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Abstract

Glutamine synthetase (GS; EC 6.3.1.2) plays a crucial role in the assimilation and re-assimilation of ammonia derived 
from a wide variety of metabolic processes during plant growth and development. Here, three developmentally regu-
lated isoforms of GS holoenzyme in the leaf of wheat (Triticum aestivum L.) seedlings are described using native-PAGE 
with a transferase activity assay. The isoforms showed different mobilities in gels, with GSII>GSIII>GSI. The cytosolic 
GSI was composed of three subunits, GS1, GSr1, and GSr2, with the same molecular weight (39.2 kDa), but different pI 
values. GSI appeared at leaf emergence and was active throughout the leaf lifespan. GSII and GSIII, both located in the 
chloroplast, were each composed of a single 42.1 kDa subunit with different pI values. GSII was active mainly in green 
leaves, while GSIII showed brief but higher activity in green leaves grown under field conditions. LC-MS/MS experi-
ments revealed that GSII and GSIII have the same amino acid sequence, but GSII has more modification sites. With 
a modified blue native electrophoresis (BNE) technique and in-gel catalytic activity analysis, only two GS isoforms 
were observed: one cytosolic and one chloroplastic. Mass calibrations on BNE gels showed that the cytosolic GS1 
holoenzyme was ~490 kDa and likely a dodecamer, and the chloroplastic GS2 holoenzyme was ~240 kDa and likely a 
hexamer. Our experimental data suggest that the activity of GS isoforms in wheat is regulated by subcellular localiza-
tion, assembly, and modification to achieve their roles during plant development.

Key words:  Assembly, enzyme isoform, glutamine synthetase, nitrogen, protein modification, wheat.

Introduction

Glutamine synthetase (GS; EC 6.3.1.2) assimilates ammo-
nium into glutamine, which is then used for the biosynthe-
sis of all essential nitrogenous compounds (Miflin and Lea, 
1977). All of the nitrogen within a plant, whether derived 
initially from nitrate, ammonium, N2 fixation, or catabolism 
of proteins, is channelled through reactions catalyzed by GS. 
Accordingly, GS plays a central role in nitrogen metabolism 

of vascular plants, and is a major checkpoint controlling 
plant growth and productivity (Brestic et al., 2014; Habash 
et al., 2007; Kichey et al., 2006; Lothier et al., 2011; Miflin 
and Habash, 2002; Simons et al., 2014; Tabuchi et al., 2005; 
Thomsen et al., 2014).

In vascular plants, two isoforms of GS were initially 
resolved by chromatography (Mann et  al., 1979; McNally 
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et al., 1983; McParland et al., 1976; O’Neal and Joy, 1973). 
Based on subcellular location, GS is classified as the cytosolic 
isoform (GS1) or the chloroplastic isoform (GS2). Electron 
microscopy analyses revealed that soybean (Glycine max) and 
common bean (Phaseolus vulgaris) GS enzymes are octam-
ers (Llorca et al., 2006; McParland et al., 1976), whereas the 
crystallographic structures of GS in maize and Medicago 
truncatula are decamers (Torreira et  al., 2014; Unno et  al., 
2006). GS2 is a single polypeptide (42–45 kDa) encoded by 
one nuclear gene, whereas GS1 is composed of polypeptides 
with the same molecular weight (38–40 kDa), but different pI 
values, and is encoded by three to five nuclear genes depend-
ing on the species. The GS isozymes have different metabolic 
roles, and their activities vary with plant development in 
different organs and cell types (Bernard et al., 2008; Coque 
et al., 2006; Finnemann and Schjoerring, 2000; Gallais et al., 
2006; Habash et  al., 2001; Kamachi et  al., 1991; Li et  al., 
1993; Ohashi et al., 2015; Orsel et al., 2014; Tabuchi et al., 
2007). GS2 is the predominant isozyme in leaf mesophyll 
cells, where it assimilates ammonia originating from nitrate 
reduction and photorespiration (Kumagai et al., 2011; Tobin 
and Yamaya, 2001). GS1 has multiple metabolic functions, 
involving primary ammonium assimilation in the roots, and 
catabolism ammonia re-assimilation for transport and dis-
tribution throughout the plant, and localizes to the vascu-
lar cells of various tissue of Arabidopsis (Guan et al., 2015), 
wheat (Triticum aestivum L.) (Bernard et  al., 2008; Kichey 
et al., 2005), rice (Oryza sativa) (Tabuchi et al., 2005), tobacco 
(Nicotiana tabacum) (Brugiere et  al., 1999), and potato 
(Solanum tuberosum) (Pereira et al., 1995). During leaf senes-
cence, GS1 functions in the assimilation and recycling of the 
ammonia generated from catabolic processes (Avila-Ospina 
et al., 2014; Bernard and Habash, 2009; Kamachi et al., 1992). 
This role, confirmed by quantitative trait locus analysis, or 
gene mutation or knockout, is particularly important during 
grain development in cereals when nitrogen is remobilized to 
the reproductive sinks (Brestic et al., 2014; Guan et al., 2015; 
Martin et  al., 2006; Tabuchi et  al., 2005). To achieve these 
multiple non-overlapping roles, GS isozymes are regulated at 
the levels of transcription, translation, subcellular localiza-
tion, assembly of subunits into the holoenzyme, post-trans-
lational modification of the enzyme, and protein turnover 
(Hirel et al., 2001; Ishiyama et al., 2004; Kamachi et al., 1991; 
Li et al., 1993; Lima et al., 2006; Orsel et al., 2014; Ortega 
et al., 1999; Riedel et al., 2001; Tabuchi et al., 2007; Tobin 
and Yamaya, 2001). In wheat, seven genetic loci coding for 
three different forms of GS1 have been identified. TaGS1a, 
TaGS1b, and TaGS1c code for GS1;1, TaGSr1 and TaGSr2 
code for GS1;2 (also called GSr), and TaGSe1 and TaGSe2 
code for GS1;3 (also called GSe). Three alleles coding for 
GS2 (TaGS2a, TaGS2b, and TaGS2c) are known (Bernard 
et al., 2008; Thomsen et al., 2014). Here, three developmen-
tally regulated GS holoenzymes in wheat are reported that 
can be separated by native-PAGE in plants.

