), is
a simplified variant of such a model in which each prototype represents a sub-cluster.
Prototypes are samples generated by the learning algorithm, allowing the interpreta-
tion process to be completed by locating the prototype that is closest to the input.
In the case of handwritten digits, for example, each sub-cluster is represented by
a prototype, which is a synthetically produced sample in the space of the cluster’s
inputs.

Prototype nearest neighbor models have been examined in a variety of scenarios
in recent years, ranging from adversarial robustness Saralajew et al. (2020)to few-shot
learning Allen et al. (2019). However, the current state of the art leaves considerable
gaps in alternate model structures. The current literature, in particular, fails to effec-
tively address the issues inherent in optimizing models with multiple representations
of clusters and measures of similarity.

Nearest neighbor algorithms are one of the most primitive types of machine
learning Lloyd (1982b), Cover and Hart (1967b), Gates (1972). Their popularity
is widely linked to their simplicity of use and competitive performance in a variety
of machine-learning applications. These algorithms are frequently employed in col-
laboration with a distance metric, such as the Manhattan distance or the Euclidean
distance, to determine the degree of similarity between dissimilar observations. As-
sume X = {x1, x2, . . . , xN}, where xi ∈ ℜd are the observations and N is the number
of samples, and Y = {y1, y2, . . . , ym}, where yi ∈ ℜl are the corresponding labels and
m is the number of classes, a set of centroids C = {c0, c1, . . . , ck}, where ci ∈ ℜd and
k is the number of centroids (nearest neighbors), are generated. Algorithm 1 repre-
sents a more extensive explanation of the nearest neighbor method using weighted
average distance metric.

Despite their simplicity and efficiency, nearest neighbor algorithms frequently suf-
fer from the “curse of dimensionality” - that is by increasing the number of observa-
tions in higher dimensional problems, the perceptive concept of proximity or similarity
may no longer be descriptively meaningful Sammut and Webb (2017). To reduce the
complexity of inference, various data structures such as R-Tree, KD-tree, or similar
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Algorithm 1 Nearest neighbor algorithm
Compute D = ∥xj − ci∥ for j ∈ N, i ∈ k
Given some norm ∥.∥ on ℜd and a point ci, reorder to yield
∥x0 − ci∥ ≤ ∥x1 − ci∥ ≤ . . . ≤ ∥xN − ci∥
Find the heuristically optimal number of centroids (nearest neighbors) ”k”
Calculate an inverse distance weighted average with the k-nearest multivariate
neighbors

spatial access trees are utilized De Berg (2000), Beygelzimer et al. (2006), Mathy et al.
(2015). Recent research has advocated using Expectation Maximization (EM) tech-
niques like the k-means clustering algorithms to improve the prediction capabilities
of nearest neighbor models Tavallali et al. (2020b). These models are easier to under-
stand and have linear computation time complexities. The expectation-Maximization
(EM) algorithm is a well-known approach that estimates the maximum likelihood in
the presence of missing data. Using an iterative approach, the EM algorithm alter-
nates between two modes. Em algorithm comprises two interconnected steps: E-step:
An estimation step that estimates the dataset’s latent or missing variables. M-step:
A step in which the model’s parameters are optimized in the presence of data Singh
(2005), Gupta et al. (2011). Em algorithm techniques are well-known and have been
frequently used to train machine learning models Tavallali et al. (2021), Carreira-
Perpinán and Tavallali (2018), Dempster et al. (1977), Jordan and Jacobs (1994),
Lloyd (1982a).

The strengths of neural networks in terms of classification performance and di-
mensionality reduction are well-known Niranjani and Selvam (2020), Hinton and
Salakhutdinov (2006). Their outstanding performance in a range of classification
and regression tasks is due to their cascaded structure, as well as their non-linear
and non-convex architecture, as cited in Krizhevsky et al. (2012), He et al. (2016).
Typically, neural networks are trained by optimizing an objective function of the form

min
Θ∈ℜn

f(x; Θ), (3.1)

where Θ ∈ ℜn are the network parameters and f represents the empirical loss of es-
timation. The loss is “backpropagated” through the network parameters (see Rumel-
hart et al. (1986)) to minimize this empirical loss.

To increase this K-nearest neighbor’s inference capabilities by taking advantage of
neural networks, we offer a unique expectation maximization strategy that we named
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Neural-SRNN.

3.2 The Proposed Methods

Assume we have a dataset X = {x1, x2 . . . xn}, where xi ∈ ℜd is an input
smaple from the dataset. The dataset conataines m classes with labels Y =
{y1, y2 . . . ym}.The Neural-SRNN model consists of learning k neural networks for
each class. The model makes predictions by selecting a class according to the neu-
ral net’s output; that is, the model selects the class that corresponds to the neural
network that has the highest probability. In other words:

ŷ = Class

arg max
i∈M
j∈J

ẑij(x)

 , (3.2)

where M = {1 . . . m}, J = {1 . . . k} and ẑij are the output from the ith neural network
in class i for input x. Each input xi is fed to each neural network j. The “Class”
function in eq. (3.2) returns the class i.

Training the neural-SRNN can be modeled as an expectation-maximization prob-
lem with a binary loss as the objective function, stated as follows:

I(ŷ, y) =

0 ŷ = y

1 ŷ ̸= y

This becomes an NP-hard problem and infeasible to solve. Due to its NP-hard nature,
a technique would be to replace it with a substitute objective function to make the
problem feasible. To train a linear classifier, logistic regression solvers most frequently
employ this method.

We explore the challenge of learning a neural SRNN with the appropriate max-
imum likelihood function and provide a technique based on the K-means EM algo-
rithm. As a result, the challenge of learning a neural SRNN is defined as follows:

max
zcji,Θc,j

N∑
i=1

C∑
c=1

K∑
j=1

pci
zcji

log(ẑcj
(xi))+

(1 − pci
)(1 − zcji) log(1 − ẑcj

(xi))
subject to

∑
c,j

zcji
= 1, (3.3)
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where pci presents the cth element of one-hot encoded vector pi which is the one-
hot vector of yi where all elements of pi are 0 except the yth

i element, which is 1.
The variable zcji

represents the assignment of a sample to its corresponding neural
network. Each sample can be assigned to only one neural network. Thus, zcji ∈
{0, 1} represents the zcji

where the zji is a one-hot vector (for class c), Θ
j

represents
the parameters of cth neural network. It is important to note that the objective
function in eq. (3.3) connotes that a sample cannot be given to a neural network
of a different class, as this would cause the objective to be reduced. We propose
a two-step algorithm for tackling the optimization problem in eq. (3.3); (1) in the
assignment step, the assignments are optimized, and (2) in the update step, the
neural networks are optimized. A detailed definition of the two steps is as follows:

Assignment step involves assigning training samples to their nearest centroid,
and each centroid is labeled ideally. In other words, the assignment step is optimizing
the problem over zcji for all c ∈ C = {1 . . . C} and j ∈ {1 . . . K}, while fixing the
neural network parameters (Θcj). For class c, the problem at this step can be written
as follows:

max
zcji ,Θcj

∑
j=1

zcji
log(ẑcj

(xi))

subject to
∑

j

zcji
= 1

(3.4)

Since our interest in solving the problem only for cth class, hence, for simplicity
purposes, we removed the terms that reflect the class of samples from eq. (3.4). The
key term that determines the value of zcji

is zcji
log(ẑcj

(xi)), where zcji can only be 1
for the j∗ neural network to maximize eq. (3.4). Here j∗ is given by:

j∗ = arg max
j

ẑcj
(xi) (3.5)

Update step corrects the assignments and updates the parameters of the neural
networks. This step is actually a binary classification problem in which our goal is
to maximize ẑcj

(xi) for samples that are assigned to the cjth neural network and
concurrently minimizing the same term for all other samples that are not assigned to
cth

j neural network. The problem for cj neural network is as follows:

max
Θcj

N∑
i=1

pci
zcji

log(ẑ(xi)) + (1 − pci
)(1 − zcji

) log(1 − ẑcj
(xi)) (3.6)
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Observations of the same class are sampled uniformly and assigned to each neural
network of the same class and neural networks in the Initialization phase. After
that, the networks are trained on these uniformly sampled images.

3.2.1 Convergence to a local maximum

Every step of the method improves the function in eq. (3.3). As a result of
iterating across both phases, the goal function grows. Thus, eq. (3.3) grows until no
fresh sample assignment results in an increase, at which time only the second step
influences the objective function.

Proof. The claim that every step of the proposed method improves the function in
equation (4.2) hinges on the fundamental principles of the expectation-maximization
(EM) algorithm, which alternates between maximizing the expected value of the log-
likelihood function (the “E-step”) and maximizing the likelihood itself with respect to
the parameters (the “M-step”). In the context of the Neural-SRNN model, equation
(4.2) represents an objective function that combines the assignment of samples to
their respective neural networks (via zcji

) and the optimization of the neural network
parameters (Θcj

).
During each iteration, the assignment step maximizes the contribution of each

sample to the log-likelihood function by selecting the neural network j∗ that maxi-
mizes the output zcj

(xi), as given by equation (4.4). This step guarantees that the
objective function in equation (4.2) does not decrease because it optimally reassigns
samples to the neural networks that best represent them. Subsequently, the update
step refines the neural network parameters to further maximize the likelihood of the
assigned samples, ensuring a monotonic increase or plateau in the objective func-
tion. Given that the EM algorithm is designed to converge to a local maximum,
the iterative process of alternating between these two steps ensures that equation
(4.2) continues to increase or remains stationary until convergence is achieved. At
convergence, no further sample reassignment can lead to an increase in the objective
function, implying that only the update step has a potential impact on the final value
of the objective function. Therefore, the process inherently leads to the maximization
of equation (4.2) until a local maximum is reached, thereby proving the claim.
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3.2.2 Pruning

In practice, we’ve discovered that the algorithm prefers to prune neural networks
by not allocating any samples to these neural networks while concurrently increasing
the objective function. This is especially true when the number of neural networks
and their complexity are considerably high. This is potentially a sort of regularization
in which the algorithm is regularized to learn manifolds of data that fit the design of
the prototype neural network.

3.3 Experimental Results

To assess the proposed method’s performance, we compare its performance in
the classification problem to popular approaches such as ensemble models Tavallali
et al. (2019) and Random forest Breiman (2001). The classification challenge was
chosen because of its importance as well as the availability of reproducible model
architectures.

3.3.1 Datasets

To demonstrate the efficacy of the proposed strategy in dealing with varied
datasets, three different datasets were chosen: MNIST Deng (2012), Fashion-
MNIST Xiao et al. (2017) and sign-MNIST Huang et al. (2015).

• MNIST: is a large database of handwritten digits 0 to 9 and is widely used for
classification algorithms. The number of features is 784. The train and test set
contains 60000 and 10000 samples, respectively.

• Fashion-MNIST: is a dataset consisting of grayscale images from 10 different
classes such as T-shirts/tops, Pullovers, Coats, and so on. The number of
features is 784. The train and test set contains 60000 and 10000 samples,
respectively.

• Sign-MNIST: the American Sign Language letter database consists of 24
classes for each letter of the alphabet, excluding J and Z. The number of features
is 784. The train and test set contains 27455 and 7172 samples, respectively.
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3.3.2 Experimental Setup

We used seven alternative architectures to investigate the effect of different neural
network structures on the results:

Shallow networks: Three distinct single convolutional layers shallow nets are
used, each with a filter size of 1, 2, and 3 with a kernel size of 3. All three structures
have one Dense layer.

3 layer networks: Two distinct networks, each with three convolutional layers,
filter sizes of 2,3 and 4, and a kernel of 5,3,2. This structure is analyzed both with
and without dropout. Both of these structures have one Dense layer.

