
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Modularity Conserved during Evolution: Algorithms and Analysis

Permalink
https://escholarship.org/uc/item/14h963bt

Author
Hodgkinson, Luqman

Publication Date
2013
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/14h963bt
https://escholarship.org
http://www.cdlib.org/


Modularity Conserved during Evolution: Algorithms and Analysis

by

Luqman Hodgkinson

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science with Designated Emphasis in Computational and Genomic Biology

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Richard M. Karp, Chair
Professor Christos H. Papadimitriou

Professor John P. Huelsenbeck

Spring 2013



Modularity Conserved during Evolution: Algorithms and Analysis

Copyright c© 2013

by

Luqman Hodgkinson



Abstract

Modularity Conserved during Evolution: Algorithms and Analysis
by

Luqman Hodgkinson
Doctor of Philosophy in Computer Science with Designated Emphasis in Computational

and Genomic Biology
University of California, Berkeley
Professor Richard M. Karp, Chair

Modularity is a defining feature of biological systems. This dissertation presents our
work on the development of algorithms to detect modularity in protein interaction networks
and techniques of analysis for interpreting the results. A multiprotein module is a collection
of proteins exhibiting modularity in their interactions. Multiprotein modules may perform
essential functions and be conserved by purifying selection.

A new linear-time algorithm named Produles offers significant algorithmic advantages
over previous approaches. An algorithmic framework for evaluation is presented that fa-
cilitates evaluation of algorithms for detecting conserved modularity with respect to their
algorithmic goals.

Optimization criteria for detecting homologous multiprotein modules are examined, and
their effects on biological process enrichment are quantified. Graph theoretic properties that
arise from the physical construction of protein interaction networks account for 36 percent
of the variance in biological process enrichment. Protein interaction similarities between
conserved modules have only minor effects on biological process enrichment. As random
modules increase in size, both biological process enrichment and modularity tend to improve,
though modularity does not show this trend in small modules. To adjust for this trend, we
recommend a size correction based on random sampling of modules when using biological
process enrichment to evaluate module boundaries.

Supporting software has been developed useful for designing high quality algorithms
for detecting conserved multiprotein modularity. EasyProt is a parallel implementation of
scientific workflow software designed for cloud computing that retrieves data from several
sources, runs algorithms in parallel, and computes evaluation statistics. VieProt is visual-
ization software for conserved multiprotein modularity that uses a dynamic force-directed
layout and displays quality measures and statistical summaries.

With high quality protein interaction data, it may be possible to use modules to improve
the prediction of proteins that are orthologous to each other and that have maintained their
function. We present statistical methods that may be useful for this purpose. The utility of
these models will depend on anticipated improvements in protein interaction data quality.
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Chapter 1

Introduction

1.1 Modularity in Biological Systems

1.1.1 Modularity and Evolution

Life is more than three billion years old [de Duve, 2011]. Since the beginning of life, the
principle of natural selection has operated, that is, life has continued to evolve for selective
advantage within constraints imposed by chemistry and physics. Organisms that could
change a single feature without disrupting the function of other features had a selective
advantage, so life evolved to be modular [Wagner, 1996]. In modular biological systems,
changes within a single module did not significantly affect the function of other modules.
Modularity is ubiquitous in biological systems [Rorick, 2012]. Biological systems tend to be
modular, and, thus, evolvable [Callebaut and Rasskin-Gutman, 2005].

1.1.2 Biological Cells and Protein Interactions

Inside biological cells, proteins are molecular machines. There are approximately 22,000
genes in the human genome [International Human Genome Sequencing Consortium, 2004]
that code for proteins, and even more proteins than this due to alternative splicing [Nilsen
and Graveley, 2010]. A single protein in Drosophila melanogaster, Down syndrome cell
adhesion molecule (Dscam), can generate 38,016 distinct mRNA isoforms, more than the
total number of genes in the species [Nilsen and Graveley, 2010]. Approximately 8% of the
coding capacity of a mammalian genome is devoted to the synthesis of proteins that serve
as regulators of gene transcription [Alberts et al., 2008, page 450]. Some proteins stay in
the cytosol whereas others embed themselves in the cell membrane. Membrane proteins
represent 20-30% of all proteins in the Arabidopsis proteome [Schwacke et al., 2003].

Each protein functions in a neighborhood, interacting with other proteins and molecules
to perform its tasks. Experimental assays can detect whether two proteins are likely to
interact. Testing interactions among all, or a significant fraction, of proteins for a species
yields a protein interaction network, or interactome (Fig 1.1), with vertices representing
proteins and edges representing interactions [Vidal, 2005]. The interactome is only an
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Chapter 1. Introduction

Figure 1.1: The largest connected component of the Drosophila interactome. Not all proteins are visible.

approximation to the organization of the cell as two proteins that can bind to each other may
be carefully separated by the cell and may never interact in vivo. Sometimes proteins can
directly interact only weakly, but a meaningful interaction is mediated by scaffold proteins.
In other cases, weak interactions are actually useless crosstalk between modules [Alberts et
al., 2008, page 931]. Moreover, in multi-cellular species, there are many cell types, and only a
subset of genes are expressed in each cell type. There are also temporal separations in which
various genes are expressed at different times in the cell cycle. Even with these limitations,
the interactome is a reasonable starting point for understanding modular organization of
protein interactions.

Protein interactions are of several different kinds. There are stable interactions where
proteins associate for long periods of time. These protein complexes are best detected
using immunoprecipitation-based methods [Lalonde et al., 2008]. Other interactions are
short lived, such as proteins functioning in signalling pathways that are best detected using
yeast two-hybrid or more advanced techniques such as Förster resonance energy transfer
(FRET) [Lalonde et al., 2008]. The human interactome is estimated to contain 650,000
protein interactions [Stumpf et al., 2008].

Protein interactions are often mediated by particular domains [Pawson and Nash, 2003].
Domains can recognize short signal peptides forming domain-peptide interactions or they
can can bind to other entire domains forming domain-domain interactions [Pawson and
Nash, 2003]. Several methods have been developed for predicting domain interactions from
protein interactions [Ta and Holm, 2009].
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Chapter 1. Introduction

In an interactome, each meaningful protein interaction places an epistatic constraint on
the protein interactants [Schlosser and Wagner, 2008]. Evolution of cells would be severely
restricted if interactomes were complete graphs with each interaction being essential for
biological viability. Modularity allows each module to evolve with limited dependence on
the evolution of other modules.

1.1.3 Purifying Selection and Homology

When genomes were fully sequenced, it was discovered that a large fraction of proteins were
conserved across hundreds of millions of years [International Human Genome Sequencing
Consortium, 2001; Adams et al., 2000]. Flies and humans separated by at least 500 million
years [Futuyma, 2009] have easily detected homology between a large fraction (25-50%) of
their proteins [Rubin et al., 2000]. If any of these proteins were broken, the organism either
died or was at a disadvantage so that its offspring became extinct. This powerful force for
conserving features across millions of years is called purifying selection. Positive selection
describes the advantage given to changes that improve fitness in the current environment.
Breaking important cell machinery rarely leads to an advantage.

Vestiges of similarity surviving evolution, homology, appear in distantly related taxa
at many different levels. Homology means similarity due to common ancestry, especially
after millions of years of divergence [Futuyma, 2009]. It is usually applied at the subor-
ganism level, for example, to morphological characters, multiprotein modules, and proteins.
Purifying selection maintains homology.

1.1.4 Conservation of Multiprotein Modules

Proteins are highly conserved for hundreds of millions of years despite large phenotypic
changes at the organism level, but perhaps multiprotein modular structure is less highly
conserved. Perhaps proteins change interaction partners easily and organize into new func-
tional groups. One study estimated that eukaryotic species have rewired their interactomes
at a fast rate of approximately 10�5 interactions changed per protein pair, per million years
of divergence [Beltrao and Serrano, 2007].

There is primary evidence of multiprotein modularity conserved for hundreds of millions
of years including fundamental molecular mechanisms underlying cell-to-cell communication
such as the Notch pathway [Celis, 2004]. How widespread are these instances of conserved
multiprotein modularity? How can we effectively use computational techniques to identify
conserved modularity in interactomes with thousands of proteins? It has been considered
a difficult task to draw boundaries around modules in large biological data sets, both be-
cause the modules themselves have imprecise boundaries in biological systems [Schlosser
and Wagner, 2004] and because data sets are incomplete and imprecise [Ali and Deane,
2010].

Early ground-breaking studies searched for conserved pathways in interactomes of He-
licobacter pylori and Saccharomyces cerevisiae [Kelley et al., 2003], and for conserved com-
plexes in interactomes of S. cerevisiae, Caenorhabditis elegans, and Drosophila melanogaster
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Chapter 1. Introduction

[Sharan et al., 2005a]. Additional attempts to identify conserved modularity across in-
teractomes were subsequently published [Koyutürk et al., 2006b; Flannick et al., 2006;
Hirsh and Sharan, 2006; Narayanan and Karp, 2007; Dutkowski and Tiuryn, 2007; Guo
and Hartemink, 2009].

Not all pairs of conserved multiprotein modules need have the same function. During
evolution, modules are likely to be co-opted in new functional contexts [Winther, 2005].
This leads to cases where the function is not preserved though the modularity is preserved.
After functional divergence, the modules in both lineages are subject to purifying selection
even though the important functions the modules perform are somewhat different.

Conservation in phenotypically different species indicates a possibility that the modules
are evolutionary modules. An evolutionary module is a module that performs a unitary
function with an architecture that allows it to evolve quasi-independently from other fea-
tures [Brandon, 2005]. An evolutionary module may be compatible with many different
global architectures. The purifying selection placed on proteins in an evolutionary multipro-
tein module may be similar to that placed on the module as a whole. An analogous example
from morphology is that hands and feet evolve quasi-independently and can be considered
evolutionary modules, whereas left feet and right feet do not evolve quasi-independently
and are not evolutionary modules.

Elucidating modular structure of interactomes has practical consequences. For example,
certain signal transduction pathways are common to many diseases [Suthram et al., 2010].
Understanding the composition of natural units of the cell can allow several avenues for
therapy using different target proteins that affect the same module.

Biological networks, including protein interaction networks, are the subject of the new
discipline of systems biology [Palsson, 2006; Klipp et al., 2009; Palsson, 2011]. The goal
of systems biology is to understand the structure and functioning of biological systems.
One feature of systems biology is the study of networks of components that lead to emer-
gent properties not exhibited by individual components. Static systems biology considers
networks without a time dimension whereas dynamic systems biology models behavior of
networks over time. Interactomics is a branch of static systems biology. Interactomics
does not make spatial or temporal distinctions: e.g. does not consider cell types, cellular
compartments, or the cell cycle.

1.2 Biological Data: Interactomics and Homology

1.2.1 Assays to Detect Protein Interactions

Yeast Two-Hybrid (Y2H) is an assay amenable to high-throughput automation that is used
to detect protein interactions [Fields and Song, 1989; Fields, 2009]. In Y2H, genes encoding
two proteins being tested for interaction are attached to separate halves of a split gene
encoding a protein that transcribes a reporter gene [Walhout and Boulton, 2006]. The
two hybrid genes are then expressed in a yeast cell. If the two hybrid proteins interact
in the yeast cell, the reporter protein is reconstituted and a signal is detected. There are
some limitations to the Y2H protocol leading to significant false positive and false negative
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rates [Lalonde et al., 2008; Hart et al., 2006]. Proteins are overexpressed in the yeast cell,
thus modifying the relative concentrations of potential interaction partners from the in vivo
state [Lalonde et al., 2008]. Also, membrane proteins are underrepresented, because they
are retained at the membrane and unavailable for reconstitution of a functional transcription
factor in the nucleus [Lalonde et al., 2008].

To remedy the inability of yeast two-hybrid to accurately detect protein interactions
involving membrane proteins, the mating-based split-ubiquitin system (mbSUS) was de-
veloped [Obrdlik et al., 2004]. In this assay, the gene coding for ubiquitin is cleaved into
two halves and separate halves are attached to genes encoding the two proteins of interest.
One of the proteins must be a membrane protein to which a transcription factor is also
attached. If the hybrid proteins bind to each other when the hybrid genes are expressed
in yeast cells, the ubiquitin becomes functional and is recognized by ubiquitin-specific pro-
teases that cleave off the transcription factor. Since the ubiquitin is recognized when not in
the nucleus, interactions involving membrane proteins can be detected. However, at least
one of the proteins must be a membrane protein so that the hybrid with attached transcrip-
tion factor does not enter the nucleus and generate a signal [Lalonde et al., 2008, Figure 2
caption].

Clusters of interacting proteins are often best detected in vitro using biochemical tech-
niques followed by mass spectrometry for identification [Miernyk and Thelen, 2008]. One
of the most widely used techniques is coimmunoprecipitation where an antibody is de-
veloped for a protein of interest. The antibody is secured to beads, such as protein A/G
beads [Miernyk and Thelen, 2008], and the protein of interest along with its interacting pro-
teins become attached to the beads and are then purified. Cross-linking techniques can also
be used where cross-linking reagents, such as primary amines and formaldehyde, are added
to cell extracts and interacting proteins become covalently linked to each other [Miernyk and
Thelen, 2008]. This stabilizes protein interactions allowing protein complexes to be purified
and identified [Liu and West, 2002]. Some limitations of these biochemical techniques is
that proteins from different compartments are brought together in the cell extracts [Lalonde
et al., 2008] and, for the coimmunoprecipitation approach, it can be difficult to generate
antibodies specific for each protein of interest [Madeira et al., 2009]. Transient and weak
interactions, even when biological important are often missed by these methods [Koh et al.,
2012].

Optical methods for detecting protein interactions have also been developed and used
[Masi et al., 2010; Madeira et al., 2009; Lalonde et al., 2008], though not yet in high
throughput. Förster resonance energy transfer (FRET) is often used to determine distance
between two proteins [Masi et al., 2010]. In FRET, a fluorophore accepts a photon of a
given wavelength, gets excited, and transfers this energy to a nearby fluorophore that emits
a photon of a longer wavelength [Masi et al., 2010]. When the fluorophores are attached to
two potentially interacting proteins, either by incorporating them into the genes encoding
the proteins or via antibodies [Masi et al., 2010], estimates can be made of how likely
the proteins are to interact. Surface plasmon resonance (SPR) is an assay that allows for
dynamic studies of protein interactions [Madeira et al., 2009; Lalonde et al., 2008]. In SPR,
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a protein of interest is bound to a gold foil, and the foil is placed in a solution containing
potentially interacting proteins. Light is passed into the foil and the refractive index is
measured. If the protein of interest forms a complex with the proteins in solution, the
refractive index changes detectably [Madeira et al., 2009; Lalonde et al., 2008].

1.2.2 Databases Storing Protein Interactions

Biologists detect protein interactions and publish the results. Protein interaction databases
consolidate the protein interaction data from published papers. The consolidated pro-
tein interaction databases contain a wealth of knowledge from numerous experiments, nu-
merous experimenters, and numerous experimental assays. The first protein interactions
stored in databases were interactions based on common metabolic pathways. EcoCyc [Karp
et al., 1996; Keseler et al., 2013] stored metabolic interactions for Escherichia coli and
KEGG [Goto et al., 1997; Kanehisa et al., 2010] stored metabolic interactions more gener-
ally. MetaCyc [Karp et al., 2000; Karp et al., 2013] also began to store metabolic interactions
more generally. KEGG began to store regulatory interactions [Ogata et al., 1998] and phys-
ical protein interactions [Nakao et al., 1999] in addition to metabolic interactions. DIP [Xe-
narios et al., 2000; Salwinski et al., 2004] began to store physical interactions exclusively. A
large number of additional databases were then established that are currently maintained
and curated: most notably IntAct [Kerrien et al., 2012], BioGrid [Chatr-aryamontri et al.,
2013], HPRD [Prasad et al., 2009], BIND [Isserlin et al., 2011], MINT [Licata et al., 2012],
MIPS [Mewes et al., 2011], InnateDB [Breuer et al., 2013], and MatrixDB [Chautard et
al., 2011]. STRING [Franceschini et al., 2013] began to store computationally predicted
protein interactions of all kinds as well as experimentally detected interactions. Because
of the many databases storing often redundant, but sometimes unique, information, iRe-
fIndex [Razick et al., 2008] was established to consolidate data from the various protein
interaction databases using a common format and web services interface.

1.2.3 Algorithms to Detect Homology and Orthology of Proteins

When comparing interactomes across species, it is important to know which proteins are
homologous in order to compare protein interactions across homologous proteins. In fact, a
more stringent requirement on the proteins is sometimes needed, i.e. orthology. Orthologous
proteins are proteins in two separate species that derive from the same ancestral protein in
the last common ancestor of those two species [Fitch, 2000].

Similarity of amino acid sequences in proteins, or similarity of nucleic acid sequences in
the genes encoding proteins, can be used to infer homology. BLAST is a program that does
just this [Altschul et al., 1990; Altschul et al., 1997]. When a protein is compared for se-
quence similarity with a large database of other proteins, BLAST returns an E-value for each
similar protein. The E-value is the estimated number of proteins in the database that would
be as similar if the proteins in the database were random amino acid sequences [Altschul et
al., 1997].
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Orthologous proteins have been predicted using phylogenetic trees on amino acid se-
quences [Storm and Sonnhammer, 2002; Datta et al., 2009], and by analyzing graphs on
proteins weighted by sequence similarity [Tatusov et al., 2000; Jensen et al., 2008]. Graph-
based methods typically use pairwise BLAST scores as the primary input, and then cluster
sequences using these scores [O’Brien et al., 2005; Chen et al., 2006; Tatusov et al., 2003].
Graph-based methods have poor precision relative to tree-based methods for protein orthol-
ogy prediction [Gabaldón, 2008].

Validation is often performed based on similarity of function [Jensen et al., 2008, page
D253], under the assumption that orthologous proteins are most likely to have similar
functions.

1.3 Thesis Overview, Contributions, and Organization

1.3.1 Detecting Conserved Multiprotein Modularity

Detecting essential multiprotein modules that change infrequently during evolution is a
challenging algorithmic task that is important for understanding the structure, function,
and evolution of the biological cell. Conserved proteins are likely to be essential [Peng et
al., 2012], but they may be conserved due to their ease of incorporation into a variety of
multiprotein modules. In many cases, multiprotein modules may be the evolutionary unit
on which purifying selection acts.

1.3.1.1 Produles and Modularity

We define a measure of modularity for interactomes and present a linear-time algorithm,
Produles, for detecting multiprotein modularity conserved during evolution that improves
on the running time of previous algorithms for related problems and offers desirable the-
oretical guarantees. Through randomization experiments, we demonstrate that conserved
modularity is a defining characteristic of interactomes. Computational experiments on cur-
rent experimentally derived interactomes for Homo sapiens and Drosophila melanogaster,
combining results across algorithms, show that nearly 10 percent of current interactome
proteins participate in multiprotein modules with good evidence in the protein interaction
data of being conserved between human and Drosophila.

Produles can also be applied with high quality protein orthology data to find orthologous
multiprotein modules. Orthologous modules can be examined for evolutionary differences
across species. PHOG orthologous proteins and current protein interaction data were used
on a proteome-wide scale to detect conserved multiprotein modules in the interactomes for
Homo sapiens and Drosophila melanogaster. We found 29 cohesive and separable modules
that seem to be highly conserved. One of these, the TFIID general transcription fac-
tor required for eukaryotic transcription, was examined in depth. Evidence exists that the
composition of TFIID differs slightly between the two species. This computational pipeline,
consisting of high-quality methods for detecting orthologous proteins and orthologous mul-
tiprotein modules is generalizable and can be applied to the proteomes and interactomes
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for any species, leading to useful insights on the extent and nature of conservation of or-
thologous multiprotein modules during evolution.

1.3.1.2 Algorithm Evaluation Measures

We present a biologically motivated graph theoretic set of evaluation measures complemen-
tary to previous evaluation measures, demonstrate that Produles exhibits good performance
by all measures, and describe certain recurrent anomalies in the performance of previous
algorithms that are not detected by previous measures. Consideration of the newly de-
fined measures and algorithm performance on these measures leads to useful insights on the
nature of interactomics data and the goals of previous and current algorithms.

1.3.1.3 Evaluation of Optimization Criteria

Biological process enrichment is a widely used metric for evaluating the quality of mul-
tiprotein modules. We examine possible optimization criteria for detecting homologous
multiprotein modules and quantify their effects on biological process enrichment. We find
that modularity, linear density, and module size are the most important criteria considered,
complementary to each other, and that graph theoretic attributes account for 36 percent
of the variance in biological process enrichment. Variations in protein interaction similarity
within module pairs have only minor effects on biological process enrichment. As random
modules increase in size, both biological process enrichment and modularity tend to im-
prove, though modularity does not show this upward trend in modules with size at most
50 proteins. To adjust for these trends, we recommend a size correction based on random
sampling of modules when using biological process enrichment or other attributes to evalu-
ate module boundaries. Characteristics of homologous multiprotein modules optimized for
each of the optimization criteria are examined.

1.3.1.4 Supporting Software

Cloud computing opens new possibilities for computational biologists. Given the pay-as-
you-go model and the commodity hardware base, new tools for extensive parallelism are
needed to make experimentation in the cloud an attractive option. We present EasyProt,
a parallel message-passing architecture designed for developing experimental workflows in
computational biology while harnessing the power of cloud resources. The system exploits
parallelism in two ways: by multithreading modular components on virtual machines while
respecting data dependencies and by allowing expansion across multiple virtual machines.
Components of the system, called elements, are easily configured for efficient modification
and testing of workflows during ever-changing experimentation. Though EasyProt, as an
abstract cloud programming model, can be extended beyond computational biology, cur-
rent development brings cloud computing to experimenters in this important discipline who
are facing unprecedented data-processing challenges, with a type system designed for pro-
teomics, interactomics and comparative genomics data, and a suite of elements that perform
useful analysis tasks on biological data using cloud resources.
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VieProt is a visualization tool implemented in Java for viewing conserved multiprotein
modularity and associated statistics with a dynamic force-directed layout.

1.3.2 Protein Orthology Detection Using Protein Interactions

Protein interaction networks, annotated with estimates of the reliability of the experimental
data supporting each interaction, provide a rich source of data for inferring functional
orthology among proteins from disparate species. Modeling protein interaction network
change across species provides a unique perspective on the forces underlying evolution.

1.3.2.1 Graphical Model for Protein Orthology

We design a graphical model for aligning protein interaction networks. As the resulting
graphical model is likely to have high treewidth, exact inference using the junction tree
algorithm is not likely to be tractable. We survey several methods for approximate inference
that can be applied to this graphical model.

1.3.2.2 Structured Learning of Graphical Model Parameters

Netalign is a program we developed that uses protein interaction data to improve the
identification of proteins that are functionally orthologous. We show that the detection
of functionally orthologous proteins can be cast as a structured learning problem. The
resulting optimization problems are intractable. Thus, we survey several methods for find-
ing approximate solutions, focusing on those aspects most relevant to biological network
alignment.

1.3.2.3 Whole Genome Probabilistic Model of Evolution

A central goal of computational biology is to use genomic data to detect orthologous pro-
teins, that is, proteins in two separate species that derive from the same ancestral protein
in the last common ancestor of those two species. This information can be used to anno-
tate proteins in one species using experiments conducted in another. Orthologous proteins,
even between widely divergent species, are often related in function. We present a prob-
abilistic model of genome evolution that models not only changes in gene DNA sequences
but also other changes in the genome: protein duplication and loss, changes in gene order
on the chromosomes, and the conservation and loss of protein interactions and functional
modules. This model is consistent with the known phenomenon of domain shuffling. A
protein may be orthologous to numerous proteins that are themselves unrelated. The pro-
posed method, Orthalign, computes an approximate maximum a posteriori estimate using
parameters estimated from biological studies of protein families.

9



Chapter 2

Detecting Conserved Multiprotein
Modularity

2.1 Local Network Alignment

A stream of scientific investigation has focused on conservation of modular structure of the
cell, such as protein signaling pathways and multiprotein complexes, across species during
evolution, with the premise that such structure can be described in terms of graph theoretic
properties in the interactomes [Kelley et al., 2003; Sharan et al., 2005b; Koyutürk et al.,
2006b; Flannick et al., 2006; Narayanan and Karp, 2007; Hodgkinson and Karp, 2012]. This
stream of investigation has led to many successes, discovering conserved modularity across
a wide range of evolutionary distances.

The first algorithms for detecting multiprotein modularity did not state this as their
explicit aim [Kelley et al., 2003; Sharan et al., 2005b; Koyutürk et al., 2006b], but rather
they were called network alignment algorithms. The goal was to find regions of protein
interaction networks that were conserved across species. Since the conserved regions of
natural interest in protein interaction networks are groups of proteins that work together
on particular tasks, the goal became to find conserved functional modules in the protein
interaction networks. Optimization criteria for finding conserved functional modules ranged
from finding dense regions [Sharan et al., 2005b] to finding isomorphic subgraphs [Koyutürk
et al., 2006b].

2.2 Produles Algorithm

Produles is an algorithm designed to detect modular regions conserved during evolution.
Produles runs in linear time in the size of the input and is efficient in practice while yielding
exceptionally good results.
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(a) (b)

Figure 2.1: Diagrams illustrating difficulties with additivity across data types and species. Species are repre-
sented by ovals. Proteins are represented by circles. Protein interactions are represented by thick lines. Proteins
with high sequence similarity are connected with thin lines. Algorithms that are additive across the interaction
and sequence data may predict module (a) to be conserved due to high sequence similarity. In this case, the
module boundaries are not well defined, most likely containing portions of multiple modules that have no relation
with each other. Algorithms that are additive in the interactions across species may predict module (b) to be
conserved though there is no evidence for module conservation across the species in the protein interaction data.

2.2.1 Motivation for Produles

Some previous algorithms for related problems, including NetworkBlast [Sharan et al.,
2005b] and Graemlin [Flannick et al., 2006], use a scoring function that is a sum of multiple
scores: one score based on protein sequence similarity, and one score from each species
based on the density of interactions among the module proteins for that species. These
algorithms use a greedy search on this scoring function to find conserved modules. Due to
the additivity, module pairs similar to the diagrams in Fig. 2.2 may receive high scores and
be reported as conserved. For example, the module pair shown in Fig. ?? was reported as
conserved by NetworkBlast-M [Kalaev et al., 2009] when applied to the iRefIndex [Razick
et al., 2008] data set in Section 3.3.2.

Good module boundaries are important for the modules that are returned by an algo-
rithm. Fig 2.2 (a) illustrates the situation in which module boundaries may not be well
defined as there is no evidence in the protein interaction data that the various components
belong in the same module.

Evidence of conservation in the interaction data across species is essential for modules
claimed by an algorithm to be conserved during evolution. Homologous proteins may be
reorganized during evolution into multiprotein modules that differ both in composition
and in function across species [Beltrao and Serrano, 2007]. Due to the additivity of the
scoring function for some previous algorithms, including NetworkBlast and Graemlin, in
the interaction densities across species, a very dense network in one species can be reported
as conserved with homologous proteins in another species that have zero or few interactions
among them. In this case, as illustrated in Fig. 2.2 (b), the interaction data does not
support a claim of module conservation across the given species.

Produles is an important step to address these issues. Produles runs in linear time,
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(a) (b)

Figure 2.2: Module pairs reported as conserved by NetworkBlast-M when applied to iRefIndex protein interaction
data for human and Drosophila. Different colors denote proteins from different species. Black edges are protein
interactions and pink edges are homology relationships. The module pair on the left contains portions of two
modules. In the module pair on the right only two protein interactions exist between the Drosophila proteins.

scaling better than Match-and-Split [Narayanan and Karp, 2007] and MaWISh [Koyutürk
et al., 2006b], and does not exhibit the recurrent anomalies that result from the additivity of
the scoring function across species and data sources that forms the basis for NetworkBlast
and Graemlin.

2.2.1.1 Form of Study Data

An interactome is an undirected graph G � pV,Eq, where V is a set of proteins and
pv1, v2q P E if and only if protein v1 is found to interact with protein v2. In this study the
input is restricted to a pair of interactomes, Gi � pVi, Eiq, for i P t1, 2u, and protein sequence
similarity values, h : V1 � V2 Ñ R�, defined only for the most sequence similar pairs of
proteins appearing in the interactomes. In this study, h is derived from BLAST [Altschul
et al., 1990] E-values. As BLAST E-values change when the order of the interactomes is
reversed, h is defined with the rule

hpv1, v2q � hpv2, v1q � Epv1, v2q � Epv2, v1q
2

where Epv1, v2q is the minimum BLAST E-value for v1 P V1, v2 P V2 when v1 is tested for
homology against the database formed by V2. An algorithm using this data as input is
general to any pair of interactomes, including those for newly studied species.
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2.2.2 Modularity

A modular system consists of parts organized in such a way that strong interactions oc-
cur within each group or module, but parts belonging to different modules interact only
weakly [Simon, 2005]. Following this, a natural definition of multiprotein modularity rec-
ognizes that proteins within a module are more likely to interact with each other than to
interact with proteins outside of the module. Let G � pV,Eq be an interactome. A multi-
protein module is a set of proteins M � V such that |M | ! |V | and M has a large value
of

µpMq � |EpMq|
|cutpM,V zMq| � |EpMq|

where EpMq is the set of interactions with both interactants in M , and cutpM,V zMq is
the set of interactions spanning M and V zM . Of the interactions involving proteins in M ,
the fraction contained entirely within M is given by µpMq. This definition of modularity is
similar to the recent definition of λ-module [Wang et al., 2011].

The conductance of a set of vertices in a graph is defined as

ΦpMq � |cutpM,V zMq|
|cutpM,V zMq| � 2 minp|EpMq|, |EpV zMq|q .

When |EpMq| ¤ |EpV zMq|, as for all applications in this study,

ΦpMq � |cutpM,V zMq|
|cutpM,V zMq| � 2|EpMq| �

1� µpMq
1� µpMq .

Thus, when searching for relatively small modules in a large interactome, minimizing con-
ductance is equivalent to maximizing modularity. This relationship allows us to modify
powerful algorithms from theoretical computer science designed for minimizing conduc-
tance [Andersen et al., 2007; Spielman and Teng, 2008]. It has previously been shown
that conductance in protein interaction networks is negatively correlated with functional
coherence [Voevodski et al., 2009], in agreement with our findings in Section 3.3.

2.2.2.1 Modularity and Degree Bounds

Assuming we are searching for modules of size at most b with modularity at least d, the
vertices in any such module have bounded degree. Let δpuq be the degree of u in G.

Theorem 2.2.1 (Modularity-maximizing degree bound). If d ¡ 0, the objective function

13
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in the optimization problem

max
G,M,u

δpuq
s.t. u PM

|M | � b

µpMq ¥ d

µpMq ¡ µpMztuuq

satisfies the bound δpuq   pb� 1qp1� dq{d.

Proof. Let M 1
�Mztuu. Let y � |EpM 1q|. Let x � |cutpM 1, tuuq|.