There are several methods to analyze the oligomeric active 
state of a native protein, including gel filtration, analytical 
ultracentrifugation, electron microscopy, and X-ray crystal-
lography. However, all of these methods require a substantial 

amount of protein and/or investment in expensive equipment. 
Blue native-PAGE [blue native electrophoresis (BNE)] and 
clear native-PAGE [clear native electrophoresis (CNE)] are 
performed with smaller amounts of protein and have been 
widely used to study membrane protein complexes (Filoni 
et al., 2013; Strecker et al., 2010; Wittig et al., 2007; Wittig 
and Schagger, 2009). The application of these techniques to 
determine the native molecular weights and oligomeric states 
of the GS isoforms in wheat is reported here.

Materials and methods

Plant material and growth conditions
Wheat (T. aestivum L.) cvs Yumai 34, 49, and 50 were used for iso-
lation of GS isoforms during the growth of first leaves in April in 
Zhengzhou, China. The other cultivars shown in Supplementary 
Fig. S1 (at JXB online) were grown similarly, but at different times 
of the year. The seeds were put in a disk covered with wet gauze 
at 25 °C until they germinated; they were then sown in individual 
pots (25 cm upper diameter, 17 cm lower diameter, and 25 cm high) 
filled with vermiculite and grown outside under natural light/tem-
perature. Each plant was sprayed with 300 ml sterile water every 
day. The leaves were sampled three times from the onset of seedling 
emergence to the first leaf turning yellow, harvesting 0.5 g per sam-
ple. Wheat cv. Yumai 49 was also grown under 10/14 h light/dark 
periods at 23 °C in a growth chamber, with 800 μmol m–2 s–1 photon 
flux density at the top of the canopy during the light period, and 
watered with 200 ml Hoagland solution (containing 1 mM KH2PO4, 
5 mM KNO3, 1 mM MgSO4, 0.5 mM CaSO4, 4 mM Ca(NO3)2, 1 mM 
Mg(NO3)2, 0.5 mM CaCl2, 1 μM H3PO3, 1 μM CuSO4.5H2O, 1 μM 
MnCl2.4H2O, 1  μM Na2MoO4, and 1  μM ZnSO4.7H2O) twice a 
week to keep the soil moist and supply sufficient nutrients. Fully 
expanded green leaves were collected for the preparation of intact 
chloroplasts and enzyme analysis when the wheat seedlings had four 
or five leaves.

Preparation of leaf extract
Sample (0.5 g each) were ground into powder in a chilled mortar 
with liquid N2 and mixed with 1.5 ml Extraction Buffer (100 mM 
Tris, 1 mM EDTA, 1 mM MgCl2, and 10 mM β-mercaptoethanol, 
pH 7.6). The extract was centrifuged at 13 000 g at 4 °C for 30 min. 
The supernatant was prepared for native gel analysis.

Isolation of chloroplasts
Intact chloroplasts were isolated essentially as described by Theg 
et al. (1989). The washed chloroplast pellet after the Percoll step was 
resuspended in 350 μl Extraction Buffer and incubated on ice for 
10 min to break the organelles. The resuspension was used for immu-
noblotting or centrifuged at 13 000 g for 10 min and the supernatant 
used for enzyme assays immediately.

In-gel detection of GS activity and molecular weight
Four gel systems (running at 4 °C) were used to separate the proteins 
and detect GS activities in the gel. First, a discontinuous native-
PAGE system was used according to Robert and Wong (1986). The 
native gel system employed a 1.5 mm×170 mm×100mm gel, the ana-
lyzing gel was composed of 5% polyacrylamide (pH 8.7), and the 
stacking gel was 3% polyacrylamide (pH 6.7). Samples were nor-
malized to 30 μl (~60 μg protein) from 0.5 g FW leaves in each lane, 
and electrophoresis was carried out at 80 V for the stacking gel and 
120 V for the resolving gel at 4  °C. Second, the BNE system was 
used according to Wittig et al. (2006, 2007) with the following modi-
fications. The sample gel contained 3.5% polyacrylamide and the 
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gradient resolving gel contained 4–13% polyacrylamide; the gel was 
1.5 mm×170 mm×100 mm, the sample buffer was Extraction Buffer, 
and before loading sample in the gel, 100 μl sample was mixed with 
10 μl 50% glycerol. The current was limited to 15 mA during electro-
phoresis. The gel was run with cathode buffer A (0.02% Coomassie 
Blue G250, 50 mM Tricine, and 5 mM imidazole, pH 7.0) until the 
blue dye front was up to half  of the gel length; cathode buffer A was 
then removed and the gel was run with cathode buffer B (0.002% 
Coomassie Blue G250, 50 mM Tricine, and 5 mM imidazole, pH 
7.0) until the blue dye front moved out of the gel. Third, the BNE 
protocol was modified as follows. The gradient gel was prepared as 
the second gel system. After the gel ran for 1 h with cathode buffer 
A, cathode buffer A was removed and the gel was run with cath-
ode buffer C (50 mM Tricine and 5 mM imidazole, pH 7.0) until the 
blue dye front moved out of the gel. Fourth, for CNE, the gradient 
gel was prepared in the second gel system. Each well received 50 μl 
cathode buffer A before the sample was loaded. The gel was run only 
with cathode buffer C (50 mM Tricine and 5 mM imidazole, pH 7.0) 
until the blue dye front moved out of the gel.

After electrophoresis, GS activity was detected in-gel by the con-
version of l-glutamine to γ-glutamyl hydroxamate (Barratt, 1980). 
The gel was immersed in 100 ml reaction buffer (100 mM Tricine, 
1.3 mM EDTA, 20 mM sodium arsenate, 20 mM MgSO4, 0.5 mM 
ADP, 25 mM hydroxylamine, and 50 mM l-glutamate, pH 7.4) and 
incubated at 37  °C for 45 min with slow shaking, after which the 
reaction buffer was removed. The reaction was terminated by add-
ing 50 μl stop solution (370 mM FeCl3, 200 mM trichloroacetic acid, 
and 700 mM HCl) for ~3 min until GS activity appeared as a brown-
ish band in the yellow background. The gel was washed twice with 
cool distilled H2O and scanned immediately. The GS bands were 
marked with a blade and then the gel was stained with Coomassie 
Blue R250. The molecular mass of the GS isoforms was calculated 
by comparison with molecular weight standards (Life Technologies) 
using Quantity One software.