LeNet 5: This neural network architecture LeCun et al. (1998) is made up of
two convolutional layers and two Dense layers.

Modified-LeNet 5: The convolutional layer of the original LeNet 5 structure is
replaced with Separable Conv2D. The filter and kernel sizes remain unchanged.

We also examine configurations with various numbers of neural networks assigned
to each class (n ∈ {2, 4, 8, 10, 20}). We also trained the neural networks over the
sparse-categorical focal loss objective function to address the unbalanced character of
these datasets. Each model was trained and tested over the course of 20 iterations.
The Adam optimizer Kingma and Ba (2014) was used for training, with a learning
rate of 0.01 and a decay rate of α = 0.98.

Also, the results of the Neural SRNN model with different numbers of centroids
were compared to other state-of-the-art algorithms, which are as follows:

Random Forest Model: Random forest is a popular model that consists of nu-
merous separate decision trees that work together to form an ensemble Parmar et al.
(2018). In this paper, the scikit-learn’s Pedregosa et al. (2011) built-in “RandomFor-
est” function is used.

Ensemble Model: Ensemble Neural Networks apply several neural networks
simultaneously to train over a dataset. We chose two distinct architectures for the
ensemble model to compare it to our proposed model: Lenet-5 and a shallow network.
The number of networks is proportional to the number of classes in the dataset. The
ensemble model’s neural networks are trained on 70% of randomly selected samples
from the original training set. The test set is then distributed to each member, and the
ensemble error rate is calculated as the average error rate of all component members.
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3.3.3 Results

The results of the experiments are presented in this section to highlight the advan-
tages of the proposed strategy. The Neural-SRNN with LeNet5 structure is compared
to a number of other cutting-edge methods. The train and test accuracy resulting
from various Neural-SRNN model settings and baseline models for three data sets is
illustrated in Figures 3.1, 3.2, and 3.3.

For the MNIST dataset, the figures show that the Neural-SRNN models gener-
ally achieve higher accuracy compared to baseline methods such as Random Forest
and simpler ensemble models. The accuracy tends to increase with the complexity
of the Neural-SRNN configurations, particularly with models like NSRNN-10 and
NSRNN-20, which maintain high accuracy during both training and testing phases.
The small gap between train and test accuracy for these models suggests they are
well-regularized and effectively generalized to new data. In contrast, the simpler
models exhibit larger discrepancies between training and testing accuracy, indicating
potential overfitting or an inability to fully capture the underlying patterns in the
MNIST data.

For the Fashion-MNIST dataset, which is more complex than MNIST, a similar
pattern emerges. Neural-SRNN models continue to outperform the baseline meth-
ods, with NSRNN-10 and NSRNN-20 configurations achieving the highest accuracy.
The overall accuracy is slightly lower than that observed for MNIST, reflecting the in-
creased difficulty of the Fashion-MNIST dataset. The ensemble methods and Random
Forest show significantly lower accuracy, particularly during testing, which highlights
their limitations in handling the more intricate patterns present in this dataset. The
Neural-SRNN models, particularly with a higher number of recurrent units, demon-
strate their ability to capture and generalize from complex data, resulting in consis-
tently high accuracy across both training and testing phases.
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Figure 3.1: Neural-SRNN vs. other state-of-the-art algorithms on Train and Test set for
MNIST.
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Figure 3.2: Neural-SRNN vs. other state-of-the-art algorithms on Train and Test set for
FASHION MNIST.

76



The Sign-MNIST dataset, known for its challenging nature due to the complexity
of sign language recognition, further underscores the strengths of the Neural-SRNN
architecture. The figures reveal that Neural-SRNN models, especially those with 10 or
more recurrent units, achieve high accuracy, far surpassing the baseline models. The
testing accuracy for these models remains close to the training accuracy, indicating
that the models are not only capable of learning complex patterns but also of applying
this knowledge to new data effectively. On the other hand, the simpler models,
including Random Forest and basic ensemble methods, struggle to achieve comparable
accuracy, particularly in the test phase, highlighting their difficulties in adapting to
the nuances of sign language data.

Across all three datasets, the Neural-SRNN models consistently deliver higher ac-
curacy, particularly as the model complexity increases with the number of recurrent
units. This trend highlights the ability of Neural-SRNN to handle datasets with vary-
ing levels of complexity by effectively capturing and generalizing from the patterns
within the data. The performance of the baseline models, while adequate for simpler
tasks, clearly diminishes as the complexity of the dataset increases, demonstrating
the necessity of more sophisticated architectures like Neural-SRNN for achieving high
accuracy in challenging classification tasks.
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Figure 3.3: Neural-SRNN vs. other state-of-the-art algorithms on Train and Test set for
SIGN MNIST.
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Figure 3.4 shows the error ratio for test and train sets versus execution iteration
for the MNIST, Fashion-MNIST, and Sign-MNIST datasets, providing valuable in-
sight into the performance of Neural-SRNN with varying numbers of centroids (neu-
ral networks per class). The results demonstrate that initially, as the number of
centroids (which can be thought of as models representing subgroups within each
class) increases, the error rate on the MNIST dataset decreases. This means that by
using more centroids, the model can more accurately capture the variations within
each class, leading to better classification performance. However, this improvement
has its limits. When the number of centroids is increased beyond a certain thresh-
old—specifically when the number exceeds 20—the error rate starts to increase again.
This suggests that while more centroids allow for finer granularity in representing each
class beyond a certain point, adding more centroids introduces complexity that the
model may not handle well, leading to overfitting or other issues that degrade per-
formance.

The balance between model expressiveness and overfitting can explain the ob-
served trend. Initially, adding more centroids allows the model to better capture the
diversity within each class, as each centroid can represent a distinct variation or sub-
group. This leads to a reduction in the error rate because the model can make more
precise distinctions between different inputs.

However, as the number of centroids continues to increase, the model becomes
increasingly complex. With too many centroids, the model might start to overfit
the training data, meaning it becomes too specialized in distinguishing the training
examples at the expense of generalization to new data. This overfitting manifests as
an increase in the error rate on the test set. Additionally, managing a larger number
of centroids can increase the computational burden and may introduce instability in
the training process, contributing further to the rise in error rate.

Thus, while increasing the number of centroids initially benefits model perfor-
mance by improving its representational capacity, there is a tipping point where the
added complexity outweighs these benefits, leading to diminished returns and even
negative impacts on accuracy.

The Fashion-MNIST and Sign-MNIST datasets, which are more complex than
MNIST because of the greater variability and subtler distinctions between classes,
show that adding more centroids generally improves performance, but the relationship
is nuanced. For these datasets, fewer centroids initially result in higher error rates,
indicating that the models struggle to capture the complexity of the data.
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Figure 3.4: Training (a) and Testing (b) response of Neural-SRNN with different numbers
of neural networks for each class.
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As the number of centroids increases, the model becomes better at capturing the
intricate variations within each class, leading to improved performance. However,
there is still a point where further increasing the number of centroids leads to dimin-
ishing returns or even overfitting, particularly beyond a certain threshold, such as 20
centroids per class. This suggests that while a more complex model is necessary for
these datasets, there’s still a limit to how much additional complexity is beneficial.

These observations highlight the need for careful tuning of model complexity in
Neural-SRNN. While more centroids can help capture the complexity of more chal-
lenging datasets like Fashion-MNIST and Sign-MNIST, it’s essential to find a balance.
Too few centroids might not fully leverage the model’s potential, while too many can
lead to overfitting, reducing the model’s ability to generalize effectively.

This research also studied the effect of neural net structure on the final results. The
results of this experiment on (a) MNIST, (b) Fashion-MNIST, and (c) Sign-MNIST
are illustrated in Figure 3.5. The results demonstrate that the LeNet-5 structure,
particularly when incorporating both standard convolutional layers and separable
convolutional layers, consistently outperforms other tested architectures across all
datasets. This superior performance is evident in the lower test error rates achieved
by LeNet-5 compared to other configurations, especially as the number of iterations
increases. The robustness of the LeNet-5 structure is attributed to its ability to
effectively capture spatial hierarchies within the data, which is critical for tasks such
as image classification.

Further analysis reveals that in shallower network structures, the size of the con-
volutional filters plays a significant role in prediction accuracy. Increasing the filter
size within these structures leads to a reduction in the error ratio, indicating that
larger filters are more effective at capturing relevant features in the data. This is par-
ticularly noticeable in the early iterations, where models with larger filters converge
more rapidly and achieve lower error rates than those with smaller filters.

The impact of dropout is also evaluated, particularly in a three-layer system where
the filter sizes are held constant. The findings suggest that incorporating dropout re-
duces the error ratio, particularly for models with fewer centroids. Dropout serves as
a regularization technique, preventing the model from overfitting the training data
by randomly omitting units during the training process. This effect is more pro-
nounced in simpler models, where the risk of overfitting is higher. However, as the
number of centroids increases, the performance gains from dropout diminish, and the
results from both dropout and non-dropout architectures converge, indicating that
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the model’s complexity becomes sufficient to generalize effectively without additional
regularization.

Across all datasets, the results underscore the importance of selecting an appro-
priate network structure for the specific characteristics of the data. Although the
LeNet-5 structure offers a strong baseline, the effectiveness of convolutional filter
sizes and dropout as additional tuning parameters suggests that model performance
can be further optimized by carefully adjusting these factors. This highlights the
need for a tailored approach in neural network design, where both the architecture
and hyperparameters are fine-tuned to the demands of the dataset at hand.

The figures provided in Figure 3.6 offer a detailed visualization of how the Neural-
SRNN model identifies and emphasizes critical features for specific classes within the
MNIST and Fashion-MNIST datasets. Neural-SRNN operates on the principle of
breaking down a dataset into multiple classes and then further into sub-clusters or
centroids, with each centroid represented by a distinct neural network. This approach
allows the model to capture a wide range of variations within each class more effec-
tively, which is particularly useful in datasets with complex and subtle intra-class
differences.

In the MNIST dataset, for classes like “1” and “7”, the Neural-SRNN model
demonstrates its ability to focus on the most distinguishing features of each digit.
The model’s architecture allows it to allocate different neural networks to emphasize
varying aspects of the input image. For instance, in the case of the digit “1”, the
model highlights the vertical stroke, a defining characteristic of this digit. In contrast,
for the digit “7,”, the model emphasizes the horizontal bar and diagonal stroke, which
are crucial for distinguishing “7” from other digits. This indicates that Neural-SRNN
effectively uses its multiple centroids to capture the critical aspects that differentiate
one digit from another, leveraging the model’s ability to generalize across different
variations of the same digit.

Similarly, in the Fashion-MNIST dataset, which involves more complex images
such as clothing items, Neural-SRNN’s architecture shows its strength in identifying
subtle differences between similar classes. For example, when distinguishing between
a “pullover” and a “shirt”, the model uses different neural networks to focus on
features like the neckline, sleeves, or the texture of the fabric. The activation pat-
terns seen in the figures illustrate how Neural-SRNN allocates different centroids to
capture these specific features, which are essential for accurate classification in this
dataset. The model’s ability to break down the complex task of image classification
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Figure 3.5: Different configurations of Neural net structures. (a) One neural net per class,
(b) Twenty Neural nets per class.
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into smaller, more manageable sub-tasks allows it to maintain high accuracy even in
datasets with fine-grained distinctions.