µpM 1q � y

|cutpM 1, V zM 1q| � y
  µpMq

so
|cutpM 1, V zM 1q| ¡ yp1� µpMqq

µpMq
Thus,

µpMq � x� y

rδpuq � xs � r|cutpM 1, V zM 1q| � xs � rx� ys
  x� y

δpuq � x� y � yp1�µpMqq
µpMq

which implies
µpMq   x

δpuq � x

As µpMq ¥ d,

δpuq   xp1� dq
d

¤ pb� 1qp1� dq
d

[\

The motivation for the restriction µpMq ¡ µpMztuuq is that when searching for modules
with high modularity, there can be proteins with such high degrees that it always improves
the modularity to remove them from the module.

Theorem 2.2.2 (Tightness of degree bound). If d ¤ b�2
b , the bound in Theorem 2.2.1

is tight and neither requiring connectivity of M in the underlying graph nor requiring
connectivity of Mztuu in the underlying graph can allow the bound to be further tightened.
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Proof. Consider a module M of size b that induces a clique in an underlying graph G. Of
these vertices, only two, u and v, are incident on edges that extend outside of the clique.
Let

δpuq � pb� 1qp1� dq
d

� ε

δpvq �
�
b� 1

2



p1� d

d
q � ε1

for ε ¥ ε1 ¡ 0 chosen so that δpuq and δpvq are integers. To see that δpvq ¡ b� 1, implying
that v can indeed be in the clique with at least one edge extending outside of the clique,
examine the equivalent claim:

�
b� 1

2



p1� d

d
q ¥ b� 1

which is equivalent to d ¤ b�2
b by expanding and solving for d. Then,

µpMq �
�
b
2

�
δpuq � δpvq � 2pb� 1q � �b2�

� db

b� 2d
b�1pε1 � εq

¥ d

and

µpMztuuq �
�
b�1

2

�
δpvq � pb� 2q � pb� 2q � �b�1

2

�
� dpb� 1qpb� 2q

pb� 1qpb� 2q � 2dε1

  d

where in both cases the second equation follows from the first by multiplying numerator
and denominator by 2d and simplifying.

It remains to show that ε can be taken arbitrarily small while maintaining integrality
of δpuq and δpvq. Let

ε � ε1 � 1
b
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By rearrangement, we have

δpuq � b� 1
d

� pb� 1q � 1
b

δpvq �
�
b�1

2

�
d

�
�
b� 1

2



� 1
b

so it suffices to show that

δ1puq �
b� 1
d

� 1
b

δ1pvq �

�
b�1

2

�
d

� 1
b

are integers by choosing d appropriately. Let

d �
�
b�1

2

�
k � 1

b

for k integer and sufficiently large. Then,

δ1puq � 2k � 1
b� 2

δ1pvq � k

are both integers for b odd if k is chosen so that 2k � 1 is a multiple of b� 2. That is,

k � k1pb� 2q � 1
2

for b and k1 sufficiently large positive integers with b odd and k1 even. As bÑ8, ε � 1
b Ñ 0.

Finally, note that both M and Mztuu induce connected subgraphs in the underlying graph
G, completing the proof. [\

if d ¡ b�2
b , which is unlikely to be the case for applications in this paper, a second

bound

δpuq ¤
�
b
2

�
d
�
�
b� 1

2



,

that holds for all d ¡ 0, is tight, and, similarly, cannot be further tightened by requiring
connectivity of M or Mztuu in the underlying graph.

2.2.2.2 Hierarchy of Modularity

When an algorithm detects conserved multiprotein modules that share proteins, these mod-
ules can be combined into a larger composite module. Whenever this union takes place, the
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following theorem shows that the modularity of the composite module is at least as large
as the minimum modularity of the modules being combined.

Theorem 2.2.3 (Modularity minimum monotonicity). For modules M1, M2, it is true that

µpM1 YM2q ¥ mintµpM1q, µpM2qu.

Proof. Let epMq � |EpMq|. Let fpM,M 1q � |cutpM,M 1q|. Let gpMq � fpM,V zMq. Then

µpM1 YM2q � epM1 YM2q
gpM1 YM2q � epM1 YM2q

� epM1q�epM2q�fpM1,M2q
gpM1q�gpM2q�2fpM1,M2q�epM1q�epM2q�fpM1,M2q

� epM1q � epM2q � fpM1,M2q
gpM1q � gpM2q � epM1q � epM2q � fpM1,M2q

¥ epM1q � epM2q
gpM1q � epM1q � gpM2q � epM2q

¥ mint epM1q
gpM1q � epM1q ,

epM2q
gpM2q � epM2qu

� mintµpM1q, µpM2qu
The final inequality follows from the lemma

a� b

c� d
¥ minta

c
,
b

d
u for a, b ¥ 0 and c, d ¡ 0

which can be proved by observing that

a� b

c� d
  a

c
ñ cpa� bq   apc� dq ñ bc   ad

whereas
a� b

c� d
  b

d
ñ dpa� bq   bpc� dq ñ ad   bc

which cannot both be true. [\

A hierarchy of modularity consists of larger conserved modules composed of smaller
conserved modules while maintaining a desired minimum modularity for all modules at all
levels of the hierarchy.
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2.2.3 Modularity Maximization Algorithms

2.2.3.1 Introduction to Previous Work

Graph conductance is a concept first introduced in 1988 by Jerrum and Sinclair [Jerrum and
Sinclair, 1988]. It has been widely studied thereafter. A nice review that places conductance
minimization algorithms in the context of graph clustering is [Schaeffer, 2007]. Finding a
subgraph with lowest conductance is NP-hard [Sima and Schaeffer, 2005], proved earlier for
the weighted case [Shi and Malik, 2000]. In [Kannan et al., 2000], the goal is to find a
clustering such that the overall conductance of each cluster is high and there is a minimum
of edges spanning clusters. It is not clear why they did not directly minimize conductance
of the clusters in the graph. Andersen and Lang [Andersen and Lang, 2008] study the
minimum quotient cut that is a generalization of conductance, building on previous work.
In particular, Arora, Rao, and Vazirani [Arora et al., 2004] give a Op?log nq approximation
algorithm for the minimum quotient cut.

Nibble [Spielman and Teng, 2008] and PageRank-Nibble [Andersen et al., 2006a] are
algorithms for finding sets of vertices with low conductance in a graph. They were designed
for solving symmetric diagonally dominant linear systems [Kelner et al., 2013]. Reasonable
adaptations of the algorithms allow them to run in constant time and to search only for small
modules. The project of adapting Nibble and PageRank-Nibble to search only for small
modules was initiated in [Voevodski et al., 2009]. The adaptations described in [Voevodski
et al., 2009] do not guarantee constant running time for Nibble. A longer version of the
original PageRank-Nibble paper for undirected graphs is [Andersen et al., 2006b].

2.2.3.2 Nibble

Nibble [Spielman and Teng, 2008] is an algorithm for finding a set of vertices with low
conductance in a graph G with n vertices. Let A be the adjacency matrix for G. Let D be
a diagonal matrix with diagonal entries Dii � dpiq where dpiq is the degree of vertex i in G.
Let W � pAD�1� Iq{2 where I is the identity matrix. W is a lazy random walk transition
matrix for G that with probability 1{2 remains at the current vertex and with probability
1{2 randomly walks to an adjacent vertex. Let q, r be vectors representing distributions on
the vertices of G, not necessarily normalized. Define the truncation operator

rqsεpuq �
"
qpuq if qpuq ¥ dpuqε
0 otherwise

Define the distribution that places all mass at vertex v

χvpuq �
"

1 if u � v
0 otherwise
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Each iteration of Nibble at time step t generates the vectors

qt �
"
χv if t � 0
Wrt�1 otherwise

rt � rqtsε
Nibble is run for tlast iterations. After each iteration, the vertices are sorted by qtp�q{dp�q.
Let Sjpqtq be a set of j vertices with highest values of qtp�q{dp�q where ties are broken
arbitrarily while maintaining Sjpqtq � Sj�1pqtq. These sets Sjpqtq are called sweep sets and
there are always n of them. After each iteration the conductance is computed for at most
the first b sweep sets for some constant b, never including any vertex v with qtpvq � 0. No
further sweep sets are considered if a vertex with degree greater than b2pd�1q{d is reached,
where d is a constant parameter. This ensures that all vertices in modules returned by the
algorithm have degrees bounded by b2pd � 1q{d, which is useful for reasons described in
Section 2.2.6. The sweep set with minimum conductance over all iterations so far is stored.
In original Nibble, b is not a constant but rather a function of the sum of degrees of vertices
in the sweep sets, and there is no guarantee that vertices in returned modules have bounded
degree.

It remains to show that the algorithm can be implemented to run in constant time for
constant tlast, ε. Since tlast is constant, it suffices to show that a single iteration requires
constant time. Let σp�q be the support function that returns the set of vertices with positive
values in its distribution argument. Define the volume of a set of vertices as the sum of
degrees:

volpSq �
¸
vPS

dpvq

Rather than computing qt �Wrt�1 using matrix multiplication, qt can be computed by
explicitly passing messages to neighbors in the graph. Each vertex v P σprt�1q keeps half of
rt�1pvq and partitions half of rt�1pvq equally among its neighbors. By keeping a linked list of
references to vertices with nonzero distribution values, this requires volpσprt�1qq messages,
leading to |σpqtq| ¤ volpσprt�1qq. The truncated distribution rqtsε can be computed simply
by removing references from the linked list for any vertex v such that qtpvq   dpvqε. Only
vertices with nonzero values of qtp�q{dp�q need be sorted. If the degree of each vertex is
stored at the vertex, making degree lookup a constant-time operation, these vertices can
be sorted in Opvolpσprt�1qq log volpσprt�1qqq time. Conductances for the first b sweep sets
can be computed in Opb5pd � 1q log b{dq time by observing that the conductance of Sjpqtq
can be computed by knowing the sum of degrees of vertices in Sjpqtq and the number of
edges with both endpoints in Sjpqtq. The former can be computed in Op|Sjpqtq|q � Opbq
time, and the latter can be computed with at most b � b2pd � 1q{d set inclusion tests in a
balanced binary search tree of size at most b, which follows from the bound on the degree
of each vertex in Sjpqtq.

It remains to show that volpσprt�1qq never exceeds a constant value. For any v P σprt�1q,
by the truncation operation, rt�1pvq ¥ dpvqε. Because the distribution starts with r0 � rχvsε
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that has total value at most 1 and never increases in total value,

1 ¥
¸

vPσprt�1q

rt�1pvq ¥ ε
¸

vPσprt�1q

dpvq

which implies

volpσprt�1qq ¤ 1
ε

2.2.3.3 PageRank-Nibble

PageRank-Nibble [Andersen et al., 2006a] is an algorithm based on PageRank [Page et al.,
1999] and Nibble [Spielman and Teng, 2008] for finding a module with low conductance in a
graph G � pV,Eq. Let A be the adjacency matrix for G. Let D be a diagonal matrix with
diagonal entries Dii � δpiq where δpiq is the degree of vertex i in G. Let W � pAD�1� Iq{2
where I is the identity matrix. W is a lazy random walk transition matrix that with
probability 1{2 remains at the current vertex and with probability 1{2 randomly walks to
an adjacent vertex. A PageRank vector is a row vector solution prpα, sq to the equation

prpα, sq � αs� p1� αqprpα, sqW T

where α P p0, 1s is a teleportation constant, and s is a row vector distribution on the vertices
of the graph called a preference vector. Define the distribution that places all mass at vertex
v

χvpuq �
"

1 if u � v
0 otherwise

When s � χv, a PageRank vector is a weighted sum of the probability distributions obtained
by taking a sequence of lazy random walk steps starting from v, where the weight placed
on the distribution obtained after t walk steps decreases exponentially in t [Andersen et al.,
2007]. There is a unique PageRank vector since

p � αs� p1� αqpW T

prI � p1� αqW T s � αs

p � αsrI � p1� αqW T s�1

which follows as the matrix in brackets is strictly diagonally dominant and, thus, nonsin-
gular.

Let p be a distribution on the vertices of G, and let the vertices be sorted in descending
order by ppvq{δpvq, the frequency of v in distribution p normalized by the stationary dis-
tribution of an unrestricted random walk. Let Sjppq be the set of the first j vertices after
sorting. For j P t1, ..., |V |u, the set Sjppq is called a sweep set [Andersen et al., 2007].

PageRank-Nibble consists of computing an approximate Page-Rank vector with s � χv,
defined as

aprpα, s, rq � prpα, sq � prpα, rq
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where r is a residual vector defined below, and then returning the sweep set Sjpaprpα, χv, rqq
with minimum conductance [Andersen et al., 2007].

From the definition, if p is a vector that satisfies p � prpα, rq � prpα, χvq, then p �
aprpα, χv, rq. Thus, 0 � aprpα, χv, χvq. After initializing p1 � 0, r1 � χv, the approximation
aprpα, χv, rq to prpα, χvq is improved iteratively. Each iteration, called a push operation,
chooses an arbitrary vertex u such that ripuq{δpuq ¥ ε. Then pi�1 � pi and ri�1 � ri except
for the following changes

1. pi�1puq � pipuq � αripuq
2. ri�1puq � p1� αqripuq{2
3. ri�1pvq � ripvq � p1� αqripuq{p2δpuqq for each v such that pu, vq P E

in which αripuq probability is sent to pi�1puq, and the remaining p1�αqripuq probability is
redistributed in ri�1 using a single lazy random walk step [Andersen et al., 2007].

Each push operation maintains the invariant [Andersen et al., 2006b]

pi � prpα, riq � prpα, χvq

When no additional pushes can be performed, the final residual vector r satisfies

max
uPV

rpuq
δpuq   ε

The running time for computing aprpα, χv, rq is Op1{pεαqq [Andersen et al., 2007]. This
follows directly from the claim that if T is the total number of push operations and di is
the degree of the vertex pushed at the ith iteration, then

Ţ

i�1

di ¤ 1
εα

To prove this claim, observe that the vertex u pushed at iteration i satisfies

ripuq ¥ εdi

As αripuq probability is sent to pi�1puq,

||ri�1||1 � ||ri||1 � αripuq
¤ ||ri||1 � αεdi

Because the initial residual vector is r1 � χv with ||χv||1 � 1, the `1 norm of the residual
vector cannot decrease by more than 1 over all iterations, so

αε
Ţ

i�1

di ¤ 1
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from which the claim follows.
If ε and α are set to constants, reasonable given their meanings, and if only the first

b sweep sets are considered, the algorithm runs in constant time. Ensuring the degrees of
the vertices satisfy the bound in Theorem 2.2.1, we do not consider sweep sets that contain
vertices with degree pb � 1qp1 � dq{d or greater, and we also require connectivity in the
underlying graph.

For PageRank-Nibble, it is not necessary to bound the degree explicitly for each vertex
in the considered sweep sets in order to guarantee that these degrees are bounded above by
a constant. PageRank-Nibble guarantees that

volpσpaprpα, χv, rqqq ¤ 2
p1� αqε

This follows from the observation that the final push on a vertex v P σpaprpα, χv, rqq oc-
curred at an iteration i when ripvq ¥ εdpvq and a fraction p1 � αq{2 of that probability
remained at ri�1pvq. Thus, for each v P σpaprpα, χv, rqq,

rpvq ¥ 1� α

2
� εdpvq

Thus
1 ¥

¸
vPσpaprpα,χv ,rqq

rpvq ¥ p1� αqε
2

� volpσpaprpα, χv, rqqq

from which the claim follows.

2.2.3.4 Greedy Algorithm

To verify that Nibble and PageRank-Nibble return modules with near-optimal modularity,
we use a greedy algorithm that grows a module by adding the neighboring protein that
confers greatest improvement to the modularity. By considering only proteins that satisfy
the degree bound from Theorem 2.2.1, the algorithm runs in time Opb3{dq. Though this
algorithm is slow, comparing its results with faster algorithms increases our confidence in
the quality of their results.

2.2.4 Algorithm to Detect Conservation

The algorithm begins by finding a multiprotein module,

M � V1

with high modularity in G1 using a modularity maximization algorithm such as those de-
scribed in Section 2.2.3. Let

HT pMq � tv | D u PM such that hpu, vq ¤ T u
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Modules corresponding to the connected components of the subgraph of G2 induced by
HT pMq are candidates for conservation with M . Let these modules be N1, N2, ..., Nk. For
i � 1, ..., k, let

RT pM,Niq � tu PM | D v P Ni such that hpu, vq ¤ T u

If the following are true:

a ¤ |RT pM,Niq| ¤ b

a ¤ |Ni| ¤ b

1
c
|Ni| ¤ |RT pM,Niq| ¤ c|Ni|

µpRT pM,Niqq ¥ d

µpNiq ¥ d

where a is a lower bound on size, b is an upper bound on size, c is a size balance parameter,
and d is a lower bound on desired modularity, and if RT pM,Niq yields a connected in-
duced subgraph of G1, then we report the pair pRT pM,Niq, Niq as a conserved multiprotein
module.

Each protein is used exactly once as a starting vertex for the modularity maximization
algorithm. A counter is maintained for each protein in G1. When a protein is placed
in a module by the modularity maximization algorithm, the counter for the protein is
incremented. Each counter has maximum value e for some constant e. The modularity
maximization algorithm is restricted to search over proteins with counter value less than e.
If a protein in G1 is reported to be in a conserved module, the counter for the protein is
set to e{2 in order to reduce module overlap. Furthermore, interactions in the subgraphs
induced by the module are marked, preventing these interactions from being used in future
searches by the modularity maximization algorithm. When all proteins in G1 have been
used as starting vertices, the roles of G1 and G2 are reversed, and the entire process is
repeated.

2.2.5 Refinement of Large Connected Components

A module, M � V1, may contain proteins that are homologous to a large number of pro-
teins, S � V2, and S may form a large connected induced subgraph in G2. In many cases,
the size of S cannot reasonably be explained by duplication of module proteins after di-
vergence from the most recent common ancestor. Two reasons explain the majority of this
phenomenon. First, proteins may share peripheral domains that cause protein homology
detection algorithms to detect proteins only partially homologous, which may interact with
module proteins, either genuinely or due to artifacts from experimental assays such as yeast
two-hybrid. Second, paralogous modules that may be kept separate by the cell, performing
different functions, contain homologous proteins, leading proteins in paralogous modules to
be incorrectly detected as interacting. Refinement of large connected components aims to
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remove partially homologous proteins and to separate paralogous modules.

2.2.5.1 Biconnected Components

A first approach is to consider biconnected components rather than connected components.
If paralogous modules are connected only loosely by bridges, they can be separated using
biconnected components.

2.2.5.2 Linear-time Colorful Connected Subgraph Heuristic

As a second approach, we design a heuristic algorithm that requires time linear in the size
of the subgraph induced by S. The algorithm proceeds by iterations. At each iteration,
each subgraph protein, u P S � V2, records the difference between the modularity of the
subgraphs induced by S and Sztuu. Each module protein, v P M � V1, is assigned a
distinct color and transfers its color to all homologous proteins in S. Of the proteins in
S with the most frequent color, half are removed, precisely those that individually benefit
the modularity least. The algorithm iterates for a maximum of b2 iterations, ensuring
that a subgraph of size 2b can be separated into modules of size at most b. After each
iteration, tests are performed for connected components and biconnected components that
can reasonably be reported as conserved according to the tests in Section 2.2.4.

2.2.6 Proof of Linear Running Time

Each value of hpv, �q for v P V is considered only when constructingHT pMq for tM : v PMu,
so each value of hpv, �q is considered at most e times. If v is stored at each vertex in HT pMq
when constructing HT pMq, then constructing RT pM,Niq is a union of vertex lists and does
not require additional considerations of hpv, �q values. As for all v P V1,

|tM : v PMu| ¤ e

the number of consideration of h values is
¸
M

¸
vPM

|hpv, �q| �
¸
v

¸
M :vPM

|hpv, �q|

¤ e
¸
v

|hpv, �q|

� e|hp�, �q|

After findingHT pMq, it is necessary to compute N1, N2, ..., Nk. This can be problematic
if any of the vertices in HT pMq have large degree, which could conceivably be as large as
|V2| � 1. However, as we desire Ni such that µpNiq ¥ d and |Ni| ¤ b, which ideally do
not contain any vertex u such that µpNiztuuq ¡ µpNiq, we can discard, by Theorem 2.2.1,
any vertex v P HT pMq with degree in G2 of pb � 1qp1 � dq{d or greater. A modified
depth-first search that transitions only among vertices in HT pMq is then used to compute
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N1, N2, ..., Nk. This requires time

Opppb� 1qp1� dq
d

q|HT pMq|q � Op|HT pMq|q

As
|HT pMq| ¤

¸
vPM

|hpv, �q|

all of these depth-first searches over the full run of the algorithm require time

Op
¸
M

|HT pMq|q � Op
¸
M

¸
vPM

|hpv, �q|q � Op|hp�, �q|q

For a given M , constructing all RT pM,Niq by a union of lists stored at the vertices
in the Ni requires time Op°i |Ni|b log bq � Op|HT pMq|q. Testing for connectivity of a
single RT pM,Niq with a modified depth-first search that transitions only among vertices in
RT pM,Niq requires constant time as |RT pM,Niq| ¤ b and as each vertex in M has degree
bounded by pb � 1qp1 � dq{d. All of these constructions and depth-first searches over the
full run of the algorithm can be completed in time Op°M |HT pMq|q � Op|hp�, �q|q.

Computing the modularity of module U P tNi,RT pM,Niqu requires computing the sum
of degrees of the vertices in U and the number of edges with both endpoints in U . These
can be computed in constant time when |U | ¤ b as each vertex in U has degree bounded
by pb� 1qp1� dq{d.

The refinement heuristic requires time Op|HT pMq|q per iteration maintaining overall
linear time. Attaining this time complexity requires using a linear-time median selection al-
gorithm. A fast randomized median selection algorithm yields expected linear time whereas
the median-of-medians algorithm [Blum et al., 1973] ensures worst-case linear time. Com-
puting biconnected components maintains the same time complexity as connected compo-
nents by using a classic algorithm [Hopcroft and Tarjan, 1973].

2.2.7 Colorful Connected Subgraph and Variants

When we are willing to spend more than linear time for the overall algorithm, we can
refine the connected components using an approximation algorithm for a variant of the
colorful connected subgraph problem [Lacroix et al., 2006]. The colorful connected subgraph
problem is as follows: Given a set of colors, and a vertex-colored graph, find a subgraph
that includes exactly one vertex of each color in the set [Lacroix et al., 2006]. The colors
are assigned to vertices as described in Section 2.2.5.2. The colorful connected subgraph
problem is NP-complete [Lacroix et al., 2006]. For an exact solution we could use one of the
exponential-time algorithms from Torque [Bruckner et al., 2010]. We present approximation
algorithms and heuristics that are faster and work well in practice. Also the nature of the
approximations is such that the output from the approximations may be more biologically
reasonable than exact solutions.
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2.2.7.1 Approximation Algorithm based on Steiner Tree

One approximation algorithm for the colorful connected subgraph problem is based on
the Steiner tree problem and its 2-approximation algorithm [Vazirani, 2003]. Initially, we
compute all-pairs shortest paths between each pair of proteins in the protein interaction
subgraph. This can be done using the Floyd-Warshall algorithm or using a breadth-first
search from each protein. The colors are then sorted in nondecreasing order by number
of proteins per color to create an ordering c1, c2, ..., ck. For each protein with color c1, we
create a solution using the subroutine in the next paragraph and then return the solution
with fewest proteins.

Given a protein pc1 with color c1, we add pc1 to a set of terminals T . We loop over
each color c from c2 to ck. For each color c, we loop over each protein p of color c and
compute a minimum spanning tree on T Y tpu using shortest path lengths as edge weights.
The protein pc that yields the minimum spanning tree of lowest total weight for color c is
added to T before considering proteins of the next color. After all colors are considered, the
proteins in T and the proteins in the shortest paths corresponding to each edge in the final
minimum spanning tree are returned as a possible solution to the algorithm in the previous
paragraph.

If there are n proteins and k colors, the total running time is OpA � nkMq where A
is the complexity of the all-pairs shortest paths algorithm and M is the complexity of the
minimum spanning tree algorithm. The best implementation of the minimum spanning
tree algorithm is Prim’s algorithm with Fibonacci heaps, where M � OpE � V lnV q �
OpmintnδPPI � n lnn, n2u, and δPPI is the maximum degree in the protein interaction
network. Using the Floyd-Warshall algorithm, A � OpV 3q � Opn3q. Thus, the total
running time is Opn3 �mintn2kδPPI � n2k lnn, n3kuq.

This approximation algorithm guarantees that at most pk � 1qL proteins will be in the
solution, where k is the number of colors and L is the number of proteins in the smallest
solution. If there is a colorful connected subgraph, then L ¤ k, but, when there is no
colorful connected subgraph, the best solution may have L ¡ k with duplication of colors.
To prove this approximation ratio, consider that since every protein of color c1 is tested,
we can assume we are starting from a protein pc1 in the smallest solution. The proof is
by induction. For the base case, consider that since we assumed without loss of generality
to start at a protein, p1, of color c1 in a smallest solution, there must be another protein
in this same smallest solution, p2, of color c2 within distance L of p1. For the inductive
step, assume that the minimum spanning tree, MSTj , on a set of terminals, p1, p2, ..., pj
of colors c1, c2, ..., cj , respectively, has weight at most pj � 1qL. Since p1 is assumed to be
in a smallest solution, there is a protein, pj�1, of color cj�1 within distance L of p1. By
combining the edge representing the shortest path between p1 and pj�1, with MSTj , we
form a spanning tree on p1, p2, ..., pj , pj�1, which is of weight at most pj � 1qL � L � jL.
The minimum spanning tree, MSTj�1, therefore, has weight at most jL.

This approximation guarantee can be tightened somewhat by observing that when re-
placing each weighted edge by the proteins in the shortest path in the proof, except for the
first edge so replaced, all other edges need add one fewer protein than the weight as one
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Figure 2.3: Example showing that the bound pk� 2qpL� 2q � 2 on the approximate solution is
asymptotically tight.

endpoint of the path is already in the solution. The number of proteins in the approximate
solution is thus at most pk � 1qpL � 1q � 1. Finally observe that in a smallest solution, a
protein p1 of color c1 must exist that is adjacent to a protein with a different color, so one
of the shortest paths in the proof must have length at most 2 rather than L. This yields an
asymptotically tight bound on the approximate solution of pk � 2qpL� 1q � 2.

To show that this bound is asymptotically tight, consider the example in Figure 2.3.
Imagine that the colors are sorted in decreasing order of occurrence c1, c2, ..., ck. To ensure
that this is so, we can add proteins of colors c3, ..., ck�1 to the single protein with color ck
to ensure the correct relative order of occurrence among these, and a branch of c1 proteins
of arbitrary size to the central c1 node to ensure that proteins with color c1 are most
abundant. Only the central c1 protein shown is a viable starting protein. The rightmost
branch with L proteins including the central protein is the smallest solution. However
the algorithm may unfortunately use k � 2 branches beginning at the topmost branch and
moving counterclockwise. Thus, the algorithm returns a solution with pk� 2qpL� k� 1q �
1�°k

3pk � 2q. As LÑ 8, both the number of nodes in this tight example and the upper
bound approach pk � 2qL, showing that the upper bound is asymptotically tight.

The approximation ratio is on the number of proteins, n, but any spanning tree on the
proteins returned has n� 1 edges, so the approximation ratio also applies to the number of
protein interactions. An efficient final step to to construct a spanning tree using a breadth-
first search in Opn2q time.

In our experiments we find that k is rarely more than 10. These are worst-case guar-
antees but in practice the approximation is generally much better. From experiment, we
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found that when the algorithm was applied to 500 connected components containing all
colors but too large to be reasonably reported as conserved, the output contained less than
3k proteins in all cases and less than 1.1k proteins in 95% of the cases.

2.2.7.2 Primal-Dual Approximation Algorithm

The primal-dual method on a linear relaxation of an integer program yields an algorithm
with a similar running time of Opn3kq and a similar approximation ratio of k�1, where the
approximation ratio is on the number of protein interactions in the solution. Let G � pV,Eq
be the graph of interest in which it is desired to find a colorful subgraph, where V is the
set of proteins and E is the set of protein interactions. Assign variables xe P t0, 1u to each
e P E where xe � 1 if and only if e is part of the solution returned. For a set S � V where
S � H, let δpSq � cutpS, V zSq. We restrict the colorful subgraph problem to require that
the colorful subgraph includes a designated vertex r. By applying the resulting algorithm
n times, once for each choice of r, the general problem can be solved. The following integer
program models the colorful subgraph problem when it is constrained to include a designated
vertex r.

Min
°
ePE xe

subject to: °
ePδpSq xe ¥ 1 S : fpSq � 1
xe P t0, 1u e P E

where fpSq �
"

1 if r P S and S does not contain all colors
0 otherwise

The LP relaxation is

Min
°
ePE xe

subject to: °
ePδpSq xe ¥ 1 S : fpSq � 1
xe ¥ 0 e P E
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Data: graph G � pV,Eq, designated vertex r P V
Result: set A of edges approximating colorful subgraph containing r
AÐH
C Ð ttvu : v P V u
for i P V do dpiq Ð 0
`Ð 0
while component Cr containing r does not have all colors do

`Ð `� 1
Find edge e` � pi, jq with i P Cr, j P Cp � Cr minimizing ε � 1� dpiq � dpjq
AÐ AY te`u
for k P Cr do dpkq Ð dpkq � ε
C Ð C Y tCr Y Cpu � tCru � tCpu

end
for j Ð ` downto 1 do

if all components C of A� teju satisfy fpCq � 0 then AÐ A� teju
end

Figure 2.4: Primal-dual k � 1 approximation algorithm for colorful subgraph containing desig-
nated vertex r.

and the dual of the LP relaxation is

Max
°
S:fpSq�1 yS

subject to: °
S:ePδpSq yS ¤ 1 e P E
yS ¥ 0 S : fpSq � 1

The function f is a 0-1 function that satisfies the maximality property: if A and B
are disjoint, then fpAq � fpBq � 0 implies fpA Y Bq � 0. Thus we can use the primal-
dual algorithm for integer programs of this form with functions satisfying the maximality
property as given in [Goemans and Williamson, 1996], adapted to the colorful subgraph
problem and displayed in Figure 2.4.