GS recovery and GS subunit identification
After the GS activity was detected in the gel, the band of interest 
was excised with a scalpel, rinsed with 0.5 mM EDTA, pH 7.6, and 
ground in a chilled mortar with this same solution. The homogenate 
was centrifuged at 12 000 g at 4 °C for 20 min and then the extraction 
was mixed with an equal volume of 0.1 M Tris-buffered phenol (pH 
8.0). After being centrifuged (12 000 g) at 4 °C for 20 min, the protein 
in the phenol phase was precipitated with 4 vols 0.1 M ammonium 
acetate in methanol overnight at –20 °C. The proteins recovered by 
centrifugation were washed once with 1 ml cold methanol and twice 
with 1 ml cold acetone, and then resolved in SDS sample buffer for 
analysis. A  discontinuous SDS-PAGE system was implemented 
according to Laemmli (1970), with a 12.5% polyacrylamide analyz-
ing gel and a 6% polyacrylamide stacking gel, and electrophoresis 
was performed at room temperature. Proteins were transferred to 
polyvinylidene difluoride membranes for blot analysis. GS polypep-
tides were detected using polyclonal antisera (generously provided 
by Bertrand Hirel) raised against GS2 of tobacco (Bernard et al., 
2008)

Protein extraction for two-dimensional immunoblots
Protein was extracted using a modification of the phenol-based 
method (Finnemann and Schjoerring, 2000). Wheat leaves were 
homogenized in an ice-cold mortar and pestle in SDS sample buffer 
(0.1 M Tris-Cl, 2% SDS, 5% 2-mercaptoethanol, and 30% sucrose, 
pH 8.0) and then mixed with the same volume of Tris-buffered phe-
nol (pH 8.0). The homogenate was centrifuged at 10 000 g for 5 min 
at 4  °C. Protein in the upper phenol phase was precipitated with 
5 vols 0.1 M ammonium acetate in methanol for 30 min at –20 °C. 
The protein recovered by centrifugation was washed twice with cold 
80% acetone and then dissolved in SDS sample buffer or rehydration 
buffer (8 M urea, 4% CHAPS, 2% IPG buffer, pH 4–7, and 20 mM 

DTT). Protein was quantified by the Bio-Rad protein assay with BSA 
as standard. For two-dimensional gel electrophoresis, wheat leaf 
proteins (600 μg) were loaded on to pH 4–7 Immobiline Drystrips 
(7 cm; Amersham) by passive rehydration overnight at room temper-
ature. The rehydrated strips were resolved in a Multiphor II appara-
tus (Pharmacia Biotech) by isoelectric focusing for 8000 Vh at 10 °C. 
The resolved strips were consecutively equilibrated in DTT solution 
(50 mM Tris, 6 M urea, 30% glycerol, 2% SDS, 0.002% bromophe-
nol blue, and 1% DTT, pH 8.8) and iodoacetamide solution (50 mM 
Tris, 6 M urea, 30% glycerol, 2% SDS, 0.002% bromophenol blue, 
and 2.5% iodoacetamide, pH 8.8) for 15 min, and the secondary 
SDS–PAGE was run with 12.5% gels. After electrophoresis, immu-
nodetection was performed as described above.

Protein identification by LC-MS/MS
After GS activity was detected in a native-PAGE gel, each band of 
interest was excised with a scalpel and washed with 75% ethanol. 
The samples were sent to the Genome Center at the University of 
California-Davis for identification of GS proteins and modifications 
by LC-MS/MS, and analyzed with Scaffold 4.0 software.

Results

Three isoforms of GS are active during wheat leaf 
development

To elucidate the role of GS isoforms during wheat develop-
ment, leaf extracts from three cultivars of wheat seedlings 
at different developmental stages were separated by native-
PAGE and GS isoforms were detected using transferase activ-
ity staining. Three isoforms of GS holoenzyme were identified 
in the wheat leaf. GSI, GSII, and GSIII emerged sequentially 
with the development of the first leaf (Fig.  1). Conversely, 
GSIII, GSII, and GSI disappeared in turn with leaf senescence 
(Fig. 1). GSII had the highest mobility in native-PAGE, fol-
lowed by GSIII and then GSI. GSI was present during the seed 
germination stage and increased progressively in activity until 
leaf senescence. GSII appeared with leaf expansion and main-
tained the highest activity in green leaves, but disappeared 
when the leaf turned yellow. GSIII had a shorter period of 
activity, albeit with higher activity, in the growing green leaf, 
i.e. from the stage of fast leaf expansion (Fig. 1, panels 2dpe 
and 5 dpe) to the full-length size (Fig. 1, panel 7dpe). It was 
deduced that GSI was likely cytosolic (GS1) because it was 
present from the onset of germination until leaf senescence. 
GSII was considered likely to be chloroplastic (GS2) because 
it was the dominant GS in green leaves. GSIII has not been 
described before.

Subunit composition and subcellular localization of GS 
isoforms

To characterize the GS isoforms further, chloroplasts were 
isolated and GS activity therein detected using native-PAGE. 
Both GSII and GSIII were found in chloroplasts (Fig. 2A) and 
immunoblots revealed them to be derived from only one GS 
polypeptide of 43.6 kDa (Fig. 2B). Based on these findings, 
they are considered to be chloroplastic GS2-type isoforms. 
By contrast, GSI was not found in chloroplasts and so might 
be cytoplasmic. To confirm the identities of the GS isoforms, 
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leaf proteins were separated by native-PAGE, and the bands 
displaying GS activity were recovered from the gel by chemi-
cal extraction, separated by SDS-PAGE, and detected by 
immunoblot. The band giving GSI activity was composed of 
a 39 kDa subunit (Fig. 2C), consistent with its identification 
as cytosolic GS1. The bands showing GSII and GSIII activ-
ity were found to be composed of a single 43.6 kDa subu-
nit (Fig. 2C). This suggests that differential modifications of 
GS2-related subunits might confer different mobility to the 
holoenzymes (GSII and GSIII). Although the subunit of GS2 
was bigger than that of GS1 (43.6 versus 39 kDa), GSII and 
GSIII ran faster than GSI in the native-PAGE system, suggest-
ing they may have different oligomeric states.

