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Abstract

Multiple theoretical perspectives posit that drug use leads to biased valuation of drug-related 

reward, at the expense of naturally occurring rewarding activities (i.e., reward dysregulation). 

Recent research suggests that the comparative balance of drug-related and nondrug-related reward 

valuation is a powerful determinant of substance misuse and addiction. We examined differential 

neurophysiological responses—indexed with the P3 component of the event-related potential 

(ERP)—elicited by visual alcohol cues and cues depicting natural reward as a neurobiological 

indicator of problematic drinking. Nondependent, young adult drinkers (N = 143, aged 18–30 

years) completed questionnaire measures assessing alcohol use and problems, and viewed alcohol 

cues (pictures of alcoholic beverages), high-arousing natural reward cues (erotica, adventure 

scenes), nonalcoholic beverage cues, and neutral scenes (e.g., household items) while ERPs 

were recorded. When examined separately, associations of P3-ERP reactivity to alcohol cues and 

natural reward cues with alcohol use and problems were weak. However, differential P3 response 

to the two types of cues (i.e., reward dysregulation P3) showed consistent and robust associations 

with all indices of alcohol use and problems and differentiated high-risk from lower-risk drinkers. 

The current results support the idea that the differential incentive-motivational value of alcohol, 

relative to naturally rewarding activities, is associated with increased risk for substance misuse and 
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dependence, and highlight a novel neurophysiological indicator—the reward dysregulation P3—of 

this differential reward valuation.

Keywords

Cue Reactivity; Alcohol Cues; Natural Rewards; Reward Dysregulation P3; Event-Related 
Potentials

Humans evolved to experience reward from activities that promote their survival (see [1]). 

For example, eating [2], exercising [3], social interaction [4], and sexual intimacy [5] are 

all known to stimulate the neurocircuitry of reward and reinforcement learning, thereby 

motivating their repetition [6]. Drugs of abuse also engage neural reward systems [7], thus 

reinforcing efforts to obtain and consume them. Multiple theories posit that repeated use 

of drugs can alter the neurocircuitry of reward processing in ways that bias attention and 

motivational systems toward drug pursuit [7,8], at the expense of other, naturally rewarding 

activities [9,10].

Consistent with these perspectives, alcohol use disorder (AUD) has been characterized as 

a disorder of reinforcement pathology [11]. Three theoretical perspectives—the incentive-

sensitization theory [12], reward deficit models [13,14], and behavioral economic theory 

[15]—make complementary predictions in this regard. Yet, researchers have largely failed 

to integrate these theoretical perspectives in empirical work investigating neurobiological 

indicators of AUD risk. Here, we investigated whether differential neural reactivity to 

alcohol cues versus cues depicting nondrug rewards—an index of individual differences 

in reward dysregulation (i.e., drug overvaluation)—is associated with young adults’ alcohol 

use and problems.

Incentive-Motivational and Reward Deficit Models of Addiction

The incentive-sensitization theory of addiction [7,12] posits that, in vulnerable individuals, 

contextual cues signaling drug availability take on the incentive value of the drugs 

themselves, transforming cues into “motivational magnets” [16] that capture attention, elicit 

craving and approach, and compel consumption. In preclinical models, the expression of 

aberrant incentive salience to drug-related cues is evident when, following conditioning of 

cues with drug delivery, animals approach and even attempt to consume those cues [17]. 

In humans, incentive salience sensitization of drug-related cues can be observed in the 

magnitude of users’ cue reactivity [18,19]. Among heavy drinkers and individuals with 

AUD, alcohol cues capture attention [20,21], promote appetitive approach behaviors [22,23], 

elicit exaggerated neurophysiological responses [24,25], and trigger craving [19,26].

Whereas the incentive-sensitization theory emphasizes the aberrant incentive-motivational 

value of alcohol-related cues in AUD etiology [27], reward-deficit models posit that risk 

for drug abuse is conferred by blunted motivational significance of natural (i.e., nondrug) 

reinforcers. The allostatic model of addiction [13] posits that, with repeated drug use, neural 

reward pathways become sensitized to drug reward, such that incentive-motivational value of 

nondrug rewards is attenuated [28]. In contrast, the reward deficiency hypothesis [14,29,30] 
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posits that blunted sensitivity to nondrug-related rewards represents a premorbid liability 
factor for substance misuse (i.e., reward deficiency syndrome; [14,30]), prompting affected 

individuals to seek activities, such as drug use, that stimulate the reward system [31].