This figure effectively visualizes the core advantage of Neural-SRNN and its ca-
pacity to decompose complex classification tasks into sub-tasks that separate neural
networks within the model and can be individually handled. This decomposition
enables the model to focus on specific features that are most relevant for each class,
thus improving its overall performance. The clear delineation of important features in
these figures provides a tangible demonstration of how Neural-SRNN’s multi-centroid
approach translates into more precise and interpretable classification outcomes.
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(a)

(b)

(c)

(d)

Figure 3.6: Feature importance of features by Neural-SRNN for (a)-(b) class 1 and class 7
in MNIST dataset and (c)-(d) class pullover and shirt from FASHION-MNIST.
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3.4 Chapter Summary

In this chapter, we introduced a novel Neural Synthetic Reduced Nearest Neighbor
(Neural-SRNN) approach designed to optimize the binary loss function through an
innovative combination of k-means-like Expectation-Maximization (EM) algorithms
and neural networks. The proposed method operates by dividing the dataset into
multiple classes and further into sub-clusters, where each sub-cluster, or centroid, is
represented by a distinct neural network. This allows the model to capture a wide
range of variations within each class more effectively, which is particularly useful for
datasets with complex intra-class differences.

The training process for Neural-SRNN involves two key steps: the Assignment
step, where samples are assigned to the neural network that provides the highest
probability, and the Maximization step, where each neural network is individually
optimized in a binary classification manner to distinguish between the assigned sam-
ples and those assigned to other networks. This approach ensures that the model
learns to focus on the most distinguishing features of each class.

Experimental results demonstrate that Neural-SRNN achieves superior or com-
parable performance to state-of-the-art models, such as Random Forests and ensem-
ble models, across various datasets, including MNIST, Fashion-MNIST, and Sign-
MNIST. The performance improvements are particularly evident in more complex
datasets, where Neural-SRNN effectively captures subtle variations and maintains
high accuracy. Furthermore, the chapter explores the impact of different neural
network structures on model performance, highlighting the robustness of architec-
tures like LeNet-5, especially when enhanced with separable convolutional layers and
dropout techniques.

Overall, the Neural-SRNN approach showcases the significant potential for im-
proving classification accuracy in complex datasets, offering a flexible and powerful
tool for machine learning applications.
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Chapter 4

Enhancing Synthetic Reduced
Nearest-Neighbor with Two-Layer
Neural Networks: A Step Forward
in Image Classification

Synthetic Reduced Nearest Neighbor (SRNN) models, which operate exclusively
on synthetic samples or prototypes, represent a significant advancement in nearest-
neighbor algorithms. This innovation enhances model interpretability and optimiza-
tion through specialized techniques. This chapter introduces the Two-Layer Neural-
SRNN (TLN-SRNN) model for classification tasks, diverging from traditional Expec-
tation Maximization (EM) methodologies. The TLN-SRNN significantly improves
efficiency and scalability, outperforming traditional methods in both speed and accu-
racy. Our empirical findings demonstrate the model’s rapid convergence and robust
performance across diverse datasets, marking it as a notable innovation in machine
learning.
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4.1 Introduction

In the supervised and unsupervised learning modes, the process of segregating the
clusters of the dataset is the primary assignment. It is mainly used in classification,
which serves the purpose of subdividing the classes with the samples showing variabil-
ity between them. Model accuracy is a function of the adoption of this granularity.
As a result, models are capable of recognizing and adapting to the inherent differ-
ences while still being able to review large amounts of datasets. Classification tasks
are fundamental to a myriad of machine learning applications, e.g., image recogni-
tion, language processing, and medical diagnosis. At the back of classification lies
the clustering of datasets, which aims to expose latent patterns and categorize data
points into distinct classes Chen et al. (2020).

The Synthetic Reduced Nearest Neighbor (SRNN) model joins a key simplification
of clustering techniques. In the SRNN model, each prototype is the sub-cluster created
by the learning algorithm. The use of this approach improves the user’s understanding
of the model as the prototype closest to the input signal is the cluster of input it
represents. For example, in handwritten digit recognition, prototypes can catch style
differences within categories consisting of the same digit, so they are appropriate and
interpretable Saralajew et al. (2020).

The recent research of the Prototype Nearest Neighbor models has shown the
diverse applications it can take, from even enhancing the adversarial robustness to
making few-shot learning techniques more fine-tuned Allen et al. (2019). In spite of
the development in these areas, mainstream technologies have yet to overcome the
lack of model structures, which would be more efficient in the management of multiple
cluster representations and similarity metrics. Such things illustrate the urgency of
the introduction of better optimization strategies into SRNN models.

The popularity of nearest neighbor algorithms in machine learning is largely due to
their simplicity and effectiveness across a wide range of applications. These models
typically rely on distance metrics, such as Manhattan or Euclidean distances, to
measure similarity between data points. However, as data patterns become more
complex and clustering problems increase in difficulty, these traditional distance-
based methods are often insufficient for capturing the intricacies of high-dimensional
data De Berg (2000), Lloyd (1982b).

One of the fundamental challenges faced by nearest-neighbor algorithms is the
“curse of dimensionality.” In high-dimensional spaces, the concept of proximity be-
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comes less meaningful, as the traditional distance measures used in these algorithms
fail to adequately distinguish between similar and dissimilar points. Advanced data
structures such as R-Trees, KD-Trees, and various spatial access methods have been
developed to solve this problem Sammut and Webb (2017), Krizhevsky et al. (2012),
He et al. (2016). Although these data structures do help in dealing with the inefficien-
cies caused by high-dimensional data, it is essential to bring in more enhancements
to overcome the issues.

In reaction to the mentioned problems, different solutions were suggested by in-
cluding techniques from EM in the nearest neighbor models, e.g., it is possible to use
EM in the k-mean clustering. EM, which is a very sophisticated dual-step iterative
algorithm, is designed especially to estimate latent variables (E-step) and optimize
the model parameters (M-step) Singh (2005), Gupta et al. (2011). Apart from linear
regression and analysis of the number of dimensions, neural networks have become a
major success in classification and feature layer reduction. For instance, multi-stage
Deep Learning (DL) methods have been nicely employed to restore signals from noisy
measurements, which testifies to the robustness of the neural network in processing
complex datasets Niranjani and Selvam (2020), Hinton and Salakhutdinov (2006).

The convergence of SRNN models and the neural networks is discussed in Alizadeh
et al. (2022b) highlights the novel approach of the Neural-SRNN model, which uses
several networks per class to boost the model’s precision. In this approach, the
classification process is handled by k networks for each of the m classes in the dataset
X. As for each of the m classes in the dataset, every data sample xi in X is placed on
these networks to be processed with the class identified as the one the network gives
the highest output probability to. The neural-SRNN model, through its expectation-
minimization-like problem during training, included the use of a two-step process:
the first step is the assignment step, which assigns each sample to the most probable
class, and the second step is the update step, which refines the network parameters
for better accuracy. This hybrid approach is the integration of the strength of neural
networks with specific class training that aims to effectively deal with the intricacies
of multi-class classification. Nevertheless, it is possible that the method might overfit,
especially as more centroids appear.

The Two-Layer Neural-SRNN (TLN-SRNN) model, the new method that is meant
to overcome the time-consuming training of neural networks, is resolved through this
dissertation. The TLN-SRNN model integrates dual-layer with SRNN, allowing the
machine to interpret and compute efficiently. This design enables to both increase
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the pace at which the training process happens and at the same time, deals with the
complexity of the data, thus, the model demonstrates being able to not get overfitted
and the adaptation to different sets.

A particularly innovative feature of the TLN-SRNN model is its extraordinary
accuracy while significantly reducing the computational overhead, which is usually
related to neural network training. The TLN-SRNN, which is a model with a stream-
lined architecture and simultaneously utilizes the best features of both the neural net-
work model and SRNN, makes a strong breakthrough in the machine learning field.
This model is set to provide significant insight into various applications, especially
those that revolve around the implementation of large-scale and high-dimensional
data, such as image recognition and natural language processing.

The TLN-SRNN - a novel model synthesized in this dissertation - is an answer to
the complaints of traditional nearest neighbor and neural network models, which are
observably good at classification-like tasks. The dual-layer architecture as an add-
on to the model, in addition to making it the most scalable and adaptable one, also
makes it the dominant one in solving modern machine-learning problems aggressively.

4.2 The Proposed Methods

TLN-SRNN operates on a dataset X = {x1, x2, . . . , xn}, where each xi ∈ Rd

represents an input sample. The data set is categorized into m classes, with the
corresponding labels Y = {y1, y2, . . . , ym}. The TLN-SRNN model is distinctively
structured in two layers, with a single Mini-CNN trained for each class in the first layer
and an integrative shallow neural network in the second layer. The architecture begins
with m Mini-CNNs, each designated to a distinct class. Each Mini-CNN processes
the input xi and outputs a probability vector, which indicates the probability of
the input being associated with its respective class. Subsequently, a shallow neural
network comes into play. This network takes the concatenated outputs from all the
Mini-CNNs and carries out the final classification decision.

4.2.1 Model Architecture and Learning Objective

The TLN-SRNN model’s architecture embodies a harmonious combination of
depth and simplicity, integrating Mini-CNNs with a Shallow Network. Each Mini-
CNN, comprising two convolutional layers equipped with Leaky ReLU activation
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(negative slope of 0.01), is pivotal in maintaining an effective gradient flow for deep
learning. These layers are adept at extracting class-specific features and uncovering
intricate patterns within the data. An average pooling layer follows, efficiently re-
ducing the feature dimensions while preserving vital information and leading to two
fully connected layers for refined feature processing. In contrast, the Shallow Net-
work adopts a straightforward design with two linear layers, augmented with leaky
ReLU activation and a dropout mechanism. This configuration effectively synthesizes
the extracted features, culminating in the model’s final decision-making process. For
more details on the architecture, please refer to Table 4.1.

Table 4.1: Layer-wise description of Shallow Net & MiniCNNs

Model Layer Type

Shallow Network

Input -
Fully Connected Linear

Dropout -
Fully Connected Linear

Output -

MiniCNN

Input -
Convolution Conv2d
Convolution Conv2d

Pooling AvgPool2d
Fully Connected Linear
Fully Connected Linear

Output -

To address dataset diversity, particularly with class imbalances, the TLN-SRNN
model incorporates the advanced Focal Loss function. Evolving from standard Cross-
Entropy Loss, Focal Loss introduces a modulation factor (1 − pt)γ, where pt signifies
the predicted probability for the actual class and γ in focal loss acts as a focusing
parameter. It essentially modifies the standard cross-entropy loss, reducing the loss
assigned to well-classified examples, thereby allowing the model to concentrate more
on difficult cases. γ is generally a non-negative value (≥ 0), with typical values
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ranging from 1 to 5. As γ increases, the model’s focus on challenging examples
is intensified. This factor recalibrates the loss, reducing contributions from easily
classifiable examples and focusing on more complex, typically minority-class, cases.
Consequently, Focal Loss not only counteracts class imbalances but also fosters a more
balanced and effective learning paradigm. This approach ensures robust performance
across varied class distributions, which is crucial for practical applications.

The TLN-SRNN model incorporates a dual-layered architecture for prediction and
learning. The prediction function is given by:

ŷTLN-SRNN = ShallowNet
(

m⊕
i=1

P̂i(x)
)

, (4.1)

where ⊕ denotes concatenation of output vectors from each Mini-CNN, P̂i(x) is
the output probability vector of the ith Mini-CNN for input x, and ShallowNet(·)
represents the shallow neural network function.