The algorithm has a simple combinatorial interpretation. Starting at r, the algorithm
grows a connected component by including all proteins at distance 1, then all proteins at
distance 2, and so on, until the connected component contains all colors. Then a shrinking
phase begins where edges are removed in reverse order of addition if their removal does not
cause the connected component containing r to lose any of its colors. The distance of the
final protein in the growing phase is obviously a lower bound on the size of the final solution
and this is the value of the objective function in the dual of the LP relaxation. This lower
bound is used to prove the approximation ratio.
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Essentially, as the algorithm proceeds, the only dual variables, yS , that are set to nonzero
values are the dual variables corresponding to sets Sir containing all proteins within distance
i of protein r, for those values of i encountered during the growing process. These dual
variables, yS , are set to 1. Since each edge e P E can be in only of the cuts δpSirq, the final
setting of the dual variables is a dual feasible solution. Since, by LP duality theory, the
objective function of the dual LP relaxation is a lower bound on the objective function of
the LP relaxation, and since the objective function of the LP relaxation can be optimized
to be at least as small as the optimized objective function of the integer program, the sum
of the yS variables, i.e. the distance from r reached in the growing process, is a lower bound
on the number of edges in a solution, as was directly obvious.

During the shrinking phase, the edges in the cuts, δpSirq are considered for removal
in decreasing order of i. Sir must contain at least one color, i.e. the color of r. By the
pigeonhole principle, if more than k � 1 edges are in δpSirq, then at least one edge cannot
lead to a connected component with a color needed by the colorful subgraph unreachable
by the other edges, so it will be removed. Thus, for each i, at most k � 1 edges are left
in the cut δpSirq. Since the largest value of i is a lower bound on the size of the optimal
solution, the approximation ratio of k � 1 immediately follows.

The growing and shrinking phases can be implemented in Opn2kq time using a breadth-
first search. As proteins are encountered, global counters for the colors of the proteins are
incremented. Pointers to edges are stored in a list in the order in which they are encountered.
The shrinking phase decrements the global color counters for each edge removed. The
complete algorithm, which loops over every choice of r to choose the best solution, thus,
has a time complexity of Opn3kq.

2.2.7.3 The Forcing Heuristic

In this heuristic algorithm for the colorful subgraph problem, the input is a module, M ,
and a subgraph, G � pV,Eq, where M and V are sets of proteins and E is a set of protein
interactions. Also given is a set of homology relationships between the proteins in M and
the proteins in V . The proteins c PM are interpreted as colors. Initially each color, c PM
is assigned a count set to 1, that says how many proteins homologous to c, i.e. with color
c, should be included in the colorful subgraph. Each color c P M is also given a frequency
that is the total number of proteins in V that are homologous to c, i.e. have color c. Each
protein p1 P V is assigned a color c P M that is homologous to p1 and that has the lowest
frequency of all colors in M homologous to p1. The frequencies of the colors c P M are
then updated to be the number of proteins in V with color c. During this update, one or
more colors, c P M , may be assigned a frequency of 0. If this is the case, the count of c is
set to 0, a protein p1 P V homologous to c is selected, and the count of the color of p1, i.e.
the count of a different color in M , is incremented, provided this color’s count is not made
higher than its frequency. This completes the initialization.

The colors c P M are sorted from lowest frequency to highest frequency. The idea is
that colors with lower frequency are more likely to be required in a colorful subgraph so
we should begin by building a basic scaffold for the colorful subgraph from proteins p1 P V
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that have low frequency colors. Colors with frequency 0 are not included in the sorted list.
Starting from G0 � pH,Hq, for the sorted colors i � 1, ..., k, all proteins p1 P V with color
i are added to Vi�1 to form Vi. All edges in E induced by proteins in Vi are added to Ei to
form Gi. Connected components of Gi are computed and a statistic,

Xi �
¸

components C

p# colors in Cq3
# proteins in C

is evaluated. Gmax is chosen to be Gi for the i that maximizes Xi.
Let Sc � |tp : colorppq � cu|. The components of Gmax are sorted by size. Starting with

the smallest components, components are removed if they do not cause Sc   countpcq for
any c P rc1, ..., cmaxs.

The remaining components must be merged and, moreover, proteins of colors cmax�1, ..., ck
must be added to the colorful subgraph. First we consider all individual proteins of colors
ci, for i ¡ max, whose addition to the colorful subgraph merges two or more components.
We add the protein that increases the modularity, µ, the most. This is repeated until
all components are merged or until the remaining components cannot be merged by the
addition of single proteins.

The next step is to perform a breadth-first search to find a shortest path on proteins
with colors i ¡ max from the smallest component to a larger component. The shortest
path is added to the colorful subgraph. This is repeated until all components are merged.

At this stage, it may be that some colors i ¡ max are insufficiently represented in the
colorful subgraph. We consider each color c � max � 1, ..., k. If Sc   countpcq and if
there is at least one protein of color c connected to the subgraph, we select a protein from
these that most increases the modularity, µ, and we add this protein to the subgraph. If
Sc   countpcq, but there is no protein of color c connected to the subgraph, we add all
proteins in a shortest path from the subgraph to a protein of color c. At this stage it is
guaranteed that Sc ¥ countpcq for all colors.

Now we have a colorful subgraph but it may still be possible to remove some proteins
while maintaining connectivity and maintaining Sc ¥ countpcq for all c. We perform this
step using a heuristic that we call the forcing heuristic, since we identify the proteins that
are forced into the colorful subgraph and cannot be removed. All proteins with colors c
such that Sc � countpcq are forced into the colorful subgraph. Also any cut vertex whose
removal would split the subgraph into two or more components such that any component
would have less than countpcq of any color c are forced into the colorful subgraph. For every
protein forced in, if there are more than countpcq proteins of its color c, any other protein
of color c that is not a cut vertex is removed, until exactly countpcq proteins remain or
until each remaining protein of color c is a cut vertex. This completes the heuristic and the
remaining colorful subgraph is returned.

Using this heuristic rather than the heuristic in Section 2.2.5 to refine large connected
components in Produles yielded similar results both in terms of quality of output and
running time. Using this heuristic is given as an option in the Produles software in case
one finds that the default heuristic from Section 2.2.5 is not providing the desired results
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for particular inputs.

2.2.8 Produles Discussion and Extensions

2.2.8.1 Modularity Versus Density

Modularity prefers relatively dense regions that are separable from the rest of the graph,
whereas density alone does not consider separability of dense regions. Many algorithms for
related problems have been based on a search for dense subgraphs. A notable exception is
the algorithm from a recent study that uses a definition of modularity similar to ours [Wang
et al., 2011].

2.2.8.2 Three or More Interactomes

Detecting multiprotein modularity conserved across three or more interactomes requires
only minor modification and maintains running time linear in the size of the input. Note
that the size of the input is quadratic in the number of interactomes. Modularity maximiza-
tion algorithms are applied to each interactome to find natural modules. After computing
connected components on homologous proteins in the other interactomes and refining the
resulting subgraphs as described in Section 2.2.5, the original module and all refinements
are reported if they pass the requirements in Section 2.2.4. The proof of running time in
Section 2.2.6 extends without difficulty.

2.2.8.3 Weighted Interactomes

If desiring to focus on modules that preferentially incorporate particular interactions, weights
can be assigned to the interactions. This has been used, for example, by NetworkBlast [Sha-
ran et al., 2005b], to focus on interactions among proteins that have been found not only
to interact but also to be co-expressed. The definition of modularity in this study is easily
extended to weighted interactomes by using weight sums rather than edge counts in the
definition of µ. If the weights are bounded from below, which is usually the case due to
thresholding, a variant of Theorem 2.2.1 for weighted graphs holds and the proof of linear
running time follows.

Weights can also be used to count the number of independent experiments that report
a given interaction. This is a form of multiple validation on the same proteins in the same
species. A disadvantage of this approach is its implicit down-weighting of interactions in
regions of newly-studied proteins that are frequently regions of greatest interest. Produles
implicitly enforces multiple validation from independent experiments across species and
across the various interactions in the module to increase confidence in a higher level signal
of conserved modularity, making Produles ideal for noisy and newly-generated interactomics
datasets.
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2.2.8.4 Forcing Heuristic Extensions

The forcing heuristic in Section 2.2.7.3 works well in practice but, for some inputs, may
return colorful subgraphs with more duplication of colors than necessary. The heuristic can,
however, be invoked recursively. To allow a reasonable number of options for proteins of the
most frequent colors to join connected components of proteins with less frequent colors, we
allow the addition of any protein from the original subgraph when creating paths between
connected components.

2.3 Produles on PHOG

We investigate whether orthology among proteins can be used to detect orthology among
multiprotein modules. A similar investigation was conducted by Gandhi et al. [Gandhi et
al., 2006], using InParanoid [O’Brien et al., 2005] for predictions of orthologous proteins.
They used a restrictive method for conservation, requiring every interaction to agree in
both interactomes, that may miss conserved modules due to the well-known difficulties of
incomplete and imprecise protein interaction data [Hakes et al., 2008]. Another line of
research directed toward the detection of multiprotein modules include methods such as
PathBlast [Kelley et al., 2003], NetworkBlast [Sharan et al., 2005b], MaWISh [Koyutürk
et al., 2006a], and Match-and-Split [Narayanan and Karp, 2007] that use general homology
relations between proteins to guide the search.

In the experiments reported here we used the PHOG phylogenomic orthology prediction
algorithm [Datta et al., 2009] to identify orthologous proteins between D. melanogaster
and H. sapiens. We applied Produles [Hodgkinson and Karp, 2012] with PHOG protein
orthology data on the interactomes for these species, with parameters set for detection of
highly conserved multiprotein modules, detecting 29 orthologous modules on more than 300
proteins in each species.

2.3.1 PHOG

PHOG [Datta et al., 2009] uses pre-computed protein family trees in the PhyloFacts (http:
//phylogenomics.berkeley.edu/phylofacts/) [Glanville et al., 2007; Krishnamurthy et
al., 2006] resource to predict orthologous proteins. PHOG bases its predictions on individual
protein domains so its definition of protein orthology is not transitive. Rather than per-
forming gene-tree species-tree reconciliation to predict orthologous proteins, PHOG can be
parameterized for various levels of recall and precision. If high precision is desired, protein
orthology predictions are restricted to those proteins that satisfy super-orthology [Zmasek
and Eddy, 2002], where each node on the paths between the proteins in the family tree
corresponds to a speciation event. If high recall is desired, a tree distance parameter ex-
tends protein orthology prediction to more distantly related proteins. PHOG-T(F) offers
protein orthology predictions based on a tree-distance threshold that balances recall and
precision for protein orthology prediction between H. sapiens and D. melanogaster [Datta
et al., 2009].
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Chapter 2. Detecting Conserved Multiprotein Modularity

Results on a benchmark dataset of 100 non-homologous protein families from the TreeFam-
A manually curated protein orthology database [Li et al., 2006] show that PHOG provides
a combination of high recall and precision competitive with OrthoMCL-DB [Chen et al.,
2006], with a dramatic improvement in precision over InParanoid [O’Brien et al., 2005], and
allows users to target different taxonomic distances and precision levels through the use of
tree-distance thresholds (a variant of PHOG termed PHOG-T). For instance, OrthoMCL-
DB achieved 76% recall and 66% precision on this dataset; at a slightly higher precision
(68%) PHOG achieves 10% higher recall (86%). InParanoid achieved 87% recall at 24%
precision on this dataset, while a PHOG variant designed for high recall achieves 88% recall
at 61% precision, increasing precision by 37% over InParanoid [Datta et al., 2009].

2.3.2 ModuleAlign for Gold Standard Set of Conserved Modules

It has been difficult to evaluate algorithms that detect conserved multiprotein modularity in
interactomes due to the absence of a gold-standard data set. Algorithms cannot be expected
to find modules that do not exist in the data sets being used, and the interactomics data
is presently noisy and incomplete [Hakes et al., 2008]. In this work a new protocol, named
ModuleAlign, is designed to evaluate multiprotein module pairs predicted to be conserved
by computational methods such as Produles. ModuleAlign can provide a gold standard
for computational methods that detect conserved multiprotein modules, such as Produles,
given fixed interactomes and protein orthology/homology relations.

The ModuleAlign protocol is as follows. First, a multiprotein module in one species is
manually curated. This curation may be a refinement of a module found using a compu-
tational method or it may be guided by one of many modules stored in protein interaction
databases such as the NetPath [Kandasamy et al., 2010] modules from HPRD [Prasad et al.,
2009]. Next, all proteins orthologous to those in the manually curated module are placed
into a set S. The set S is refined to a set S1 by removing proteins that do not participate
in at least one interaction with other proteins in S. Next, the subgraph of the interactome
induced by proteins in S1 is computed and displayed for interpretation.
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Evaluation of Algorithms

3.1 Biologically Motivated Evaluation Measures Based on Graph
Theory

In this section, we present a set of biologically motivated graph theoretic measures that
illuminate the characteristics and goals of various algorithms and qualities of the interac-
tomics data. Five goals arising from these measures are presented with comments on when
they may not be attained.

3.1.1 Output and Coverage

The algorithms return output that can be expressed as follows:

Algorithm output Let k pairs of conserved modules returned by an algorithm be

M � tpM i
1,M

i
2q | i P t1, ..., kuu.

Let pM1,M2q PM. Let M P tM1,M2u.

Proteome coverage Let
Ci � |Ui|{|Vi|,

where Ui is the set of proteins from Vi that are part of conserved modules. Let

C � pC1 � C2q{2.

Module size Let SpMq � |M |.
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3.1.2 Overlap

Algorithms differ in the amount and nature of module pair overlap allowed in the algorithm
output. Three measures of overlap illuminate these characteristics.

Maximum overlap Let
Ojik � |M j

k XM i
k|{|M i

k|.
Let

OimaxpM i
1,M

i
2q � max

j�i
mintOji1 ,Oji2 u.

A value of Oimax � x implies that no module pair j � i exists that covers more than fraction
x of each module in module pair i.

Sum overlap Let
OisumpM i

1,M
i
2q �

¸
j�i

mintOji1 ,Oji2 u.

Cardinality overlap Let

OicardpM i
1,M

i
2q � |tj : j � i ^ mintOji1 ,Oji2 u ¡ 0u|.

Together, Oisum and Oicard measure the extent of overlap in the algorithm output, and Oimax
measures a limiting case. All three measures allow for module duplication during evolution.

Goal 1 (Reasonable coverage and overlap). k and C should be in reasonable ranges with
low average values of Oimax, Oisum, and Oicard in a set of conserved modules with reasonable
coverage and overlap.

3.1.3 Evidence for Claim of Conservation

These measures address the situation diagrammed in Fig ?? (b).

Filled module Let
GintpMq � pM,EpMqq.

Interaction components Let CpMq be the number of connected components in GintpMq.
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Module density Let

∆pMq � |EpMq|{
�|M |

2



.

Module average Let
fapM1,M2q � pfpM1q � fpM2qq{2,

where f P tµ, S,∆, Cu.

Module difference Let

fdpM1,M2q � |fpM1q � fpM2q|,

where f P tµ, S,∆, Cu.

Goal 2 (Components and balance). Cd, Ca, and ∆d should be reasonably low to provide ev-
idence for the claim of conservation across species. This may be problematic for algorithms
based on models that are additive in the interaction densities across species.

3.1.4 Ancestral Multiprotein Modules

By grouping homologous proteins, this measure focuses on the number of sequence dissim-
ilar proteins that participate in the module, presumably proteins with diverse origins and
functions.

Module homology graph Let

GhompM1,M2q � pM1 YM2, HpMqq,

where, for p1 PM1, p2 PM2, pp1, p2q P HpMq iff hpp1, p2q is defined.

Ancestral protein Let
p � pP1, P2q,

where P1 �M1, P2 �M2, and GhompP1, P2q is a connected component of GhompM1,M2q.

Ancestral module Let MapM1,M2q be the set of ancestral proteins for pM1,M2q. The
arguments, M1,M2, may be omitted for brevity when the context is clear.

Goal 3 (Number of ancestral proteins). |Ma| is a measure of the number of sequence
dissimilar proteins and should be reasonably large for multiprotein modules containing
proteins with diverse origins and functions.
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3.1.5 Interaction Level Model of Evolution

This collection of measures examines agreement of conserved modules with an interaction
level evolutionary model that includes interaction formation and divergence, protein dupli-
cation and divergence, and protein loss.

Relationship disagreement Let p, q PMa, where p � pP1, P2q, q � pQ1, Q2q. For i, j P
t1, 2u, relationship disagreement means there is an interaction in Gi between some p1 P Pi
and some q1 P Qi, but no interaction in Gj between any p2 P Pj with any q2 P Qj. Let
RpM1,M2q be the number of relationship disagreements.

Relationship evolution Let

ErpM1,M2q � RpM1,M2q{
�|Ma|

2



,

the fraction of possible relationship disagreements.

Ancestral module projection For i P t1, 2u, let

πipMaq � tPi | pP1, P2q PMa ^ Pi � Hu.

Number of protein duplications Let

DpM1,M2q � |M1| � |π1pMaq| � |M2| � |π2pMaq|.

Protein duplication evolution Let

EdpM1,M2q � DpM1,M2q{p|M1| � |M2| � 2q,

the fraction of possible protein duplications.

Number of protein losses Let

LpM1,M2q � 2|Ma| � |π1pMaq| � |π2pMaq|.
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Protein loss evolution Let

E`pM1,M2q � LpM1,M2q{p|M2| � |M1|q,

the fraction of possible protein losses.

Goal 4 (Interaction level evolutionary signal). Er, Ed, and E` should be reasonably low
to detect an interaction level signal of evolutionary conservation. Unfortunately, conserved
natural modules, even those that have been highly studied, may not satisfy this goal in
current interactomics datasets due to artifacts in the way the data is collected and stored,
leading to large amounts of noise at the individual interaction level. Furthermore, it has been
proposed that there is not much selective pressure at the individual interaction level [Bel-
trao and Serrano, 2007], which, if true, may lead to genuinely high Er scores in natural
conserved modules. The high value of Ed in the conserved modules found by numerous
algorithms, as shown in Section 5.1, may reflect characteristics of modules in interactomes,
such as a tendency to contain homologous domains that facilitate protein interactions in
the modules [Beltrao and Serrano, 2007].

3.1.6 Quality of Module Boundaries

This measure addresses the situation diagrammed in Fig 2.2 (a).

Ancestral protein projection For ancestral protein p � pP1, P2q, Pi is the projection of
p on Mi for i P t1, 2u.

Ancestral components Let CpMaq be the number of connected components in a graph
with vertex set Ma, where an edge is defined between two ancestral proteins p, q PMa if any
protein in the projection of p on Mi interacts with any protein in the projection of q on Mi,
for some i P t1, 2u.

Goal 5 (Number of ancestral components). Any value of CpMaq ¡ 1 implies that the
module pair is not well defined as there is no evidence that the various connected components
belong in the same module.

3.1.7 Er Scores at Random

LetM1 andM2 be modules with densities ∆pM1q and ∆pM2q generated uniformly at random
so that the probability of an edge between any two proteins p, q PMi is ∆pMiq. The average
size of an ancestral protein is p|M1| � |M2|q{|Ma|. Let x � p|M1| � |M2|q{p2|Ma|q. Suppose
for simplicity that all ancestral proteins have size 2x with x proteins from each interactome
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Table 3.1: Er Scores Expected at Random

x{∆ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 0.00 0.18 0.32 0.42 0.48 0.50 0.48 0.42 0.32 0.18 0.00

2 0.00 0.45 0.48 0.36 0.23 0.12 0.05 0.02 0.00 0.00 0.00

3 0.00 0.47 0.23 0.08 0.02 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.30 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.13 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

and that ∆ � ∆pM1q � ∆pM2q. Then, for p, q PMa, the probability of an interactome hav-
ing no interaction between p and q is p1�∆qx2

. The probability of neither interactome hav-
ing an interaction between p and q is pp1�∆qx2q2. The probability of an interactome having
an interaction between p and q is 1� p1�∆qx2

and the probability of both interactomes
having an interaction between p and q is p1� p1�∆qx2q2. Thus, the probability of a dis-
agreement in the relationship between p and q is gpxq � 1� pp1�∆qx2q2 � p1� p1�∆qx2q2,
which is also equal to the expected value of Er as EpErq � EpRq

Rt
� gpxqRt

Rt
� gpxq where

Rt �
�
|Ma|

2

�
. Table 3.1 lists EpErq � gpxq for various values of x and ∆. Nonzero entries are

in bold. For all algorithms in this study, there are no protein losses, so x ¥ 1.

3.2 Evaluation Measures Based on Protein Function

Gene Ontology [Gene Ontology Consortium, 2012] stores a database of protein annotations
including annotations for participation in biological processes. Methods for biological pro-
cess enrichment attempt to determine whether the module proteins have more similarity in
biological process annotations than would be expected by chance. The most widely used
method for biological process enrichment calculates the probability of obtaining at least
as many proteins with the observed annotations if the module proteins were selected at
random from a background set of proteins [Boyle et al., 2004].

In the basic model for Gene Ontology enrichment [Boyle et al., 2004], a P -value is com-
puted for each Gene Ontology annotation in a module using a hypergeometric distribution
as follows:

P � 1�
k�1̧

i�0

�
m
i

��
N�M
n�i

�
�
N
i

�
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where M is the number of proteins in the background distribution annotated with the
annotation being tested, N is the total number of proteins in the background distribution,
n is the number of proteins in the module, and k is the number of proteins in the module
annotated with the annotation being tested. The P -values for the various annotations are
combined with Bonferroni or FDR correction for multiple testing. Two or three proteins
with similar annotations in a module can lead to rejection of this null model with high
confidence. Protein interactions tend to connect proteins with similar functions so any
connected subgraph in a protein interaction network is likely to reject the null model with
high confidence.

Several variations on the basic Gene Ontology enrichment algorithms have been in-
troduced, for example to consider the graphical structure of the ontology [Grossmann et
al., 2007]. Biological process enrichment algorithms have been implemented in Ontolo-
gizer [Bauer et al., 2008].

3.3 Empirical Evaluation

Through computational experiments on current experimentally derived interactomes for
Homo sapiens and Drosophila melanogaster, we find good evidence that nearly 10 percent
of the interactome proteins participate in multiprotein modules that have been conserved
across this evolutionary distance, and we demonstrate significance of these results.

3.3.1 Evaluation of Produles Variants

Nibble and PageRank-Nibble were used as subroutines for Produles to compare their per-
formances. Empirical results are given in Tables 3.2 and 3.3.

Both variants were applied to iRefIndex [Razick et al., 2008] interactomes for H. sapi-
ens and D. melanogaster, Release 6.0, filtered to retain binary interactions with UniProtKB
[UniProt Consortium, 2012] identifiers. The resulting networks consist of 74,554 interac-
tions on 13,065 proteins for H. sapiens and 40,004 interactions on 10,050 proteins for D.
melanogaster. Protein amino acid sequences were obtained from UniProtKB. The blastall
program from stand-alone NCBI BLAST [Sayers et al., 2009] was applied in both directions
with threshold 10�9 on E-values yielding 138,824 pairs of homologous proteins that passed
the threshold in both directions. The values that were retained were the averages of the two
E-values in both directions. Using this threshold none of the data is expected to be spurious
as the total number of comparisons is 2 � p13, 065 � 10, 050q   4 � 108. Conserved modules
are taken as induced subgraphs. The subroutines based on Nibble and PageRank-Nibble, as
described in Section 2.2.3, are modified to consider only connected sweep sets with at most
20 proteins. All experiments were conducted using a MacBook Pro with 2.53 GHz Intel
Core i5 processor and 4GB 1067 MHz DDR3 memory running Mac OS X Version 10.6.4.
Best entries are in bold.
Parameters are

• All variants: a � 5, b � 20, c � 1.5, e � 50
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Produles-N d � 0.05 d � 0.06 d � 0.07 d � 0.08 d � 0.09 d � 0.10

Running time 4m 4m 4m 4m 4m 4m

k 169 151 138 118 101 89

µa (0.13,0.04) (0.14,0.04) (0.14,0.04) (0.15,0.03) (0.16,0.03) (0.16,0.03)

µd (0.08,0.06) (0.08,0.06) (0.08,0.06) (0.08,0.05) (0.08,0.05) (0.07,0.05)

Sa (7.93,2.86) (7.93,2.74) (7.91,2.74) (7.92,2.90) (7.90,2.87) (7.84,2.83)

Sd (1.56,1.34) (1.52,1.33) (1.51,1.28) (1.58,1.31) (1.60,1.30) (1.60,1.23)

∆a (0.32,0.10) (0.32,0.10) (0.33,0.10) (0.33,0.11) (0.32,0.09) (0.32,0.09)

∆d (0.07,0.09) (0.07,0.09) (0.07,0.09) (0.08,0.10) (0.07,0.07) (0.07,0.07)

Ca (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)

Cd (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

C 0.10 0.09 0.08 0.07 0.06 0.05

O (0.28,0.33) (0.28,0.34) (0.31,0.35) (0.29,0.36) (0.29,0.37) (0.32,0.37)

|Ma| (5.75,2.43) (5.87,2.50) (5.82,2.46) (5.80,2.61) (5.91,2.44) (5.81,2.35)

CpMaq (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)

Er (0.05,0.13) (0.05,0.12) (0.05,0.12) (0.04,0.12) (0.03,0.10) (0.04,0.11)

Ed (0.30,0.26) (0.29,0.26) (0.29,0.26) (0.30,0.26) (0.28,0.24) (0.28,0.25)

E` (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

Table 3.2: Produles-N with varying values of d

Produles-P d � 0.05 d � 0.06 d � 0.07 d � 0.08 d � 0.09 d � 0.10

Running time 3m 2m 2m 2m 3m 2m

k 248 217 179 160 129 107

µa (0.13,0.04) (0.13,0.04) (0.14,0.04) (0.14,0.04) (0.15,0.04) (0.16,0.04)

µd (0.08,0.06) (0.07,0.06) (0.07,0.06) (0.07,0.05) (0.07,0.06) (0.07,0.06)

Sa (7.61,2.62) (7.61,2.68) (7.70,2.73) (7.65,2.81) (7.75,2.87) (7.88,3.06)

Sd (1.39,1.27) (1.40,1.28) (1.42,1.25) (1.38,1.19) (1.49,1.25) (1.54,1.33)

∆a (0.34,0.10) (0.34,0.10) (0.34,0.10) (0.34,0.10) (0.33,0.09) (0.33,0.09)

∆d (0.08,0.10) (0.08,0.11) (0.08,0.11) (0.08,0.11) (0.08,0.10) (0.08,0.10)

Ca (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)

Cd (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

C 0.13 0.11 0.10 0.09 0.07 0.06

O (0.34,0.32) (0.34,0.32) (0.32,0.33) (0.33,0.35) (0.32,0.36) (0.33,0.37)

|Ma| (5.43,2.19) (5.48,2.21) (5.49,2.23) (5.48,2.34) (5.67,2.24) (5.72,2.28)

CpMaq (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00) (1.00,0.00)

Er (0.06,0.14) (0.05,0.14) (0.05,0.14) (0.05,0.14) (0.04,0.12) (0.05,0.13)

Ed (0.31,0.27) (0.31,0.27) (0.31,0.27) (0.31,0.27) (0.29,0.25) (0.28,0.25)

E` (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00) (0.00,0.00)

Table 3.3: Produles-P with varying values of d
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• P variants: α � 10�3, ε � 10�5

• N variants: tlast � 103, ε � 10�5

3.3.2 Comparison of Produles with Previous Algorithms

Produles, NetworkBlast-M [Kalaev et al., 2009], Match-and-Split [Narayanan and Karp,
2007], and MaWISh [Koyutürk et al., 2006b] were applied to iRefIndex [Razick et al., 2008]
binary interactions, Release 8.0, for Homo sapiens and Drosophila melanogaster, filtered
to remove computationally predicted interactions and mapped to UniProtKB identifiers
to remove isoforms. The interactomes consisted of 69,574 interactions on 12,652 proteins
for H. sapiens and 38,699 interactions on 9,759 proteins for D. melanogaster. All programs
were run with varying h threshold, corresponding to varying numbers of homologous protein
pairs: h � 10�80: 5,730 pairs, h � 10�30: 29,598 pairs, h � 10�20: 54,012 pairs, and h �
10�9: 115,709 pairs. Because of the large number of module pairs returned by NetworkBlast-
M, as shown in Fig. 3.1, all of which were assigned NetworkBlast-M quality scores, the set
of modules for each h-threshold with highest NetworkBlast-M quality scores of the same
size as the set returned by Produles was extracted and included in the comparisons.

The evaluation was performed on the module pairs returned with 7-40 proteins per
species. This removes a significant fraction of the output from Match-and-Split and MaWISh
that consists of subgraphs with two or three proteins, single edges or triangles, and it re-
moves four large module pairs from MaWISh at threshold h � 10�30 with modules of size
up to 78 proteins. This has little effect on NetworkBlast-M for which more than 99% of
its modules have 7-15 proteins per species. Restricting the analysis to this size range al-
lows meaningful comparison of the algorithms according to the various evaluation measures
without the statistics being affected by very large or very small modules.

Graemlin has nineteen network-specific parameters over a wide range of values, and
together with the authors of Graemlin, we were unable to find settings that would yield
results for the networks in this study. Graemlin 2.0 [Flannick et al., 2009] was designed
to address the parameter choice problem faced by Graemlin but requires data outside the
scope of this study and has issues with usability.

3.3.3 Detailed Evaluation of Algorithms

In Fig. 3.1, the linear running time of Produles is seen to be very desirable. Match-and-Split
could not complete on the dataset with 29,598 homologous protein pairs and MaWISh could
not complete on the data set with 54,012 homologous protein pairs after running for more
than twelve hours. Fig. 3.2 shows that after restricting the output to modules with 7-40
proteins per species, the average sizes of modules from all algorithms are similar, though
NetworkBlast-M has less variance in its size distribution than the other algorithms.

GO biological process enrichment was computed for all modules, separately for each
species, using Ontologizer [Bauer et al., 2008] with Bonferroni correction for multiple hy-
pothesis testing at 0.05 significance level. Fig. 3.3 shows that all algorithms perform
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Figure 3.1: Comparison of running time and basic characteristics. The x-axis is the number of homologous
protein pairs. The y-axis, from left to right, is the running time, the number of modules k, and the coverage C.
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Figure 3.2: Comparison of module sizes. The x-axis is as in Fig. 3.1. The y-axis, from left to right, is average
Sa, average Sd, and average |Ma|.
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Figure 3.3: Comparison of modularity and GO enrichment showing their correlation. The x-axis is as in Fig. 3.1.
The y-axis, from left to right, is the average µa, the average µd, and the percent of modules enriched at 0.05
significance after Bonferroni correction.

similarly with Produles slightly outperforming MaWISh and NetworkBlast-M when con-
sidering full output sets, whereas NetworkBlast-M slightly outperforms Produles at some
h-thresholds when considering only its top scoring sets. Fig. 3.1 shows that the top-scoring
sets for NetworkBlast-M at the higher h-thresholds have slightly over half the coverage of
Produles.