In support of these perspectives, various addicted populations demonstrate reduced 

activation in key reward processing regions, such as the medial prefrontal cortex [32], 

orbitofrontal cortex [10], and the ventral striatum [33,34], when viewing nondrug rewards 

[35]. Heavy drug and alcohol users also demonstrate blunted neurophysiological responses 

to highly arousing pleasurable cues (e.g., erotic scenes; food) [36] and reward-related 

feedback [37,38], and lesser inhibition of startle-probe reactivity during viewing of natural 

reinforcers [39].

Differential Valuation of Drug and Nondrug Reinforcers: Reward 

Dysregulation

Whereas the incentive-sensitization and reward-deficit models emphasize the importance of 

drug-related and nondrug-related reinforcement, respectively, in the etiology of addiction, 

neither of these perspectives directly addresses whether the differential valuation of 

these forms of reward might signify risk for substance abuse. However, behavioral 

theories of choice [11,40], value-based decision-making models [41,42], and computational 

neuroscience-based models of relative reward value [43] suggest that the relative difference 

between substance-related versus substance-free reward is critical to addiction etiology. 

For example, recent studies using demand metrics and concurrent choice tasks in humans 

[44,45] and rodents [46,47] demonstrate that greater valuation of drugs over substance-free 

reward is strongly associated with addiction [48–50]. However, no study has tested whether 

the extent of differential valuation of drug cues versus naturally occurring rewards—as 

indexed by neurophysiological measures of incentive-motivational value—is a marker of 

risk for substance abuse and dependence.

Results from previous electrophysiological studies are suggestive in this regard [36,51,52]. 

For example, Dunning and colleagues [52] demonstrated that individuals with cocaine use 

disorder show enhanced event-related potential (ERP) reactivity to cocaine-related cues but 

blunted reactivity to nondrug-related pleasant cues. Parvaz and colleagues [51] showed 

that this profile can be reversed with abstinence. Furthermore, recent work by Versace and 

colleagues [53] showed that, compared to smokers who demonstrated relatively high ERP 

reactivity to both smoking-related cues and to nondrug-related pleasant images, smokers 

who demonstrated low ERP reactivity to nondrug-related pleasant images but high reactivity 

to smoking-related cues were more likely to relapse after a quit attempt. Yet, none of these 

prior studies has quantified the difference in neurophysiological responses to drug cues 

versus naturally occurring rewards as an indicator of substance abuse and dependence.

The Current Study

Prior research has demonstrated the utility of enhanced neural reactivity to substance-related 

and blunted reactivity to natural reward cues for understanding addiction pathology in 

cocaine users [51,52] and smokers attempting to quit [36]. In addition, behavioral economics 
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work has shown that greater self-reported valuation of alcohol over substance-free rewarding 

activities is associated with problematic alcohol use in young adult drinkers [50]. Here, we 

examined whether the extent of differential neurophysiological reactivity to alcohol-related 

versus natural reward cues (i.e., reward dysregulation) is associated with alcohol use and 

problems in young adults with no history of AUD-like symptoms. Reward dysregulation was 

quantified as the difference in amplitude of the P3 ERP elicited by alcohol-related versus 

natural reward cues. The P3 (or P300) is known to increase in amplitude in relation to 

the motivational significance or incentive value of eliciting stimuli [54–56], and enhanced 

amplitude of the P3 elicited by alcohol cues (ACR-P3) has been shown to predict alcohol 

use and heavy drinking [57]. In contrast, blunted amplitude of the P3 elicited by natural, 

nondrug reward cues (Reward-P3) has been demonstrated in AUD [58] and persistent users 

of nicotine [36] and cocaine [59].

Following from this work, we hypothesized that the amplitude of the ACR-P3 would be 

positively associated with alcohol use and problems (H1); that the amplitude of the Reward-

P3 component would be negatively associated with alcohol use and problems (H2). Most 

critically, we posited that the difference in the ACR-P3 relative to the Reward-P3 (i.e., 

reward dysregulation P3) would be more strongly associated with alcohol use and problems 

(H3i) and, therefore, would better differentiate problem from nonproblem drinkers than 

either of its constituent components (H3ii).