The prediction function of the TLN-SRNN model, as defined in Equation 4.1,
illustrates how the model processes input data to generate class predictions. The
model achieves this by first utilizing multiple Mini-CNNs (One per class), each re-
sponsible for extracting class-specific features from the input data. The output from
each Mini-CNN is a probability vector, denoted as P̂i(x), which represents the like-
lihood of the input belonging to various classes. These probability vectors are then
concatenated using the operation ⊕m

i=1, combining the insights from all Mini-CNNs
into a comprehensive feature vector. This concatenated vector is subsequently fed
into the ShallowNet- a shallow neural network-, which synthesizes the combined in-
formation and produces the final prediction ŷTLN-SRNN. This architecture allows the
model to leverage the diverse and detailed feature representations captured by the
Mini-CNNs, leading to more accurate and robust classification outcomes.

The learning objective of the TLN-SRNN model, as expressed in Equation 4.2,
serves as the cornerstone of the model’s dual-layer architecture. This objective for-
malizes the training process as a minimization problem, reflecting the foundational
principle of supervised learning: reducing the discrepancy between predicted and
actual outcomes. The goal is to optimize the parameters of both the Mini-CNNs,
denoted by Θ, and the ShallowNet, denoted by Φ, to minimize the loss function L(·).
The loss function measures the difference between the predicted class labels and the
actual labels across all training samples. By summing the loss over the entire train-
ing dataset, the model is guided to adjust its parameters to reduce this discrepancy,
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thereby improving its predictive accuracy.
Specifically, the function f j

cnn(xi; Θj) represents the output of the jth Mini-CNN
when processing the input xi. The outputs from all Mini-CNNs are then concatenated
and passed to the ShallowNet for final classification. Through the joint optimization
of the parameters Θ and Φ, the TLN-SRNN model effectively integrates the features
extracted by the Mini-CNNs, ensuring that these features contribute meaningfully to
the final prediction. This holistic approach to learning enables the model to achieve
accurate predictions while being well-suited to handle the complexities of diverse
datasets.

min
Θ,Φ

n∑
i=1

L

ShallowNet
 m⊕

j=1
f j

cnn(xi; Θj)
 , yi; Φ

 , (4.2)

In this formulation:

• Θ = {Θ1, Θ2, . . . , Θm} represents the set of parameters for each Mini-CNNs in
the first layer. These parameters are crucial for capturing the nuanced features
specific to each class. By optimizing Θ, the model learns to extract the most
informative features from the input data xi that indicate each particular class.

• Φ embodies the parameters of the ShallowNet, the second layer’s neural net-
work. The optimization of Φ is pivotal for effectively synthesizing the individual
insights gained from the Mini-CNNs. This process involves integrating the class-
specific probabilities and making a cohesive decision about the input’s class.

• L(·) denotes the loss function, a measure of the difference between the actual
label yi and the predicted label output by the model. This function quantifies
the accuracy of the model’s predictions and guides the training process. A well-
chosen loss function aligns the model’s predictions with the true labels, driving
the learning towards higher accuracy.

• The operation ⊕m
j=1 f j

cnn(xi; Θj) concatenates the outputs of all Mini-CNNs,
each processing the input xi. This concatenated output forms a comprehensive
feature representation of the input, reflecting its relation to all classes.

The minimization in Eq. (4.2) is performed over the combined parameter space of
both Mini-CNNs and ShallowNet. Through this joint optimization, the TLN-SRNN
model learns to extract relevant features for each class and effectively incorporates
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these features to make accurate class predictions. This holistic approach to learning
ensures that the features extracted by the Mini-CNNs are directly applicable and
beneficial for the final classification task performed by the ShallowNet.

4.2.2 Rationale Behind the Architectural Choices

The motivation for adopting a single mini Convolutional Neural Network (mini
CNN) per class, as opposed to multiple neural networks per class, stems from our
aim to enhance model interpretability while reducing computational complexity. The
approach proposed in [17] involved using multiple neural networks per class, which,
although effective in improving classification accuracy, leads to a substantial increase
in computational and memory overhead. In contrast, our two-layer neural-SRNN
(TLN-SRNN) model employs a streamlined architecture to achieve similar accuracy
with reduced resource consumption.

4.2.3 Selection Process

The selection of the mini CNN architecture was a rigorous process involving exten-
sive experimentation and hyperparameter tuning. We used Optuna, a hyperparame-
ter optimization framework, to systematically explore various combinations of shallow
architectures. This included varying the number of convolutional layers, the type of
activation functions, and the pooling strategies. The critical criteria for selection
were maintaining high classification accuracy while keeping the computational costs
low. The chosen architecture, which consists of two convolutional layers followed by
average pooling and fully connected layers, demonstrated the best performance across
all evaluated metrics.

4.2.4 Resource Efficiency Benefits

One of the primary advantages of using a single mini CNN per class is the signif-
icant reduction in resource costs. The streamlined architecture reduces the number
of parameters and accelerates the training process. This is particularly beneficial
in scenarios where computational resources are limited or rapid training is essential.
Our experimental results, detailed in the supplementary materials, highlight these
benefits. For instance, the TLN-SRNN model’s training time is notably lower than
the multi-model approach [17] without compromising the accuracy.
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4.2.5 Interpretability and Adaptability

In addition to resource efficiency, our approach enhances model interpretability.
Using a single mini-CNN per class makes the decision-making process more transpar-
ent, allowing for better understanding and trust in the model’s predictions. This is
particularly important in applications where interpretability is crucial. Furthermore,
the modular nature of our architecture allows for easy adaptation to different datasets.
Should the dataset change, the same selection and validation process can be applied
to fine-tune the architecture, ensuring its suitability for the new data characteristics.

The Two-Layer Neural-SRNN (TLN-SRNN) model enhances interpretability by
strategically structuring its architecture to allow for more transparent and under-
standable decision-making processes. The use of a single Mini-CNN per class sim-
plifies the model’s complexity, making it easier to trace how specific inputs lead to
particular outputs. Each Mini-CNN is dedicated to a single class, which makes the
features learned by the model directly relevant to that class, thereby simplifying the
understanding of the decision-making process. The shallow network that integrates
the outputs from these Mini-CNNs further enhances interpretability by maintaining
a simple and transparent architecture.

Moreover, the modularity of the TLN-SRNN allows for adaptability. The archi-
tecture can be fine-tuned for different datasets, ensuring that the model remains both
interpretable and effective even as the data characteristics change. This adaptability,
combined with the model’s inherent interpretability, makes the TLN-SRNN particu-
larly valuable in applications where both accuracy and transparency are critical.

4.2.6 Contributions and Advantages

The Two-Layer Neural-Synthetic Reduced Nearest-Neighbor (TLN-SRNN) model
introduced in this work marks a novel and significant advancement in the domain
of image classification. Its unique dual-layered architecture, combining individual
Mini-CNNs per class with an integrative shallow neural network, not only enhances
the interpretability of the classification process but also improves scalability and ef-
ficiency. Unlike traditional methods, the TLN-SRNN model strategically separates
class-specific feature extraction from the final decision-making process. This separa-
tion results in several key advantages:

• (i) Improved Efficiency: The TLN-SRNN model demonstrates a remark-
able increase in training efficiency, showcasing nearly an order of magnitude
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faster operation than the baseline Neural-SRNN model without compromising
accuracy. This significant improvement in efficiency is largely attributed to
the architectural design, which optimizes the use of computational resources
by streamlining the training process. Each Mini-CNN within the TLN-SRNN
model is focused on a specific class, reducing the complexity typically associated
with training deep, monolithic networks. By compartmentalizing the learning
process into smaller, more manageable tasks, the model is able to process data
more quickly and effectively. Additionally, the shallow network used for final
decision-making further reduces the computational burden, ensuring that the
model can achieve high accuracy with a fraction of the computational resources
required by more complex models. This efficiency not only accelerates the
training phase but also makes the TLN-SRNN model more scalable, allowing it
to handle larger datasets and more complex problems without a proportional
increase in computational cost.

• (ii) Enhanced Interpretability: The TLN-SRNN model’s architectural de-
sign significantly contributes to its interpretability, which is crucial in domains
where understanding the rationale behind model predictions is vital, such as
healthcare or finance. By employing a single Mini-CNN per class, the model
isolates the feature extraction process for each class, making it easier to trace
how specific input features influence the final classification decision. This class-
specific feature extraction allows practitioners to understand which features are
most influential for each class, thereby providing transparency in the decision-
making process. Furthermore, the integration of these class-specific features
through a shallow neural network enhances interpretability by maintaining a
straightforward decision pathway. This simplicity contrasts with deeper and
more complex models where the decision process can become opaque. The clear,
modular structure of TLN-SRNN not only simplifies debugging and model tun-
ing but also enables more effective communication of how the model works to
stakeholders, which is essential for trust and adoption in critical applications.

• (iii) Robustness to Class Imbalance: Class imbalance is a common chal-
lenge in many real-world datasets, where some classes are significantly under-
represented compared to others. This imbalance can lead to biased models that
favor the majority class, resulting in poor generalization to minority classes.
The TLN-SRNN model addresses this issue through the adoption of the Focal
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Loss function, which modifies the standard cross-entropy loss to focus more
on hard-to-classify examples, particularly those from minority classes. By in-
corporating a modulation factor (1 − pt)γ into the loss function, where pt is
the predicted probability for the actual class and γ is a focusing parameter,
the model down-weights the loss contribution of well-classified examples. This
encourages the model to pay more attention to challenging cases, effectively
mitigating the impact of class imbalance. The result is a more balanced learn-
ing process that enhances the model’s ability to perform well across all classes,
including those with fewer examples. This robustness makes TLN-SRNN par-
ticularly suitable for applications where class distribution is skewed, ensuring
that the model remains effective and fair in its predictions.

• (iv) Robustness to Overfitting: The robustness of the TLN-SRNN model
against overfitting can be attributed to several key factors embedded within
its architecture and training methodology. The TLN-SRNN model employs a
modular structure, wherein each Mini-CNN is dedicated to processing class-
specific features, followed by a shallow network that synthesizes these features
for final classification. This modular approach helps to prevent overfitting by
reducing the complexity typically associated with deep, monolithic networks.
By focusing each Mini-CNN on a specific class, the model can better capture
relevant features without being overwhelmed by the noise or irrelevant patterns
that often lead to overfitting in more complex architectures.

Furthermore, the use of Focal Loss within the TLN-SRNN model plays a crucial
role in enhancing its robustness. Focal Loss is designed to focus training on
harder-to-classify examples, particularly those from minority classes. This focus
prevents the model from becoming overly confident in easy-to-classify samples,
a common issue that can lead to overfitting. By dynamically adjusting the
importance of each sample during training, Focal Loss ensures that the model
remains attentive to challenging cases, thereby promoting better generalization
to unseen data.

The TLN-SRNN model’s architectural design also supports robustness through
its dual-layer structure, which balances depth and simplicity. The shallow net-
work that follows the Mini-CNNs provides an additional layer of abstraction,
helping to generalize the features learned by the Mini-CNNs without introduc-
ing excessive complexity. This balance is critical in avoiding overfitting, as it
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allows the model to learn effectively from the training data while maintaining
the capacity to generalize to new, unseen data.

The TLN-SRNN model effectively avoids overfitting by leveraging its modu-
lar design, the strategic use of Focal Loss, and a well-balanced architecture
that prioritizes both feature specificity and generalization. These components
collectively enhance the model’s robustness, ensuring it delivers consistent and
reliable performance across various datasets. This robustness is particularly evi-
dent in the model’s sustained accuracy on complex datasets like Fashion MNIST
and Sign Language MNIST, where overfitting often challenges less sophisticated
models.