Identification of GS protein sequences and 
modifications

To determine unambiguously the proteins corresponding 
to GSI, GSII, and GSIII, bands containing these activities 

were excised from native gels and analyzed by LC-MS/MS 
(Supplementary Table S1 at JXB online). Protein identifica-
tion revealed that the GSI band contained fragments of three 
previously described cytosolic GS isoforms, GS1, GSr1, 
and GSr2 (equivalent to GS1;1 and two forms of GS1;2), 
although no GSe (equivalent to GS1;3) was detected. The 
complete sequences of GSII and GSIII were obtained in the 
LC-MS/MS experiment; they were identical with a theoreti-
cal molecular weight of 42.1 kDa, identical to GS2a, GS2b, 
and GS2c. The LC-MS/MS data (parent error <5 ppm) indi-
cated that GSII had many more modifications than did GSIII, 
including acetylation, oxidation, dioxidation, and deamida-
tion. In comparison, GSIII had fewer sites of oxidation, one 
site of acetylation, and more sites of deamidation (Table 1).

Two-dimensional separation of leaf proteins and subse-
quent immunoblotting revealed two groups of GS polypep-
tides with distinct pI values. In one, three 39 kDa GS1-related 
polypeptides were detected with pI values of 5.08, 5.13, 
and 5.21 (Fig.  3). In the other, three 43.6 kDa GS2-related 
polypeptides were detected with pI values of 4.8, 4.94, and 
5.05. These combined data suggest that the GSII and GSIII 
activity bands seen in native-PAGE were each composed of 
GS2-related proteins with different pI values due to different 
modifications.

Oligomers of GS isoenzymes

The authors next turned their attention to elucidation of the 
oligomeric state of the wheat GS isoforms. In BNE, protein 
complexes are separated according to size in acrylamide gra-
dient gels and their sizes can be calibrated with standards. 
During the initial BNE experiments, the presence of the 
Coomassie Brilliant Blue G250 (referred to hereafter as G250) 
interfered with the activity stain for GS1 (Supplementary 
Fig. S2 at JXB online). To overcome this the BNE protocol 
was modified to include a 1 h separation of proteins in the 
presence of G250 and then an additional 3 h separation in 
which the cathode buffer was replaced with one lacking the 
dye. This allowed a separation of the protein complexes by 
molecular weight and subsequent detection by the transferase 
activity stain. Fig. 4 shows the results of such an analysis and 
reveals that the GS1 holoenzyme has a molecular weight 
of ~490 kDa. Given the molecular weight of the monomer 
(39 kDa), this indicates that the GS1 holoenzyme is likely 

Fig. 1.  GS isoforms as a function of leaf development in wheat. GS isoforms were monitored using native-PAGE (5%) in the first leaf in seedlings of 
wheat cvs Yumai 34, 49. and 50. Samples were taken at the indicated times; dpe, days post-emergence.

Fig. 2.  Electrophoretic separation and detection of cytosolic and 
chloroplastic GS, and GS-related subunits. (A) In-gel detection of GS 
activity. Protein extracts were prepared from leaves (L) and purified 
chloroplasts (Cp), separated by 5% native-PAGE, and GS isoforms were 
detected based on GS activity in the gel. (B) Detection of chloroplastic 
GS-related subunits. Proteins from the leaf or isolated chloroplasts were 
separated by 12.5% SDS-PAGE, and probed with antibodies against 
tobacco GS2. (C) Subunit composition of GS isozymes of wheat leaf. 
Protein extracts were separated using 5% native PAGE. GS isozyme 
bands were recovered by chemical extraction, separated by 12.5% SDS-
PAGE, and probed with anti-tobacco GS2.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv388/-/DC1
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a dodecamer. Interestingly, GS2, containing both GSII and 
GSIII activities, ran as a single band with a molecular weight 
of 240 kDa, suggesting that the holoenzyme is most likely a 
hexamer. These results additionally suggest that while GS1 
and GS2 have distinct migrations in native-PAGE gels, in part 
due to different oligomeric states of their respective holoen-
zymes, the different mobilities of GSII and GSIII, both GS2 
isoforms, in the same native gel system must be due in part to 
their different modifications as described in Table 1.

Discussion

In vascular plants, only two isoforms of the GS holoenzyme 
have been resolved by standard chromatography (Mann et al., 
1979; McNally et al., 1983; McParland et al., 1976; O’Neal 

and Joy, 1973) and by native gel electrophoresis (Nagy et al., 
2013; Péscsvéradi et  al., 2009). Here, three isoforms of GS 
were separated using native gels in wheat seedlings (Figs 1 
and 2); the third isoform, GSIII, has not been reported before. 
The fact that all three isoforms were observed in >20 culti-
vars (Supplementary Fig. S1 at JXB online) confirms they are 
generally present in wheat seedlings. In general, GSIII is read-
ily observed in plants grown in the field, but is more difficult 
to detect in those grown in growth chambers. This might be 
ascribed to the lower light intensity of the growth chamber 
environment (<1000  μmol m–2 s–1 photon flux density), as 
opposed to sunlight which can provide ~2000 μmol m–2 s–1 
photon flux density of photosynthetically active radiation in 
the field. The appearance of GSIII is also regulated with the 
leaf development independent of whether the wheat seedlings 
were grown without (Fig. 1) or with (Supplementary Fig. S3 
at JXB online) nitrogen. These two factors may be responsi-
ble for it not having been identified in previous studies (Nagy 
et al., 2013; Péscsvéradi et al., 2009). For instance, GSIII was 
not found in green leaves of 14-d-old seedlings growing in 
chambers, whereas it was abundant in green leaves of 21-d-
old seedlings from the same chamber (Fig. 2A).