Methods

Participants

Participants were 156 young adults (ages 18–30 years) recruited from a large, public 

university and surrounding community via flyers and informational emails. Study candidates 

were pre-screened using a questionnaire; individuals were excluded if they reported any 

attempts to quit drinking, history of alcohol withdrawal symptoms, or history of head 

trauma or other neurological disorder. The current report includes data from 143 individuals 

(see online Supplementary Materials for exclusions), the majority of whom were female 

(61%), White (88%), university students (79.7%), and relatively young (Mage = 21.9, SD 
= 2.97 years) (see Table S1 for more details). Participants were compensated at $10/hr. 

The University of Missouri’s Institutional Review Board approved the study’s materials, 

protocol, and procedures.

Measures and Materials

Alcohol use and problems.—Participants reported on their typical alcohol use, 

frequency of binge drinking, and the largest number of drinks in a 24-hr period over the past 

year (max drinks) using items recommended by the NIAAA Task Force [60]. A subset of 

participants (N = 103; 66%) also reported past-year negative alcohol-related consequences 

using the Young Adult Alcohol Consequences Questionnaire (YAACQ; [61,62]).1 Details on 

these measures are in the online supplementary materials; Table S2 provides descriptive data 

from these measures.

1The YAACQ was added to the questionnaire battery after data collection had already started.
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To address a secondary goal of the study (testing the problem-drinking classification 

performance of ACR-P3 and Reward-P3), the subset of participants who completed the 

YAACQ were categorized as either low/moderate risk (YAACQ score ≤ 15; n = 77) or high 

risk (YAACQ total score ≥ 16; n = 26) for alcohol problems, applying cut-scores suggested 

by Read et al. [63].

Picture-viewing Task

The ACR-P3 and Reward-P3 were elicited in the context of a picture-viewing ‘oddball’ 

task [64,65] (see Figure 1). Participants viewed infrequent (4% each) pictures of alcoholic 

beverages (e.g., beer), nonalcoholic beverages (e.g., milk), adventure scenes (e.g., people 

sky-diving), and erotic scenes (e.g., partial nudity) amid more frequently presented (84%) 

neutral pictures (e.g., a bus). Images were presented against a black background one at 

a time in sequences of five, at least four of which were from the neutral category. A 

total of 100, five-trial sequences (500 total viewed images) were presented, such that 

participants viewed each type of target image 20 times. To prevent the influence of 

participants’ expectations and anticipatory neural responses, and to ensure that at least three 

neutral images occurred between any two presentations of images from target categories, 

target images appeared in the fourth or fifth position in the trial sequence and some of 

the trial sequences consisted exclusively of neutral pictures. Participants categorized each 

image as “neutral” or “pleasant” by pressing one of two buttons; response mapping was 

counter-balanced across participants. Images were presented for 1000 ms, followed by a 

900–1200-ms interstimulus interval that varied randomly. Trial sequences were separated by 

a 500-ms inter-trial interval during which the word “pause” appeared on the screen. Images 

were selected either from the Normative Appetitive Picture System (NAPS, [66,67] or the 

International Affective Picture System (IAPS, [68]; see supplemental materials for details).

Neurophysiological Recording and Data Processing

The electroencephalogram (EEG) was recorded from 27 Ag/AgCl electrodes fixed in a 

spandex cap (Electro-Cap International, Eaton, OH) and positioned according the 10–20 

system [69]. EEG was digitized at 1000 Hz and band-pass-filtered online at .01–40 Hz. 

Scalp electrodes were referenced online to the right mastoid; an average mastoid reference 

was derived offline. Ocular artifacts (e.g., blinks) were recorded with additional electrodes 

placed 1 in below and above the left eye and 1 cm lateral to the outer canthi of the eyes, 

and were removed from the EEG using a regression-based algorithm (see [70]). Electrode 

impedances were kept below 10 kΩ. Stimulus-locked epochs of 1,300-ms (200-ms baseline) 

were extracted and then baseline-corrected before rejecting artifact-contaminated trials with 

voltage ± 75 μV; the average number of rejected trials per subject for those subjects included 

in the subsequent analyses was M = 3.72 for alcoholic beverages; M = 3.52 for adventure 

scenes; and M = 3.19 for erotic scenes. Accepted trials ranged from 5–20 for alcoholic 

beverages and adventure scenes and 6–20 for erotic scenes.