• (v) Adaptability and Flexibility: The modular design of the TLN-SRNN
model offers significant adaptability and flexibility, making it highly versatile
across different datasets and application domains. Each Mini-CNN within the
model can be independently tuned or replaced, allowing for targeted adjust-
ments that optimize performance for specific datasets. This modularity is espe-
cially advantageous when dealing with datasets that have unique characteristics
or when transferring the model to new domains. The architecture’s flexibility
also extends to its ability to accommodate changes in the dataset, such as
the addition of new classes or the availability of more data, without requiring a
complete redesign of the model. This adaptability ensures that TLN-SRNN can
evolve alongside the data, maintaining high performance even as the underly-
ing data distribution changes. This feature is particularly beneficial in dynamic
environments where datasets are constantly evolving, enabling the model to
remain relevant and effective over time.

These innovative features underscore the TLN-SRNN model’s potential as a sig-
nificant step forward in machine learning for image classification, combining speed,
accuracy, robustness, and interpretability in one cohesive framework.

4.3 Experimental Results

4.3.1 Datasets

To demonstrate the efficacy of the proposed strategy in dealing with varied
datasets. To train all of the models, three different datasets were chosen: MNIST
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Deng (2012), Fashion-MNIST Xiao et al. (2017) and sign-MNIST Huang et al.
(2015).

• MNIST: is a large database of handwritten digits 0 to 9 and is widely used for
classification algorithms. The number of features is 784. The train and test set
contains 60000 and 10000 samples, respectively.

• Fashion-MNIST: is a dataset consisting of grayscale images from 10 different
classes such as T-shirts/tops, Pullovers, Coats, and so on. The number of
features is 784. The train and test set contains 60000 and 10000 samples,
respectively.

• Sign-MNIST: the American Sign Language letter database consists of 24
classes for each letter of the alphabet, excluding J and Z. The number of features
is 784. The train and test set contains 27455 and 7172 samples, respectively.

4.3.2 Experimental Setup

To rigorously evaluate the TLN-SRNN model’s efficiency, especially in classifica-
tion tasks, we conducted empirical comparisons with Neural-SRNN Alizadeh et al.
(2022b). The choice of classification as our focal point is informed by its pivotal role
in machine learning and the existence of established, reproducible architectures in
this domain.

In our experimental analysis, the TLN-SRNN model showcased its robust archi-
tecture, integrating Mini-CNNs for intricate feature extraction and a Shallow Network
for streamlined decision-making. The Mini-CNNs, with their deep feature analysis
capabilities, were complemented by the efficiency of the Shallow Network, effectively
balancing the feature extraction process with classification tasks. The TLN-SRNN’s
architecture, which combines depth (through Mini-CNNs) and simplicity (through
the Shallow Network), enables it to learn complex patterns more effectively than the
ensemble of shallow networks. A critical component in enhancing the model’s perfor-
mance, particularly in unbalanced dataset scenarios, was the adoption of Focal Loss.
The use of Focal Loss in TLN-SRNN helps in focusing on harder-to-classify exam-
ples, which can be particularly beneficial in datasets with class imbalances. This is
evidenced by its performance on the Fashion MNIST dataset.
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In this research, Optuna Akiba et al. (2019) played a pivotal role in hyperpa-
rameter tuning for the TLN-SRNN model, leveraging its Bayesian optimization to
navigate high-dimensional spaces efficiently. This targeted tuning was applied to the
utilized datasets, ensuring a model finely attuned to each dataset’s unique character-
istics. The iterative refinement of hyperparameters, informed by Optuna’s insights
during the training loop, led to tailored parameters that significantly boosted the
model’s classification performance on each dataset. To effectively demonstrate the ef-
ficacy of the proposed TLN-SRNN method, it is systematically benchmarked against
various established architectures frequently cited in contemporary literature. Unifor-
mity is maintained across all models regarding batch sizes and the number of epochs,
further reinforcing the comparative evaluation’s validity. This methodical approach
guarantees that any observed performance differentials are attributable to the respec-
tive models’ inherent merits rather than external variances in their configuration or
training regimen.

Ensemble Model employs a trio of shallow neural networks. We used the same
shallow network structure used in TLN-SRNN to make the results more comparable.
Moreover, all the hyperparameters are exactly as TLN-SRNN. These networks are
independently trained on distinct subsets, each constituting one-third of the randomly
selected samples from the original training set. The ensemble first elicits predictions
from each constituent model on the training dataset. These individual predictions
are then collectively synthesized, with the final ensemble prediction for each data
instance being determined by an aggregation method, specifically by summing the
predicted probabilities across all classes and selecting the class with the maximal
cumulative probability. This approach is designed to augment the overall predictive
accuracy, capitalizing on the diverse insights and strengths of the individual models,
thus yielding a more comprehensive and reliable understanding of the training data.

4.3.3 Results

As presented in Fig. 4.1(a), the TLN-SRNN model’s performance is notably on
par with that of the N-SRNN, with a negligible accuracy difference below 1%, de-
spite the latter’s adoption of the more profound LeNet-5 architecture, which is a more
expensive structure in terms of time and resources. This observation underscores the
TLN-SRNN’s proficiency in extracting discriminative features using a more compu-
tationally efficient shallow structure.
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(a) Training Accuracy

(b) Testing Accuracy

Figure 4.1: TLN-SRNN accuracy on the train set (a) and test set (b)
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Conversely, the Ensemble Model (EN), despite employing a shallow network ar-
chitecture and multiple learner integration, did not quite match the TLN-SRNN’s
accuracy. The EN model achieved training accuracies of 97.71%, 89.39%, and 83.86%
on MNIST, Fashion MNIST, and Sign MNIST, respectively, which are notably lower
than TLN-SRNN’s accuracies. This suggests that the depth and sophistication of
individual learners, as seen in TLN-SRNN, are pivotal for achieving optimal perfor-
mance. The subtle yet telling distinctions in accuracy among these models illustrate
the delicate balance between network depth and ensemble strategies in achieving
high-performance benchmarks. Fig. 4.1(b) illustrates the accuracies for the EN, TLN-
SRNN, and N-SRNN models on the MNIST, Fashion-MNIST, and Sign Language
MNIST test sets. The TLN-SRNN model demonstrates commendable accuracy, par-
ticularly achieving 97.59%. The training duration comparison between TLN-SRNN
and N-SRNN models is quantified in Fig. 4.2. The TLN-SRNN’s training time is
significantly lower across all datasets, notably on MNIST and Sign MNIST, where
the N-SRNN’s training time is almost six times greater. This efficiency in train-
ing time with TLN-SRNN, while maintaining comparable accuracy as observed in
previous results, underscores the model’s optimized computational design, making it
particularly advantageous for scenarios where training efficiency is paramount. Con-
versely, the N-SRNN’s longer training time can be attributed to its more complex
architecture, which, despite yielding slight accuracy improvements, may not justify
the computational overhead in specific practical applications.

The ensemble model has significantly lower training times across all datasets. This
is expected due to its simpler architecture and the fact that it trains on subsets of
the data. An in-depth analysis of the predictive performance metrics for N-SRNN
and TLN-SRNN models unveils pivotal insights, particularly when considering the
intricacies of the Fashion MNIST and Sign MNIST datasets. The N-SRNN model
exhibits stellar proficiency during training across all datasets, with precision, recall,
and F1 scores nearing the zenith of perfection. However, this trend experiences a
decrease in the test phase, with the Sign Language MNIST data set highlighting
the most significant dip in the F1 score to 74%. Such a shift from training to testing
landscapes suggests a potential overfitting pitfall, where the model may not generalize
well to unseen data, especially when it presents with a higher degree of complexity
or variability.

On the contrary, the TLN-SRNN model demonstrates an impressive equilibrium
between training and testing performance. Although it slightly lags behind N-SRNN
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Figure 4.2: TLN-SRNN Training time vs. N-SRNN Training time.

in training metrics, its test performance metrics exhibit less volatility, particularly
within the Fashion MNIST and Sign Language MNIST datasets. This reduced volatil-
ity in test performance is particularly noteworthy and suggests that the TLN-SRNN
model has superior generalization capabilities compared to the N-SRNN. While the
TLN-SRNN may not achieve the highest possible training accuracy, this slight lag
is more than offset by its ability to perform consistently well on unseen data, as
evidenced by its stable performance across different datasets.

This stability is especially apparent in complex datasets like Fashion MNIST and
Sign Language MNIST, where the model avoids the sharp declines in performance
often observed with overfitting-prone models. The TLN-SRNN’s architectural design
is a key factor in achieving this balance between training and test performance. By
employing class-specific Mini-CNNs in combination with a shallow neural network,
the model effectively captures relevant features while maintaining a simpler and more
interpretable structure. This modular approach not only reduces the risk of overfitting
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but also allows the model to adapt to the inherent complexity and variability present
in datasets like Fashion MNIST and Sign Language MNIST. Consequently, the TLN-
SRNN delivers reliable and consistent results, making it a strong candidate for real-
world applications where stability and generalization are critical.

Table 4.2: Performance comparison of models across different datasets

(a) Train Set Metrics

Dataset Model Accuracy Precision Recall F1 Score

MNIST N-SRNN 99.13 0.99 0.99 0.99

TLN-SRNN 98.57 0.98 0.98 0.98

Fashion MNIST N-SRNN 91.21 0.91 0.91 0.91

TLN-SRNN 91.62 0.92 0.92 0.92

Sign Language MNIST N-SRNN 99.20 0.99 0.99 0.99

TLN-SRNN 98.20 0.98 0.98 0.98

(b) Test Set Metrics

Dataset Model Accuracy Precision Recall F1 Score

MNIST N-SRNN 97.51 0.98 0.98 0.98

TLN-SRNN 97.59 0.97 0.97 0.97

Fashion MNIST N-SRNN 87.97 0.88 0.88 0.88

TLN-SRNN 88.41 0.88 0.88 0.88

Sign Language MNIST N-SRNN 73.07 0.78 0.73 0.74

TLN-SRNN 71.22 0.73 0.71 0.71

The steadiness of TLN-SRNN’s precision and recall from training to testing indi-
cates robust consistency, which is crucial for practical deployment where performance
predictability is as valuable as the performance itself. Moreover, with test precision
and recall metrics for Fashion MNIST slightly surpassing those of the N-SRNN, the
TLN-SRNN model emerges not only as a swift learner due to its markedly lower train-
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ing times but also as a dependable predictor in diverse conditions, as shown in Table
4.2a and Table 4.2b. This balancing act between agility in learning and steadfastness
in prediction underscores the TLN-SRNN model’s potential as a viable candidate for
real-world applications where time and reliability are of the essence.

Furthermore, the TLN-SRNN consistently achieves higher accuracy on both the
training and test sets for the MNIST and Fashion MNIST datasets, indicating its
superior capability to capture underlying patterns in the data. The integration of
Mini-CNNs with the Shallow Network enables the TLN-SRNN to extract more nu-
anced features, leading to enhanced performance across both datasets.

The learning figures for the TLN-SRNN model, as presented in Fig. 4.3, provide a
visual narrative of the model’s training efficacy across diverse datasets. For MNIST,
the model’s training loss decreases steadily, reflecting effective learning and a capacity
for generalization, given the uneventful reduction in loss across epochs. The Fashion
MNIST displays a modest yet consistent decline in loss, indicating a slower adap-
tation to the dataset’s complexity. Sign Language MNIST showcases a significant
drop in loss despite starting from a higher initial loss, denoting the model’s ability to
discern intricate patterns within the data. Overall, the TLN-SRNN model’s learning
figures signify its adeptness at capturing dataset-specific features and improving pre-
dictions iteratively. These figures demonstrate the model’s versatility and underscore
its potential as a reliable tool for complex image recognition tasks in diverse domains.