Fig. 3.3 shows that Produles returns modules with highest modularity followed by the
top-scoring sets from NetworkBlast-M. This indicates that modularity is correlated with
GO enrichment. In Section 3.3.10, we show that several modules returned by Produles
without GO enrichment at Bonferroni corrected 0.1 significance are biologically meaningful,
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Figure 3.6: Comparison using the interaction level evolutionary model. The x-axis is as in Fig. 3.1. The y-axis,
from left to right, is average Er, average Ed, and average E`.

demonstrating that conserved modularity is highly correlated with biological function. In
Section 3.3.10 we describe how GO enrichment analysis may fail to report enrichment for
biologically meaningful modules. More results from GO enrichment are given in Fig. 3.5
including the percent enriched at Bonferroni corrected 0.1 significance. Comparing with the
results for 0.05 significance in Fig 3.3 demonstrates that choosing an arbitrary threshold can
lead to changes in relative performance, for example the relative performance of MaWISh.
In Fig. 3.5, we display average Bonferroni-corrected GO enrichment p-values in a form that
is independent of a threshold, calling the measures GEa and GEd, extending the definitions
of module average and module difference, Definitions 3.1.3 and 3.1.3 in Section 3.1.3, to
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Figure 3.7: Comparison of module boundaries. The x-axis is as in Fig. 3.1. The y-axis, from left to right, is
the average Ca, the average Cd, and the average CpMaq.
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Figure 3.8: Comparison of density and density balance. The x-axis is as in Fig. 3.1. The y-axis, from left to
right, is the average ∆a and average ∆d.

include GO enrichment p-values.
Fig. 3.4 shows that NetworkBlast-M produces many overlapping module pairs which

appear in many cases to be similar to sliding a window across the modules. Produles
focuses on optimizing module boundaries by using both the definition of modularity and
requiring evidence of module conservation, leading to lower overlap.

Fig. 3.6 shows that MaWISh, uniquely among the algorithms studied, produces modules
with low Er score due to its scoring model that rewards matching graph topologies. Using
the random model in Section 3.1.7, estimating x � p average Sa{average |Ma|q � 2 using
Fig. 3.2 and ∆ � ∆a P r0.2, 0.5s using Fig. 3.8, Table 3.1 shows that only MaWISh has
an Er score significantly lower than expected by the random model. All algorithms yield
modules with large values of Ed, indicating that natural modules may include many proteins
with homologous regions. None of the algorithms considered allow protein losses so E` is
zero for all algorithms.

Both Match-and-Split and Produles guarantee that Ca � CpMaq � 1 and Cd � 0.
Fig. 3.7 shows that MaWISh and NetworkBlast-M have high average values of CpMaq,
returning many modules similar to the diagram in Fig. 2.2(a). Figs. 3.7 and 3.8 show that
NetworkBlast-M has large values of Ca, Cd, and ∆d due to additivity of its scoring model in
the interaction densities across species. NetworkBlast-M frequently aligns a dense module
in one species with a module that has zero or few interactions in the other species. As
indicated by Figs. 3.7 and 3.8, for many of these, similar to the diagram in Fig. 2.2(b), the
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:C, :O Produles-P NetworkBlast-M MaWISh Match-and-Split

Produles-P 0.09, (0.05,0.11) 0.11, (0.09,0.17) 0.20, (0.18,0.33)

NetworkBlast-M 0.77, (0.67,0.27) 0.70, (0.47,0.22) 0.89, (0.73,0.23)

MaWISh 0.20, (0.22,0.29) 0.15, (0.11,0.12) 0.28, (0.21,0.22)

Match-and-Split 0.21, (0.24,0.41) 0.11, (0.16,0.18) 0.16, (0.10,0.12)

Table 3.4: T � 10�100 with 5,675 homologous protein pairs

interaction data does not support a claim of conservation.

3.3.4 Pairwise Coverage and Overlap of Algorithm Output

Let Ui be the set of unique proteins in interactome i that an algorithm reports to be part
of conserved modules. Let Yi be the analogous set reported by another algorithm. Let
:Ci � |Ui X Yi|{|Yi|. Let :C � p :C1 � :C2q{2. Tables 3.4 to 3.7 report :C where the rows
correspond to the algorithms used as U and the columns correspond to the algorithms used
as Y. Let tpM j

1 ,M
j
2 q | j P t1, ..., k1uu and tpN i

1, N
i
2q | i P t1, ..., k2uu be the output of two

algorithms. Let
:Oi � max

1¤j¤k1
mint|M j

1 XN i
1|{|N i

1|, |M j
2 XN i

2|{|N i
2|u

Let :O be distributed according to the empirical distribution on :Oi. Tables 3.4 to 3.7 also

report the pair pEp :Oq,
b

varp :Oqq where the rows correspond to the algorithms used as M
and the columns correspond to the algorithms used as N .

Unless otherwise indicated, data sets, programming environment, and parameters were
identical to those described in Subsection 3.3.1. For Produles-P, d � 0.05. Algorithms
were compared after using a filter to remove very large, very small, and unbalanced module
pairs. Only pairs of conserved modules with 5-20 proteins per species and with each module
having no more than 1.5 times as many proteins as its conserved partner were considered.
For each algorithm, the number of module pairs failing the filter and the reasons for the
failure are listed in Subsection 3.3.5.

For MaWISh, intra-species BLAST E-values were computed with threshold 10�9, yield-
ing 150,326 pairs of homologous proteins in H. sapiens and 51,956 pairs of homologous
proteins in D. melanogaster. For NetworkBlast-M, all interactions are given equal confi-
dence of 1.0. For MaWISh, stringent sequence similarity thresholds are used in place of
COGs: inter-species protein pairs are considered orthologous if they have sequence simi-
larity h values at most T1 and intra-species pairs are considered in-paralogous if they have
sequence similarity h values at most T2 where T2   T1. Homology values were converted to
MaWISh similiarity scores using the algorithm in their paper [Koyutürk et al., 2006b]. All
algorithms were tested with varying sequence similarity threshold T where for MaWISh,
T1 � T and T2 � T � 10�20. The full data set with T � 10�9 was used for evolutionary
model evaluation.
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:C, :O Produles-P NetworkBlast-M MaWISh

Produles-P 0.27, (0.17,0.16) 0.29, (0.15,0.22)

NetworkBlast-M 0.72, (0.57,0.28) 0.77, (0.45,0.22)

MaWISh 0.20, (0.11,0.19) 0.20, (0.15,0.12)

Table 3.5: T � 10�40 with 25,346 homologous protein pairs

:C, :O Produles-P NetworkBlast-M

Produles-P 0.28, (0.14,0.15)

NetworkBlast-M 0.68, (0.51,0.27)

Table 3.6: T � 10�25 with 50,831 homologous protein pairs

3.3.5 Unfiltered Algorithm Output

Let P be the set of module pairs returned by an algorithm. Let Pf � P be the set of module
pairs that fail the filter. Let Pk � PfzpP1Y� � �YPk�1q be the set of module pairs with at least
one module consisting of only k proteins, for k P t1, 2, 3, 4u. Let P21� � PfzpP1YP2YP3YP4q
be the set of module pairs with at least one module consisting of more than 20 proteins.
Let Pb � PfzpP1 Y P2 Y P3 Y P4 Y P21�q be the set of module pairs that fail the balance
requirement. Let k � |P |. Let ks � |Ps| where s is any subscript.

Filtering has little effect on the results from NetworkBlast-M. Most MaWISh results
consist of modules that are conserved single interactions on two proteins which have little
significance, and conserved modules on three proteins. Some modules on four proteins may
be meaningful and could have been allowed to pass the filter, but they are less significant
than larger conserved modules and do not affect the conserved modules found in the range of
5-20 proteins which are the focus of this study. MaWISh returns some modules containing
hundreds of proteins with more than 5% of all proteins each, which have CpMaq ¡ 1 and
seem to have little significance. Most modules that did not pass the filter were removed by
the size filter and relatively few by the balance filter. Most of the conserved module pairs
reported by Match-and-Split involve modules with three or four proteins.

3.3.6 MaWISh with reference protein orthology database

In the applications of MaWISh in their paper [Koyutürk et al., 2006b], T1 is set to a
BLAST E-value smaller than 60% of the BLAST E-values between orthologous proteins in
COG [Tatusov et al., 2000]. For fixed thresholds, using a database of orthologous proteins
as a reference leads to the same number of nonzero Sp�q values as our applications, so the

:C, :O Produles-P NetworkBlast-M

Produles-P 0.28, (0.12,0.14)

NetworkBlast-M 0.68, (0.45,0.26)

Table 3.7: T � 10�9 with 138,824 homologous protein pairs
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NetworkBlast-M / T 10�100 10�40 10�25 10�9

k 149 400 614 1021

kf 15 15 25 47

k1 0 0 0 0

k2 1 0 0 0

k3 0 0 0 0

k4 0 1 0 1

k21� 0 0 0 0

kb 14 14 25 46

Table 3.8: Unfiltered NetworkBlast-M results

MaWISh / T 10�100 10�40 PHOG-T(D) 10�25 10�9

k 395 982 976 NA NA

kf 373 882 883 NA NA

k1 0 0 0 NA NA

k2 263 437 476 NA NA

k3 72 286 256 NA NA

k4 30 104 102 NA NA

k21� 5 24 20 NA NA

kb 3 31 29 NA NA

Table 3.9: Unfiltered MaWISh results

Match-and-Split / T 10�100 10�40 10�25 10�9

k 63 NA NA NA

kf 50 NA NA NA

k1 0 NA NA NA

k2 0 NA NA NA

k3 28 NA NA NA

k4 21 NA NA NA

k21� 0 NA NA NA

kb 1 NA NA NA

Table 3.10: Unfiltered Match-and-Split results
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MaWISh T1 � 10�40, T2 � 10�60 PHOG-T(D), T1 � 3 � 10�41

Running time 5m 7m

k 100 93

µa (0.05,0.03) (0.05,0.02)

µd (0.04,0.05) (0.04,0.05)

Sa (7.33,2.58) (7.75,2.83)

Sd (1.14,1.07) (1.03,1.03)

∆a (0.39,0.13) (0.35,0.11)

∆d (0.08,0.09) (0.07,0.07)

Ca (1.00,0.00) (1.00,0.00)

Cd (0.00,0.00) (0.00,0.00)

C 0.04 0.05

O (0.22,0.18) (0.20,0.20)

|Ma| (4.43,2.26) (5.08,2.81)

CpMaq (1.00,0.00) (1.00,0.00)

Er (0.03,0.09) (0.04,0.09)

Ed (0.45,0.30) (0.41,0.27)

E` (0.00,0.00) (0.00,0.00)

:C, :O MaWISh MaWISh-PHOG-T(D)

MaWISh 0.69, (0.70,0.37)

MaWISh-PHOG-T(D) 0.75, (0.64,0.37)

Table 3.11: MaWISh with reference protein orthology database

running time and the sizes of data sets MaWISh can process remain similar. To verify that
the omission of a database of orthologous proteins as a reference does not affect MaWISh
results significantly, we used the set of all PHOG-T(D) orthologous proteins from PhyloFacts
3.0 [Datta et al., 2009] between the H. sapiens and D. melanogaster proteins as a reference.
Any PHOG with more than 30 proteins was removed from consideration. MaWISh was
run with the resulting set of PHOGs as a reference and T1 � 3 � 10�41, as 78% of h values
between orthologous proteins in this set of PHOGs were above 3 � 10�41. Detailed results
are listed below and in Section 3.3.5.

3.3.7 NetworkBlast-M results minimizing density imbalance

Having discovered an algorithmic flaw in the NetworkBlast model, that density balance is
not considered, the module pairs that minimize this flaw, those with lowest ∆d value, were
evaluated. Of all module pairs returned by NetworkBlast-M on the full data set, a summary
of the 245 module pairs with lowest ∆d value is listed below. The evolutionary model results
show improvement over the 245 module pairs with highest NetworkBlast-M score.
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NetworkBlast-M full set highest score lowest ∆d

k 1021 248 248

µa (0.07,0.03) (0.09,0.03) (0.07,0.03)

µd (0.05,0.04) (0.06,0.04) (0.03,0.03)

Sa (14.12,0.98) (14.65,0.67) (14.24,0.87)

Sd (1.56,1.82) (0.70,1.34) (1.16,1.45)

∆a (0.32,0.10) (0.45,0.06) (0.30,0.11)

∆d (0.21,0.21) (0.28,0.29) (0.02,0.01)

Ca (2.28,1.39) (2.36,1.61) (1.52,0.62)

Cd (2.03,2.70) (2.27,3.21) (0.53,0.67)

C 0.32 0.09 0.14

O (0.52,0.21) (0.65,0.20) (0.44,0.27)

|Ma| (8.95,3.15) (8.80,3.35) (9.88,2.94)

CpMaq (1.07,0.25) (1.09,0.28) (1.10,0.31)

Er (0.33,0.23) (0.36,0.29) (0.15,0.16)

Ed (0.39,0.23) (0.43,0.25) (0.33,0.22)

E` (0.00,0.00) (0.00,0.00) (0.00,0.00)

Table 3.12: NetworkBlast-M minimizing density imbalance

3.3.8 Discussion of Previous Algorithms

3.3.8.1 NetworkBlast

NetworkBlast [Sharan et al., 2005a] is based on a maximum-likelihood scoring model that
gives high scores to module pairs inducing dense subgraphs with high sequence-similarity
between proteins in the module pair. The model is additive in the densities of the two
modules in the pair so the difference in the densities of the modules in a reported conserved
pair is often large. A significant fraction of the reported conserved module pairs from
NetworkBlast-M [Kalaev et al., 2009], including some of its highest scoring results, consist
of module pairs such that one module induces a dense subgraph and the other module
induces a subgraph with zero or a small number of interactions. This leads to large values
of ∆d, Ca, Cd, and Er. Moreover, it is often the case that CpMaq ¡ 1. The search algorithm
starts with high-scoring module pairs consisting of one or a few proteins in each interactome
and grows them with a greedy algorithm based on the scoring function [Sharan et al., 2005a;
Kalaev et al., 2009].

3.3.8.2 MaWISh

MaWISh [Koyutürk et al., 2006b] is based on an evolutionary duplication-divergence scoring
model that penalizes protein interaction divergence and infers protein duplications directly
from sequence similarity, rewarding recent protein duplications and penalizing ancient pro-
tein duplications. The search algorithm is similar to that for NetworkBlast, starting with
high-scoring seeds and growing them with a greedy algorithm based on the scoring function.
Due to the scoring model described below, MaWISh returns some module pairs with large
Ed value and with CpMaq ¡ 1.
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The scoring model of MaWISh decomposes into an interaction model and a duplication
model. There is a score on each pair of edges from the complete bipartite graph on the
proteins in the two modules claimed to be conserved. The score of a module pair is the sum
of these scores. High scores are considered good. S : V1 � V2 Ñ r0, 1s is a monotonically
decreasing function of BLAST E-values that gives a positive value to sequence-similar pro-
teins and a value of 0 to sequence-dissimilar proteins. Let pM1,M2q be a pair of conserved
modules. Let u1, u2 P M1 and v1, v2 P M2. Two scores are associated with this collection
of four proteins: scoreppu1, v1q, pu2, v2qq and scoreppu1, v2q, pu2, v1qq. Each score is defined
symmetrically as

scoreppu1, v1q, pu2, v2qq � IpmatchqSpu1, v1qSpu2, v2q
�IpmismatchqSpu1, v1qSpu2, v2q
�IpSpu1, u2q ¡ 0qp0.1qpSpu1, u2q � 0.9q
�IpSpv1, v2q ¡ 0qp0.1qpSpv1, v2q � 0.9q

where Ip�q is the indicator function such that Ipfalseq � 0 and Iptrueq � 1. The vast
majority of these scores are 0 and are not explicitly represented, as the vast majority of
Sp�, �q values are 0. The first two terms are the interaction model and the second two terms
are the duplication model. match and mismatch are predicates defined by interactions
among the two protein pairs pu1, u2q and pv1, v2q. If both interactions exist, match = true,
mismatch = false which may lead to a reward. If one interaction exists but not the other,
mismatch = true, match = false which may lead to a penalty. If neither interaction
exists, match = false, mismatch = false and the interaction model score is 0.

Considering only u1, u2 PM1, but symmetrically for v1, v2 PM2, the duplication model
gives a score of 0 if Spu1, u2q � 0 or Spu1, u2q � 0.9. It gives a penalty of p0.1qpSpu1, u2q �
0.9q if 0   Spu1, u2q   0.9. It gives a reward of p0.1qpSpu1, u2q � 0.9q if Spu1, u2q ¡ 0.9.
MaWISh rewards placing highly similar protein pairs in the same module even if they have
no interactions between them. As the similarity decreases, the reward gets smaller until
it becomes a penalty. As the similarity decreases further, the penalty becomes harsher
and harsher until eventually, at a sharp discontinuous cutoff, the penalty vanishes and the
duplication model score becomes 0. The reward for placing highly similar proteins in the
same module even when they do not involve any interactions leads to a large Ed value.

The MaWISh paper generalizes the scoring model so that the default scoring model
given above would be parameterized by d � 0.9, δ � 0.1. The default value of δ � 0.1
places low emphasis on the duplication model relative to the interaction model. However,
as MaWISh rewards conserved pairs of proteins with no interactions in either interactome
when they are very similar according to Sp�, �q, even with δ � 0.1, a reported conserved
module sometimes induces many disconnected subgraphs leading to CpMaq ¡ 1.

3.3.8.3 Match-and-Split

Match-and-Split [Narayanan and Karp, 2007] attempts a symmetric split of both interac-
tomes, recursively matching all pairs of inter-interactome subnetworks that result from the
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split, where the two subnetworks in each recursive call are induced subgraphs of the two in-
teractomes. Match-and-Split splits the networks by removing proteins in a network that do
not have matching proteins in the other network, and then defining the subnetworks as the
resulting connected components. Two proteins are considered matching if they are sequence
similar and if both have neighboring proteins in the interactomes that are sequence similar
to each other. Unfortunately, this rarely leads to a symmetric split. In most cases each
network splits into a large component and many tiny components. The only meaningful
recursive comparisons in this case are comparisons involving a large component. The large
number of recursive calls in Match-and-Split affects the running time adversely. Several
nice features include guarantees that O � 0, Ca � 0, and CpMaq � 0.

3.3.9 Modularity in Random Graphs

To examine the extent of conserved modularity in the current interactomes for H. sapiens
and D. melanogaster, both interactomes were randomized while keeping protein sequence
similarities fixed. The randomization step consisted of swapping the endpoints of a pair of
edges chosen randomly without replacement. More precisely, if pu1, u2q, pu3, u4q are two ran-
domly chosen edges in an interactome, these edges are replaced by the edges pu1, u4q, pu3, u2q
unless the four endpoints are not distinct. This randomization maintains the degree of each
vertex in the interactome. After all edges in the interactomes were randomized, the various
algorithms for conserved module detection were applied to the resulting randomized graphs.
Produles with values of d at least 0.05 did not report any conserved module pairs in the
random graphs. All other algorithms reported potential conserved modules in the random
graphs but none with mintµpM1q, µpM2qu ¥ 0.05 and Sa ¥ 7. MaWISh with threshold
h � 10�30 reported 838 potential conserved modules in the random graphs, but none with
µa ¥ 0.04 and Sa ¥ 7. Match-and-Split with threshold h � 10�80 reported five poten-
tial conserved modules in the random graphs, but none with Sa ¥ 7 or with µa ¥ 0.04.
NetworkBlast-M with threshold h � 10�9 reported 107 potential conserved module pairs
in the random graphs with average Sa � 13.89, the same size range as reported on the real
interactomes. For these results from NetworkBlast-M, average µa was only 0.03. This com-
parison with random graphs indicates that conserved modularity is a defining characteristic
of interactomes.

3.3.10 Multiprotein Modules without GO Enrichment

As shown in Fig. 3.5, when run with h � 10�9, approximately 3% of multiprotein modules
returned by Produles do not have GO enrichment at Bonferroni corrected 0.1 significance.
This corresponds to eight multiprotein modules without significant GO enrichment. Most of
these are multiprotein modules reported in the literature with boundaries very well detected
by Produles. This section examines four of these conserved modules.

The four conserved modules we examine are from a recent experimental study [Lunardi
et al., 2010] that compared the p53 family of tumor suppressor genes in H. sapiens with
Dmp53, the sole p53-like protein in Drosophila. Through independent experiments in both
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species, coimmunoprecipitation in human and in vitro pull-down in Drosophila, this study
found a collection of conserved proteins that interact with the p53 family in human and
with Dmp53, indicating that Dmp53 has p53-like function. The h value for Dmp53 with
human p73, the member of the p53 family central in the human modules, is h � 10�11,
so these conserved modules are not detected by algorithms at lower h thresholds. These
modules are not detected by NetworkBlast-M presumably because they have density at
most ∆pMq � 0.18 despite having modularity as high as µa � 0.08. Additional RNAi
experiments confirmed function of select module proteins in growth arrest of cancer cells
indicating function of these modules in tumor suppression [Lunardi et al., 2010]. It is
possible that these annotations have not yet been propagated to GO due to the recency of
the study.

These four overlapping modules were combined into a composite module consisting of
22 proteins in H. sapiens and 25 proteins in D. melanogaster. This composite module has
µa � 0.08. Six interactions are from other studies and allow us to make predictions to refine
the interaction topology of the coimmunoprecipitated complexes. We report here one exam-
ple. Among the proteins found to coimmunoprecipitate with the p53 family are Asp/ASPM
and Sqh/MYL9 [Lunardi et al., 2010]. The proteins Asp/ASPM regulate mitotic spindle
formation in Drosophila and human respectively. The proteins Sqh/MYL9 are myosin reg-
ulatory light chains in Drosophila and human, respectively, that have retained their ability
to bind calcium. Indeed, Sqh/MYL9 are homologous to calmodulin. A yeast two-hybrid
study found that Asp directly binds to calmodulin [Giot et al., 2003]. This indicates that
Asp/ASPM may directly bind to Sqh/MYL9, which is why they were coimmunoprecipitated
together, and that at most one binds directly to the p53 family.

The remaining four modules are also biologically meaningful. One is the homologous
module in Drosophila to a deubiquitination complex in human [Sowa et al., 2009]. The
human module has a Bonferroni corrected GO enrichment p-value of 2� 10�5. The homol-
ogous Drosophila module has modularity µ � 0.13 and consists of poorly studied proteins
that were found to interact by a specialized yeast two-hybrid study. Based on the conserved
modularity, we predict that this module is homologous to the deubiquitinating module in
human. Another corresponds to a third study. [Lim et al., 2006]. The human module is
homologous to a Drosophila module with GO p � 10�6. The human module has modularity
µ � 0.1 and consists of poorly studied proteins with all interactions from the specialized
study [Lim et al., 2006]. Another contains interactions from a fourth study [Cannavo et al.,
2007] and has GO p � 0.12 in the human module; the drosophila module has GO p � 10�3.
The final one has GO p � 0.27 in human but p � 6�10�4 in drosophila; the interactions in
drosophila are all from high-throughput Y2H. The modularity is µ � 0.06 in drosophila. In
human it is known to be a multiprotein module; the proteins are all annotated to a SCF-like
ECS (Elongin BC-CUL2/5-SOCS-box protein) E3 ubiquitin-protein ligase complex which
mediates the ubiquitination and subsequent proteasomal degradation of target proteins. We
predict this to be a conserved multiprotein module across H. sapiens and D. melanogaster.

Through analyses such as these and detailed follow-up direct interaction experiments,
it may be possible to refine results from coimmunoprecipitation experiments to determine
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interaction topologies, which may allow an improved interaction level signal of evolutionary
conservation in the form of lower Er scores.

3.3.11 Extent of Conserved Modularity

To examine comprehensively the extent of conserved modularity in the current interactomes
for H. sapiens and D. melanogaster, all modules from NetworkBlast-M with threshold h �
10�9 that satisfied Ca � CpMaq � 1 and mintµpM1q, µpM2qu ¥ 0.05, a total of 30 module
pairs, were examined. The coverage was C � 0.03 with average modularity µa � 0.08.
As shown in Fig. 3.1, Produles detected coverage of C � 0.09 in conserved modules with
Ca � CpMaq � 1 and mintµpM1q, µpM2qu ¥ 0.05, with average µa � 0.10. When the sets
detected by Produles and NetworkBlast-M were combined, the coverage remained C � 0.09
with a small increase in coverage, showing that the conserved modules detected by Produles
contained nearly all proteins from the conserved modules detected by NetworkBlast-M.
Comparing with Section 3.3.9 on random graphs, this shows that approximately 9% of
interactome proteins, 9.6% in human and 8.9% in Drosophila, are included in conserved
multiprotein modules with good evidence of conservation between the species. This can be
compared with the number of proteins that have detectable sequence homology between
the species, which at threshold h � 10�9, includes 55% of interactome proteins in human
and 60% of interactome proteins in Drosophila.

3.3.12 Hierarchy of Modularity

To investigate the hierarchy of modularity, all module pairs from Produles with thresh-
old h � 10�9 were combined into composite modules. When two conserved modules had
overlapping proteins in both interactomes, they were combined. Nineteen non-overlapping
composite modules were formed. The largest of these composite modules consists of 611
proteins in D. melanogaster and 843 proteins in H. sapiens with a modularity of µ � 0.19
in D. melanogaster and µ � 0.18 in H. sapiens. This conserved modular hierarchy from the
largest conserved composite module contains 6.3% of the proteins in D. melanogaster and
6.7% of the proteins in H. sapiens with |Ma| � 182.

When an algorithm detects conserved multiprotein modules that share proteins, these
modules can be combined into a larger composite module. Whenever this union takes place,
Theorem 2.2.3 shows that the modularity of the composite module is at least as large as the
minimum modularity of the modules being combined. This allows inspection of a hierarchy
of modularity with larger conserved modules consisting of smaller conserved modules. To
investigate these composite modules, all module pairs from Produles-P with d � 0.05 were
combined into composite modules. When two module pairs had overlapping proteins in
both interactomes, they were combined. A summary of the results is listed below. The
modularity for these composite modules is similar to that of the original modules. The size
increased significantly. Using VieProt for visual inspection, many large reasonable pairs of
composite modules are readily seen.
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Produles Produles-P composite Produles

µa (0.13,0.04) (0.13,0.04)

µd (0.08,0.06) (0.07,0.06)

Sa (7.61,2.62) (11.17,7.37)

Sd (1.39,1.27) (1.76,1.60)

∆a (0.34,0.10) (0.29,0.14)

∆d (0.08,0.10) (0.08,0.11)

Ca (1.00,0.00) (1.00,0.00)

Cd (0.00,0.00) (0.00,0.00)

C 0.13 0.13

O (0.34,0.32) (0.00,0.00)

|Ma| (5.43,2.19) (7.65,6.28)

CpMaq (1.00,0.00) (1.00,0.00)

Er (0.06,0.14) (0.07,0.16)

Ed (0.31,0.27) (0.39,0.29)

E` (0.00,0.00) (0.00,0.00)

Table 3.13: Comparison of Produles-P and composite Produles-P

3.3.13 Discussion of Findings and Extensions

3.3.13.1 Interaction Level Evolutionary Signal

Unfortunately in current interactomics datasets, due to artifacts in the way experiments are
performed and recorded, we may not see a strong evolutionary signal of similar ancestral
protein relationships or similar graph topologies. Coimmunoprecipitation experiments are
often considered more reliable than other assays, but in terms of the evolutionary signal
at the individual interaction level, they are among the noisiest. A central protein may
not directly interact with all proteins that are coimmunoprecipitated with it. Rather the
interactions may be mediated by other proteins in the coimmunoprecipitated cluster. The
true graph topology may be a linear path or some other topology rather than the star
graph usually recorded in the interaction databases. This causes interaction level signal of
evolutionary conservation to be weak. However, as shown in this work, the module-level
signal of evolutionary conservation remains strong. As experimental coverage improves,
guided by analysis techniques such as those described in Section 3.3.10, the interaction
topologies may be improved yielding lower Er scores in conserved modules.

3.3.13.2 Complementarity of Algorithms

Each algorithm examined in this study has different goals, and they can be considered
complementary to each other. MaWISh may be useful when looking for regions with similar
graph topologies and low Er. These regions may be less noisy due to maintenance of
an interaction level evolutionary signal, but often do not coincide with natural module
boundaries. NetworkBlast-M may be useful when desiring a very large set of potential
conserved modules that are frequently very dense in one of the species, may not have
evidence of conservation in the protein interaction data, and may have CpMaq ¡ 1. Match-

56



Chapter 3. Evaluation of Algorithms

Figure 3.9: The proteosome is detected as conserved by Produles between human and Drosophila with
µa � 0.21, µd � 0.13.

and-Split and Produles may be useful when desiring guarantees such as Ca � CpMaq � 1.
Match-and-Split is ideal when desiring a very high quality set of conserved modules with
minimal overlap and when it is acceptable to expend large amounts of running time on
small datasets. Produles is ideal for detecting conserved module boundaries using evidence
from multiple validation in independent experiments across species, for fast running time
with good scaling properties, and for examining the extent of conserved modularity in
current interactomes. Produles is especially useful for detecting conservation of multiprotein
modules that are not particularly dense.

The overlap among the module pairs from the various algorithms tends to be significant
as shown by tables in Section 3.3.4, indicating that all algorithms are primarily searching
for conserved modules among the same proteins. The difference seems to be largely in how
well the boundaries of the conserved modules are discovered.

3.3.13.3 Extent of Conservation

Approximately 10% of proteins in the interactomes for human and fly are found by Produles-
P with d � 0.05 to be part of conserved modules, a remarkable result, as the ancestors of
chordates and arthropods diverged over 500 million years ago [Futuyma, 2009; Hedges,
2002], and as the interactome data remains incomplete [Hakes et al., 2008]. The set of
conserved modules includes many well-known protein complexes and pathways, e.g. the
proteosome (Fig 3.9).

Given incomplete and sometimes unreliable interactomics data [Hakes et al., 2008], Pro-
dules attempts to find regions of the interactomes that are reliable by ignoring those regions
that do not exhibit modularity in both interactomes. Less than 15% of the interactomes are
found to be part of conserved multiprotein modules even with the most lenient parameter
settings. While this may reflect the actual extent of conservation, it is possible that as
interactomics data becomes more complete, a larger fraction of the interactomes will be
found to be part of conserved multiprotein modules.
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3.3.13.4 Running Time Advantages

Because of the large number of recursive calls, Match-and-Split cannot run on large data
sets. Match-and-Split is able to run on the smaller data set with T � 10�100 when there
are 5,675 homologous pairs and less than 50% of the proteins can possibly be considered.
MaWISh can process somewhat larger networks but also encounters difficulties when many
homologous proteins are considered. MaWISh creates a graph with a vertex for each pair
of homologous proteins and then creates edges among these vertices as described in Sec-
tion 3.3.8.2.

Only Produles and NetworkBlast-M apply to larger networks that include a large num-
ber of homologous protein pairs. The module pairs discovered by Produles at higher values
of T are of similar algorithmic quality to those discovered at lower values of T . Some
of these module pairs contain short homologous proteins with sequence similarity h val-
ues above 10�20. These module pairs may be missed by algorithms that cannot process
networks with higher values of T .