P3 quantification.—Figure 2 presents grand-average waveforms for each picture type; 

Figure 3 presents grand-average waveforms elicited by alcohol and nonalcohol reward 

pictures separately for the two problem-drinking risk groups; and Figure 4 presents 

topographic distribution of the P3 measures. Consistent with previous reports using a 
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similar picture-viewing task [57,65], P3 amplitude was largest at posterior and occipital 

electrode sites, especially Pz, and peaked 400–600 ms following image onset. Thus, P3 

amplitudes were quantified as the mean voltage 400–600 ms post-stimulus at P3, Pz, P4, 

P7, P8, O1, and O2, averaged across trials for each image category separately. ACR-P3 was 

quantified as the mean P3 amplitude elicited by alcohol cues; the Reward-P3 was computed 

as the average of the standardized (z-scored) mean P3 amplitudes elicited by erotic and 

adventurous scenes. As an appetitive control condition, we also computed the P3 elicited by 

nonalcoholic beverage images (Nonalc-P3). Both ACR-P3 and Reward-P3 showed adequate 

Spearman-Brown corrected split-half reliability (rs = .73 and .86, respectively), whereas the 

Nonalcohol-P3 showed lower reliability (r = .62). As is common with many ERP difference 

scores [71,72], the reward dysregulation P3 (ACR-P3 minus Reward-P3) demonstrated 

lower reliability (r = .54), which nevertheless was comparable to estimates of reliability 

reported for other reward sensitivity neural difference score measures [37,73,74].2

Procedure

Upon providing informed consent, participants completed questionnaires assessing alcohol 

use and problems, and then were fitted with an electrode cap. Participants completed 

the picture-viewing task, after which they were shown to a private restroom to clean 

electrode gel from their face and hair. Finally, participants were debriefed, thanked for their 

participation, and dismissed.

Data Analytic Approach

Participant exclusions.—Two participants withdrew before EEG data collection was 

completed. Data from four other participants were not properly acquired due to experimenter 

error (n = 2) or equipment malfunction (n = 2), and data from seven additional participants 

were excluded because their EEG contained excessive artifact (< 25% valid trials).3 The 

final sample included 143 participants.

Regression analyses.—To determine the extent to which the ACR-P3, Reward-P3, 

their difference (reward dysregulation P3), and the appetitive control condition (ACR-P3 

minus Nonalc-P3) were associated with typical alcohol use, frequency of binge drinking, 

and heavy episodic drinking, a series of Ordinary Least Squares (OLS) multivariate 

linear regression models were estimated using the R statistical package [75]. Note that 

distributional properties indicated that the distribution of these outcomes did not deviate 

dramatically from normality (all skew < 2.0 and kurtosis < 7.0) Separate regression models

—accounting in each case for the effects of age, gender (0 = females; 1 = males), and race 

(0 = Non-White; 1 = White)—were used to examine associations for the three P3 response 

variables with each drinking outcome measure. For each drinking outcome measure, two of 

2In many situations a regression residual approach is preferred over a difference score approach when using ERPs as individual 
difference measures [71]. We essentially adopted both approaches here. Our regression models that include both P3 predictors 
simultaneously are functionally equivalent to the residual score approach. Also, the most important metric for evaluating a difference 
score is not its reliability per se, but the extent to which it relates to a theoretically relevant criterion [74]. As our models show, the 
reward dysregulation P3 is more strongly associated with alcohol problems than either of its constituent P3 responses, supporting its 
validity as a reliable individual difference measure.
3Only five participants were at or near this 25% threshold in any image categories; no participant had only 25% valid trials in multiple 
image categories.
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the regression models included either ACR-P3 or Reward-P3 as the ERP predictor, a third 

model included both ACR-P3 and Reward-P3 as ERP predictors, the fourth model included 

the reward dysregulation P3 as the ERP predictor, and a final model included the appetitive 

control P3 as the ERP predictor. In addition, a series of negative binomial multivariate (NB) 

regression models4 were estimated in R [75] using the MASS package [76] to determine the 

extent to which each P3 response measure was associated with alcohol problems. Each NB 

regression model separately examined the association between each P3 response measure 

and alcohol problems, while accounting for the effects of age, gender, race, and a composite 

alcohol use/heavy drinking measure created by averaging responses to the typical alcohol 

use, binge drinking, and max drinks measures (mean r value = .70; range = .65 to .77). All 

models indicated low multicollinearity (all VIFs < 2).