4.3.4 Complexity Analysis of TLN-SRNN

The TLN-SRNN employs a single Mini-CNN per class, each consisting of two con-
volutional layers followed by average pooling and fully connected layers. This design
efficiently extracts class-specific features while maintaining a manageable number of
parameters. Each Mini-CNN comprises 2,012 parameters, while the shallow network
contains 1,354 parameters. In contrast, the Neural-SRNN model described in [17]
consists of 5,164 parameters. This parameter count is nearly double that of the TLN-
SRNN, resulting in a significant reduction in parameters for the TLN-SRNN, thereby
enhancing its computational efficiency and speed.

The outputs of the Mini-CNNs are concatenated and fed into a shallow neural
network with two dense layers, which synthesize the extracted features to make a final
classification decision. The shallow network’s simplicity ensures that the additional
computational burden is minimal. Compared to traditional deep neural networks,
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Figure 4.3: Learning figures of the TLN-SRNN model on MNIST, Fashion MNIST, and
Sign MNIST.

our approach significantly reduces the number of parameters by limiting the depth
and width of each Mini-CNN and using a shallow network for final decision-making.
This reduction in parameter count leads to faster training and inference times.

Moreover, our architecture’s modular nature, with separate Mini-CNNs for each
class, allows for parallel training and inference. This parallelism enhances scalability,
making the model suitable for large-scale and high-dimensional datasets.

4.4 Chapater Summary

This study introduced the Two-Layer Neural-Synthetic Reduced Nearest-Neighbor
(TLN-SRNN) model, which addresses the limitations of traditional SRNN and en-
semble models by enhancing efficiency, scalability, and accuracy. The TLN-SRNN
achieves substantial reductions in training times while maintaining high accuracy. Its
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modular architecture allows for parallel training and inference, making it suitable for
large-scale and high-dimensional datasets.

The model enhances interpretability by employing a single Mini-CNN per class,
providing clear insights into the decision-making process. This transparency is valu-
able for critical applications requiring a deep understanding of model predictions.
Additionally, the use of Focal Loss addresses class imbalances, ensuring balanced
learning across diverse datasets.

Empirical results demonstrate the TLN-SRNN’s superior performance, consis-
tently outperforming the ensemble model in accuracy while significantly reducing
training time. The TLN-SRNN’s unique dual-layer architecture balances compu-
tational efficiency, predictive accuracy, and interpretability, making it practical for
scenarios where time and computational resources are critical. Its strength is its ro-
bustness and versatility across various image data types, such as fashion items and
sign language.

The model’s design facilitates efficient feature extraction through Mini-CNNs,
followed by a Shallow Network synthesizing these features for final classification.
This approach accelerates training and effectively handles complex data, showcasing
robustness against overfitting and superior adaptability to diverse datasets.

Targeted hyperparameter tuning with Optuna finely tuned the model for each
dataset, significantly boosting classification performance. This systematic approach
ensures that performance differentials are due to the respective models’ inherent mer-
its rather than external variances in their configuration or training regimen.

In conclusion, the two-layer neural-SRNN model represents a notable innovation in
image classification. Its efficient and scalable architecture, combined with enhanced
interpretability and robustness, underscores its potential for broad application in
machine learning. The TLN-SRNN model is a compelling choice for future research
and practical implementations, offering a reliable and efficient solution for complex
classification tasks in various domains, from edge computing to large-scale image
analysis systems. This combination of speed, precision, and insight positions the
TLN-SRNN model as a noteworthy contender for advancements in the field.
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Chapter 5

Enhancing Irrigation Efficiency with a Uni-
fied Stochastic Decision Tree Model: Pre-
dictive Analysis of Stem Water Potential in
Almond and Pistachio Orchards

Stem Water Potential (SWP) is the standard method to assess water stress and ir-
rigation scheduling in tree crops. This method is time-consuming and labor-intensive,
limiting data collection to only a few trees in the orchard. To find an alternative ap-
proach that predicts water stress in every tree in the orchard, we implemented a novel
Stochastic Decision Tree (SDT) method, utilizing remote sensing and weather data
to predict SWP in almond and pistachio orchards. The input data for our model in-
cluded various vegetative indices such as NDVI, GNDVI, OSAVI, LCI, and NDRE, as
well as local weather parameters, such as temperature (Ta), relative humidity (RH),
air pressure (P), Vapor Pressure Deficit (VPD) and the Water Stress Index (WSI).
Our results indicate that the SDT model achieves a prediction accuracy of nearly
94%, Outperforming Random Forest (RF), Support Vector Machine (SVM), and the
K-nearest neighbor (KNN) algorithms. We investigated various combinations of col-
lected data under different scenarios to improve the impact of sensor-derived data
from pistachio and almond orchards and enhance the accuracy of SWP predictions
using an SDT model. Our findings suggest that a data-driven model utilizing cost-
effectively collected data can predict water stress. The successful development of a
universal model improves the accuracy of SWP predictions. Moreover, its adaptabil-
ity and effectiveness allow it to be utilized for different orchards, making it highly
applicable to real-world agricultural scenarios.
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5.1 Introduction

Agriculture is the world’s largest consumer of fresh water, requiring dependable
and resilient fresh-water availability for global food security D’Odorico et al. (2020).
As the most prominent user of water resources, the agricultural industry wastes a lot
of water due to inefficiency in irrigation. California has $50 billion annual income by
producing 66% of all the US growing fruits and nuts. Nut trees are water-intensive,
and unlike seasonal crops, they cannot be followed in a dry year. Drought and water
shortage are major concerns in California, and Statistics show California’s agricul-
tural production’s future is uncertain because of water scarcity Medelĺın-Azuara et al.
(2022), Alizadeh et al. (2023a).

Water stress has different impacts on different types of plants, exclusively within
photosynthetic limits. Prolonged water stress will severely decrease productivity and
plant growth. Therefore, farmers are looking for ways to better utilize available water.
Precision irrigation that applies the right amount of water at the right time could
potentially be an ultimate approach to saving water; however, some of the needed
technologies are currently missingAlizadeh et al. (2023b). One of the requirements of
precision irrigation is knowing the exact water status of each tree in the orchard. The
deficit irrigation method is another approach to saving water, but this technique relies
on ET. But, typically, ET is measured for the whole orchard, not per treeAlizadeh
et al. (2018, 2021).

Currently, the Stem Water Potential (SWP) is known as the gold standard method
Savchik et al. (2024) for measuring the water status of tree crops and is used in
irrigation scheduling methods Ohana-Levi et al. (2022), Carrasco-Benavides et al.
(2022), Zhao et al. (2017), Gutiérrez-Gordillo et al. (2021). However, this technique
is very labor-intensive and time-consuming. Not only it is practically impossible to
collect precise data from all trees in a large orchard, also the collected data is subject
to error and depends on the user’s observation while reading the pressure chamber
device.

Recently, implementing machine learning (ML) techniques in agriculture has
shown considerable interest. ML techniques offer boundless potential to solve critical
issues in the agricultural sector, such as drought and water stress detection. Many
studies have been made on “smart farming or precision farming,” which aims to in-
crease both the quality and the quantity of agricultural output by making farming
operations more “connected” and “intelligent” Jha et al. (2019), Banerjee et al. (2018),
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Smith (2018). ML-based applications estimate evapotranspiration daily, weekly, or
monthly, which can enhance the irrigation system efficiency. By utilizing sophisti-
cated algorithms and data-driven models, ML methods enable the analysis of large-
scale agricultural datasets to better water management practices, optimize irrigation
strategies, and increase crop productivity in response to a changing climate Waleed
et al. (2020), Eli-Chukwu (2019).

Traditional drought monitoring and evaluation methods rely on limited, localized
data. This makes it challenging to develop effective mitigation strategies. Integrating
diverse data sources, such as satellite imagery, meteorological data, soil moisture
measurements, and crop health indicators, are novel approaches to resolving this
issue, which can be possible by machine learning techniques. By employing ML
algorithms, it is possible to accurately predict, monitor, and forecast drought events
in real-time, allowing for timely interventions and resource allocation Huang et al.
(2019), Xu et al. (2020).

Detection of water stress is another crucial challenge in agricultural management,
as water conservation is essential to sustain crop production. ML techniques play a
decisive role in this domain by employing sensor technologies, Internet of Things (IoT)
devices, and remote sensing collected data to create comprehensive models to monitor
soil moisture levels, plant water uptake, and irrigation needs. ML algorithms can
provide actionable strategies for optimizing irrigation scheduling, identifying water
stress thresholds, and ensuring wise water usage in agricultural systems by analyzing
complex datasets and using pattern recognition techniques Sahoo et al. (2020), Wang
et al. (2021).

Integrating ML techniques and real agricultural data enables agricultural stake-
holders to make better decisions and correct action to reduce the effects of drought
and water stress Kamilaris et al. (2018), Minervini et al. (2019). Accurate judgment
and monitoring of plant water stress are essential for optimizing irrigation strate-
giesMinervini et al. (2019), Statista (2024), Alexandratos and Bruinsma (2012), Al-
izadeh et al. (2018), Postel (2000), Mekonnen and Hoekstra (2016), Alizadeh et al.
(2021); therefore, there is a need to find more efficient water stress monitoring meth-
ods that can predict the individual needs of each tree precisely and cost-effectively.
Water stress detection techniques can be categorized into two main groups: sensor-
based and model-based Virnodkar et al. (2020).
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• Sensor-based

Sensor-based techniques could be soil-based, which indirectly measures plant
water stress, or plant-based, which directly measures plant water stress Sharma
et al. (2018), Tanriverdi et al. (2016), Alizadeh et al. (2023a). The soil-based
sensors are not very practical for tree crops since the tree roots usually penetrate
beyond the range of their measurement and can not be very accurate. Some
techniques studied the reactions of plants, including stomatal conductance, leaf
water potential, relative water content, stem and fruit diameter, measuring stem
water potential as one of the most accurate in-situ methods, and assessments of
sap flow to detect plant water stress Turner (1988), Ihuoma and Madramootoo
(2017). These techniques are dependable; however, these sensors are usually
very costly and can only determine the water stress on the trees on which
they are installed. Also, they are often hard and labor-intensive to install and
maintain. In addition, since the decision on when to irrigate is made only based
on the output from one or two sensors, a faulty sensor could cause significant
errors in determining the water status of the whole block.

• Model-based

Model-based techniques use weather data or remotely collected data. Remote
sensing methods are non-destructive, not labor- or time-intensive, and work
based on vegetation indices, such as the normalized difference water index
(NDWI), optimal soil adjusted vegetation index (OSAVI), normalized difference
vegetation index (NDVI) Zarco-Tejada et al. (2003), Romero et al. (2018a), Ra-
paport et al. (2015). Some methods applied Infrared thermometry, CWSI, and
VPD Osroosh et al. (2015), Jones (2013), Cohen et al. (2005), Li et al. (2013).
Also, some studies applied land surface evapotranspiration (ET) to estimate the
water stress level of the crop Glenn et al. (2010), Verstraeten et al. (2008)

Low-cost drones equipped with a multiband camera to collect aerial images from the
orchards are commercially available, and many growers have access to them or can
get them from service providers at a reasonable cost. These drones can fly over the
orchard autonomously, and they come with a software package that quickly stitches
the images and produces multiple vegetation indices for the field. The information
from vegetation indices and a few other weather-related data could be used to pre-
dict water stress using an AI model. This research aims to develop an AI model for
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predicting SWP for pistachio and almond trees using a data-driven model that bal-
ances low data requirements with high accuracy to improve the timing for irrigation
scheduling.