3.3.13.5 MaWISh Penalties

In MaWISh, duplications are penalized equally for each duplicate pair so the penalty grows
quadratically with the number of duplicates, which, while desirable computationally, is
not a reasonable model of evolution. The duplication model in this study has similarities
to the linear duplication model described in the MaWISh paper [Koyutürk et al., 2006b].
The interaction model of MaWISh penalizes each duplicate equally for interaction loss or
gain. During evolution, if a duplicate loses an interaction and then duplicates again, the
subsequent duplicate never participated in the interaction and should not be penalized for
interaction loss. Even when a copy of the interaction is truly lost, this is not uncommon as
duplication weakens purifying selection on redundant copies [Creighton, 1993]. Development
of a truly new interaction, complete loss of an interaction, complete loss of a protein, and,
to a lesser extent, duplication of a protein, are primary rare events when multiprotein
modularity is conserved by purifying selection [Creighton, 1993].

3.3.13.6 Using the Evolutionary Model in Produles for Optimization

Produles uses the evolutionary model defined in this paper only for evaluation. The
evolutionary model could be used directly to improve the evolutionary model score. If
||pEr, Ed, E`q||2 ¡ E�, for some threshold E�, this variant of Produles would neither report
the modules as conserved nor remove their proteins, other than the starting vertex, from
future consideration, as done with modularity. This may not, however, be desirable as nat-
ural modules would be carved to remove those regions with lower similarity. As MaWISh
explicitly attempts to optimize an evolutionary model score, it may carve regions with bet-
ter scores from natural modules. With MaWISh and this variant of Produles, the reported
conserved modules may be the most-highly conserved subsets of actual conserved modules.
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3.3.13.7 Limitations of Topology Matching

Noisy interaction data is the data in which we are most interested as it is here that the
networks have not been highly studied, and where new modules can be detected. Some
previous algorithms, such as MaWISh and Graemlin, attempt to match graph topologies in
the networks which requires high-quality interaction data. Produles requires interactomes
constructed from independent experiments in various species, so that it can be viewed as
a modular form of multiple validation. If multiple independent experiments in different
species yield modular regions on homologous proteins, the boundaries of the conserved
regions can be seen, even if particular interactions in these regions are false positives and
even if some true interactions in this region were not detected by experimental assays.

3.3.13.8 Protein Losses

Though none of the algorithms in this study allow protein losses, and thus E` � 0 in all
cases, allowing protein losses may improve results, possibly by lowering Ca or increasing µa.
Algorithms that allow indirect interactions, such as PathBlast [Kelley et al., 2003] and the
variant of MaWISh with ∆ ¡ 1 [Koyutürk et al., 2006b], do allow protein losses.

3.4 TFIID General Transcription Factor: a Case Study

3.4.1 Experiments

Interactomes were obtained from iRefIndex [Razick et al., 2008], Release 7.0, using their
binary interaction set, and from IntAct [Kerrien et al., 2012]. Both sets were retrieved
and merged using EasyProt software [Hodgkinson et al., 2012]. An EasyProt filter was
applied to retain only interactions on proteins with UniProtKB [UniProt Consortium, 2012]
accessions. To reduce redundancy, UniProtKB accessions were mapped to UniProtKB
identifiers using EasyProt. Precisely, amino acid sequences were retrieved from UniProt in
FASTA format and the mapping was extracted from the headers. The resulting interactomes
consisted of 75,120 interactions on 12,838 proteins for H. sapiens and 32,593 interactions
on 9,451 proteins for D. melanogaster. Predicted orthologous protein pairs were retrieved
from PHOG-T(F) [Datta et al., 2009], yielding 56,659 pairs.

Produles was applied with parameters a � 10, b � 50, c � 2, d � 0.05, and e � 50,
yielding a set of 29 module pairs. Several corresponded to well-known protein complexes
including the SCF ubiquitin ligase complex and the proteosome. Pathways were also found
including cell differentiation pathways and developmental pathways containing homeobox
proteins. Here we focus in detail on one of the detected module pairs, the TFIID general
transcription factor required for transcription in eukaryotes.

We examine the portion of TFIID that has good evidence of conservation between hu-
mans and Drosophila, using protein interaction data from the public databases and protein
orthology relations from PHOG [Datta et al., 2009]. The boundaries found by Produles
are then refined manually to find the best conserved core supported by the protein interac-
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tion data. Remaining differences in the composition of TFIID between the two species are
examined using various bioinformatics tools and resources.

3.4.2 Background of the TFIID General Transcription Factor

In eukaryotes, protein-coding genes are transcribed by RNA polymerase II [Alberts et al.,
2008]. For transcription to occur, a preinitiation complex, typically containing more than 85
polypeptides [Holstege et al., 1998], must assemble at the promoter of the gene to be tran-
scribed [Thomas and Chiang, 2006]. A central component of most preinitiation complexes
is the TFIID general transcription factor. TFIID is a multiprotein complex containing
TBP (TATA-box-binding protein) and several TAFs (TBP-associated factors), of which at
least 13 homologous groups, named TAF1-TAF13, have been identified as conserved in
various species [Tora, 2002]. Components of TFIID, including TBP, TAF1, TAF2, TAF6,
and TAF9, bind to DNA at various core promoter elements: a T/A rich region named
the TATA box bound by TBP, the Initiator (Inr) bound by TAF1 and TAF2, and the
downstream promoter element (DPE) bound by TAF6 and TAF9 [Alberts et al., 2008;
Goodrich and Tjian, 2010; Thomas and Chiang, 2006]. Variants of TFIID without TBP
are able to initiate transcription in some cases [Wieczorek et al., 1998; Müller et al., 2010].

Two models of the structure of TFIID were assembled from experiments in Drosophila
and chordates, respectively. These models differ in their composition. The model based
on experiments in chordates [Goodrich and Tjian, 2010], consists of thirteen TAFs: TAF1-
TAF13. The model based on experiments in Drosophila [Wright et al., 2006], consists of
only eight TAFs, omitting five of the first thirteen TAFs: TAF3, TAF7, TAF8, TAF10, and
TAF13. How much change has actually occurred in TFIID between humans and Drosophila?
We decided to examine whether bioinformatics tools and protein interaction data stored in
public databases could provide insight into the evolution of TFIID.

In particular, five TAFs are present in Figure 1 of [Goodrich and Tjian, 2010] that are
not present in Figure 5 of [Wright et al., 2006]: TAF3, TAF7, TAF8, TAF10, and TAF13.
For three of these, TAF3, TAF7, and TAF8, there is little or no evidence in the protein
interaction databases for their participation in Drosophila TFIID. The D. melanogaster
protein BIP2 is homologous to the TAF3 protein in human, but seems to be only dis-
tantly homologous (36% identity over 146 residues with human TAF3, E-value 3e-21, by
NCBI BLAST [Sayers et al., 2012]). Literature search supports a functional association
with the D. melanogaster TFIID pathway and a physical interaction with D. melanogaster
TAF10 [Gangloff et al., 2001]. However, this protein interaction is not listed in IntAct [Ker-
rien et al., 2012] or iRefIndex [Razick et al., 2008], nor are any interactions between BIP2
and any TBF or TAF variants recorded in these databases. TAF7 and TAF8 do appear
in D. melanogaster according to SwissProt [UniProt Consortium, 2012]. However, IntAct
does not contain any interactions between Drosophila TAF7 or TAF8 and any TBP or TAF
variant. iRefIndex reports a single interaction between Drosophila TAF8 and TAF10B.
Either the interaction data is incomplete or the composition of TFIID differs between the
two species.

TAF10 and TAF13 appear in Drosophila [Tora, 2002] and do seem to interact with
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Figure 3.10: TFIID as found by Produles displayed in VieProt: vertices represent proteins with
UniProt identifier labels, black edges represent protein interactions, and pink edges represent
PHOG-T(F) protein orthology relationships. Proteins in red are from H. sapiens and proteins
in blue are from D. melanogaster.

other proteins involved in TFIID. It would seem unclear why these two proteins were omit-
ted from the experiments and analysis in Wright et al. [Wright et al., 2006] and from
the model of TFIID. Though early coimmunoprecipitation experiments in Drosophila iden-
tified only eight TAFs [Yokomori et al., 1993], later experiments in Drosophila showed
that TAF10 also coimmunoprecipitates with TFIID [Georgieva et al., 2000]. TAF13 does
not have a SwissProt [UniProt Consortium, 2012] entry for Drosophila; however the two
TrEMBL [UniProt Consortium, 2012] sequences, Q9VIP1 and Q9VGE2, appear in the same
PHOG. The sequence Q9VIP1 was found to interact with TAF11 by a high-throughput Y2H
experiment [Giot et al., 2003], whereas the sequence Q9VGE2 was found to interact with
TAF5 and TAF10 by coimmunoprecipitation [Kusch et al., 2003]. In the coimmunoprecipi-
tation study, Kusch et al. identified Q9VGE2 by homology with Spt3 in yeast. As shown in
Table 3.14, SUPT3, the primary homologous protein to Spt3 in human [Brand et al., 1999],
is in the same PHOG as TAF13. Brand et al. [Brand et al., 1999] found that Spt3 proteins
participate in TBP-free TAFII complexes with multiple TAFs.

3.4.3 TFIID as Found by Produles

Figure 3.10 contains a display from VieProt [Hodgkinson and Kong, 2012] of the TFIID
module pair found by Produles on PHOG orthologous proteins. The module pair exhibits
high modularity in both interactomes. The projections of the PHOGs on the modules in
this module pair are displayed in Table 3.14.

In Table 3.14, two rows are not immediately seen to belong in the same module as the
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PHOG Homo sapiens Drosophila melanogaster
PHOG071412087TD TBP, TBPL2 TBP
PHOG019894133TD TAF1, TAF1L, KAT2A TAF1, O76216
PHOG092114207TD TAF2 TAF2
PHOG071210567TD TAF4 TAF4, B7Z060

TAF5, TAF5L TAF5, WDS, EIF3I
PHOG027708862TD TAF6 TAF6
PHOG079779542TD TAF10 TAF10
PHOG071237842TD TAF11 TAF11
PHOG075676128TD TAF13, SUPT3 Q9VIP1, Q9VGE2

TAD2A TAD2A, TAD2B
MSX1 DFD, BCD, EVE

Table 3.14: Composition of PHOG projections on the module pair for TFIID as detected by
Produles. Proteins are listed by UniProt identifiers without the species suffix. The three rows
without PHOG identifiers do not represent single PHOGs. These rows satisfy the property that
for any two proteins in a row, one from H. sapiens and one from D. melanogaster, the pair
appear together in a PHOG. The PHOGs for these rows do not claim transitivity of protein
orthology. The PHOG identifiers supporting these rows will appear in a future version of the
paper.

proteins in TFIID. The proteins TAD2A and TAD2B are called transcriptional adapters or
Ada2-like proteins and are found in the PCAF complex that also includes TAF5L, TAF9,
TAF10, and TAF12 [Ogryzko et al., 1998]. The proteins MSX1, DFD, BCD, and EVE
are homeobox proteins. MSX1 in human, also known as Hox-7, is a transcriptional repres-
sor that is coimmunoprecipitated with TFIID [Zhang et al., 1996]. The function of MSX1
is to interact directly with TBP to repress transcription [Zhang et al., 1996]. The EVE
(even-skipped) protein in Drosophila performs a similar function in TFIID, repressing tran-
scription by binding directly to TBP and blocking the TFIID-TATA box interaction [Li and
Manley, 1998].

The BCD (bicoid) protein interacts directly with TAF6 and TAF4 to activate tran-
scription and this plays a central role in formation of a segmented body plan in Drosophila
embryos [Sauer et al., 1996]. However, unlike EVE, the protein BCD has a high degree in
the interactome, interacting with 72 proteins of which only three are in the module. It does
not improve the modularity of the module to include BCD. In future versions of Produles,
a modification to remove proteins such as BCD will be added. When BCD is removed,
the two proteins DFD and EIF3I become detached and removed from the module, which is
good, as they do not play a central role in TFIID.

The proteins TBPL2 and TAF1L substitute for TBP and TAF1, respectively, in the
testis and ovary to regulate transcription during germ cell differentiation [Goodrich and
Tjian, 2010; Wang and Page, 2002]. KAT2A and O76216, are known as GCN5 proteins.
GCN5 proteins are histone acetylases that participate in TBP-free TAF-containing com-
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Figure 3.11: The module connecting TAF12 to the mitochondria, as detected by Produles. The
pairwise relationships between the PHOGs, whether containing proteins that interact or not,
agree exactly in both modules of the pair.

plexes (TFTCs), such as TFTC-HAT which also contains TAF2, TAF5, TAF5L, TAF10,
and SUPT3 [Brand et al., 1999]. The sequence B7Z060 is an isoform of Drosophila TAF4.
The protein WDS, also known as will die slowly, is part of the ATAC (Ada two A contain-
ing)/Mediator complex that regulates transcription and also includes TAD2A [Krebs et al.,
2010]. It is not clear that WDS belongs with the TFIID proteins in the same module. Pro-
dules included WDS as it interacts with TAD2A that has a central position in the module
and as PHOG predicts orthology between WDS and TAF5. WDS is known to interact with
only five other proteins.

The module pair found by Produles does not include TAF9 or TAF12. It is not clear
why TAF9 was not found. It may possibly be due to the parameter setting e � 50. If TAF9
was internally considered for inclusion in 50 human modules that do not have sufficient
evidence for conservation in Drosophila or that failed to pass the parameterized quality
requirements, then it would have been permanently excluded. This is merely an hypothesis
and will be investigated in future work.

The reason TAF12 was missed by Produles is that it had been reported to be in another
conserved module pair. Produles removes proteins reported to be in a conserved module
pair from consideration for inclusion in other conserved module pairs. Evaluation of various
relaxations of this restriction will be left for future work. The module in which TAF12
was found, displayed in Figure 3.11 and Table 3.15, includes TAF12 as a central protein
and contains a majority of proteins that are associated with the mitochondria along a path
from the nucleus to mitochondria, containing Gene Ontology [Gene Ontology Consortium,
2012] annotations for mitochondrial transport, mitochondrial outer membrane, mitochon-
drial inner membrane, mitochondrial matrix, and mitochondrial nucleic acid binding. The
modules also contain aquaporins that have been shown to play a role in volume regulation
of the mitochondrial matrix [Lee and Thévenod, 2006]. The models in Drosophila [Wright
et al., 2006] and chordates [Goodrich and Tjian, 2010] show TAF12 to be on the periphery
of TFIID, possibly receiving or sending signals that coordinate communication with mito-
chondria. It is known that transcription factors are involved in coordinating communication
between the nucleus and mitochondria [Finley and Haigis, 2009].
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PHOG Homo sapiens Drosophila melanogaster
PHOG074603165TD SYRM Q8SXK2
PHOG064731938TD PARL A1Z8R8
PHOG057654444TD ATG4D Q9VF80
PHOG079796735TD TAF12 TAF12
PHOG078530269TD MTX1, Q81Z68 MTX1, Q8T4F2
PHOG073386299TD SGTA, SGTB Q9VJD4
PHOG080986975TD ATAD1 Q9V3Q1
PHOG014889152TD CI023 Q0E9N4
PHOG089509716TD AQP1 AQP

Table 3.15: Composition of PHOG projections on the module pair possibly connecting TAF12
to the mitochondria.

3.4.4 Manual Curation of TFIID

ModuleAlign, as described in Section 2.3.2, was applied to the TFIID module. The results
are displayed in Figure 3.12. The module on the left from H. sapiens was manually curated
by adding to the proteins from the human module in Table 3.14 all TBP and TAF proteins
and variants for which protein interaction data existed in the interactomes. This manual
curation is reasonable as we have shown that all proteins in the human module found
by Produles are coimmunoprecipitated with sizable subsets of the module. The proteins
added to those shown in Table 3.14 were TAF3, TAF7, TAF8, TAF9, TAF12, TAF1A,
TAF1B, TAF1C, TAF1D, TAF6L, TAF7L, and TAF9B. The largest connected component
in Drosophila on the right of Figure 3.12 agrees very well with the Drosophila module found
by Produles in Figure 3.10, differing only in that TAF9 and TAF12 were missed by Produles.
It includes all TAFs shown in the model for Drosophila [Wright et al., 2006] and also includes
TAF10 and TAF13. The largest connected component on the right of Figure 3.12 is not
necessarily a gold standard for computational methods that predict conserved modularity
from protein interaction data. As observed previously, the module may be improved without
inclusion of BCD, DFD, EIF3I, and possibly WDS. An idea for future work is to apply this
manual curation protocol in both directions, combining the results from the two directions
to form a gold standard module pair for this data set.

3.4.5 Understanding the Conserved Module from Produles

The largest connected component on the right of Figure 3.12 agrees very well with the
module on the right of Figure 3.10 found by Produles, differing only in that TAF9 and
TAF12 were missed by Produles. The set of TAFs from ModuleAlign includes all those
shown in Figure 5 of [Wright et al., 2006] assembled from experiments in Drosophila and also
includes TAF10 and TAF13. SwissProt does not have a TAF13 entry for D. melanogaster,
but two TrEMBL [UniProt Consortium, 2012] sequences are orthologous by PHOG-T(F).
Both of these TrEMBL proteins participate in the Drosophila module found by Produles.
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Figure 3.12: TFIID displayed in VieProt after manual curation

These results indicate that the union of PHOG and Produles has enabled detection of the
core of TFIID that is known to be conserved across human and Drosophila.

We now address the absence of TAF3, TAF7, and TAF8 in the TFIID module for
Drosophila. There is little or no evidence in the protein interaction databases for their
participation in Drosophila TFIID. SwissProt does contain entries for Drosophila TAF7
and TAF8. However, IntAct does not contain any interactions between Drosophila TAF7
or TAF8 and any TBP or TAF variant. iRefIndex reports a single interaction between
Drosophila TAF8 and TAF10B. This interaction is annotated as coming from a high-
throughput Y2H study [Giot et al., 2003]. Additional search revealed that the interaction is
also supported by a coimmuniprecipation study [Hernández-Hernández and Ferrús, 2001].

UniProt does not contain an entry for TAF3 in Drosophila. The Drosophila protein
BIP2 is homologous to the TAF3 protein in human [Gangloff et al., 2001], and was shown
to coimmunoprecipitate with Drosophila TFIID and to interact directly with TAF10 [Gan-
gloff et al., 2001]. However, these interactions are not listed in IntAct [Kerrien et al., 2012]
or iRefIndex [Razick et al., 2008], nor are any interactions between BIP2 and any TBF or
TAF variants recorded in these databases. The only Drosophila BIP2 proteins in UniProt
are unreviewed TrEMBL sequences. Using the NCBI entry for BIP2, it appears that BIP2
has 1406 amino acids whereas human TAF3 has 929 amino acids. The alignment from
NCBI BLAST [Sayers et al., 2012] with lowest E-value between Drosophila BIP2 and hu-
man TAF3 aligns over 146 amino acids with 36% identity and E-value 3e-21. For human
TAF3, Pfam [Finn et al., 2010] detects a Bromo TP (Bromodomain associated) domain
with envelope from amino acids 4-80 with E-value 2.2e-26, and a PHD-finger (Plant home-
odomain) with envelope from amino acids 1342-1389 and E-value 3.7e-11. Pfam detects
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identical domains for Drosophila BIP2; the Bromo TP envelope is from amino acids 3-79
with E-value 1.3e-19 and the PHD-finger envelope is from amino acids 867-914 with E-value
1.1e-11.

The TAF7 proteins are shorter, consisting of 479 amino acids in Drosophila and 349
amino acids in humans. When scoring Drosophila TAF7 against Pfam, the only match is
to the family HMM, TAFII55 N, which is the human TAF7 protein conserved region. The
envelope is from amino acids 55-214 and the E-value is 4e-53. Human TAF7 was formerly
named TAFII55, as it is a protein of approximately 55 kilodaltons, until 2002 when an im-
proved naming convention was introduced [Tora, 2002]. This naming convention established
the correspondence for the proteins TAF1-TAF13 between humans and Drosophila as well
as a mapping to proteins in yeast and C. elegans. Pfam naturally finds the same match
for human TAF7 with envelope from 12-178 amino acids and E-value 4.2e-55. The proteins
align against each other using NCBI BLAST along residues 3-277 in human and 47-315 in
Drosophila with 41% identity and E-value 1e-44. It is peculiar that any evidence of physical
interaction of Drosophila TAF7 with TFIID is difficult to find, especially as human TAF7
was coimmunoprecipitated with TFIID and TBP [Wieczorek et al., 1998].

3.4.6 Discussion of Results, Limitations, and Extensions

There are 32 interactions for Drosophila from iRefIndex and IntAct in this module, compiled
from 8 publications by different authors, most of which were not cited. There are 45
interactions for humans, compiled from 12 publications by different authors, most of which
were not cited. This many interactions over so many publications, and the high value of µ
exhibited by this pair: µ � 0.13 in human and µ � 0.12 in fly, give us confidence that this
module pair is genuinely conserved, despite the fact that some of the interactions may be
false positives and other true interactions may not have been detected or reported. In fact,
the topological similarity of the two modules in the pair is quite poor. If graphs are created
on the rows of Table 3.14 for each of the two species, where an edge is placed between two
rows if there is an interaction between a pair of proteins, one from each row, then 44%
of these pairwise relationships disagree between the graphs in the pair. Even though we
may not be able to see fine-grained details about the truth of particular interactions, the
cumulative evidence of the interactions allow us to see the conserved module.

Produles should have better recall for detecting conserved modules in noisy interaction
data than the method in Gandhi et al. [Gandhi et al., 2006]. The method in Gandhi et
al. [Gandhi et al., 2006] projects orthology groups onto the modules in a possible module
pair, removes interactions that do not agree identically in both modules, and then requires
that the remaining isomorphic graphs be connected. Produles requires only connectivity,
using the modularity of the modules to direct towards regions of the interactomes that are
likely to be conserved. Produles should also have better precision as it identifies larger
modules for which there is a higher cumulative weight of interaction evidence. A direct
comparison would require a gold standard data set of conserved module pairs for which
independent interaction evidence exists for more than one species and has been deposited
in the publicly available protein interaction databases. Such a gold standard data set to
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allow direct comparison has not yet been designed.
The graph topology differs considerably between the two modules in the module pair.

Produles is more robust to noisy interaction data than the method in Gandhi et al. [Gandhi
et al., 2006]. This is because the method in Gandhi et. al. requires that each interaction be
present in both interactomes. More precisely, the method from Gandhi et al. [Gandhi et al.,
2006] would project orthology groups onto the modules in the module pair, remove inter-
actions that do not agree identically in both modules, and then require that the remaining
isomorphic graphs be connected. Produles requires only connectivity, using the modularity
of the modules to direct towards regions of the interactomes that are likely to be conserved.

As demonstrated by our results, the interactomes do not allow one to see temporal or
spatial separations. Thus, highly overlapping modules, such as TFIID and the TBP-free
TAFII complexes, cannot easily be distinguished except with manual separation.

TFIID is required for eukaryotic transcription of protein coding genes. TFIID is highly
conserved between Homo sapiens and Drosophila melanogaster but there are some no-
ticeable differences in the outcomes of experiments on TFIID in the two species. The
portion of the TFIID module known to be most highly conserved between H. sapiens and
D. melanogaster is well detected by Produles. Additional manual curation shows that Pro-
dules could have done a bit better, missing TAF9 and TAF12. Produles did not have any
knowledge about the boundaries of TFIID and yet detected most of the module. This study
validates the use of Produles as an exploratory tool to detect conserved multiprotein mod-
ularity in interactomes, but also motivates continued refinement for improved detection of
module boundaries.

After our analysis, Produles was modified to allow proteins to be included in multiple
modules. When run with the same parameters on the same data set, Produles returned 138
module pairs. Many of these were highly overlapping including some identical module pairs
found from different starting positions. Interestingly, the exact two module pairs displayed
in Figures 3.10 and 3.11 were found. However, an additional module pair that included
most proteins from both of these two modules was also returned. This new module pair
had high modularity in both interactomes, µ � 0.14 in human and µ � 0.11 in Drosophila,
and included 29 proteins in human and 40 proteins in Drosophila. For Drosophila this
module pair included TAF1, TAF2, TAF4, TAF5, TAF6, TAF9, TAF10, TAF11, TAF12,
the two TAF13 TrEMBL sequences, BIP2, TAD2A, and TAD2B. Note, in particular, that
TAF12, TAF9, and BIP2 were included. In human, the module pair included TAF2, TAF4,
TAF5, TAF5L, TAF6, TAF8, TAF9, TAF10, TAF11, TAF12, TAF13, KAT2A, and SUPT3.
Several points are worthy of note. First, TBP is not included. It is possible that this is
due to the parameter value e � 50. Investigation of this will be left for future work.
Next, TAF8 was included in the human module. TAF8 does not appear in the Drosophila
module; rather the human TAF8 is aligned to BIP2, as PHOG-T(F) predicts orthology
between BIP2 and TAF8. Recall that BIP2 is putatively orthologous to TAF3 in human.
This PHOG-T(F) prediction of orthology is likely due to a shared Bromo TP domain from
Pfam. The bromodomain is composed of four alpha helices and recognizes acetylated lysines
on histones [Charlop-Powers et al., 2010]. Next, TAF1 does not appear in human; rather it
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is substituted by KAT2A which appears in the same PHOG. Finally, we note that several
proteins, especially from Drosophila, seem that they could be removed without destroying
the connectivity or decreasing the modularity.
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Evaluation of Optimization Criteria

In this chapter, we examine potential optimization criteria for detecting homology between
Homo sapiens and Drosophila melanogaster at the level of multiprotein modules, exploring
whether optimizing these attributes contributes significantly to biological process enrich-
ment of the modules. After generating pairs of modules containing proteins homologous
between the species, we consider different types of attributes: graph theoretic attributes
intrinsic to a single module and homology attributes that consider the relationship between
homologous modules. We also consider the appropriateness of biological process enrichment
for measuring quality of module boundaries across modules of different sizes.

Modularity, defined as the fraction of interactions within the module among all inter-
actions in which the module proteins participate, has been shown to lead to significant
biological process enrichment [Hodgkinson and Karp, 2012]. Graph conductance [Jerrum
and Sinclair, 1988], a closely related concept, has been used to detect modularity in pro-
tein interaction networks not restricted to homologous modules [Voevodski et al., 2009].
A similar definition of modularity [Newman and Girvan, 2004] defined for a partition of
the network into modules has been used with good results [Wang et al., 2007]. Because of
these promising results, modularity is a prime candidate for predicting biological process
enrichment.

Criticisms of modularity include claims that modules are not sufficiently dense [Sun et
al., 2012]. This prompts us to include a measure of density – how similar a module is to
a clique – as a possible attribute for predicting biological process enrichment. Density is
defined as the fraction of edges in the module over the number of edges if the module were
a clique.

Two very obvious attributes to consider are the number of interactions in the module
and the module size. If these attributes are important, does biological process enrichment
continue to improve without bound as these quantities increase, or are there particular
ranges that optimize biological process enrichment? If biological process enrichment con-
tinues to improve without bound, this would indicate a limitation in the use of enrichment
to evaluate module boundaries.

Modules vary in the diversity of proteins comprising them. It seems plausible a priori
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that modules with many paralogous proteins may exhibit more significant biological process
enrichment than those with fewer paralogous proteins due to inherited similarity of func-
tion. However, it may also be possible that modules with more diverse protein composition
have more significant biological process enrichment as each protein may perform a different
molecular function in the biological process associated with the module.

Protein interaction homology manifests itself through topological similarity in the pro-
tein interaction networks across species. Several attempts have been made to use protein
interaction homology as a guiding principle to detect homologous modules, the idea being
that network regions containing homologous patterns of protein interactions are more likely
to represent modules with important functions [Koyutürk et al., 2006b; Narayanan and
Karp, 2007]. We define a model of protein interaction homology and study its effects on
biological process enrichment.

4.1 Study System

iRefIndex [Razick et al., 2008] is a consolidated database of protein interactions that can be
accessed with the PSICQUIC web services protocol [Aranda et al., 2011]. Release 9.0 (Dec.
16, 2011) provides unified protein interaction data through a publicly accessible PSICQUIC
web service – data compiled from IntAct [Kerrien et al., 2012], BioGrid [Chatr-aryamontri
et al., 2013], DIP [Salwinski et al., 2004], HPRD [Prasad et al., 2009], BIND [Isserlin et al.,
2011], MINT [Licata et al., 2012], MIPS [Mewes et al., 2011], InnateDB [Breuer et al., 2013],
and MatrixDB [Chautard et al., 2011]. UniProtKB is a publicly available database of pro-
tein sequences accessible via web services [UniProt Consortium, 2012]. BLAST is software
that detects sequence similarity of protein sequences and can be used to infer homology of
proteins across taxa [Sayers et al., 2012]. BLAST is released as a stand alone application
to compute pairwise similarities between two large sets of proteins very quickly [Sayers et
al., 2012]. Gene Ontology is a database of annotations for protein functions, including
biological processes, that can be used for comparing known functions of proteins within
modules [Gene Ontology Consortium, 2012].

4.2 Study Species

H. sapiens and D. melanogaster were chosen as study species since their protein interaction
networks have been the most extensively studied of all metazoans. H. sapiens and D.
melanogaster are separated by over 500 million years of evolution, their most recent common
ancestor being an early member of the Bilateria clade [Cartwright and Collins, 2007]. It is
estimated that D. melanogaster has approximately 14,000 protein-coding genes whereas H.
sapiens has between 20,000 and 25,000 protein-coding genes [Pray, 2008]. 67 percent of the
proteins in their protein interaction networks have homologous proteins in the other species
with BLAST E-value   10�9 when averaged in both directions.
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4.3 Optimization Criteria

Let G � pV,Eq be an interactome. A multiprotein module is a set of proteins M � V such
that |M | ! |V | and such that the proteins in M form an induced connected subgraph of
the interactome. Modularity is defined as µpMq � |EpMq|

|cutpM,V zMq|�|EpMq| where EpMq is the
set of interactions with both interactants in M , and cutpM,V zMq is the set of interactions
spanning M and V zM . Of the interactions involving module proteins, modularity is the
fraction contained entirely within the module. Linear density is defined as ∆LpMq �
|EpMq|{|M |, the number of interactions between proteins in the module divided by the
module size. Density is defined as ∆pMq � |EpMq|{�|M |

2

�
. Of the total possible number

of edges that could be in a module of a given size, density is the fraction of edges actually
contained in the module.

To model the extent of protein richness, we placed each pair of module proteins with
BLAST E-value threshold 10�9 in the same protein homology group including the proteins
from both species. Protein richness of a module is the number of protein homology groups
that include module proteins. Protein richness can continue to increase as the modules
increase in size so we divided by module size for a meaningful measure across modules of
different sizes.