Receiver operating characteristic (ROC) curves.—Another goal of this work was 

to investigate the classification performance of each P3 response measure for identifying 

individuals at risk for harmful or hazardous drinking. Comparing the classification 

performance of the neural response measures to that of a more common self-report 

measure (e.g., alcohol use) provides validity information for the clinical utility of the neural 

measures. To address this goal, we estimated a series of ROC curves in R [75] using the 

pROC package [77] quantifying how well each P3 measure classifies participants as low/

moderate risk versus high risk for alcohol problems based on their YAACQ scores. The 

area under the curve (AUC) is used to quantify the classification precision and utility of a 

classifier. Values of AUC can vary between 0 and 1, where AUC = 0.5 indicates random 

classification performance. Higher AUC values indicate better classification accuracy and 

diagnostic performance.

Results

Associating P3 Responses with Alcohol Use and Problems: Regression Analyses

Table S3 summarizes bivariate correlations between ACR-P3, Reward-P3 and their 

difference score variable (reward dysregulation P3) with all drinking-related outcomes. 

Results from the five OLS regression models associating the P3 measures with drinking-

related outcomes are summarized in Table 1. Although the ACR-P3 and Reward-P3 were 

positively correlated (r = .59, p < .001), when tested individually as predictors of alcohol 

outcomes (Models 1 and 2) they showed small and largely nonsignificant associations 

with those outcomes. When included together as predictors (Model 3), their relations 

with alcohol outcomes became stronger in all cases—and in opposing directions—and 

statistically significant in some. More importantly, the reward dysregulation P3 (Model 4) 

showed robust and consistent associations with all alcohol outcome measures, consistently 

accounting for a higher proportion of variance than either of its constituent P3 measures or 

the appetitive control P3 difference score (Model 5).

4Overdispersion in the observed distribution of nonnegative count variables is commonly observed in substance use data [106,107]. 
NB models were found to be more adequate and statistically superior to alternative regression models typically used for modeling 
count data, including Poisson, zero-inflated Poisson (ZIP), zero-inflated negative binomial (ZINB), Poisson Hurdle (PH), and negative 
binomial Hurdle (NBH) models.
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Classification of Problem Drinking Risk: ROC Curve Analyses

ROC curves (Figure 5) showed that classification performance for each ERP measure alone 

was no better than chance. For ACR-P3, AUC = .61 (SE = 0.07, 95% CI = .48–.74), 

Positive Predictive Value (PPV) = .38, and Negative Predictive Value (NPV) = .82. For 

Reward-P3, AUC = .62 (SE = 0.06, 95% CI = .50–.74), PPV = .35 and NPV = .86. 

However, reward dysregulation P3 successfully differentiated high-risk from low/moderate-

risk drinkers (AUC = .72, SE = 0.05, 95% CI = .61–.83), PPV = .40 and NPV = .93, and 

did so nearly as well as a composite alcohol use/heavy drinking measure (AUC = .85; SE 
= .05, 95% CI = .76–.94), PPV = .55 and NPV = .92. Indeed, the reward dysregulation 

P3 and alcohol use/heavy drinking composite variable were similar in their classification 

performance: AUCs = .72 versus .85; D = −1.98, p = .05. However, the AUC for the reward 

dysregulation P3 did not differ statistically from the AUCs for both ACR-P3 (AUCs = .72 

versus .61; D = 1.65, p = .098) and Reward-P3 (AUCs = .72 versus .62; D = 1.61, p = 

.107), suggesting that the incremental classification precision of the reward dysregulation 

P3 over its constituents is essential for achieving a classification accuracy and diagnostic 

performance better than random guessing.

Discussion

Conceptualizing addiction as a brain disease [78] has led researchers to search for 

neurobiological indicators of addiction vulnerability [79]. The current study examined 

reward dysregulation P3—a neurophysiological response representing the differential 

incentive value of alcohol vs. natural reinforcers—as a potential neurobiological indicator 

of risky drinking and adverse consequences. The notion that differential valuation of drug 

versus nondrug reward is an indicator of addiction risk is congruent with multiple theoretical 

perspectives [12–14,80] and with recent neuroimaging research showing that addiction is 

characterized by enhanced responses to drugs cues, coupled with blunted responses to cues 

representing natural reinforcers (e.g., [9,10,51,52]).