The early estimates for the molecular weight of GS oli-
gomers came from direct measurements (gel filtration, sedi-
mentation equilibrium) with purified protein (Mann et  al., 
1979; McParland et al., 1976). It is difficult to obtain suffi-
cient quantities of purified protein from plants for assembly 
and structure studies, and, consequently, these previous GS 
structural studies used proteins heterologously expressed in 
Escherichia coli (Llorca et  al., 2006; O’Neal and Joy, 1973; 
Seabra et al., 2009; Torreira et al., 2014; Unno et al., 2006). 
BNE techniques provide an independent method for separat-
ing protein complexes with high resolution and from which 

Table 1.  Protein modifications detected in GSII and GSIII

Isoform Oxidation Acetyl Deamidation Dioxidation

GSII

Sites 7 3 7 6
Amino acid M W Q N A L G Q N W M
GSIII

Sites 4 1 9 5
Amino acid M W Q N L W Q N W M

Fig. 3.  Two-dimensional analysis of GS isozymes in wheat leaves. (A) 
Two-dimensional gel of proteins extracted from the wheat leaf; stained 
with Coomassie Blue R250. The rectangle shows the region putatively 
containing GS spots. (B) Two-dimensional immunoblots of GS subunits in 
wheat leaf. IEF, isoelectric focussing. Leaf proteins (50 μg) were separated 
by two-dimensional electrophoresis, and the region thought to contain GS 
(larger than the rectangle) was electroblotted and probed with antibodies 
against tobacco GS2.

Fig. 4.  Identification of the native molecular weight of GS isoforms using 
BNE. (A) Soluble proteins (~100 μg) from wheat seedling chloroplasts (Cp), 
leafs (L), and roots (R) were separated by BNE on a 4–13% polyacrylamide 
gradient gel, and GS isoforms were detected with a transferase activity 
assay. (B) The GS bands were marked and the gel stained with Coomassie 
Blue R250. M, high-molecular-weight markers (mass in kDa given to the 
right of the gel). (This figure is available in colour at JXB online.)
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their molecular weights can be determined. When soluble 
proteins from leaves or isolated chloroplasts were separated 
by BNE and GS isoform activities were detected in the gel, 
only one GS isoform (corresponding to chloroplastic GS2) 
was observed (Supplementary Fig. S2 at JXB online). This 
is likely because cytosolic GS1 activity appears to be sensi-
tive to G250 and because Rubisco runs in the same part of 
the gel, overwhelming the transferase signal. When leaf or 
chloroplast soluble proteins were separated using the BNE 
procedure, but omitting G250 from the cathode buffer, two 
GS isoforms were detected in leaf extracts (GS1 and GS2) 
and one in the chloroplast (GS2), although chloroplastic GS 
in leaves and chloroplasts displayed slightly different mobility 
(Supplementary Fig. S4 at JXB online). Finally, the BNE pro-
tocol was modified, first running the gel with cathode buffer 
containing 0.02% G250 for 1 h to ensure that all proteins car-
ried same net charge and then changing to cathode buffer 
without G250 to reduce the influence of G250 on GS activity. 
Although cytosolic GS activity was weak, it was detectable. 
Furthermore, chloroplastic GS in leaf extracts and chloro-
plast extracts had the same mobility in the gel.

Based on this modified BNE procedure, the cytosolic 
GS, with the activity in GSI, was likely to be a dodecamer, 
the same as GSr1 in soybean nodules analyzed by analyti-
cal ultracentrifugation and native-PAGE (Masalkar and 
Roberts, 2015) and GS in prokaryotes (Eisenberg et  al., 
2000). Our data suggest that wheat chloroplastic GS, with 
activities in GSII and GSIII, was a hexamer, which differs 
markedly from other plants. For example, GSs from soybean 
(McParland et  al., 1976) and common bean (Llorca et  al., 
2006) are octamers as determined by electron microscopy; 
GSs from maize and M. truncatula and GS1β from soybean 
are decamers (Masalkar and Roberts, 2015; Torreira et  al., 
2014; Unno et al., 2006) as determined by X-ray crystallog-
raphy. Separated by CNE and detected by in-gel GS activity 
assay, GS from spinach stroma is a decamer (Kimata-Ariga 
and Hase, 2014). Confidence in the methodology for oligo-
meric state determination is strengthened by Supplementary 
Fig. S5 (at JXB online) in which maize GS can be seen run-
ning as a decamer. Nonetheless, the authors recognize that 
the oligomeric state reported here should be further evaluated 
by additional techniques, and future plans call for expression 
of recombinant TaGS1 and TaGS2 and analysis by X-ray 
crystallography. The authors are also working to compare GS 
proteins in M. truncatula, soybean, Arabidopsis, spinach, and 
common bean with those in wheat using the modified BNE 
system.

The different pI values for the wheat GS proteins have 
different origins. GSI, cytosolic GS, is encoded by a multi-
gene family, GS1 and GSr, and the pI values detected here 
are close to those predicted by analysis of the respective gene 
sequences (Bernard et al., 2008). However, no GSe was iden-
tified by MS analysis, perhaps because its expression was 
too low to be detectable in leaves and roots during the wheat 
seedling stage (Bernard et al., 2008). In contrast, chloroplas-
tic GS is encoded by three alleles (TaGS2a, TaGS2b, and 
TaGS2c), and the different pI values must arise from different 
post-translational modifications. Lima (2006) reported that 

phosphorylated GS2 of M. truncatula interacts with 14-3-3 
proteins, which leads to selective proteolysis and thus inacti-
vation of the plastid isoform. In E. coli, GS is reported to be 
inactivated by adenlylation (Liaw et al., 1993), and oxidation 
of soybean root GS has been reported to lead to its inactiva-
tion and increased susceptibility to degradation (Ortega et al., 
1999). No evidence for phosphorylation of GS2 was found 
here, but numerous other modifications were detected, and 
they were different for GSII and GSIII (Supplementary Fig. 
S6 at JXB online). For instance, GSII had three acetylation 
sites in its N-terminal region, whereas GSIII had one such site. 
GSII had seven sites of oxidation, while GSIII had four, even 
though GSII activity was higher than that of GSIII in all but 
the most active stages of leaf development (Fig. 1). Whether 
the various modifications regulate GS2 enzyme activity or 
stability remains to be established.