To model protein interaction similarity, we tested how well the interactions between
protein homology groups were conserved in H. sapiens and D. melanogaster. For either
species, if protein homology group A had a proteins in the species and protein homology
group B had b proteins in the species, and the module for the species had density ∆, then
if the interactions between A and B were thrown down at random, we would expect ab∆
interactions between A and B in that species. We examined the actual number for each
species to see whether it was above or below expectation. If they were both greater than or
equal to expectation or both less than or equal to expectation, we called this an agreement;
otherwise it was a disagreement. This model insists that interactions between protein
homology groups should be mostly present in both species or mostly absent in both species
for the interaction to be considered homologous. If there were n protein homology groups
in the module, there were

�
n
2

�
pairs of protein homology groups and this same number of

possible agreements. However, a large percentage of the agreements are between protein
homology groups that have no interactions between them in either species. We thus ignore
agreements of this type and measure only agreements with at least one interaction between
the protein homology groups in at least one species, reporting the fraction of the total
possible number of these agreements.

4.4 Computational Methods

We obtained protein interaction data from iRefIndex, Release 9.0, for H. sapiens and D.
melanogaster, consisting of 69,651 interactions on 12,692 proteins for H. sapiens and 38,731
interactions on 9,796 proteins for D. melanogaster. We filtered out any interactions that
were derived from computational rather than experimental sources. Protein sequences for
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all proteins involved in iRefIndex interactions were retrieved from UniProtKB. We accessed
UniProtKB data from March 26, 2012. Pairwise BLAST was run between the H. sapiens
and D. melanogaster proteins to determine protein homologies. We recorded BLAST E-
values for each pair. All data were retrieved and processed using the EasyProt software
architecture [Hodgkinson et al., 2012].

Beginning at each protein, in turn, we randomly generated two sets of proteins, one
set per species. Let A and B be sets of proteins for human and Drosophila respectively,
initially containing one protein each. For a set of proteins S, let IpSq be the set of proteins
interacting with any protein in S. Let HpSq be the set of proteins homologous to any protein
in S in the other species than the proteins in S. Each step of the growing process added a
protein p to A randomly selected from tp P IpAq : Hptpuq X IpBq � Hu. Next a protein in
HptpuqX IpBq was chosen at random and added to B unless HptpuqX IpBq � B. The roles
of A and B were then reversed. This procedure was repeated until both sets were either of
a randomly chosen maximum size between 5 and 50 proteins or until it was impossible to
grow the sets further. The collection of sets with at least 5 proteins per species was retained
for statistical analysis.

When optimizing for biological process enrichment, modularity, linear density, and den-
sity we started from randomly chosen proteins and generated a set of conserved modules
using the above algorithm, adding only proteins that improved the chosen attribute of the
module, allowing up to 50 proteins per module. If the modules reached a size where it was
impossible to improve the chosen attribute by adding a pair of homologous proteins, one per
species, both interacting with module proteins, then the modules were returned at this size.
If the modules were able to grow beyond 50 proteins, they were returned at 50 proteins.
When optimizing for density, the homologous module pairs were grown at random up to
5 proteins per species before the optimization criteria were applied due to the difficulty in
finding larger cliques. From 100 homologous module pairs, 200 modules were optimized for
each of modularity, linear density, and density. Due the long running time, we optimized
only 12 modules from 6 homologous module pairs for biological process enrichment. We
used the randomly generated set of 5166 modules from 2583 homologous module pairs as a
control.

To measure the similarity of known biological processes across proteins within modules,
Gene Ontology enrichment values were calculated for each module, separately for each
species, using Ontologizer [Bauer et al., 2008]. We used latest releases of the full ontology
(March 26, 2012 release) and unfiltered UniProt annotation data (March 6, 2012 release)
from the Gene Ontology website. Ontologizer was applied with the Term-For-Term setting
with Bonferroni correction and each annotation received a P-value. The lowest P-value for
each module was retained for the statistical analysis and transformed using the negative
base-10 logarithm.
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4.5 Statistical Methods

All statistical analyses were performed using R [R Development Core Team, 2012]. Multiple
curvilinear regressions were fitted to predict the negative logarithm of the biological process
enrichment P-value using six attributes: modularity, linear density, density, module size,
size corrected protein richness, and protein interaction similarity. For protein interaction
similarity, each module in the pair was assigned the measurement from the pair. Each
regression was fitted using all first and second order terms including interactions between
variables. A binary recursive partitioning algorithm [Breiman et al., 1984], was used to
determine the most important attributes for prediction of biological process enrichment
P-values. Unless indicated otherwise, all statistical results given have P-value   0.01.

For relative importance, we used the relaimpo R package with the four methods: LMG,
Pratt, Last, and First [Grömping, 2006]. LMG assigns each variable the average increase in
R2 when it is added to a regression model containing a subset of other variables [Grömping,
2007]. Pratt measures the product of the regression coefficient and the zero-order correlation
for each variable [Thomas et al., 1998]. Starting with the full model, Last assigns the
reduction in R2 when removing a variable from the model as the relative importance of
the variable maximizing this quantity; this maximizing variable is then removed from the
model and the algorithm recurses on the smaller model. First is similar to Last but adds the
variables from an empty model rather than removing them from a complete model, adding
the variables in order of relative improvement in R2. Bootstrapping with 1000 bootstrap
replicates was used to generate 95 percent confidence intervals for each method.

The 5166 random conserved modules generated as described in Computational Methods
were binned by number of module proteins. For each bin, we computed the mean and
standard deviation for each attribute. For each attribute, each optimized module generated
as described in Computational Methods was mapped to the number of standard deviations
above or below the mean in the random modules, allowing direct comparison across modules
of different sizes.

All tests comparing medians of attributes in sets of modules were conducted using a
two-sided Wilcoxon rank sum test with continuity correction.

4.6 Experiments to Compare Optimization Criteria

4.6.1 Correlations and Regressions of Attributes

After generating 2583 homologous module pairs at random, 2583 modules per species, we
computed six attributes for each module pair: modularity, density, number of interactions,
module size, protein richness, and protein interaction similarity. Number of interactions
and module size were highly correlated with Pearson’s r2 � 0.91 so we divided number
of interactions by module size yielding an alternate measure of density that we call linear
density following [Melancon, 2006], and we did not consider number of interactions directly.
Protein richness was also highly correlated with module size with Pearson’s r2 � 0.84 so we
divided protein richness by module size to create a new attribute that we call size corrected
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linear density (lind) 0.179
modularity (mod) 0.175
module size (size) 0.112
density (dens) 0.062
size corrected protein richness (rich) 0.031
protein interaction similarity (sim) 0.011
mod, lind, size, dens, rich, sim 0.377
mod, lind, size, dens, rich 0.372
mod, lind, size, dens, sim 0.370
mod, lind, size, dens 0.356
mod, lind, size 0.357
mod, lind 0.313
mod, size 0.291
mod, dens 0.242
sim, rich 0.043

Table 4.1: Adjusted R2 values for curvilinear regressions on attributes and subsets. Abbreviations
in parentheses are used throughout.

protein richness. We then performed curvilinear regression of biological process enrichment
on each of the six attributes individually, using first and second order terms. The adjusted
R2 values are listed in Table 4.1. The correlation matrix of the attributes used in the regres-
sions is given in Table 4.2. Multiple curvilinear regression of biological process enrichment
on subsets of the six explanatory variables, including interactions between variables and
second order terms, yielded the adjusted R2 values given in Table 4.1.

The protein interaction similarity score described in Section 4.3 ranged from 0 to 1 on
the random modules with a mean of 0.29 and a standard deviation of 0.15. The correlations
with biological process enrichment were r � �0.05 (Pearson’s) and ρ � �0.01 (Spearman’s).

enrich mod lind size dens rich sim
enrich 1.00000000 0.39940960 0.4125307 0.33289206 -0.20491436 -0.16507973 -0.04770611
mod 0.39940960 1.00000000 0.1483411 0.01513133 0.08709516 0.03372056 0.06667026
lind 0.41253071 0.14834113 1.0000000 0.42383546 -0.13505171 -0.12098508 -0.17010913
size 0.33289206 0.01513133 0.4238355 1.00000000 -0.82738012 -0.19738641 -0.48665568
dens -0.20491436 0.08709516 -0.1350517 -0.82738012 1.00000000 0.22562763 0.50260948
rich -0.16507973 0.03372056 -0.1209851 -0.19738641 0.22562763 1.00000000 -0.20942665
sim -0.04770611 0.06667026 -0.1701091 -0.48665568 0.50260948 -0.20942665 1.00000000

Table 4.2: Correlation matrix of attributes on random conserved modules.

4.6.2 Stratification by Size

Despite the strong correlation between number of proteins and number of interactions in
the random modules (Pearson, r2 � 0.91), for modules of a given size there is considerable
variation in the number of interactions. For the modules of each size, we performed a linear
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Figure 4.1: Relative importances of optimization criteria for predicting biological process en-
richment. Four relative importance methods were used: A) LMG, B) Pratt, C) Last, and D)
First. Methods were applied to 2583 randomly generated homologous module pairs. 95 percent
confidence intervals were generated from 1000 bootstrap replicates.

regression of enrichment on number of interactions. All 53 least squares best fit lines had
positive slope. This shows that for any fixed size, improving the density or linear density
tends to improve biological process enrichment. The Pearson partial correlation between
number of interactions and biological process enrichment holding number of proteins fixed
was 0.28 with P-value   10�96. However, biological process enrichment and density are
negatively correlated (Pearson’s r � �0.20; Spearman ρ � �0.26). It is easier to find
smaller dense regions but improving density at the cost of size tends to diminish biological
process enrichment.

4.6.3 Relative Importances of Attributes

Four methods to determine the relative importance of attributes in curvilinear regressions
are described in Section 4.5. Fig. 4.1 shows the results of these methods applied to our
regressions. LMG, Pratt, and Last listed modularity as the most important attribute. First
listed linear density as the most important attribute with modularity as the second most
important.

4.6.4 Binary Partition Tree

Curvilinear regression models apply a polynomial function of the attributes to the entire
sample space. An alternate nonparametric approach uses a binary partition tree to model
the data with different predictors for different discrete ranges of attribute values. A binary
recursive partitioning algorithm [Breiman et al., 1984] generated the decision tree in Fig. 4.2
with modularity, linear density, and size being the most important attributes for predicting
biological process enrichment.
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|
mod < 0.0467191

lind < 1.07794
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7.583 9.588

Figure 4.2: Prediction tree for biological process enrichment in random modules.

4.6.5 Optimizations

As described in Section 4.4, the algorithm was modified to select only proteins that improved
the biological process enrichment of the modules. Due to the long running time of 8-20
hours per homologous module pair, we generated only 6 homologous module pairs in this
way, yielding 12 modules. For each optimization criterion other than biological process
enrichment we generated 100 homologous module pairs optimized for that attribute as
described in Section 4.4. We optimized for both high protein richness and low protein
richness.

Fig. 4.3A compares biological process enrichment of optimized modules with random
modules after correcting for size as described in Section 4.5. The average sizes of modules
resulting from the optimizations are listed in Table 4.3. The median of biological process
enrichment in each optimized group of modules was greater than the median in the random
control group (Wilcoxon, P   10�8 in all cases except for the density optimized modules
where P � 0.0017). The median of enrichment in the group optimized for enrichment was
the highest, as expected, greater than the median of enrichment in each group optimized
for any other attribute (Wilcoxon, P   10�6 in all cases). The medians of enrichment
in the groups optimized for modularity and linear density were greater than the median
of enrichment in the group optimized for density (Wilcoxon, P � 0.0013 and P   10�9

respectively), but the median of enrichment in the group optimized for modularity was
less than the median of enrichment in the group optimized for linear density (Wilcoxon,
P � 0.0015).

Fig. 4.3B shows a box plot of the modularity in the various groups. The median of
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Figure 4.3: Box plots of optimized conserved modules against a random control. A: biologi-
cal process enrichment, B: modularity, C: linear density and density, D: size corrected protein
richness, E: protein interaction similarity. The control consists of 2583 randomly generated con-
served module pairs. Each optimized set except for biological process enrichment consists of 100
optimized conserved module pairs. The biological process enrichment optimized set consists of
6 optimized conserved module pairs.

modularity in the group optimized for enrichment was greater than the median of modularity
in the random control group (Wilcoxon, P   10�5), but the median of modularity in the
group optimized for modularity was greater than the median of modularity in the group
optimized for enrichment (Wilcoxon, P � 0.007).

Fig. 4.3C shows a box plot of linear density and density in the various groups. That
both linear density and density are represented by the same plots follows from the size
correction described in Section 4.5 along with the definitions of density and linear density.
For modules of any given size, the denominators of both density and linear density are
constants, so each module is placed the same number of standard deviations above or below
the mean for both density and linear density.

Fig. 4.3D shows a box plot of size corrected protein richness. The enriched set has lower
protein richness than the random set and most other optimized sets. This is as expected
from the negative correlation between enrichment and protein richness in the random set.

The greedy algorithm used in this study was remarkably effective at optimizing for
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size corrected protein richness maximized 48.11
protein interaction similarity optimized 41.65
linear density optimized 38.29
enrichment optimized 36.58
size corrected protein richness minimized 29.83
modularity optimized 28.54
no optimization 27.79
density optimized 6.08

Table 4.3: Average sizes of optimized modules

protein interaction similarity. For every conserved module pair in the optimized set, the
protein interaction similarity score was 1.0, indicating perfect topological agreement in
each module with the average number of protein homology groups per module being 14.13.
Even so, as shown in Fig. 4.3A, these modules did not exhibit greater biological process
enrichment than modules optimized only for modularity or linear density which, as shown
in Fig. 4.3E, had significantly lower levels of protein interaction similarity.

The enrichment optimized modules tend to have higher values of both modularity and
linear density than the random modules, but the modularity optimized modules do not
have high linear density (Fig. 4.3C) and the linear density optimized modules do not have
extremely high modularity (Fig 4.3B). This is consistent with the regression results in the
random modules that found modularity and linear density to be complementary predictors
of biological process enrichment.

From Figure 4.3A is is clear that minimizing protein richness improves biological pro-
cess enrichment. Figure 4.3E shows that the set of conserved modules optimized for low
protein richness indeed has very low protein richness relative to the random set. Many
of the conserved modules optimized for low protein richness had only one or two protein
homology groups which yield perfect protein interaction similarity agreement as indicated
in Figure 4.3E. Figure 4.3D shows that optimization for every attribute except high protein
richness led to lower protein richness than in the random modules.

4.6.6 Size Effects

Fig. 4.4A shows that biological process enrichment tends to improve as the number of pro-
teins increases up to 50 proteins per module in the randomly generated conserved modules.
To test at larger size ranges, 100 homologous module pairs were generated using the al-
gorithm in Section 4.4 choosing random maximum sizes between 5 and 2000 with results
displayed in Fig. 4.5A. As shown in Fig. 4.4B, there is no strong correlation between modu-
larity and size in modules up to 50 proteins. The correlation between modularity and size is
only ρ � 0.108 (Spearman’s) and r � 0.015 (Pearson’s) which is statistically significant for
Spearman’s (P   10�14) but not for Pearson’s (P � 0.28). However, as shown in Fig. 4.5B,
at larger size ranges, modularity is highly correlated with number of proteins. Linear den-
sity tends to increase with number of proteins at all size ranges (Figs. 4.4C and 4.5C).
However, density, normalized protein richness, and protein interaction similarity tend to
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Figure 4.4: Trends by size of 5166 randomly generated conserved modules containing between
5 and 50 proteins each. A: biological process enrichment, B: modularity, C: linear density, D:
density, E: size corrected protein richness, F: protein interaction similarity. Least squares best
fit lines shown. In each case, the y-axis is the value of the attribute and the x-axis represents
module size increasing to the right.

decrease with size (Figs. 4.4D, 4.4E, 4.4F, 4.5D, 4.5E, 4.5F).

4.7 Discussion of Results and Limitations

4.7.1 Importances of the Optimization Criteria

When biological process enrichment is considered a gold standard for module composition,
modularity and linear density are the most important optimization criteria and are comple-
mentary. Optimizing for protein interaction similarity has only a modest additional effect.
The small difference in the adjusted R2 between the model using only graph theoretic at-
tributes and the full model shows that the attributes based on homology (size corrected
protein richness and protein interaction similarity) do not provide significant additional
information for predicting biological process enrichment. Three graph theoretic attributes:
modularity, linear density, and module size together explain 35.7 percent of the variance in
biological process enrichment, whereas the full model explains only an additional 2 percent.
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Figure 4.5: Trends by size of 200 randomly generated conserved modules containing between 5
and 2000 proteins each. Least squares best fit lines shown. A: biological process enrichment, B:
modularity, C: linear density, D: density, E: size corrected protein richness, F: protein interaction
similarity. The modules in A, C, D, and E separate into two curves due to differing characteristics
of modules in the human interactome and modules in the Drosophila interactome.

4.7.2 Levels of Homology

That there is extensive homology between proteins in distantly related species is undisputed.
Much attention has been given to the search for homology at higher levels such as collections
of proteins associated with modules, efforts that have met with considerable success [Kel-
ley et al., 2003; Sharan et al., 2005b; Koyutürk et al., 2006b; Narayanan and Karp, 2007;
Hodgkinson and Karp, 2012]. However, at the intermediate level, searching for homology
of protein interactions, many studies, including this one, have found extreme limitations.
It requires integrating over many protein interactions to obtain any signal of module level
homology which makes interaction level similarity a poor predictor of module level homol-
ogy.

That protein interaction similarity does not significantly predict biological process en-
richment poses interesting questions. Is it that there is so little detectable homology at
the protein interaction level that it cannot be used reliably to detect a signal of module

80



Chapter 4. Evaluation of Optimization Criteria

homology? Zinman et al. [Zinman et al., 2011] found some evidence that protein interac-
tion similarity was more significant within modules than between modules but their model
did not correct for increased density within modules that results from the module search
algorithms. Our study shows that evidence of protein interaction similarity leads to modest
gains at best if the modules are evaluated in terms of biological process enrichment.

Lack of detectable protein interaction homology may be due either to rewiring of protein
interaction networks during evolution [Beltrao and Serrano, 2007] or to artifacts in the
protein interaction assays and interaction inference protocols. In the first case, lack of
protein interaction homology is an inescapable feature of evolution. In the second, it is a
limitation of current technologies. A protein interaction network, as retrieved from public
databases, is a mosaic of many experimental assays with many data processing protocols
and many often subtle differences in what it means to interact [Koh et al., 2012].

Gandhi et al. [Gandhi et al., 2006] compared protein interaction data in four dis-
tantly related species: Homo sapiens, Saccharomyces cerevisiae, Caenorhabditis elegans,
and Drosophila melanogaster, finding little evidence of protein interaction similarity. Con-
sidering the lack of evident similarity among protein interactions across distantly related
taxa, Beltrao and Serrano [Beltrao and Serrano, 2007] estimated the rate of rewiring of pro-
tein interaction networks to be extremely high with approximately 1000 protein interactions
changing in H. sapiens every million years of evolution.

Methods that have used higher and lower levels of homology to predict homology of
protein interactions have met with much more success. Protein interactions have been
predicted with a 30 percent success rate using protein similarity [Matthews et al., 2001],
and 40-52 percent success rate [Sharan et al., 2005b] when predictions were restricted to
interactions between proteins homologous to proteins in dense complexes.

4.7.3 Module Boundaries and Size Corrections

Number of interactions within a module always increases as the module increases in size
so number of interactions is not by itself a useful optimization criterion unless the desired
module size is fixed. Modularity, linear density, density, and biological process enrichment
seem to provide reasonable criteria for determining optimal module size and composition.
As shown in Figs. 4.4 and 4.5, however, biological process enrichment and linear density
tend to increase with size in random modules. Modularity tends to increase in very large
random modules but is distributed around a constant mean in random modules up to 50
proteins. When the modules are reasonably small relative to the interactomes, modularity
provides the ability to compare modules across different sizes in order to choose the best
size and composition. Density tends to decrease with size in random modules.

Figs 4.4 and 4.5 provide compelling evidence that for most of the attributes considered,
including biological process enrichment, values of the attributes are not directly comparable
across modules of different sizes. A set of modules (conserved or otherwise depending
on the study) should be generated by a random growth process. The distributions of
evaluation metrics for random modules of each size can then be considered a baseline against
which more clever algorithms can be compared. This not only corrects for module size but
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also provides a realistic null model against which to measure the performance of proposed
algorithms. This procedure was used to generate the data in Fig. 4.3.

4.7.4 Implications of Protein Richness Optimizations

That lower protein richness improves biological process enrichment suggests that many bio-
logical processes in the cell are implemented by groups of homologous interacting proteins,
rather than groups of proteins with diverse origins. Further testing is necessary to determine
whether this is a genuine biological discovery or an artifact of the Gene Ontology.

4.7.5 Optimizing for Biological Process Enrichment Directly

When all proteins in the interactomes are sufficiently annotated with biological processes,
one way to detect conserved modules is by directly optimizing for biological process en-
richment. The conserved modules returned by this algorithm were highly enriched: one,
for example, contained 32 of the 34 proteins in the interactome that were annotated with
“negative regulation of transcription from RNA Polymerase II promoter”, leading to an
enrichment P -value of 6�10�54. However, there are proteins that are not annotated or not
sufficiently annotated; which modules should these proteins be associated with? Also, what
about generalizing to interactomes for which there are few annotations? Furthermore, the
running time of optimizing for biological process enrichment may be prohibitive if desiring
a full compendium of conserved modules across the interactomes, whereas optimizing for
graph theoretic attributes is much faster.

4.7.6 Modularity, Density, and Linear Density

Modularity measures whether the proteins in the module have been associated with each
other to a significant extent relative to all protein interaction studies conducted on the
proteins. Proteins that are highly studied with interactions to many other proteins require
more interactions within the module to associate them with the module to the same ex-
tent. Proteins which have few interactions either because they have been poorly studied or
because they genuinely have few interactions contribute to high modularity if a significant
fraction of their interactions are with other module proteins. Modularity incorporates data
from protein interaction studies between the module proteins and proteins in other modules,
data that is not used by measures of density.

There has been concern that modularity may not be comparable across modules with
different numbers of proteins [Peng, 2012], and Fig. 4.5B provides some justification for this
concern. However, as shown in Fig. 4.4B, our results do not indicate any strong correlation
between modularity and size in modules up to 50 proteins. The effects described in [Peng,
2012] and demonstrated in Fig. 4.5B are only noticeable at larger size ranges when the
number of proteins in the module is a significant fraction of the number of proteins in the
interactome.

The high linear correlation between number of interactions and number of proteins shows
that the density of modules decreases as their size increases. If density were an important
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optimization criterion for predicting biological process enrichment, we should expect the
smaller denser modules to be more enriched, but in fact the opposite is observed.

Linear density shows remarkably good performance in predicting biological process en-
richment. In the random modules, Fig. 4.2 shows that modularity and linear density to-
gether are the best predictors of biological process enrichment. When optimizing for linear
density and modularity, Fig. 4.3A shows that the linear density optimized set achieves
higher biological process enrichment than the modularity optimized set. Fig. 4.3B shows
that the linear density optimized set does not achieve high modularity and Fig. 4.3C shows
that the modularity optimized set does not achieve high linear density, confirming that the
two measures are complementary for predicting biological process enrichment.

4.7.7 Limitations and Avenues for Further Study

The full model with six attributes explains 37.7 percent of the variance in biological process
enrichment, with 35.7 percent of the variance explained by modularity, linear density, and
module size alone. The remaining 62.3 percent of the variance is not explained by any of the
attributes considered. Other attributes that explain additional variance in biological process
enrichment may be discovered from two complementary modeling approaches: models of
graph theoretic properties that arise from the physical construction of protein interaction
networks, and models of homology that consider how protein interaction networks change
during evolution.
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Supporting Software

5.1 EasyProt: Parallel Software Architecture for Experimental
Workflows in Computational Biology on Clouds

5.1.1 Overview of EasyProt

EasyProt [Hodgkinson et al., 2012] is a parallel software architecture for acquiring and
processing proteomics and interactomics data, and for analyzing results of algorithms that
detect conserved multiprotein modules. EasyProt builds on the dataflow concepts from
SEDA [Welsh et al., 2001]. In EasyProt, each task, called an element, executes in paral-
lel and passes messages along a DAG in which the elements are vertices. A type system
has been developed suitable for proteomics and interactomics data that is used for the
messages passed along the DAG. Each message stores a description that identifies the ele-
ments through which it and its predecessors have passed, along with any parameters that
were used. The user specifies the elements, sets their parameters, and specifies the DAG
edges, using a simple graph language that is compiled into Java using ANTLR [Parr and
Quong, 1995]. Several message-passing protocols are supported, including broadcast and
round-robin.

Elements have been developed for several classes of tasks: obtaining interactomics and
proteomics data, managing a cache for intermediate storage, running protein homology de-
tection algorithms, running various algorithms for detecting conserved multiprotein modules
and converting to standardized formats, analyzing sets of conserved multiprotein modules,
and generating VieprotML for visualization in VieProt as described in Section 5.2.

All steps from data acquisition to final analysis are entirely within the EasyProt frame-
work. This ensures that all algorithms are treated fairly, running on the same data sets
and receiving the same analysis. The EasyProt framework allows previously published
proof-of-concept implementations for detecting conserved multiprotein modules to be used
robustly as practical tools. Currently Produles, NetworkBlast-M [Kalaev et al., 2009],
MaWISh [Koyutürk et al., 2006b], and Match-and-Split [Narayanan and Karp, 2007] are
fully supported in EasyProt and can be run on any data set with clear algorithmic evaluation
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of results.
EasyProt is workflow software for the programmer. EasyProt uses a graph configu-

ration language, modelled after Click [Kohler et al., 2000], that makes it fast and easy
to create many experimental workflows on the same elements. Like Conveyor, EasyProt
takes advantage of parallelism available in multicore virtual machines by using a multi-
threaded approach. EasyProt uses message-passing protocols that can pass arbitrary Java
objects, allowing it to scale horizontally, an important feature for cloud computing appli-
cations [Khalidi, 2011]. Several message-passing protocols are part of EasyProt, including
broadcast and round-robin message-passing, and new protocols can be programmed directly
by the element designer. EasyProt supports a data cache for versioning and provenance
that is separable from the workflows. In case of failure of a workflow for any reason, inter-
mediate cached results are available that can be used for a modified workflow using data
from the cache. The EasyProt system follows modular design, making it easy to modify
workflows or to share workflows with other users, and to incorporate new algorithms, new
web services, and support for new forms of data as they become available. The focus of
EasyProt is on the programmer and the process of development, simplifying adoption of a
principled framework for reproducible experimentation.

5.1.2 Previous Systems Research

Systems research in computer science introduced similar modular systems for various appli-
cations. Click [Kohler et al., 2000] used a similar architecture to build configurable routers.
SEDA [Welsh et al., 2001] extended this architecture to general Internet services with an
emphasis on horizontal expansion. Unlike Click, we allow only push semantics which best
suits our domain. Given the long running time of the queries and the fast initialization
time, it is most reasonable for the queries to be listed in the configuration file and processed
immediately using push semantics. We found it unnecessary and difficult to implement pull
semantics with our multi-threaded architecture. The requisite stalls would block threads
that are needed to receive messages. Elements that are sources in the DAG begin obtaining
their data after initialization and the data is pushed through the graph to the sinks. Unlike
Click, which was single-threaded, EasyProt uses a multi-threaded model similar to SEDA
in which each element waits on a single queue for messages. To maintain the order of the
messages received and to avoid conflict among threads attempting to access shared state,
each element in EasyProt runs in its own thread rather than using thread pools as in SEDA.
Unless an element is performing useful work, it waits for messages from its input queue.
There is possibly some additional parallelism that can be exploited by using thread pools
which we leave for future work. We use a simple description language to specify the config-
uration graph, based on the ideas of Click. In contrast to Click, which used a single type of
message, we define an extensible type system for proteomics data and allow arbitrary types
to flow between elements.
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5.1.3 Scientific Workflow Management Systems

The scientific workflow management system [Gil et al., 2007] is a framework that can be
usefully adapted to make cloud computing attractive to experimenters in the computational
sciences. In a scientific workflow, tasks are connected in a directed graph representing data
dependencies, and data flows in parallel along the edges. Scientific workflows generalize
ideas from pioneering projects on configurable services [Lord, 1995; Kohler et al., 2000;
Welsh et al., 2001]. The strength of the scientific workflow as a cloud programming model
is its ability to harness resources as they expand horizontally in the cloud. This computing
development model can be easily built on top of Infrastructure as a Service [Armbrust et al.,
2009] clouds, providing an attractive development environment for computational biologists.

There have been attempts to extend scientific workflow software into the realm of cloud
computing [Taylor et al., 2006], the most notable of which is Pegasus [Deelman et al., 2005;
Juve and Deelman, 2010]. Pegasus is designed for large stable scientific applications, and is
an excellent choice for this use case. Custom workflows using cloud computing have been
designed with other scientific workflow software including Taverna [Hull et al., 2006] and
Kepler [Ludäscher et al., 2006]. However there remains a need for a programming frame-
work that allows cost-effective and fast reconfiguration by programmers during scientific
experimentation in the cloud. Very recently, a workflow system, Conveyor [Linke et al.,
2011], was released that provides a programming model that allows fast configuration dur-
ing ever-changing experimentation. However, Conveyor does not offer full support for cloud
computing, is not released as an AMI, and requires substantial local installation.

5.1.4 Cloud Computing

Cloud computing is set to change the way that bioinformatics research is conducted, improv-
ing the cost-effectiveness of massive computations [Stein, 2010]. Cloud computing provides
an increasingly attractive alternative for computational biologists as datasets are increas-
ing in size faster than desktop computers are increasing in capacity [Stein, 2010]. With
its pay-as-you-go model, new computational tools are needed to make cloud computing an
attractive option for scientists conducting computational experiments, to balance speed of
applications and development with cost. A primary advantage, and challenge, of cloud
computing is its ability for horizontal expansion [Khalidi, 2011]. Single virtual machines
typically have several virtual cores while the power of each core remains relatively constant,
and multiple virtual machines can be launched on demand.

5.1.5 Abstract Machine Images

Cloud computing opens a new way to share data and workflows, through the abstract
machine image or whole system snapshot exchange [Dudley and Butte, 2010]. AMIs are
stored in cheap storage, are always available, and can be easily used to develop and maintain
multiple versions of software. Sharing of software with AMIs is enormously beneficial as
the virtual machines provide complete control over the program execution environment,
eliminating issues of portability and dependencies. By releasing EasyProt as an AMI, it
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is merely necessary for the user to launch a virtual machine from the AMI to run and
modify workflows. Multiple virtual machines can be launched to compute workflows in
parallel. Virtual machines can be configured to the needs of the workflows, according to
desired specifications for computing capability and memory, and, to a lesser extent, network
bandwidth. Releasing workflows as EasyProt AMIs addresses the challenges of reproducible
computation [Donoho et al., 2009; Dudley and Butte, 2010], allowing experiments to be
readily repeated and verified by others.