In line with our hypotheses, ACR-P3 was positively associated with binge drinking and 

alcohol problems (H1), the latter independently of alcohol use, and Reward-P3 was 

(modestly) negatively associated with heavy drinking (H2). More importantly, attesting to 

its potential as a neurobiological indicator of problematic drinking, reward dysregulation 

P3 showed robust and consistent associations with alcohol-related outcomes, accounting 

for a greater proportion of variance in those outcomes than its constituent responses 

(H3i). Furthermore, reward dysregulation P3 showed better utility in discriminating at-risk 

from lower-risk individuals than did ACR-P3 and Reward-P3 alone (H3ii)—and did so 

essentially as well as an alcohol use/heavy drinking composite measure, the “gold standard” 

indicator of risk for alcohol-related problems [81]. These findings are consistent with recent 

studies demonstrating that a neurophysiological response profile involving low reactivity to 

nondrug-related, natural reward images and high reactivity to drug-related cues is associated 

(positively) with risk for relapse among smokers [36,53] and (negatively) with abstinence 

in cocaine use disorder [51,52]. The current findings extend prior reports by demonstrating 

that differential incentive valuation of cues for drug and nondrug reward is associated 

with heavier, more problematic use of alcohol—a substance far more commonly used than 
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either nicotine or cocaine [82]—and is evident in a nonclinical young adult sample. Thus, 

the current results highlight that the reward dysregulation phenomenon is evident even 

among a nonaddicted, more typical substance-using population, and suggest that the reward 

dysregulation profile could be a premorbid liability for addiction rather than a consequence 

of neuroadaptations resulting from it.

The current findings have implications for understanding the utility of neurophysiological 

indicators of addiction risk. Although ACR-P3 and Reward-P3 were moderately positively 

correlated (r = .53, p < .001), the regression model including both as simultaneous 

predictors showed that both were independently associated—but in opposite directions

—with alcohol use and heavy drinking. These findings underscore the importance of 

accounting for multiple sources of variance in reward-related processing when interpreting 

neurophysiological responses to drug-related stimuli [53]; such responses share variance 

with a general responsivity to reward, but their unique utility for elucidating substance use 

and related phenomena depends on parsing that shared variance, thereby allowing nonshared 

variance to contribute uniquely to variance in substance use-related outcomes.

Additionally, both ACR-P3 and reward dysregulation P3 accounted for unique variance in 

alcohol-related problems beyond that associated with alcohol use. This finding suggests 

that neurophysiological measures can provide incremental utility for clinical diagnosis and 

vulnerability assessment, beyond that provided by self-report measures of behavior [88–90]. 

This finding also suggests that although the incentive salience of both drug-related and 

natural reward cues can be affected by substance involvement [13,91], substance use does 

not wholly determine neural indicators of the incentive salience construct or fully mediate 

their associations with criterion measures. This suggests the possibility that a tendency to 

attribute aberrant incentive salience to drug-related versus natural reinforcers might antedate 

heavy substance use, perhaps reflecting a (possibly heritable) neurobiological vulnerability 

[92,93].

This possibility is directly posited by the reward deficiency hypothesis [14], which holds that 

a genetically determined deficiency in dopamine DRD2 receptor availability [30,94] causes 

blunted neural reward system responding to natural rewards. This deficient reward response 

is thought to predispose affected individuals to seek out drugs of abuse. Alternatively, the 

allostasis model [13] holds that persistent, heavy substance use causes neuroadaptations that 

alter the balance of responding by reward neurocircuits, such that those circuits become 

hypoactive in the absence of drugs and hyperactive to drugs and drug-related cues [8]. 

Thus, both models posit blunted responding to natural reward as key to understanding the 

attribution of incentive salience to drug-related cues [36,53], but they differ in ascribing a 

causal role for this blunted responding to persistent drug use (allostasis) versus premorbid 

dopamine DRD2 receptor availability (reward deficiency). Given the relative youth of the 

current sample and their nonclinical status, and the finding that reward dysregulation P3 

amplitude accounted for incremental variance in alcohol-related problems (beyond that 

associated with heavy drinking), it seems likely that at least part of the reward dysregulation 

P3 phenotype reflects premorbid vulnerability rather than neuroadaptations resulting from 

heavy alcohol use. It is important to underscore, however, that the design of the current 
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study does not permit direct inferences regarding the etiology of the reward dysregulation P3 

response.