Recently, an analysis of GS in Arabidopsis was presented 
in which 11 different GS1 isoforms were detected in a 7% 
resolving gel using a phosphate release assay and no GS2 
was observed (only this group detected GS activity using this 
method) (Dragicevic et  al., 2014). This is clearly different 
from the situation described herein for wheat and emphasizes 
the potential diversity of GS assembly configurations in dif-
ferent plant species.

When GS isoenzymes were originally discovered, their 
putative functions were deduced from their pattern of expres-
sion in different tissues during plant development and further 
confirmed by genetic methods (Bao et  al., 2014; Gadaleta 
et al., 2011; Gadaleta et al., 2014; Guo et al., 2013; Habash 
et  al., 2007; Martin et  al., 2006). GS1, vascular-localized 
cytosolic GS, is proposed to be involved in the re-assimilation 
of ammonium released during leaf senescence and in trans-
porting ammonium from source organs to sink organs, e.g. 
from fully expanded leaves to new leaves (Bernard et al., 2008; 
Kichey et al., 2006; Kichey et al., 2007). GS2, however, was 
found in both mitochondria and chloroplasts in Arabidopsis 
(Taira et al., 2004), suggesting that this isoform is active in re-
assimilation of the large pool of ammonia released by pho-
torespiration. It is noteworthy that neither GS activity nor 
GS subunits in mitochondria purified from wheat leaves were 
detected in the present report (data not shown). This, along 
with the detection of GSIII primarily in leaves grown under 
relatively high light intensity, would be consistent with a func-
tion of chloroplastic GS2 in original nitrogen assimilation, 
especially under conditions of abundant energy availability 
that would promote the conversion of nitrate to ammonium 
in the plastid. Although the physiological role of the newly 
described GSIII remains to be elucidated, findings presented 
here suggest that there is a complex and flexible regulation for 
GS isoforms in wheat that is coupled to nitrogen utilization 
and plant growth.

Supplementary data

Supplementary data are available at JXB online.
Figure S1. GS isoforms in the leaf of different wheat 

cultivars.
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Figure S2. GS isoforms in wheat chloroplasts, leaves, 
and roots.

Figure S3. GS isoforms as a function of leaf development 
in wheat.

Figure S4. GS isoforms in wheat chloroplast, leaf, and roots.
Figure S5. GS isoforms in wheat leaf and roots, and maize 

leaf and roots.
Figure S6. Amino acid modifications sites in GSII 

and GSIII.
Table S1. Identification of the composition of GSI, GSII, 

and GSIII by MS analysis.

Acknowledgements
The authors wish to thank Professor B. Hirel for the generous gift of anti-GS 
antibody. This work was supported by National Natural Science Funds of 
China (30771266) and open funds of the State Key Laboratory of Wheat and 
Maize Crop Science in China (39990004). The preparation of this manuscript 
was supported in part by the Division of Chemical Sciences, Geosciences, 
and Biosciences, Office of Basic Energy Sciences of the US Department of 
Energy through grant DE-FG02-03ER15405 to SMT.

References
Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. 
2014. Autophagy, plant senescence, and nutrient recycling. Journal of 
Experimental Botany 65, 3799–3811.

Bao AL, Zhao ZQ, Ding GD, Shi L, Xu FS, Cai HM. 2014. Accumulated 
expression level of cytosolic glutamine synthetase 1 gene (OsGS1; 1 or 
OsGS1; 2) alter plant development and the carbon-nitrogen metabolic 
status in rice. PLoS One 9, e95581.

Barratt DHP. 1980. Method for the detection of glutamine synthetase 
activity on starch gels. Plant Science Letters 18, 249–255.

Bernard SM, Habash DZ. 2009. The importance of cytosolic glutamine 
synthetase in nitrogen assimilation and recycling. New Phytologist 182, 
608–620.

Bernard SM, Moller ALB, Dionisio G, et al. 2008. Gene expression, 
cellular localisation and function of glutamine synthetase isozymes in 
wheat (Triticum aestivum L.). Plant Molecular Biology 67, 89–105.

Brestic M, Zivcak M, Olsovska K, Shao HB, Kalaji HM, Allakhverdiev 
SI. 2014. Reduced glutamine synthetase activity plays a role in control of 
photosynthetic responses to high light in barley leaves. Plant Physiology 
and Biochemistry 81, 74–83.

Brugiere N, Dubois F, Limami AM, Lelandais M, Roux Y, Sangwan 
RS, Hirel B. 1999. Glutamine synthetase in the phloem plays a major role 
in controlling proline production. Plant Cell 11, 1995–2012.

Coque M, Bertin P, Hirel B, Gallais A. 2006. Genetic variation and QTLs 
for N-15 natural abundance in a set of maize recombinant inbred lines. 
Field Crops Research 97, 310–321.

Dragicevic M, Todorovic S, Bogdanovic M, Filipovic B, Misic D, 
Simonovic A. 2014. Knockout mutants as a tool to identify the subunit 
composition of Arabidopsis glutamine synthetase isoforms. Plant 
Physiology and Biochemistry 79, 1–9.

Eisenberg, D, Gill, HS, Pfluege, GMU, Rotstein, SH. 2000. Structure-
function relationships of glutamine synthetases. Biochimica et Biophysica 
Acta 1477, 122–145.

Filoni DN, Pesi R, Allegrini S, Camici M, Tozzi MG. 2013. A native 
electrophoretic technique to study oligomerization and activity of 
cytosolic 5′-nucleotidase II. Analytical and Bioanalytical Chemistry 405, 
8951–8954.

Finnemann J, Schjoerring JK. 2000. Post-translational regulation of 
cytosolic glutamine synthetase by reversible phosphorylation and 14-3-3 
protein interaction. Plant Journal 24, 171–181.