5.1.6 Heterogeneity of Biological Data

There have been several attempts to retrieve and process protein interaction data for practi-
cal use. Several protocols, including Psicquic [Aranda et al., 2011] and DASMI [Blankenburg
et al., 2009] have been developed to make it easy for databases to accept and respond to
queries in a standard format. Protein interaction databases that have implemented or are
in the process of implementing these protocols include BioGRID [Chatr-aryamontri et al.,
2013], DIP [Salwinski et al., 2004], and IntAct [Kerrien et al., 2012]. Psicquic is a protocol
developed by the HUPO Proteomics Standards Initiative [Martens et al., 2007] for accessing
data from protein interaction databases using a query language MIQL. iRefIndex [Razick et
al., 2008] has the goal to remove redundancy in the multiple protein interaction databases
and to map all interactions to a consistent format. iRefIndex has implemented the Psic-
quic protocol so that its data is easily retrieved. Yet, these do not address the issue of
allowing arbitrary annotations for the proteins and interactions. DASMI [Blankenburg et
al., 2009] does allow protein interaction annotations, but its model does not easily extend
to whole-proteome data because of the time cost of retrieving all the various interactions
and annotations using its protocols. Also, DASMI allows only static annotations on inter-
actions and proteins. It does not support annotations computed using programs that run
dynamically on any data set. For example, in comparative proteomics, required annotations
include measures of sequence similarity between all pairs of proteins in any two given pro-
teomes. These annotations are commonly computed using the BLAST program [Altschul
et al., 1990].

A standardized data format is necessary for exchanging data between databases. Nu-
merous data exchange formats exist with various goals. BioPAX is a rather bulky format
used to share biological pathway data [Demir et al., 2010]. PSI-MITAB and PSI-MI XML
are lightweight formats for storing protein interactions and associated annotations in tab-
delimited or hierarchical XML formats [Kerrien et al., 2007]. Multiple protein identifier
schemas such as SEGUID [Babnigg and Giometti, 2006], NCBI Entrez Gene and Entrez
Protein IDs [Wheeler et al., 2006], and UniProtKB IDs [UniProt Consortium, 2012] are
used for naming proteins. Most protein interaction databases, including BioGRID, DIP, and
IntAct, use a subset of these schemas and do so inconsistently. Data from these databases
have been aggregated and somewhat normalized as part of the iRefIndex effort. However,
iRefIndex faces the challenge that the original database licenses often prohibit redistribu-
tion. Our framework can be used as a shared and easily extensible implementation of a
service such as iRefIndex. As the end users themselves would obtain and process the data
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using this tool, there is no redistribution or limitations based on redistribution.

5.1.7 Division of Labour

The EasyProt framework can be easily used by researchers in any well-defined research area
with clearly defined data collection tasks, algorithm execution tasks, and standard methods
for analyzing results. This approach allows for a division of labor between algorithm design
and data processing tasks such as data acquisition, data annotation, and analysis of results.
Furthermore, it allows for easy sharing of standardized programs to perform these tasks
and avoids repeated work by multiple researchers.

5.1.8 EasyProt Software Architecture

EasyProt provides a programming model and development environment for computationally
demanding experimental workflows in computational biology. A workflow is represented
by instances of elements running in parallel across many virtual cores, connected into a
directed graph representing data dependencies using a simple graph configuration language.
During development of workflows on predefined elements, the elements are connected using
the graph configuration language while ensuring that the types of data flowing along the
connections satisfy the element specifications, and processed data is retrieved from the
cache. When designing new workflows, computational biologists create new elements by
implementing a clean interface using an API that hides the parallelism and details of the
dataflow. During the process of developing and modifying workflows, the modified AMIs,
including all intermediate data, can be stored in stable cloud storage, with no need for
transferring large datasets over the network.

There are three fundamental components to EasyProt. Users of an application using
pre-defined Elements must learn only to use the Graph Specification Language and to ensure
that the types of data flowing along the connections satisfy the Type System. Programmers
create new Elements by implementing a simple clean interface using an API that hides the
parallelism and all details of the dataflow.

5.1.8.1 Elements

EasyProt elements each perform a well-defined task. Some of these tasks require accessing
external web services to acquire data. Some require running external programs. Others are
data processing elements that apply functions to the data before passing it on. Element
instances are connected in a directed graph that represents the dependencies among the
element instances. Each element instance runs in its own thread, supporting parallelism
across multiple virtual cores. The time required to complete the processing is the time of
the longest path from a source to a sink in the directed graph, where the length of a path
is given by its running time, with the goal being that this time is limited only by the data
dependencies.

An element is represented by an abstract Java class with the core functionality hid-
den behind a clean interface and shared among all elements. Defining a new element for
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the user’s own needs requires writing two abstract functions in the abstract Java class: an
initialization function and a task function. Most of the code necessary for defining a new
element is task specific. The element designer is presented with a clean API for retriev-
ing and sending messages through the graph. Instructions for defining new elements are
contained on the AMI in well-documented code and examples.

5.1.8.2 Type System

Elements are free to pass custom types along the graph. EasyProt wraps every message in a
wrapper type, transparent to the user, before sending it along the graph, providing a uniform
interface for messages. A collection of types has been defined, designed for workflows
in proteomics, interactomics and comparative genomics. Proteome and Interactome are
generic types that can store proteins and interactions in various formats. A collection of
types that can be stored in proteomes and interactomes have been defined, including various
protein identifier schemas, annotated proteins, protein amino acid sequences, and protein
interactions in various formats. For many elements in the sample workflows described
in Section 5.1.8.5, proteomes and interactomes are the units of data passed through the
configuration graph; however, some elements combine proteomes or interactomes and release
data in a custom output format. Message types have been defined for these custom formats.
Designers of new elements are free to use the predefined types or to define new customized
types most suitable for their data.

5.1.8.3 Graph Configuration Language

Fig. 5.1 lists a sample graph configuration for a workflow using the elements defined in
Section 5.1.8.5. Each configuration file consists of two sections: an initialization section
and a connections section. The initialization section defines each instance of the elements
that are to be used along with their jobs and initialization strings. The connections section
defines the connections among the element instances. For each statement in the connec-
tions section the first element instance is connected directly upstream of all other element
instances appearing in the statement. Each element defines the types of the elements that
can appear directly upstream and directly downstream of it. The elements used in the sam-
ple graph configuration are defined in Section 5.1.8.5, and described in more detail, with
their jobs and initialization string semantics, on the AMI. The language is implemented as
a grammar in ANTLR [Parr and Quong, 1995], a Java-based parser generator, and it can
be easily extended to accommodate future enhancements.

5.1.8.4 Cache

EasyProt includes a cache that facilitates reuse of intermediate results. The cache separates
the data from the workflows. Each object passed as a message includes a description
that records key elements through which the message has travelled. These descriptions
are written in string format both as file names with a timestamp and internally. The
timestamps allow versioning of the data and the descriptions store the provenance, which
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INITIALIZATION

Interactome int1 “iRefIndex\t9606\tall” “”
Interactome int2 “iRefIndex\t7227\tall” “”
MitabToCache mtc “2” “”
InteractomeFilter ifil “2” “”
InteractomeToCache itc “2” “”
ProteinLinearizer plin1 “2” “”
ProteinLinearizer plin2 “2” “”
Sequence seq1 “1” “”
Sequence seq2 “1” “”
SequenceToCache stc “2” “”
Blast blas “1.0E-9:inter” “/easyprot/workspace/blast/blast1/”
BlastToCache btc “1” “”
InteractomeDegree degr “2” “”
Go go “2” “”
MergeAnnotations merg “2” “2”
AnnotationsToCache atc “2” “”
Produles prod “P\t5\t20\t1.5\t0.05\t50” “/easyprot/workspace/produles/”
ModuleAlignmentToCache matc “1” “”
Time time “1” “”
Modularity modu “1” “”
Size size “1” “”
Density dens “1” “”
Overlap over “1” “”
Evolution evol “1” “”
Coverage cove “1” “”
Components comp “1” “”
Summary summ “1” “”
AnalysisTableToCache attc “9” “”
VieprotML vpml “1” “forward”

CONNECTIONS

int1 mtc ifil ;
int2 mtc ifil ;
ifil itc plin1 plin2 degr prod modu cove ;
plin1 seq1 seq2 ;
plin2 go ;
seq1 stc blas ;
seq2 stc blas ;
blas btc prod ;
degr merg ;
go merg ;
merg atc vpml ;
prod matc time modu size dens over evol cove comp vpml ;
time attc summ vpml ;
modu attc summ vpml ;
size attc summ vpml ;
dens attc summ vpml ;
over attc summ vpml ;
evol attc summ vpml ;
cove attc summ vpml ;
comp attc summ vpml ;
summ attc vpml ;

Figure 5.1: Graph configuration for a sample workflow
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allows repeatability. Special elements control reading from the cache and writing to the
cache. Caching elements have been defined for all message types currently supported, and
it is easy to define new caching elements for custom message types. The cache is organized
into subdirectories corresponding to message types. As seen in Fig. 5.1, experimenters
decide which data is cached by calling the appropriate caching elements.

5.1.8.5 Sample Workflows

To demonstrate the usefulness of the EasyProt system, we designed a collection of workflows
for comparative interactomics [Kiemer and Cesareni, 2007], defining elements for acquiring
and annotating protein data and comparing algorithms. A protein interaction network is an
undirected graph with nodes that are proteins, and edges that indicate protein interactions
between the endpoints. An interactome is a large protein interaction network that ideally
includes all protein interactions on a species’s proteome [Klipp et al., 2009]. Comparative
interactomics is the comparison of interactomes across species. A multiprotein module
is a collection of proteins that work together to perform a common task, for example, a
protein complex or a signaling pathway [Hartwell et al., 1999; Hodgkinson and Karp, 2012].
Given two interactomes, GA and GB, a module alignment is a set of possibly-overlapping
multiprotein modules in Gi for i P tA,Bu; a one-to-one mapping from the multiprotein
modules in GA to the multiprotein modules in GB; and a many-to-many mapping between
the proteins in aligned modules. The sample workflows acquire current high-quality protein
data for multiple species, and apply and analyse algorithms to detect multiprotein modules
conserved in these species.

Several key elements designed for these workflows are defined below.

1. Interactome: acquires interactome datasets from various sources.

2. InteractomeFilter: removes extraneous data and simplifies the format for later
computation.

3. ProteinLinearizer: converts interactomes to proteomes.

4. Sequence: obtains amino acid sequences for the proteomes from external web services.

5. Blast: performs pairwise protein sequence similarity comparisons between proteomes.

6. InteractomeDegree: computes the number of interactions for each protein in an
interactome.

7. Go: obtains protein function annotations.

8. Produles: finds multiprotein modules conserved during evolution using the Prod-
ules [Hodgkinson and Karp, 2012] algorithm. Other algorithms are placed in similar
elements.

9. MergeAnnotations: accepts the output from several elements and produces a unified
annotated proteome.

91



Chapter 5. Supporting Software

Dataset EC2 Large EC2 High-Memory
Quadruple Extra Large

H. sapiens vs. D. melanogaster 7h 32m 7h 18m
D. melanogaster vs. S. cerevisiae 7h 22m 7h 9m
S. cerevisiae vs. H. sapiens 7h 21m 7h 14m
Complete 7h 32m 7h 18m

Table 5.1: Time to run sample workflows derived from Fig. 5.1. The workflows run in parallel
so the total time required for all datasets is the maximum of the timings. The EC2 Large
instances are applied with 6GB of available RAM and the EC2 High-Memory Quadruple Extra
Large instances are applied with 65GB of available RAM.

10. Time, Modularity, Size, Density, Overlap, Evolution, Coverage, Components:
compute module alignment evaluation statistics [Hodgkinson and Karp, 2012].

11. Summary: compiles statistics on the module alignment for visualization.

12. VieprotML: generates output suitable for visualization of module alignments.

Using workflows similar to Fig. 5.1, multiple algorithms to detect multiprotein modular-
ity conserved during evolution were compared and evaluated on current datasets [Hodgkin-
son and Karp, 2012].

5.1.9 Timings

Versions of the sample workflow in Fig. 5.1 were applied to the species Homo sapiens,
Drosophila melanogaster, and Saccharomyces cerevisiae with interactome sizes: H. sapiens:
12,952 proteins, 71,035 interactions; D. melanogaster : 10,192 proteins, 41,050 interactions;
S. cerevisiae: 6,083 proteins, 175,113 interactions. Three versions, H. sapiens vs. D.
melanogaster, D. melanogaster vs. S. cerevisiae, and S. cerevisiae vs. H. sapiens, were run
in parallel on six separate EC2 instances with two configurations of processing capability
and memory capacity. Table 5.1 lists the running times. As the workflows run in parallel,
the total time required is the maximum of the individual timings.

Interestingly, the time required for the virtual machines with vastly differing amounts
of computing capabilities and memory is quite similar. This seems to be due mainly to the
large amount of network requests from web services in these workflows that are limited by
the speed of the external servers rather than the computing capability, amount of memory,
or network bandwidth of the virtual machines.

The more powerful virtual machines are faster for computationally intensive workflows.
To demonstrate this, Table 5.2 compares the timings on variants of the sample workflow
from Fig. 5.1 that use data from the cache rather than retrieving data through the network.
For these computationally demanding workflows, the more powerful virtual machines require
less than three quarters of the time required by the less powerful virtual machines.
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Dataset EC2 Large EC2 High-Memory
Quadruple Extra Large

H. sapiens vs. D. melanogaster 70m 38s 51m 14s
D. melanogaster vs. S. cerevisiae 17m 16s 23m 47s
S. cerevisiae vs. H. sapiens 21m 28s 29m 13s
Complete 70m 38s 51m 14s

Table 5.2: Time to run sample workflows using data from the cache with the same virtual
machines and settings as Table 5.1.

Species Proteins Interactions
Homo sapiens 13,065 74,554
Drosophila melanogaster 10,050 40,004
Saccharomyces cerevisiae 5,965 102,147

Table 5.3: Sizes of the three filtered protein interaction networks used for the results.

The Human vs. Fly data set required more than twice as much time as the other data
sets. The most important reason is that the time of this particular graph configuration is
dominated by the time for the BLAST element which makes n1�n2 comparisons where n1

is the number of proteins in species A and n2 is the number of proteins in species B. The
sizes of the three protein interaction datasets are listed in Table 5.3 from which we can see
that the Human vs. Fly data set has the largest value for this product. Another possible
contributing factor is that the particular EC2 instance used for the Human vs. Fly data
set may have been sharing computing resources with other compute-intensive instances.
Amazon guarantees a baseline level of performance for its instances but if an instance is
not competing for computing resources on the same physical machine, Amazon allows it to
benefit from improved performance. This leads to variable performance from instance to
instance, though all instances meet the baseline performance.

This is a vast improvement over manual development of scripts to obtain the data.
Though defining new elements requires nearly as much time as writing a custom script for
the same task, the element is standardized so it can be easily shared with the community,
executed in a high-speed parallel environment, and extended by others. With elements for
additional common tasks, EasyProt has the potential to become a community standard for
data retrieval, simplifying tedious data collection tasks for many researchers.

5.1.10 Perspectives and Discussion

The power of the EasyProt software architecture is its parallel message-passing design that
allows the computation to be distributed across multiple virtual cores and multiple virtual
machines. In EasyProt, elements have clearly defined roles and pass messages to other
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elements allowing for direct horizontal expansion. EasyProt is a programmer-oriented model
for reproducible computation in the cloud that supports a parallel element-based approach
for using multiple virtual cores and parallel deployment from an AMI for using multiple
virtual machines. Enhancements are being implemented for automated partitioning of a
single workflow across multiple virtual machines, when desired by the workflow developer,
with objectives to minimize message passing across virtual machine boundaries and to group
expensive elements with inexpensive elements in order to balance the load.

A clear advantage of the text-based graph configuration language is that it is easy to un-
derstand and manipulate directly, allowing for direct modification through a console during
the design of ever-changing experiments. For any cost-effective cloud computing program-
ming model, it is essential to minimize transfer of data over the network. The EasyProt
model offers immediate availability from any virtual machine running the AMI with no local
installation. We are investigating the merits of a hybrid programming environment where
flexible console-based access is supplemented with graphical tools that run locally.

MapReduce [Dean and Ghemawat, 2008; Goncalves et al., 2012] is a method of par-
allelization that may increase efficiency for particular highly repetitive tasks. MapReduce
elements can be directly implemented in the EasyProt framework. However, preexisting
systems such as Hadoop [Bialecki et al., 2012] are highly optimized for MapReduce. If a
programmer desires to use MapReduce within the EasyProt framework, the recommended
option is to design an element that passes data to a MapReduce optimized system.

Comparing the cost of development in the cloud with the cost of development on a
high-performance locally managed cluster is not straightforward, as there are hidden costs
associated with purchasing and maintaining any cluster. A discussion of cost effectiveness
with references to detailed studies, and the conclusion that development in the cloud is cost
effective, can be found in [Stein, 2010].

We felt it important to leverage the powerful computing resources available through
cloud computing. With compute-intensive annotation tasks such as blastall and protein
interaction confidence scoring, we require computer resources that are costly to maintain.
Economies of scale leads to lower cost for computing resources through the cloud which
allows execution of many compute-intensive tasks in parallel on high-speed computers at
very low cost.

The language we are using to express configurations is limited in some ways. The data
type flowing on the edge is determined by the endpoints of the edge. It is conceivable that
one element may be able to send two different types of data to a second element. It is
possible that the language should be extended to allow this.

Finally, we plan to allow partitioning of the elements among multiple EC2 instances,
grouping expensive elements with inexpensive elements, in order to balance the load among
multiple machines and speed the computation. The disadvantage of this approach is the
increased cost of launching multiple EC2 instances for each data set.

The goal of this work is to increase productivity for researchers in computational biology.
While data sources and access protocols are constantly changing, there is no reason for
every researcher in the field to be concerned about this. To perform useful work, it is
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merely necessary to specify what data is desired and then to retrieve that data for the
desired study. If a protocol for data acquisition is modified, only one person must update
the corresponding element in EasyProt, rather than every researcher using this data. Even
for those who may prefer to write their own scripts, having access to the code for the
EasyProt elements may simplify their coding tasks. Hopefully, after seeing the simplicity
and advantage of using the EasyProt framework, they will use EasyProt for their data
collection and annotation needs and will contribute new elements to the community. We
expect this system for protein interaction data acquisition and annotation to be extended
beyond protein interaction data into the domain of computational and genomic biology as
a whole and to become a useful resource for the community.

Java was chosen as our implementation language because of its built-in support for
multi-threaded programming and its ease of use. Our goal was to make the task of defining
new elements as simple as possible for the element designer. Java is used by many other
cloud applications and frameworks including Apache Hadoop (Bialecki et al. 2005).

5.1.11 Using EasyProt

EasyProt is distributed as a public AMI that runs on Amazon EC2. The AMI is registered
with manifest easyprot-ami/easyprot.img.manifest.xml. Upon launching the AMI, one can
type from any directory “easyprot X configFile” to launch EasyProt, where configFile is
the name of a configuration file stored in the directory /easyprot/configurations, and X is
the amount of memory available to EasyProt in the format nT where n is an integer and
T P tm, gu, where m specifies megabyte and g specifies gigabyte. Thirty sample workflow
configuration files are provided including the sample workflow in Fig. 5.1. Instructions are
also provided in the welcome message on the AMI. Documentation explaining how to use
the elements currently defined is provided in the folder /easyprot/documentation and in the
source Javadoc. EasyProt, including all source code, is released under the GNU General
Public License, Version 3.

The directory structure on the AMI is as follows:

• easyprot

– cache: contains the EasyProt cache

– config: contains 30 sample workflow configuration files including Fig. 5.1

– documentation: contains documentation for the elements also found in the source
Javadoc

– language: contains the ANTLR grammar and code

– license: contains open source license

– project: contains the project with Java source code in subdirectory src

– scripts: contains the easyprot script that compiles the configuration file, compiles
the project, and launches EasyProt

– workspace: contains temporary workspace and executables for external programs
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At the time of this writing, EasyProt supports 61 elements. Documentation for using
the elements in the most current version, with allowable connections and specification of
jobs and initialization strings, can be found in the file /easyprot/documentation/README
on the AMI and in the source Javadoc.

5.2 VieProt: Visualizing Conserved Multiprotein Modularity with
a Dynamic Force-directed Layout

VieProt [Hodgkinson and Kong, 2012] is a tool for visualizing conserved multiprotein mod-
ules with a dynamic force-directed layout, that accepts data in a custom XML format,
VieprotML, generated by EasyProt. VieProt is an enormous improvement on the most
current alternate visualization tools such as VANLO [Brasch et al., 2009]. With VieProt, it
is easy to evaluate visually new and old algorithmic ideas for detecting conserved multipro-
tein modularity. Proteins, interactions and interaction sources, protein sequence similarities,
GO annotations [Gene Ontology Consortium, 2000], and algorithmic measures of quality
are displayed in a visually-appealing format. An image from VieProt appears in Figure 5.2.

The purpose of EasyProt [Hodgkinson et al., 2012] is to allow computational biologists
to easily acquire a large number of datasets with associated annotations for the purposes of
testing various algorithms involving protein interactions. These algorithms run on networks
of tens or hundreds of thousands of interactions, so making sense of the results can be
difficult. Visualization is an effective way of facilitating sense making, as it takes advantage
of the high bandwidth of the human visual system [Card et al., 1999; Ware, 2004]. We
have developed a visualization tool, VieProt1, to visualize the results of the algorithms in
order to help identify their effectiveness or flaws. The dataflow we implemented gathers
protein interaction data and runs a protein alignment algorithm, so we designed VieProt to
specifically aid the evaluation of the correctness of these algorithms. VieProt is implemented
in Java using the prefuse visualization library [Heer et al., 2005].

5.2.1 Previous Work

Several visualization tools have been developed for visualizing proteomics data. Cytoscape
[Shannon et al., 2003] is a popular node-link diagram visualization tool originally designed
for biologists. It has been extended with multiple plug-ins that implement various layout
algorithms and interactions. Osprey [Breitkreutz et al., 2003] is a tool that visualizes
protein interactions, and interfaces directly with the Gene Ontology (GO) [Gene Ontology
Consortium, 2000], a database containing functional descriptions of proteins and other gene
products. Visant [Hu et al., 2009] is another protein interaction visualization tool that
provides a way to browse networks at different levels of abstraction. However, none of these
tools allow visualization of protein interaction network alignments nor do they make user
interaction an integral part of their workflow. Since protein interaction networks are very

1Vie is the pronunciation of the first letter in “visualization” and the French word for life. Thanks to
Javier Rosa for suggesting the name.
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Figure 5.2: VieProt’s interface. (a) This panel is the alignment browser, where users can view
statistics about and sort different alignments. (b) This panel and the rightmost panel comprise
the alignment viewer. The alignment is laid out using a node-link diagram and the user can
select proteins to view their metadata.

large, it is necessary to incorporate filtering and browsing mechanisms to allow users to pick
out the information. In addition, it may be the case that other methods of visualization
such as line charts or bar charts are more useful to provide various statistics about the data.
We thus decided to use the prefuse [Heer et al., 2005] information visualization toolkit. It
implements many types of layout algorithms for both node-link diagrams and other forms
of visualization, and makes it easy to connect interface widgets with the visualization.

Only one tool, VANLO [Brasch et al., 2009], of which we are aware, has been designed
for visualizing interactome alignments. Our system is more intuitive to use and provides
more information useful for interpreting the meaning of the conserved multiprotein modules.

5.2.2 Visualization Interface and Data Display

VieProt displays the aligned modules and provides access to the protein metadata provided
by EasyProt. The visualization interface is shown in Figure 5.2. It has been designed to
enable analysts to determine the effectiveness of their interactome alignment algorithms.
The goal of these algorithms is to identify protein modules in each species that may descend
from a common ancestral protein module. To determine whether an alignment is biologically
plausible, the analyst may want to know the following, among other criteria:
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• Number of proteins in the modules of each species. A good alignment should pair
modules with similar numbers of proteins.

• The homology relationships. A good alignment should align each protein with a
number of homologous proteins that is biologically plausible.

• Topology of the modules. A good alignment should align modules with similar topolo-
gies.

• Function of the proteins in each module. A good alignment should find and align
modules enriched in proteins that perform a well-defined function.

• Percentage of the interactome in each species that is covered by modules.

• Statistical measures of quality described in [Hodgkinson and Karp, 2012].

With the configuration graph in Figure 5.1, EasyProt produces five tab-delimited text
files. Two interactions files store information about protein interactions within a species.
They contain the PubMed IDs of publications describing each interaction (if available) and
the database from which the interaction was retrieved. Two proteins files each store GO
annotations and graph statistics (e.g., degree of a protein in the global protein interaction
network) about each protein from a species. Finally, a produles file stores conserved
module pairs and alignment edges annotated with BLAST scores. A parser takes these five
files as input and produces a GraphML [Brandes et al., 2002] file which is parseable by
the visualization. Currently the parser is implemented as a Python script that runs on the
client machine though in future work we plan to create an EasyProt element to generate
the GraphML.

At the left of the visualization (Figure 5.2(a)) is the module browser, with which the user
can browse the list of aligned modules. The list displays a brief summary of each module
alignment, displaying an identifier, the number of proteins in the modules from each species,
and the average alignment degree. The drop-down box at the top of the pane allows the
user to sort the module alignments by their identifiers, the total number of proteins in an
alignment, and the number of homology relations.

The network diagram and panels to the right comprise the module viewer. This com-
ponent of the visualization allows users to inspect the topology of alignments and access
protein metadata such as GO annotations [Gene Ontology Consortium, 2000]. The al-
phanumeric string in each node is the database identifier of the protein, and the color of
each node corresponds to the species from which the protein derived. The gray links are
protein interactions, whereas the red links are homology relations. The user can see the
exact homology scores and interaction sources by hovering over an edge and triggering a
tooltip.

The panels to the far right provide control over the visualization and allow the user
access to protein metadata. The network diagram uses an interactive force-based layout
and the top three subpanels provide control over the force parameters. The module visibility
filter allows the user to view the proteins comprising just one module or both, which may
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be useful given large modules. The user can toggle alignment edges on and off; turning
off alignment edges also eliminates the forces they exert on nodes. The user can see a
protein’s metadata by clicking on a protein in the visualization. This populates the protein
information and GO Annotations boxes. The protein information box provides information
about the protein, such as the degree of the protein in the species’s interaction network
and the number of GO annotations. The GO Annotations box is a table containing the
GO annotations for the protein which include the GO ID, the annotation description, the
evidence code describing the source of the annotation, and the function of the protein.
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Chapter 6

Improving Protein Orthology
Detection Using Protein Interactions

6.1 Global Network Alignment

It was observed that whereas local network alignment focuses on detecting conserved mul-
tiprotein modules, it every protein in a module is forced to align to one other protein in a
fashion that minimizes protein interaction disagreement, it may be possible to generate a
mapping of orthologous proteins that could be considered functionally orthologous, that is,
orthologous proteins that have maintained similar functions [Singh et al., 2007]. This was
called global network alignment.

6.2 Graphical Model for Protein Orthology

To gain a better understanding of the evolutionary relationships among disparate species,
it is of interest to identify functionally orthologous proteins, that is, proteins across species
that are descended from a common ancestral protein with similar function. Early attempts
to infer protein functional orthology used only sequence similarity of proteins with the
goal to build protein interaction networks [Matthews et al., 2001]. However, experiments
revealed that this method had less than a 35% success rate [Matthews et al., 2001]. Some
examples where this approach fails are described in Sharan et. al. [Sharan et al., 2005b].
In Section 6.4.1, we develop a graphical model to align protein interaction networks such
that finding the best alignment based on experimental data and biologically-reasonable
parameters reduces to computing a configuration attaining the mode of the corresponding
distribution. The model can be constructed efficiently, scaling linearly with the size of
the protein interaction networks and quadratically in the number of species. However, the
treewidth of the graphical model is likely to be large for typical instances, making exact
mode computation with the junction tree algorithm intractable. In Section 6.3, we survey
methods for approximate inference that can be applied to this model.
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6.2.1 Input Data

When aligning protein interaction networks, we expect functionally orthologous proteins
to have some degree of sequence similarity as, by definition, they have evolved from a
common ancestral protein with similar function. Though sequence similarity alone has been
shown not to be the best predictor of protein functional orthology [Sharan et al., 2005b],
we use sequence similarity as determined by PSI-BLAST [Altschul et al., 1997] to define
candidate pairs of functionally orthologous proteins. The PSI-BLAST threshold is chosen
in such a way that each protein is possibly functionally orthologous to at most ` proteins
in any one other species. These relationships are represented by edges connecting proteins
that are candidates for cross-species functional orthology. Thus, the input to the network
alignment algorithm is a graph H � pW,F q such that W � �k

i�1Wi where Wi is the set of
proteins for species i, and F � FcYFp, where Fc is the set of edges defining the candidates
for protein functional orthology and Fp �

�k
i�1 Fi is the set of protein interactions. Let

wc : Fc Ñ p0, 1q be the PSI-BLAST sequence similarity score. Weights are also defined on
the protein interaction edges corresponding to the estimate that the edge represents a true
interaction. Various methods have been proposed for calculating the protein interaction
reliability estimates from experimental data [von Mering et al., 2002; Deng et al., 2003;
Bader et al., 2004]. In a recent study by Suthram et. al. [Suthram et al., 2006], it was
found that the method of Deng et. al. outperformed other methods. The protein interaction
reliabilities define a weight function wp : Fp Ñ p0, 1q. Let w � wcYwp. As our goal is to infer
protein functional orthology by supplementing sequence similarity with information from
protein interactions, even a proper subset of all hypothesized protein interactions may be
useful for improved inference of protein functional orthology. For reasons that will become
apparent in the sequel, it is important to restrict the maximum degree in H. The weight
function wp can be used to remove less reliable interactions until any protein in a protein
interaction network interacts with at most δ other proteins. Thus, the degree of any protein
in H is at most δ � pk � 1q` where k is the number of protein interaction networks.

6.2.2 Model Formulation

The graphical model is defined on a graph G � pV,Eq where for each edge pu,wq P F , there
is a vertex vuw P V . That is, V contains a vertex corresponding to each edge in the original
graph H. Two vertices u, v P V are connected by an edge in G if their corresponding edges
in H share an endpoint. This transformation is illustrated in Figure 6.1. Let Vc be the set of
vertices corresponding to cross-species edges and Vp be the set of vertices corresponding to
protein interaction edges. A random variable Xv P t0, 1u is associated with each v P V . The
setting Xv � 1 indicates that v represents either a true protein interaction or a true protein
functional orthology, and the setting Xv � 0 indicates that v does not represent a true
interaction or a true protein functional orthology. A joint distribution over the variables is
defined by three classes of potential functions on the graphical model.