Future work should seek to clarify the ontogeny of the reward dysregulation P3 phenotype 

using longitudinal and/or genetically informed designs (i.e., twin studies). Indirect evidence 

has been provided by several lines of work. For example, reduced dopamine D2 receptor 

availability is associated with cue-elicited, dopamine-mediated activation of brain reward 

regions [95], cue-elicited craving [95,96], and AUD severity [97]. Preclinical research 

offers complementary evidence in that dopamine D2 receptor knock-out rats show increased 

incentive motivation for drugs [98,99], and reduced dopamine D2 receptor availability 

modulates alcohol preference [100] and is present in rats who attribute incentive value to 

reward-predictive cues (i.e., expressing the sign-tracking phenotype; see [101,102]).

In addition to the inability to resolve the etiology of the reward dysregulation P3 response, 

the current study’s design was limited in other ways. First, although P3 amplitude is a 

clear indicator of the incentive-motivational significance of eliciting stimuli [54,56], its 

neural generators are diffuse [103] and modality-dependent [104], and although some work 

is suggestive of such a link [105], the extent to which P3 amplitude reflects engagement 

of reward neurocircuitry is not clear. Future research using combined ERP and fMRI 

paradigms [105] can help to resolve whether the Reward-P3 and ACR-P3 share neural 

sources in the reward processing circuits known to underlie reward deficiency and/or 

incentive salience attribution. Second, the sample was homogenous in terms of demographic 

characteristics, and the picture stimuli used to evoke reward-relevant brain responses were 

limited in number and content. Future work should examine reward dysregulation P3 and 

its relation to drinking outcomes in more diverse populations and should expand the types 

of reward-relevant cues (e.g., food, money, and social intimacy) used to elicit its constituent 

P3 responses. It also is not clear whether the current findings would generalize to older 

or alcohol-addicted populations. Finally, future work should seek to evaluate the specificity 

versus generality of these effects—in particular, whether reward dysregulation P3 indexes 

risk for alcohol use and problems specifically or is associated with broader, transdiagnostic 

traits (e.g., externalizing proneness; [37]) that also increase risk for alcohol problems.

In conclusion, the current results provide the first evidence that differential valuation of 

alcohol versus natural rewards (i.e., reward dysregulation) is associated with increased 

risk for alcohol misuse and problems in a nonclinical sample of drinkers. Findings also 

underscore the added clinical utility of neurophysiological measures for classifying risk, 

beyond self-report measures of behavior. Given evidence that dysregulated response to drug 

versus natural reinforcers can be reversed, the current results can contribute to development 

of intervention efforts aimed at reducing the burden of alcohol misuse and its adverse 

consequences.
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Figure 1. 
(A) Example of a trial sequence from the picture-viewing ‘oddball’ task, in which more 

frequent neutral images form a context in which the ‘target’/oddball image (e.g., a picture of 

beer) appears in the fourth position. (B) Exemplars of the oddball stimuli used in the current 

study: Erotic scenes, Adventurous scenes, Alcoholic beverages, and Nonalcoholic beverages.
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Figure 2. 
Panel A: Grand-averaged, stimulus-locked ERP waveforms recorded at channel Pz as 

a function of image type. Panel B: Difference waveform (ACR-P3 minus Reward-P3) 

recorded at channel Pz. Shading represents the time window (400–600 ms post-stimulus) 

used for P3 mean amplitude quantification.
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Figure 3. 
Grand-averaged ERP waveforms elicited by alcohol and nonalcohol reward images 

(recorded at channel Pz), separately for individuals at Low/Moderate Risk (YAACQ score 

≤ 15) and High Risk (YAACQ score ≥ 16) for harmful and hazardous drinking. Shading 

represents the time window (400–600 ms post-stimulus) used for P3 mean amplitude 

quantification.
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Figure 4. 
Topographic distribution of mean P3 amplitude 400–600 ms post-stimulus as a function of 

image type.
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Figure 5. 
Receiver Operating Characteristic (ROC) curves summarizing classification precision of P3 

response measures and a composite alcohol use/heavy drinking measure in discriminating 

individuals at risk for harmful and hazardous drinking. ACR-P3 = P3 amplitude elicited by 

alcohol-related cues; Reward-P3 = P3 amplitude elicited by natural reward cues; Reward 

dysregulation P3 = differential P3 reactivity to both types of cues. Alcohol Use/Heavy 

Drinking = composite created by averaging scores from typical alcohol use, binge drinking 

and heavy episodic drinking measures. AUC = area under the curve; the diagonal line 

denotes an AUC value of 0.5, which indicates classification performance at the level of 

random guessing.
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