Gadaleta A, Nigro D, Giancaspro A, Blanco A. 2011. The glutamine 
synthetase (GS2) genes in relation to grain protein content of durum 
wheat. Functional & Integrative Genomics 11, 665–670.

Gadaleta A, Nigro D, Marcotuli I, Giancaspro A, Giove SL, Blanco 
A. 2014. Isolation and characterisation of cytosolic glutamine synthetase 
(GSe) genes and association with grain protein content in durum wheat. 
Crop & Pasture Science 65, 38–45.

Gallais A, Coque M, Quillere I, Prioul JL, Hirel B. 2006. Modelling 
postsilking nitrogen fluxes in maize (Zea mays) using 15N-labelling field 
experiments. New Phytologist 172, 696–707.

Guan M, Moller IS, Schjoerring JK. 2015. Two cytosolic glutamine 
synthetase isoforms play specific roles for seed germination and seed yield 
structure in Arabidopsis. Journal of Experimental Botany 66, 203–212.

Guo Y, Sun JJ, Zhang GZ, Wang YY, Kong FM, Zhao Y, Li SS. 2013. 
Haplotype, molecular marker and phenotype effects associated with 
mineral nutrient and grain size traits of TaGS1 a in wheat. Field Crops 
Research 154, 119–125.

Habash DZ, Bernard S, Schondelmaier J, Weyen J, Quarrie SA. 
2007. The genetics of nitrogen use in hexaploid wheat: N utilisation, 
development and yield. Theoretical and Applied Genetics 114, 403–419.

Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA. 2001. 
The role of cytosolic glutamine synthetase in wheat. Annals of Applied 
Botany 138, 83–89.

Hirel B, Bertin P, Quillere I, et al. 2001. Towards a better understanding 
of the genetic and physiological basis for nitrogen use efficiency in maize. 
Plant Physiology 125, 1258–1270.

Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya 
T, Takahashi H. 2004. Kinetic properties and ammonium-dependent 
regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. 
Journal of Biological Chemistry 279, 16598–16605.

Kamachi K, Yamaya T, Hayakawa T, Mae T, Ojima K. 1992. Changes 
in cytosolic glutamine synthetase polypeptide and its mRNA in a leaf blade 
of rice plants during natural senescence. Plant Physiology 98, 1323–1329.

Kamachi K, Yamaya T, Mae T, Ojima K. 1991. A role for glutamine 
synthetase in the remobilization of leaf nitrogen during natural senescence 
in rice leaves. Plant Physiology 96, 411–417.

Kichey T, Heumez E, Pocholle D, Pageau K, Vanacker H, Dubois 
F, Le Gouis J, Hirel B. 2006. Combined agronomic and physiological 
aspects of nitrogen management in wheat highlight a central role for 
glutamine synthetase. New Phytologist 169, 265–278.

Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J. 2007. In 
winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and 
remobilisation to the grain correlates with agronomic traits and nitrogen 
physiological markers. Field Crops Research 102, 22–32.

Kichey T, Le Gouis J, Sangwan B, Hirel B, Dubois F. 2005. Changes 
in the cellular and subcellular localization of glutamine synthetase and 
glutamate dehydrogenase during flag leaf senescence in wheat (Triticum 
aestivum L.). Plant and Cell Physiology 46, 964–974.

Kimata-Ariga Y, Hase T. 2014. Multiple complexes of nitrogen 
assimilatory enzymes in spinach chloroplasts: possible mechanisms for the 
regulation of enzyme function. PLoS One 9, e108965.

Kumagai E, Araki T, Hamaoka H, Ueno S. 2011. Ammonia emission 
from rice leaves in relation to photorespiration and genotypic differences in 
glutamine synthetase activity. Annals of Botany 108, 1381–1386.

Laemmli, UK. 1970. Cleavage of structural proteins during the assembly 
of the head of bacteriophage T4. Nature 227, 680–685.

Li MG, Villemur R, Hussey PJ, Silflow CD, Gantt JS, Snustad DP. 
1993. Differential expression of six glutamine synthetase genes in Zea 
mays. Plant Molecular Biology 23, 401–407.

Liaw SH, Pan C, Eisenberg D. 1993. Feedback inhibition of fully 
unadenylylated glutamine synthetase from Salmonella typhimurium by 
glycine, alanine, and serine. Proceedings of the National Academy of 
Sciences U S A 90, 4996–5000.

Lima L, Seabra A, Melo P, Cullimore J, Carvalho H. 2006. Post-
translational regulation of cytosolic glutamine synthetase of Medicago 
truncatula. Journal of Experimental Botany 57, 2751–2761.

Llorca O, Betti M, Gonzalez JM, Valencia A, Marquez AJ, Valpuesta 
JM. 2006. The three-dimensional structure of an eukaryotic glutamine 
synthetase: functional implications of its oligomeric structure. Journal of 
Structural Biology 156, 469–479.

Lothier J, Gaufichon L, Sormani R, Lemaitre T, Azzopardi M, Morin 
H, Chardon F, Reisdorf-Cren M, Avice JC, Masclaux-Daubresse 
C. 2011. The cytosolic glutamine synthetase GLN1;2 plays a role in 

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv388/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv388/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv388/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv388/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv388/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv388/-/DC1


6834  |  Wang et al.

the control of plant growth and ammonium homeostasis in Arabidopsis 
rosettes when nitrate supply is not limiting. Journal of Experimental Botany 
62, 1375–1390.

Mann AF, Fentem PA, Stewart GR. 1979. Identification of two forms 
of glutamine synthetase in barley (Hordeum vulgare). Biochemical and 
Biophysical Research Communications 88, 515–521.

Martin A, Lee J, Kichey T, Gerentes D, et al. 2006. Two cytosolic 
glutamine synthetase isoforms of maize are specifically involved in the 
control of grain production. Plant Cell 18, 3252–3274.

Masalkar PD, Roberts DM. 2015. Glutamine synthetase isoforms in 
nitrogen-fixing soybean nodules: distinct oligomeric structures and thiol-
based regulation. FEBS Letters 589, 215–221.