Machine learning and AI algorithms, such as Support Vector Machine (SVM),
Random Forest (RF), and Artificial Neural Networks (ANN), are widely used in
crop water stress assessmentsVirnodkar et al. (2020). A model from Landsat photos
Hassan-Esfahani et al. (2015), local meteorological data and field measurements are
trained using Genetic Algorithm (GA) and ML techniques that report field conditions
using a soil balancing approach. The model is applied to oats and alfalfa, saving 20%
water. Sun et al. (2017) designed a crop water stress detection system. Their model
first detected the edge using thermal images from UAVs, then built a Gaussian mixture
model for each crop species, and finally calculated the water stress index using the
mean value. Many studies applied SVM to address water stress detection issues,
such as Yang et al. (2011), Saini and Ghosh (2018), Kaheil et al. (2008), Warner and
Nerry (2009). Random forest is another algorithm used in the domain because it
prevents overfitting. Poccas et al. (2017) used NIR, WI, and D1 vegetation indices
to RF and SVM in the vineyard to detect water stress levels. Moshou et al. (2014)
developed a hybrid classification technique that could distinguish between different
stress factors in wheat. Loggenberg et al. (2018) applied RF and XGBoost combined
with hyperspectral remote sensing to model water stress in the vineyard.

Vegetation indices extracted by Romero et al. (2018b)from aerial multispectral
imagery, such as the difference vegetation index, green index (GI), MSAVI, NDVI,
NDGI, NDRE, OSAVI, red, green ratio index (RGRI), renormalized difference vege-
tation index (RDVI), and simple ratio index (SRI). Also, midday stem water potential
used ANN to find the correlation between VIs and SWP. An ANN built by Poblete
et al. (2017) to predict spatial variability in SWP in a drip-irrigated vineyard. This
ANN was widely utilized to determine water stress, while several studies suggest that
ML algorithms can provide more accurate estimates under experimental conditions
Virnodkar et al. (2020).

Decision trees are among the most well-established and practical machine-learning
models for every supervised learning task and have been widely employed in various
applications. In the context of agriculture, decision trees have found numerous appli-
cations. They can be used to predict crop yield Patil et al. (2020), Kumar et al. (2020),
Gupta et al. (2022), weather patterns Gümüşcü et al. (2020), Chauhan and Thakur
(2014), Reddy et al. (2020), pest infestations Resti et al. (2022), Tageldin et al. (2020),

112



and crop water stress detection Huang et al. (2017), Aneley et al. (2023), Genc et al.
(2013) and other smart agriculture areas, such as crop disease detection and manage-
ment, guiding farmers in identifying the most effective treatments based on symptom
observations and other relevant parameters. Additionally, decision trees can also be
used in agricultural resource management, helping growers make strategic choices to
improve overall farm productivity while minimizing environmental impact because
their feasibility and ease of implementation make decision trees valuable for precision
agriculture, empowering growers to make data-driven decisions for sustainable and
more profitable horticultural practices.

Even though water stress detection for some crops is addressed in various studies, a
simplified, practical, cost-effective, and non-destructive remote determination method
of SWP that end-users can adopt in large-scale orchards for water management is
missing for nut trees. A majority of techniques reported in the literature for estimating
plant water status used a combination of data collected from Sap flow sensors, soil
moisture sensors, and multi-spectral images. Collecting a lot of agricultural data can
be challenging and prone to error Osinga et al. (2022). A stochastic decision tree
can decrease the imposed computational cost to the system without losing any useful
information due to common sub-sampling or feature selection methods. Moreover,
uncertainties inherent in real agricultural data and the unpredictable nature of the
farming environment make the prediction process very complicated United States
Department of Agriculture (2023). A stochastic decision tree can handle this by
incorporating randomness into the decision-making process and producing a more
robust and reliable prediction. Because of their stochastic properties, decision trees
are able to capture and represent complex relationships between different variables,
which are often present in large orchard datasets. This enhanced modeling capability
can lead to a better perception of the situation and more accurate predictions for
optimizing crop yield and resource allocation.

5.2 Stochastic Decision Trees

Decision trees are useful for the decision-making process. Decision trees are trained
by greedily splitting the leaf nodes into a split and two leaf nodes until a specified
stopping condition is satisfied. The technique for splitting a node consists of de-
termining the best feature and threshold that minimizes a criterion. The criterion
minimization problem is solved using an exhaustive search technique. However, this
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exhaustive search strategy is quite expensive, especially when the number of sam-
ples and features is large. Preprocessing the dataset by reducing the sample size or
applying some feature selection techniques are popular approaches, but they might
cause overfitting or loss of useful data. A Stochastic Decision Tree (SDT) is offered
by Alizadeh et al. (2022a) that efficiently optimizes the splitting criterion. Suppose
a dataset S contains N of samples, and D is the dimensionality. The function fj(x)
at the jth split node consists of a decision fj(x) = sign(xp − th) where p represents
pth feature and th represents the threshold. The suggested method begins at a node
with an empty set St and all D features. The set and the number of samples at node
jth are indicated by Sj and |Sj|, respectively. The method iteratively selects a small
random collection of samples from Sj (in order of 2−C ×|Sj|) and dismisses half of the
less important features related to St. SDT monotonically minimizes an upper bound
of the splitting criterion for the best feature and threshold obtained at each iteration.
Mathematically, it is demonstrated that the algorithm prioritizes more distinct fea-
tures. Essentially, the more distinct a feature, the more likely it will be chosen in the
final iteration. This method is explicitly and in detail described in 2.

5.3 Material And Method

The study covered two experimental sites within Merced County, California, in
the heart of the San Joaquin Valley. This area has a Mediterranean climate with hot,
dry summers and mild, wet winters. Specifically, the research was conducted in a 2.5-
hectare pistachio orchard and a 3-hectare almond orchard equipped with irrigation
systems—a double-line drip system for the pistachio orchard and a macro jet system
for the almond orchard. Throughout the summers of 2022 and 2023, data collection
was done from June to August, spanning 14 and 18 days, respectively, across the
two years. This intensive data collection involved monitoring stem water potential
and leaf temperature and capturing aerial multispectral images from 18 pistachio
and 17 almond trees strategically selected to reflect the inherent variability within
the orchards. With this strategy, we could comprehensively analyze big data and
collect environmental and physiological dynamics to deeply understand the critical
information about each orchard’s health and productivity.

A PMS-615 pressure chamber device (PMS Instrument Company, Albany, OR,
USA) measures SWP as the ground truth value at around 1 PM. To reduce the non-
conformity in SWP readings across individual trees, three leaves from each sample
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tree’s lower shaded canopy were chosen for SWP measurements. The mean value of
the observed SWP value per tree is calculated for further study. To ensure accurate
results, encasing the leaves in bags is critical before doing the SWP measurements.
The leaves were packed in aluminum bags for at least 15 minutes before being re-
moved from the tree and tested in the pressure chamber. This method steers the leaf
toward equilibrium and mitigates disparities caused by continual photosynthesis and
transpiration within the leaves.

The leaf temperature was measured from three independent leaves on each sample
tree, while SWP data was collected using an infrared thermometer (model: K-type).
We also used weather information such as air temperature, minimum relative hu-
midity, and minimum air pressure from the local weather station installed in the
orchards. The radiative flux, ambient air temperature, wind speed, and atmospheric
moisture content are just a few of the ambient factors that impact the temperature
of the plant canopy, which acts as a proxy for foliar hydration levels. Normalization
of the canopy temperature is essential to ensure robustness across diverse environ-
mental conditions. Such normalization necessitates benchmarking against a reference
obtained from thermal imaging data. Within this context, the Crop Water Stress
Index (CWSI) is instrumental, as it establishes two critical thermal thresholds: Tdry

and Twet, which correspond to the thermal readings of a leaf under conditions of zero
transpiration and maximal transpiration, respectively Zhang et al. (2019a), Ben-Gal
et al. (2009). CWSI is calculated as follows:

CWSI = (Tcanopy − Twet)
(Tdry − Twet)

(5.1)

where Tcanopy represents the temperature of the canopy, and the Crop Water Stress
Index (CWSI) quantifies the hydration status of the plants on a scale from 0 to 1,
where 0 corresponds to an adequately watered state and 1 denotes a condition of sig-
nificant water stress. The parameters Tdry and Twet, delineating the upper and lower
limits of the index, can be determined by empirical methods or derived from the-
oretical models. Determining wet-bulb temperature necessitates calculations based
on the dry-bulb temperature and relative humidity, which are measured via a cali-
brated thermometer and an electronic hygrometer. Stull Stull (2011) introduced an
empirically derived equation utilizing gene-expression programming to estimate this
temperature. The formulation, known as the Stull equation, is expressed as follows:
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WBT = Tair · arctan(0.151977 ·
√

RH + 8.313659)+
arctan(Tair + RH) − arctan(RH − 1.676331)+
0.00391838 · RH1.5 · arctan(0.023101 · RH)
− 4.686035;

(5.2)

In addition, we calculate the vapor pressure deficit (VPD) as an important factor
in determining plants’ water needs Elbeltagi et al. (2023), Shekoofa et al. (2016), Yin
et al. (2021) and add it to our data set. VPD plays a crucial role in plant physiology
by influencing the transpiration rate. Higher VPD values indicate drier air, meaning
greater transpiration rates and, consequently, higher demand for water in plants. This
increase in transpiration can lead to a significant decrease in SWP as plants lose more
water to the atmosphere. By incorporating VPD into our predictive models, we aim to
increase the accuracy of SWP predictions, providing more precise irrigation strategies
that optimize water usage while minimizing stress on the plants. VPD is the difference
between the water vapor pressure in saturated air at a certain temperature and the
water vapor pressure in the air at the same temperature Rawson et al. (1977). VPD
is determined from the following equation Yin et al. (2021), Grossiord et al. (2020):

VPD = es − ea (5.3)
= 0.6107 × 10(7.5TLeaf /(273.3+TLeaf ))

− RH ×
(
(0.6107 × 10(7.5Tair/(273.3+Tair)))/100

)
where es represents the saturated vapor pressure in the stomatal cavity at leaf tem-
perature, ea is the water vapor pressure of air at ambient temperature, and RH is the
relative humidity (%).

Vegetation indices are extracted using aerial images captured using a DJI P4
multispectral agricultural drone with an RGB camera and a five-band multispectral
camera. These spectral data were analyzed using software (DJI Terra) to build ortho-
mosaic maps for each orchard. The DJI Terra was used to create a color composite
as well as five orthomosaic maps indexed for specific vegetation parameters: NDVI,
GNDVI (Green Normalized Difference Vegetation Index), OSAVI (Optimized Soil-
Adjusted Vegetation Index), LCI (Leaf Chlorophyll Index), and NDRE (Normalized
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Difference Red Edge). The vegetation indices formula can be found in Bannari et al.
(1995).

5.4 SDT setup

Stem Water Potential (SWP) is a good way to measure how much water a tree
has. The University of California Agricultural Extension (UCANR) has established
clear categories for different types of trees Orchards (2024), Agriculture and Resources
(2024). Specifically, almond trees were classified from minimal stress in the −6 to
−10 bars, −10 to −14 bars as mild to moderate stress, −14 to −18 moderate to
high stress, and below −18 was considered as high to severe stress. At the same
time, pistachio trees range from non-stressed at −9 to −11 bars, mild to moderately
stressed from −11 to −15, and severely stressed below −15 bars. This study examines
SWP data for almond and pistachio trees separately and in a combined dataset to
facilitate a comprehensive analysis. Cutoff points of −10 bars for binary classification
and −10 and −15 bars for a three-class scheme were selected for equitable analysis.
Farmers require knowledge of water stress levels rather than precise SWP values
in practical agricultural settings. Accordingly, this study approaches the issue as a
classification problem, aiming to predict the categorical level of SWP rather than its
exact numerical value, which would typically be addressed using a regression model.
Due to the small size of the dataset, the SDT hyper-parameters are set as follows:

• In each iteration, we would let the algorithm randomly select and remove 50%
of samples from Sjc and add them to set Sjt .