McNally SF, Hirel B, Gadal P, Mann AF, Stewart GR. 1983. Glutamine 
synthetases of higher plants: evidence for a specific isoform content 
related to their possible physiological role and their compartmentation 
within the leaf. Plant Physiology 72, 22–25.

McParland RH, Guevara JG, Becker RR, Evans HJ. 1976. The 
purification and properties of the glutamine synthetase from the cytosol of 
soya-bean root nodules. Biochemical Journal 153, 597–606.

Miflin BJ, Habash DZ. 2002. The role of glutamine synthetase and glutamate 
dehydrogenase in nitrogen assimilation and possibilities for improvement in the 
nitrogen utilization of crops. Journal of Experimental Botany 53, 979–987.

Miflin BJ, Lea PJ. 1977. Amino-acid metabolism. Annual Review of Plant 
Physiology and Plant Molecular Biology 28, 299–329.

Nagy Z, Nemeth E, Guoth A, Bona L, Wodala B, Pecsvaradi A. 2013. 
Metabolic indicators of drought stress tolerance in wheat: glutamine synthetase 
isoenzymes and Rubisco. Plant Physiology and Biochemistry 67, 48–54.

O’Neal D, Joy KW. 1973. Glutamine synthetase of pea leaves. 
I. Purification, stabilization, and pH optima. Archives of Biochemistry and 
Biophysics 159, 113–122.

Ohashi M, Ishiyama K, Kusano M, et al. 2015. Lack of cytosolic 
glutamine synthetase1;2 in vascular tissues of axillary buds causes severe 
reduction in their outgrowth and disorder of metabolic balance in rice 
seedlings. Plant Journal 81, 347–356.

Orsel M, Moison M, Clouet V, Thomas J, Leprince F, Canoy AS, 
Just J, Chalhoub B, Masclaux-Daubresse C. 2014. Sixteen cytosolic 
glutamine synthetase genes identified in the Brassica napus L. genome 
are differentially regulated depending on nitrogen regimes and leaf 
senescence. Journal of Experimental Botany 65, 3927–3947.

Ortega JL, Roche D, Sengupta-Gopalan C. 1999. Oxidative turnover 
of soybean root glutamine synthetase. In vitro and in vivo studies. Plant 
Physiology 119, 1483–1496.

Pereira S, Pissara J, Sunkel C, Salema R. 1995. Tissue-specific distribution 
of glutamine synthetase in potato tubers. Annals of Botany 77, 429–432.

Péscsvéradi A, Nagy Z, Varga A, Vashegyi A, Labadi I, Galbacs G, 
Zsoldos F. 2009. Chloroplastic glutamine synthetase is activated by direct 
binding of aluminium. Physiologia Plantarum 135, 43–50.

Riedel J, Tischner R, Mack G. 2001. The chloroplastic glutamine 
synthetase (GS-2) of tobacco is phosphorylated and associated with 
14-3-3 proteins inside the chloroplast. Planta 213, 396–401.

Robert FM, Wong, PP 1986. Isozymes of glutamine synthetase in 
Phaseolis vulgaris L. and Phaseolis lunatus L. root nodules. Plant 
Physiology 81, 142–148.

Seabra AR, Carvalho H, Pereira PJ. 2009. Crystallization and 
preliminary crystallographic characterization of glutamine synthetase from 
Medicago truncatula. Acta Crystallographia F65, 1309–1312.

Simons M, Saha R, Amiour N, et al. 2014. Assessing the metabolic 
impact of nitrogen availability using a compartmentalized maize leaf 
genome-scale model. Plant Physiology 166, 1659–1674.

Strecker V, Wumaier Z, Wittig I, Schagger H. 2010. Large pore gels 
to separate mega protein complexes larger than 10 MDa by blue native 
electrophoresis: isolation of putative respiratory strings or patches. 
Proteomics 10, 3379–3387.

Tabuchi M, Abiko T, Yamaya T. 2007. Assimilation of ammonium ions 
and reutilization of nitrogen in rice (Oryza sativa L.). Journal of Experimental 
Botany 58, 2319–2327.

Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi 
H, Yamaya T. 2005. Severe reduction in growth rate and grain filling of 
rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant 
Journal 42, 641–651.

Taira M, Valtersson U, Burkhardt B, Ludwig RA. 2004. Arabidopsis 
thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf 
mitochondria and chloroplasts. Plant Cell 16, 2048–2058.

Theg SM, Bauerle C, Olsen LJ, Selman BR, Keegstra K. 1989. 
Internal ATP is the only energy requirement for the translocation of 
precursor proteins across chloroplastic membranes. Journal of Biological 
Chemistry 264, 6730–6736.

Thomsen HC, Eriksson D, Moller IS, Schjoerring JK. 2014. Cytosolic 
glutamine synthetase: a target for improvement of crop nitrogen use 
efficiency? Trends in Plant Science 19, 656–663.

Tobin AK, Yamaya T. 2001. Cellular compartmentation of ammonium 
assimilation in rice and barley. Journal of Experimental Botany 52, 
591–604.

Torreira E, Seabra AR, Marriott H, Zhou M, Llorca O, Robinson 
CV, Carvalho HG, Fernandez-Tornero C, Pereira PJ. 2014. The 
structures of cytosolic and plastid-located glutamine synthetases from 
Medicago truncatula reveal a common and dynamic architecture. Acta 
Crystallographia D70, 981–993.

Unno H, Uchida T, Sugawara H, Kurisu G, Sugiyama T, Yamaya T, 
Sakakibara H, Hase T, Kusunoki M. 2006. Atomic structure of plant 
glutamine synthetase: a key enzyme for plant productivity. Journal of 
Biological Chemistry 281, 29287–29296.

Wittig, I, Braun, HP, Schagger, H. 2006. Blue native PAGE. Nature 
Protocols 1, 418–428.

Wittig I, Karas M, Schagger H. 2007. High resolution clear native 
electrophoresis for in-gel functional assays and fluorescence studies of 
membrane protein complexes. Molecular and Cellular Proteomics 6, 
1215–1225.

Wittig I, Schagger H. 2009. Native electrophoretic techniques to identify 
protein-protein interactions. Proteomics 9, 5214–5223.