• We considered making decisions based on 0.3 of features in each iteration.

• The dataset was randomly split into 80% trainset and 20% test set for different
setups and feature combinations. To compare findings fairly, each scenario was
created by removing the desired features from the primary dataset and using a
unique training and test set.

This research aims to achieve two different goals. The first was to study the correlation
between different factors and the water stress level in the canopy and consequently
choose the scenario with the highest accuracy in predicting SWP. Therefore, we stud-
ied different scenarios based on different combinations of data collected in the SDT
model. The reason for not using a feature selection method was to prevent losing
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any information that might increase the SWP prediction’s accuracy. Additionally,
the structure of SDT incorporates a hidden feature selection into each iteration of
tree formation, allowing it to make more precise predictions by utilizing every aspect
of the dataset’s information. The second goal was to train a general, robust model
to predict SWP for almond and pistachio orchards. Different combinations of predic-
tors were studied that include Leaf temperature (Tl), Air temperature (Ta),
CWSI, NDVI, GNDVI, OSAVI, LCI, NDRE, Relative humidity(RH),
Air pressure (P), VPD, Water Stress index which is leaf-air temperature
difference (WSI) Zhang et al. (2019b). Table 5.1 shows detailed information
about all scenarios and dataset sizes. These scenarios were used to solve binary
classification problems and three-class classification problems.

Table 5.1: Dataset scenarios

Index Dataset size Scenario

SC1 490 x 13
Tl, RH, P, Ta, WSI, VPD, CWSI, NDVI,

GNDVI, OSAVI, LCI, NDRE, SWP

SC2 490 x 8 Tl, RH, P, Ta, WSI, VPD, CWSI, SWP

SC3 490 x 9
WSI, VPD, CWSI, NDVI, GNDVI, OSAVI,

LCI, NDRE, SWP

SC4 490 x 4 WSI, VPD, CWSI, SWP

SC5 490 x 5 Tl, WSI, VPD, CWSI, SWP

SC6 490 x 7 Tl, RH, P, Ta, WSI, VPD, SWP

SC7 490 x 12
Tl, RH, P, Ta, VPD, CWSI, NDVI,

GNDVI, OSAVI, LCI, NDRE, SWP

5.5 Experimental Results

To identify the key factors influencing SWP prediction, we analyzed seven distinct
scenarios as detailed in Section 5.4 for both the binary classification problem approach
and the three-class classification problem approach. For consistency across different
tests, we limited the depth of the SDT between 2 and 10 for all scenarios. As shown
in Fig. 5.1, Scenario SC1 achieves the highest accuracy in the training and testing
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phases, underlining its robustness in SWP prediction. The variables involved in SC1
offer a holistic view of environmental and plant physiological parameters, contributing
significantly to the model’s predictive strength. Similarly, SC7, with a slightly reduced
but still extensive variable set, also shows high accuracy, affirming the importance of
a broad feature set for effective SWP prediction.

In contrast, scenarios with fewer variables, such as SC4 and SC5, demonstrated
lower test accuracies. This reduction suggests that while these scenarios are stream-
lined, they lack sufficient information to capture all the shades of SWP dynamics
effectively. Neglecting critical variables like NDVI and GNDVI, which are key indica-
tors of vegetation health, could explain the diminished predictive capabilities in these
simpler scenarios.

Figure 5.1: Prediction accuracy for different scenarios in Trainset and Testset

To validate the quality of our SDT approach, we conducted a rigorous comparative
analysis against three widely recognized machine learning algorithms: SVM employ-
ing a linear kernel, KNN utilizing a Euclidean distance metric, and RF configured
with 30 trees. Each algorithm was evaluated using a robust 10-fold cross-validation
scheme within the training dataset. As illustrated in Figure 5.2, the performance of
these models was assessed in two different classification contexts: binary and three-
class settings.

In the binary classification scenario, the SDT model demonstrated superior test ac-
curacy, achieving 93.50%, which notably exceeds the performance of SVM at 92.70%,
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KNN at 91.90%, and RF at 92.70%. Similarly, in the more complex three-class clas-
sification setting, SDT maintained its leading position with an accuracy of 89.43%,
compared to 89.40% for SVM, 86.20% for KNN, and 87.80% for RF. This consistent
outperformance of SDT in diverse settings highlights its robustness and exceptional
ability to generalize from the training to the testing phases. The model’s efficacy
in handling intricate data structures makes it a preferred option in scenarios where
traditional models might falter, underlining its potential as a robust tool in predictive
analytics for agricultural applications.

Figure 5.2: Train & Test set accuracy for all scenarios on SVM, KNN, RF, & SDT

Table 5.2: Comparison of ML Models on Precision, Recall & F1 Score on SC1

Model Precision (%) Recall (%) F1 Score (%)

SVM 90.27 90.61 90.26
KNN 90.08 90.41 90.19
RF 89.50 89.80 89.60
SDT(our) 92.05 92.04 92.03

Table 5.2 compares four machine learning models in terms of Precision, Recall, and
F1 Score. The SDT model consistently exhibits superior performance across all evalu-
ated metrics, achieving the highest scores with 92.05% in Precision, 92.04% in Recall,
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and 92.03% in F1 Score. These results highlight the robustness and effectiveness of
SDT in attaining a balanced performance between identifying and retrieving relevant
instances. In comparison, the other models— SVM, KNN, and RF —show compet-
itive yet slightly lower metrics. The Random Forest model, in particular, showed a
notable drop in all three metrics, indicating a potential trade-off in its precision-recall
balance. This comparative analysis highlights the potential of SDT for applications
that demand high accuracy and reliability in complex classification tasks.

5.6 Chapter Summary

In this study, we presented a robust stochastic decision tree (SDT) model aimed at
enhancing the Precision of water stress estimation in pistachio and almond orchards,
thereby aiding in the efficient scheduling of irrigation. Our SDT model reduces the
laborious efforts associated with traditional SWP measurements and circumvents the
high costs involved with sensor installation and aerial imaging techniques. Through
rigorous evaluation, the SDT model demonstrated a notable prediction accuracy of
nearly 94%, significantly outperforming established models, such as SVM, KNN, and
RF. This superior performance was attributed to the model’s ability to handle com-
plex datasets without the necessity for feature selection, thereby preserving the in-
tegrity of the data and reducing computational expenses. Notably, the SDT model’s
stochastic nature contributes to its robustness, making it less susceptible to over-
fitting and more adaptable to varying data conditions encountered in agricultural
applications. In future work, we aim to expand the applicability of our model be-
yond pistachio and almond orchards to include a variety of crops, thus broadening
the scope of our research to encompass a more diverse range of agricultural needs.
Further development will focus on integrating real-time data feeds to enhance the
model’s predictive capabilities and deploying the model in a cloud-based framework
to facilitate end-user accessibility. By continuing to refine and adapt our approach, we
seek to contribute substantially to precision agriculture, particularly in the domains
of water management and drought mitigation.
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Chapter 6

Concluding Remarks and Directions for Fu-
ture Research

6.1 Summary of Contributions

In this dissertation, we have examined various stochastic approaches in machine
learning applied to decision trees, algorithms based on nearest neighbors, and agri-
cultural systems. In this chapter, we present a summary of the contributions and
directions for future research.

In Chapter 2, we introduced a novel Stochastic Decision Tree (SDT) induction
method designed to minimize computational complexity while maintaining high pre-
dictive accuracy. A key innovation of this approach is the integration of Haar Trees,
leveraging Haar-like features commonly used in image processing to enhance decision-
making at each node. By incorporating stochastic processes into the induction of
decision trees, the model efficiently optimizes the splitting criterion without relying
on traditional exhaustive search methods. The Haar Tree’s use of integral images
further reduces the computational burden, allowing for rapid computation of fea-
tures at each node. Our experiments on the MNIST dataset demonstrated that the
combination of SDT with Haar Trees achieved a test accuracy of 94%, significantly
outperforming traditional axis-aligned decision trees and providing competitive per-
formance compared to more complex oblique trees. This balance between accuracy
and efficiency, made possible by the unique combination of stochastic tree induction
and Haar-like features, is a key contribution of this chapter, demonstrating the SDT-
Haar Tree model’s suitability for high-dimensional datasets and resource-constrained
environments.

In Chapter 3, we presented a Neural-Synthetic Reduced Nearest-Neighbor
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(Neural-SRNN) model, addressing challenges inherent in nearest-neighbor-based
methods, such as the curse of dimensionality. This model integrates neural net-
works into the SRNN framework to enhance interpretability and performance in
high-dimensional classification tasks. By leveraging stochastic optimization tech-
niques and introducing a focal loss function, Neural-SRNN handles class imbalance
effectively, providing a more robust classification framework. Our experimental re-
sults, particularly on datasets such as MNIST and Fashion-MNIST, showed that the
Neural-SRNN model outperformed traditional nearest-neighbor algorithms, especially
in high-dimensional spaces. The model’s use of expectation-maximization allowed for
more accurate representation of sub-clusters, improving its classification accuracy and
generalization. This method presents a significant advance over traditional nearest-
neighbor techniques, demonstrating its potential for scalable, interpretable machine
learning in challenging classification tasks.

In Chapter 4, we extended the Neural-SRNN framework by developing a Two-
Layer Neural Network architecture aimed at enhancing both classification accuracy
and computational efficiency in image classification tasks. The model’s architecture
includes Mini-Convolutional Neural Networks (Mini-CNNs) in the first layer for class-
specific feature extraction, followed by a shallow neural network for final classification.
This modular design allows for parallel processing, significantly reducing the compu-
tational burden while maintaining high accuracy, particularly on challenging datasets
like SignMNIST and FashionMNIST. Additionally, the two-layer approach helps pre-
vent overfitting and demonstrates superior generalization capabilities. Extensive ex-
perimental validation confirmed the superiority of this approach over existing models,
showing that it delivers a resource-efficient solution for large-scale image classification
problems.

In Chapter 5, we applied the SDT model to a real-world agricultural problem,
focusing on predictive analysis of stem water potential (SWP) in almond and pis-
tachio orchards. This chapter’s primary contribution lies in the development of an
efficient irrigation prediction model that integrates both ground and aerial sensor
data to optimize water usage. By leveraging vegetative indices and weather data, the
SDT model accurately predicts SWP, a crucial indicator of water stress in trees. Our
results demonstrated that the SDT model outperformed traditional machine learning
methods, such as Random Forests and k-nearest neighbor, in terms of prediction ac-
curacy. Furthermore, the SDT model contributed to sustainable agricultural practices
by enabling precise water management at the individual tree level, thereby conserving
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water resources. This chapter underscores the versatility of the SDT model and high-
lights its practical applicability in real-world precision agriculture scenarios, where
efficient water management is critical.

6.2 Directions for future research

This dissertation opens several avenues for future research, particularly in extend-
ing stochastic decision trees and nearest-neighbor methods. One promising direction
is the application of stochastic decision trees to regression tasks, which would sup-
port continuous variable predictions critical in agriculture, such as yield forecasting
or water demand estimation. Additionally, enhancing the Neural-SRNN framework
for multi-modal data integration—such as combining image, sensor, and environmen-
tal data—could improve model robustness in complex scenarios. Finally, integrating
methods to clarify and interpret model decisions could enhance transparency and
accountability, fostering greater trust in model predictions and allowing users to ver-
ify outcomes, identify potential biases, and understand the influence of key features
on predictions. This would be particularly valuable in precision agriculture, where
practical and reliable insights into decision-making processes are essential for resource-
intensive applications.
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