1. For each v P V, ψ1pxvq �
"
wpvq if Xv � 1
1� wpvq otherwise
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Figure 6.1: Illustration of the graphical model transformation where k � 2 (number of species),
` � 2 (maximum degree of a protein w.r.t. edges connecting to another fixed species), and
δ � 2 (maximum degree of a protein w.r.t. protein interaction edges)

These potential functions encode the experimental input data, incorporating the protein
interaction reliability estimates and the PSI-BLAST sequence similarity scores. The PSI-
BLAST sequence similarity scores decrease the probability of proteins being functional
orthologous when they have undergone many mutations relative to each other .

2. For each set of vertices Sw,z � Vc consisting of nodes such that, in the original graph
H, the corresponding cross-species edges share an endpoint w in species y and each
have the property that the other endpoint is a protein in species z, ψ2pxSw,zq �
ry,z,i if xSw,z is a configuration with exactly i 1’s.

The values of ry,z,i are parameters of the model, but a reasonable setting would have ry,z,1 ¡
ry,z,i for i � 1, reflecting the biological expectation that in many cases of interest each
protein in species y has exactly one functional orthologous protein in species z. The value
of ry,z,0 should be somewhat small in most cases as this corresponds to the deletion of a
protein in species z. The values of ry,z,i for i ¡ 1 should be a decreasing sequence in most
cases as the value of ry,z,i corresponds to the event that i � 1 duplications took place in
species z. The values of ry,z,i should be set to reflect the evolutionary divergence between
species y and z, and can be thought of as part of an a priori model in a Bayesian setting.
Estimation of these parameters from known alignments of small modules is discussed below.

3. For each t, u P Vc and v, w P Vp such that the corresponding edges in H form a cycle,
where v corresponds to an edge in species y and w corresponds to an edge in species
z,

ψ3pxt, xu, xv, xw, y, zq �
$&
%

εy,z if xt � xu � 1
and pxv xor xwq � 1

1� εy,z otherwise
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Figure 6.2: The potential function ψ3pxt, xu, xv, xw, y, zq

This is the most interesting class of potential functions as it combines the information
from protein interactions and sequence similarity. Figure 6.2 illustrates the definition of
ψ3pxt, xu, xv, xw, y, zq. The parameters εy,z should in most cases be somewhat small as εy,z
corresponds to the event of a protein interaction loss in one of the species or a protein
interaction gain in the other. As for the ry,z,i parameters, the values of εy,z are part of an a
priori model on protein interaction network alignments in a Bayesian setting and should be
chosen according to the evolutionary divergence among the pairs of species being compared.
Estimation of these parameters from known alignments of small modules is discussed below
in Section 6.2.4. Note that for each ψ3pxt, xu, xv, xw, y, zq function, two new edges, pt, uq and
pv, wq, must be conceptually added to the graphical model. As the actual construction will
incrementally create a pairwise Markov random field (MRF) using the method described by
Wainwright and Jordan [Wainwright and Jordan, 2008], this is only a conceptual addition.

6.2.3 Complexity of the Construction

A pairwise MRF is constructed incrementally from the original protein interaction networks
using a slight modification of the method given by Wainwright and Jordan [Wainwright and
Jordan, 2008]. In particular, we begin with the vertex set V and the single-node potentials
ψ1pxvq. Then we add the ψ2pxSw,zq and ψ3pxt, xu, xv, xw, y, zq functions incrementally. To
add the function ψ2pxSw,zq, we create a new node vSw,z , connecting it to every u P Sw,z.
We associate with this new node a random variable that takes values in t0, 1u|Sw,v |. The
original ψ2pxSw,vq function is then set as the single-node function for vSw,z and with each edge
pu, vSw,zq, the potential function ψpxu, xvSw,z

q � Rpxu � x1uq where x1u is the component of
xvSw,z

corresponding to xu. The single-node function for vSw,z can be computed from a single
copy of ry,z,i stored globally, with the correct value being chosen by examining the number of
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1’s in the argument. We then perform an analogous procedure to create nodes representing
the ψ3pxt, xu, xv, xw, y, zq functions, with only one global copy of the εy,z parameters. Thus,
each node can be stored with a minimal amount of space. Globally, only p` � 1q �k2�
numbers need be stored to define all potential functions of the form ψ2pSw,zq and only

�
k
2

�
numbers need be stored to define all potential functions of the form ψ3pxt, xu, xv, xw, y, zq.
The space complexity thus depends primarily on the number of nodes which is given by
|V | � |tψ2pSw,vqu| � |tψ3pxt, xu, xv, xw, y, zqu| and the number of edges which is upper-
bounded by |V |�`|tψ2pSw,vqu|�4|tψ3pxt, xu, xv, xw, y, zqu|. By the processing of the input,
it is guaranteed that |V | ¤ 1

2 |W |pδ � pk � 1q`q as each protein has a maximum degree of
pδ� pk� 1q`q. There are at most |W |pk� 1q sets Sw,v as each set is determined by a choice
of protein w and species z � y. There are at most r1

2 |W |pk � 1q`sδ` functions of the form
ψ3pxt, xu, xv, xw, y, zq as each cross-species edge has at most δ protein interaction edges
that share its endpoint in species y and at most ` edges that cross to species z. Thus, the
number of edges is upper-bounded by 1

2 |W |pδ�pk�1q`q�`|W |pk�1q�4r1
2 |W |pk�1q`sδ`  

4|W |pk � 1q`2δ. A nice feature of this construction is that its size grows only quadratically
in k in contrast to some state-of-the-art protein interaction network aligners that create
graphs of size exponential in k [Sharan et al., 2005b; Kelley et al., 2003]. This has been
one of the major criticisms of NetworkBLAST and related methods (e.g. see Flannick et.
al. [Flannick et al., 2006]), as they do not scale easily to multiple network alignment of many
species. Some recent attempts have been made to mitigate this exponential dependence on
k, such as the Op2kq algorithm of Kalaev et. al. [Kalaev et al., 2009], which substantially
improves on the earlier Op|W |kq.

6.2.4 Parameter Estimation

Flannick et. al. [Flannick et al., 2006] proposed using conserved functional modules in
the Kyoto encyclopedia of genes and genomes (KEGG) [Kanehisa and Goto, 2000] as a
gold standard for testing protein interaction network alignment algorithms. These con-
served functional modules can be used to estimate biologically-reasonable parameters for
our graphical model. Recall that the parameters of the graphical model are the values of
ry,z,i and εy,z for i � 0, 1, 2, ..., ` with y, z ranging over all pairs of species. By considering
the smaller protein interaction networks induced by the functional modules in KEGG for
which we know the correct alignment, we can estimate the values of ry,z,i and εy,z. The
simplest method would be to take counts of duplications, deletions, and protein interaction
gains/losses between species y and z in these modules, and then to set the parameters
according to these counts. To avoid testing alignments using the same data used to fit
the parameters, we can base the tests for our models on the Gene Ontology (GO) hier-
archy [Gene Ontology Consortium, 2000]. Alternately, we can use cross-validation on the
KEGG data, fitting the parameters from one portion of the data and testing the aligners on
the rest of the data, taking the average over different partitions of training and test data.
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6.3 Survey of Algorithms for Approximate MAP Estimation

6.3.1 Introduction

A number of combinatorial problems, including maximum weight matching [Bayati et al.,
2005; Bayati et al., 2007] and independent set [Sanghavi et al., 2009], have been formulated
as graphical models such that the mode of the corresponding distribution is attained by the
desired configuration. A wide variety of algorithms, both exact and approximation, have
been developed for finding these maximum a posteriori (MAP) configurations. This section
contains a survey of some of these algorithms with the goal of finding a good method for
protein interaction network alignment. All of these methods apply to pairwise MRFs with
discrete random variables taking values in a finite set.

6.3.2 ICM

Perhaps the simplest method for approximately solving the MAP problem is the method
of iterated conditional modes (ICM) [Besag, 1986]. ICM iterates through the nodes and
for each node, in turn, chooses the value that maximizes the conditional probability of the
random variable at that node given the current configuration of its neighbors. Convergence
to a local maximum always occurs, in the sense that no change to a single node can increase
the probability of the configuration. If a local maximum is not sufficient, then more powerful
methods are needed.

6.3.3 Loopy Max-product

Max-product can solve the MAP problem exactly on graphical models that have a tree struc-
ture. The model for protein interaction network alignment is likely to have high treewidth,
so the junction tree generalization to hypertrees is not likely to be tractable. When applied
to graphs with cycles, max-product, if it converges, finds a neighborhood maximum, that is,
changing the assignment to variables that form no more than a single cycle cannot increase
the probability [Weiss and Freeman, 2001]. However, even for simple graphs consisting of a
single loop, max-product may fail to converge [Weiss and Freeman, 2001]. Wainwright et.
al. [Wainwright et al., 2004] show that for a strictly positive distribution, max-product has
at least one fixed point, but there are no guarantees that max-product will converge to this
fixed point. Note that the graphical model for protein interaction network alignment will
not define a strictly positive distribution as the conversion to a pairwise MRF, using the
method described by Wainwright and Jordan [Wainwright and Jordan, 2008], will introduce
configurations with probability equal to zero. As the graphical model for protein interaction
alignment will have many short cycles, even if max-product converges, the guarantee of a
neighborhood maximum may be only a small improvement over a local maximum in the
sense of ICM.
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6.3.4 Tree-reweighted Max-product

Along with a better understanding of max-product came an improvement to max-product
based on decomposing the original distribution into a convex combination of tree-structured
distributions [Wainwright et al., 2007]. Given the canonical overcomplete representation
φpxq � tRpxs � jq,Rpxs � j, xt � kqu and an exponential parameter vector θ, a distribution
ρ on exponential parameters tθipTiqu such that EρrθipTiqs � θ allows us to apply Jensen’s
inequality to find that

max
xPX

〈
θ, φpxq〉 ¤ Eρrmax

xPX
〈θpTiq, φpxq〉s (6.1)

By choosing each element of tθpTiqu to have nonzero components only at nodes and edges
in a spanning tree Ti of the graph, each of the maximizations maxxPX 〈θpTiq, φpxq〉 can
be performed exactly and efficiently by max-product. The distribution ρ is a positive
distribution on the chosen spanning trees Ti. In order for EρrθpTiqs � θ to hold in general,
each edge of the graph must be included in at least one of the Ti. Inequality (6.1) is tight
if and only if there is a configuration x1 such that 〈θpTiq, φpx1q〉 � maxxPX 〈θpTiq, φpxq〉 for
all Ti. When such a configuration x1 exists, strong tree agreement is said to hold, and x1

is a MAP configuration [Wainwright et al., 2007]. Given a fixed θ and a distribution ρ on
spanning trees tTiu, we can consider the problem of choosing the best tθpTiqu that satisfies
the constraint EρrθpTiqs � θ. This leads to the constrained minimization problem

minimize Eρrmax
xPX

t〈θpTiq, φpxq〉us s.t. EρrθpTiqs � θ (6.2)

It is a minimization problem because we are trying to make the bound in (6.1) tight. The
Lagrangian dual of (6.2) is

max
τPL

〈
τ, θ

〉
(6.3)

where
LpGq � tτ |

¸
jPXs

τs;j � 1,
¸
kPXt

τst;jk � τs;j@ps, tq P E, j P Xsu

which by strong duality has the same optimum. Since maxxPXn

〈
θ, φpxq〉 � maxτPM

〈
τ, θ

〉
,

whereMpGq � tτ |Dppxq s.t. Eprφpxqs � τu, and sinceMpGq � LpGq, we can view (6.3) as
an LP-relaxation of the original MAP problem. If a solution to the LP-relaxation occurs at
one of the integral vertices, which are exactly the extreme points ofM asM is the convex
hull of tφpxq|x P X u, then the solution is MAP-optimal. However, the solution to the LP-
relaxation may occur at a fractional vertex. To attempt to solve the LP-relaxation in a
manner that exploits the graphical structure, Wainwright et. al. [Wainwright et al., 2007]
introduced the tree-reweighted max-product message-passing algorithm. After initializing
the messages M0 � tM0

stu with arbitrary positive real numbers, for iterations n � 0, 1, 2, ...,
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the messages are updated as follows:

Mn�1
ts � κ max

x1tPXt

texptpu 1
ρst

θstpxs, x1tq � θtpx1tqq±
vPNptq{srMn

vtpx1tqsρvt

rMn
stpx1tq1�ρsts u

where ρst are the edge-appearance probabilities, that is ρst � Prρrps, tq P T s, and κ is
a normalization constant indicating renormalization after each iteration. Wainwright et.
al. [Wainwright et al., 2007] then define pseudo-max-marginals as

vspxsq 9 exptpuθspxsqq
¹

vPNpsq

rMvspxsqsρvs

vstpxs, xtq 9 exptpu 1
ρst

θstpxs, xtq � θspxsq � θtpxtqq±
vPNpsq{trMvspxsqsρvs

rMtspxsqs1�ρts

±
vPNptq{srMvtpxtqsρvt

rMstpxtqs1�ρst

Each spanning tree is then associated with the distribution

pTipxq9exptpu
¸
sPV

log vspxsq �
¸

ps,tqPEpTiq

log
vstpxs, xtq
vspxsqvtpxtqq

and the tlog vspxsq, logp vstpxs,xtq
vspxsqvtpxtq

qu are the desired tθipTiqu that provide the upper bound
in (6.1).

Three concepts, ρ-reparameterization, tree consistency, and the optimum specification
(OS) criterion, are important for understanding the behavior of these updates. The first
concept, ρ-reparameterization, says that

Eρr
¸
sPV

log vspxsq �
¸

ps,tqPEpTiq

log
vstpxs, xtq
vspxsqvtpxtqs �

〈
θ, φpxq〉

This ensures that inequality (6.1) applies. The message-passing algorithm maintains ρ-
reparameterization as an invariant, which can be verified by direct calculation using the
definitions of vs and vst [Wainwright et al., 2007]. The second concept, tree consistency, uses
the concept of a max-marginal, the analogue of a marginal distribution where summation
is replaced by maximization. Tree consistency says that the vs, vst are exact max marginals
for each tree Ti when the vst are restricted to the edges in Ti. This was shown to be equiva-
lent to the edgewise consistency condition that vspxsq � κmaxx1tPXt

vstpxs, x1tq for every edge
ps, tq P E where κ is a normalization constant that can vary from edge to edge. The message-
passing algorithm was shown to satisfy tree-consistency at any fixed point [Wainwright et al.,
2007]. The third concept, the optimum specification (OS) criterion, which is equivalent to
the earlier-mentioned strong tree agreement, says that there is at least one configuration x��
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such that x�� P arg maxxs vspxsq@s P V and px��s , x��t q P arg maxxs,xt vstpxs, xtq@ps, tq P E.
If the vs, vst were exact max marginals for the graph, then the OS criterion would obviously
be satisfied with x�� � x� where x� is the MAP-optimal configuration. For pseudo-max-
marginals, however, the OS criterion may fail to hold [Wainwright et al., 2007]. Wainwright
et. al. showed that if the OS criterion holds at a fixed-point of the message-passing algo-
rithm, then any such x�� is MAP optimal [Wainwright et al., 2007]. Unfortunately, if the
OS criterion does not hold at a fixed point, it is possible that the pseudo-max-marginals do
not correspond to an exact solution of the LP relaxation in (6.3) [Kolmogorov, 2006].

One practical consideration in using tree-reweighted (TRW) max-product is construct-
ing spanning trees such that every edge appears in at least one tree. Clearly, there need be
at most |E| spanning trees where E is the edge set in the graphical model. By our analysis
in Section 6.2.3, this implies that for the graphical model for protein interaction network
alignment, we need at most 4|W |pk � 1q`2δ spanning trees. It may be possible to develop
an algorithm that will do better in many cases at finding a small set of spanning trees that
collectively include all edges in the graphical model.

6.3.5 Proximal Methods for Solving the LP-relaxation

In subsequent work, Ravikumar, Agarwal, and Wainwright [Ravikumar et al., 2010] devel-
oped message-passing algorithms based on proximal minimization schemes using Bregman
divergences that always solve the LP relaxation (6.3), with a superlinear rate of convergence
under some conditions. They also developed graph-structured rounding schemes for obtain-
ing integral configurations from the LP solutions. The basic idea of the proximal methods
is as follows: instead of trying directly to solve the LP-relaxation minµPLpGq� 〈θ, µ〉, a
sequence of problems of the form

µn�1 � arg min
µPLpGq

t� 〈θ, µ〉� 1
ωn
Df pµ||µnqu (6.4)

is solved instead, where superscripts denote iteration number, ωn is a positive weight, and
Df is a generalized distance function known as the proximal function. The proximal func-
tion converts the original LP into a strictly convex problem for which coordinate descent
schemes are guaranteed to converge to the global optimum. Ravikumar et. al. studied
three proximal functions, quadratic, weighted entropic, and tree-reweighted entropic, that
each take the form of a Bregman divergence. A Bregman divergence can be formed from
any continuously differentiable and strictly convex function f that has bounded level sets
as follows: Df pµ1||vq :� fpµ1q � fpvq � 〈∇fpvq, µ1 � v〉. If fpµq � 1

2t
°
sPV

°
xsPX µ

2
spxsq �°

ps,tqPE

°
pxs,xtqPX�X µ

2
stpxs, xtqu, then a simple calculation from the definition shows that

the induced Bregman divergence is the quadratic divergence: Qpµ||vq � 1
2

°
vPV ||µs�vs||2�

1
2

°
ps,tqPE ||µst � vst||2. If fpuq � °sPV αsHspµsq �

°
ps,tqPE αstHstpµstq where Hspµsq and

Hstpµstq are the node-based and edge-based entropies, respectively, and α ¡ 0 are posi-
tive weights associated with nodes and edges, then the induced Bregman divergence is the
weighted entropic divergence, Dαpµ||vq �

°
sPV αsDpµs||vsq�

°
ps,tqPE αstDpµst||vstq, where

Dpµs||vsq and Dpµst||vstq are the KL divergences between the corresponding marginals. If
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fpµq � °sPV Hspµsq �
°
ps,tqPE ρstIstpµstq, where Hspµsq is the node-based entropy, Istpµstq

is the edge-based mutual information, and ρst P p0, 1s, then the induced Bregman diver-
gence is the tree-reweighted entropic divergence, which takes the form of Dαpµ||vq, except
that the node entropy weights α are not always positive. By comparison to Bregman pro-
jections, the proximal minimization problem (6.4) becomes µn�1 � ±f pJf pµn, ωnθ; LpGqq
where

±
f pγ,Cq � arg minµPC Df pµ||γq and Jf pµ, vq � p∇fq�1p∇fpµq � vq. This min-

imization problem can be solved by cyclic projections on a decomposed constraint set:
LpGq � �ps,tqPE LstpGq where LstpGq �

°
xt
µstpxs, xtq � µspxsq is the edge-marginalization

constraint for edge ps, tq. Ravikumar et. al. discuss the rate of convergence of these meth-
ods, showing that under some conditions, the entire algorithm converges at a superlinear
rate, that is limnÑ�8

|fpµn�1q�f�|
|fpµnq�f�| � 0, where f� � fpµ�q � � 〈θ, µ�〉 is the optimal value

of the LP-relaxation. For the tree-reweighted entropic divergence, a tree-reweighted sum-
product solver can also be used to solve the minimization problem (6.4), in which case,
the proximal solver is a direct method for approaching the zero-temperature limit of the
tree-reweighted Bethe problem, as described by Wainwright and Jordan [Wainwright and
Jordan, 2008].

Ravikumar et. al. also developed rounding schemes for obtaining a MAP configuration
from an optimal or near-optimal solution to the LP. Both deterministic and randomized
rounding schemes were considered. The deterministic rounding schemes considered are 1)
node-based where the decision at a node is based on the single-node pseudomarginal, 2)
neighborhood-based where the decision at a node also considers the joint pseudomarginals
of a node with its neighbors, and 3) tree-based rounding where all pseudomarginals are con-
sidered but inference is based on induced spanning tree distributions using a distribution
over a set of spanning trees. These deterministic schemes have easily-computed optimality
certificates that can prove a solution is MAP-optimal by checking a form of consistency that
depends on the scheme being used. Ravikumar et. al. also considered two variants of a
randomized rounding scheme: 1) node-based where the configuration at a node is sampled
from the single-node pseudomarginal distribution at that iteration, and 2) tree-based where
edges are removed from the graph until the graph becomes a forest and then the config-
urations for the nodes in each tree are sampled according to the tree-based distribution,
ppxVi ;µ

npTiqq �
±
sPVi

µnpxsq
±

ps,tqPEi

µnpxs,xtq
µnpxsqµnpxtq

. In conjunction with the proximal meth-
ods for solving the LP-relaxation exactly, these rounding schemes give a complete method
for MAP estimation that should produce a reasonable approximation even when the MAP
problem cannot be solved exactly. This method seems to be the most promising for finding
an approximate most probable configuration in the graphical model for protein interaction
network alignment.

6.4 Structured Learning of Graphical Model Parameters

One shortcoming of Graemlin 2.0 [Flannick et al., 2009] is that it includes no model for
the conservation of functional modules. The protein interaction data is uniformly used to
penalize protein interaction loss, that is, to penalize the situation in which a pair of con-
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served proteins interact in one species but not in the other. This does not take into account
the important difference between protein interaction loss when the interacting proteins are
part of a functional module, which should be highly penalized, versus when the interacting
proteins are not part of a functional module, which should be less highly penalized. A new
protein interaction gain or loss in the connections between modules takes place much more
frequently than intramodular protein interaction gain or loss. Several studies have identified
biological network motifs, frequently occurring subnetworks that represent interaction pat-
terns of functional modules in a variety of species [Koyutürk et al., 2006a; Gerke et al., 2006;
Turanalp and Can, 2008]. Many of these motifs are easy to identify computationally. In
this section, we present NetAlign, a program that places factors on some important motifs
and learns how heavily to penalize violation of their conservation.

6.4.1 Biological Network Alignment as Structured Learning

We formulate biological network alignment as a binary edge-labeling problem. Given two
weighted protein interaction networks, Gi � pVi, Ei, wiq, i � 1, 2, where the weights are
estimated protein interaction reliabilities, obtained, for example, by one of the methods
surveyed in [Suthram et al., 2006], we use measures of protein similarity, such as all vs.
all PSI-BLAST with a reasonable threshold, to find cross-species candidates for protein
orthology [Altschul et al., 1997]. The resulting dependency network will look similar to
that shown in Figure 6.3 where two protein interaction networks are connected by homology
edges. The goal is to assign binary labels to the homology edges to distinguish between
edges that connect functionally orthologous proteins and those that do not. The selected
edges constitute the alignment.

6.4.2 The Scoring Model

We define types of factors that are likely to contribute to the quality of an alignment. These
factors provide the ability to reward or penalize various structures in an alignment. For
example, one type of factor would be placed on all pairs of occurrences of a motif, one per
species, that are connected by homology edges. This gives Netalign the ability to learn a
penalty for failure to conserve the motif in its alignment. After tuning the parameters of
our factor functions using training data, we return the alignment that maximizes the overall
score or at least receives a high score relative to the other possible alignments.

Using combinatorial algorithms, we search the dependency network for occurrences of
the various classes of factors. Each class of factors has a factor function, FipSq. Here i
identifies the class of factors and S is the labelled structure that is to be evaluated. Let N
be the total number of classes of factors that we have defined. For i � 1, ..., N , suppose that
our combinatorial algorithms identify Mi structures, Si1, ..., S

i
Mi

, that are to be evaluated.
The total score of a labeling is then

Ņ

i�1

wi � 1
Mi

Mi̧

j�1

FipSijq � w � Φpx, yq
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Figure 6.3: The biological network alignment problem. Weights on protein interaction edges
reflect reliability of evidence for interaction. Weights on homology edges reflect the amount
of protein similarity. The goal is to assign labels in t0, 1u to the homology edges. Homology
edges that receive a label of 1 are predicted to connect functionally orthologous proteins. In
this example, the threshold for inclusion of homology edges is at most 1 and the threshold for
inclusion of protein interaction edges is at most 0.3.

where w � pw1, ..., wN q are parameters to be learned and

Φpx, yq � p 1
M1

M1̧

j�1

F1pS1
j q, ...,

1
MN

MŅ

j�1

FN pSNj qq (6.5)

The notation Φpx, yq is chosen to be consistent with the literature on structured learning.
The letter x represents the input, that is, the weights on the edges, both protein interaction
reliability and protein similarity measures, and the thresholds that together with the weights
define the dependency network. Thus, x could represent the network in Figure 6.3. The
letter y represents the labeling assigned to the homology edges of the network defined by
x. Φpx, yq depends on both x and y as our search for structures in the dependency network
depends on x and the Fi return values that depend on y, for example, whether labeling y
implies the conservation of a motif that we would like to conserve.

Having defined our measure of goodness of an alignment, we have three additional tasks.

1. To find a good alignment y given w and x

2. To decide on a measure of goodness for w

3. To learn a good w from training data
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6.4.3 Generalized Viterbi

The first task, which is usually called inference or generalized Viterbi, utilizes methods and
software such as those described in [Wainwright and Jordan, 2008; Ravikumar et al., 2010],
with extensions to fit the task at hand. The possible solutions to the generalized Viterbi
problem are surveyed in Section 6.3. Therefore, we will assume that we have an adequate
subroutine for approximate solution of the generalized Viterbi problem.

6.4.4 The Probabilistic Model

Our goal is to model the random process of evolution. If we sample two proteins at random,
one from H. sapiens and one from M. musculus, there is a probability that they descended
from the same protein in the MRCA of H. sapiens and M. musculus, i.e. that they are
orthologous. We can measure the similarity of the proteins in various ways, for example
by sequence similarity, hydrophobicity patterns, and polarity patterns, which alters the
conditional probability that they are orthologous. Using an estimate of this conditional
probability, we can try to assign labels, sample by sample, that indicate whether the pair
of proteins are functionally orthologous. This procedure has been suggested in the litera-
ture [Matthews et al., 2001]. If we had a set of known orthologous proteins we could use it
to learn weights specifying how much to reward or penalize the assignment of a label given
the similarity measures. We could then use these weights to find the label for a protein-pair
sample with highest score, presumably the label with highest conditional probability. In this
simplistic model, we have assumed that the protein-pair samples are independent so that
the labels can be assigned independently. We thus have a binary classification problem over
independent samples. We can imagine using an SVM to learn the weights associated with
the various protein similarity measures. We would then obtain a max-margin optimization
problem over independent samples.

This is an unrealistic model of evolution where each pair of proteins evolves indepen-
dently of every other pair, even other pairs that share a protein. If protein MKNK1 in
H. sapiens has high similarity score with 20+ proteins in M. musculus, it is plausible to
posit that these proteins are part of the MAP kinase family with highly conserved function.
Every once in awhile, over the course of evolution, a protein in the family duplicates but
doesn’t diverge in sequence. This is more plausible than assuming that all 20+ proteins in
M. musculus came from the same protein as MKNK1 in the MRCA. That would be a lot of
duplications for a single protein on this time scale. With our unrealistic model of evolution,
we cannot account for these dependencies between the samples.

Even if two pairs do not share a protein, they may not have evolved independently.
Given our understanding of the interactome, we know that proteins group into modules
with a given function, such as protein complexes, regulatory networks, metabolic pathways,
and signal transduction pathways, and that modules are highly conserved during evolution.
Thus, if we have a collection of pairs of proteins to label and only two of the many labelings
would result in the conservation of motifs, that is, interaction patterns of common modules,
we should probably set the labels in unison to one of these two settings. We can break
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the tie by considering protein similarity scores or by comparing to labels of other pairs of
proteins. There may be an even higher order motif that can be conserved. Thus, we cannot
safely assume that any of our samples are independent. The desired optimization problem
for the factor weights is, thus, over entire labelings rather than over independent labels.
This setting is called structured learning because the samples have a dependency structure.

Two versions of a maximum-margin optimization problem for structured learning have
been proposed [Taskar et al., 2003; Tsochantaridis et al., 2005]. Both versions, for efficiency
reasons, assume that the samples can be divided into components such that the samples
within a component are dependent only on other samples within the same component. Our
probabilistic model of evolution admits no such natural division. We, thus, assume we have
a single component. 1 Assuming a single component also simplifies the notation. We shall
use this natural simplified notation in the sequel.

6.4.5 The Large Margin Optimization Problem

The goal is to learn weights for factors that separate the true labeling for our training
set from all other labelings with a big margin. However, a labeling close to the correct
labeling, say one that predicts all of 1000 pairs of proteins correctly but makes one false
prediction, is pretty good. It would be unreasonable to try to force a big margin between
this labeling and the correct one. On the other hand, a labeling that mispredicts everything
should be separated with a huge margin from the correct labeling. In general, a high-loss
labeling should be more carefully separated than a low-loss labeling. For biological network
alignment, it seems natural to define the loss as the number of mispredictions, that is, the
Hamming distance between the labelings, as there seems no reason to give preference to
true orthologous proteins predicted nonorthologous over nonorthologous proteins predicted
to be orthologous. Thus, we shall exclusively use Hamming distance as our loss function in
the sequel. The Hamming distance between labeling y and the correct labeling y� will be
denoted ∆py�, yq.

The two forms of the max-margin optimization problem for structured learning, using
the terminology from [Sarawagi and Gupta, 2008], are the margin scaling method proposed
in [Taskar et al., 2003], and the slack scaling method originally proposed in [Tsochantaridis
et al., 2004]. We present both but note that the slack scaling method is not likely to scale
well to our problem, though a modification of slack scaling in [Sarawagi and Gupta, 2008]
shows some promise.

In margin scaling, incorrect labelings are separated from the true labeling with a margin
that grows with the loss. Note that C is a regularization parameter and ξ is a slack variable.

min
w,ξ

1
2
||w||22 � Cξ

1It would be nice to say that there is no loss of generality as multiple independent components can always
be combined into a single component with independent regions, for example, disconnected regions in a factor
graph, but it is possible that this may lead to different optimization problems. We leave for future work
investigation into whether the optimal parameter vector w may differ in the two formulations.
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s.t. 〈w,Φpx, y�q〉� 〈w,Φpx, yq〉 ¥ ∆py�, yq � ξ,@y � y�

In slack scaling, all incorrect labelings are separated from the true labeling with a fixed
margin, but it costs more if a high-loss labeling violates the margin.

min
w,ξ

1
2
||w||22 � Cξ

s.t. 〈w,Φpx, y�q〉� 〈w,Φpx, yq〉 ¥ 1� ξ

∆py�, yq ,@y � y�

Both of these problems have a constraint for each incorrect labeling. Thus, the number
of constraints is exponential in the number of labels. In Section 6.5 we survey several
methods that have been proposed for approximately solving these optimization problems.

6.5 Survey of Algorithms for Structured Learning

6.5.1 Primal Descent Algorithm

The simplest method, that used by Graemlin 2.0, is that of Ratliff et. al. for solving the
margin scaling problem [Ratliff et al., 2007]. They rewrite the problem in equivalent hinge
loss form.

min
w,ξ

1
2
||w||22

�C max
yPYzy�

p∆py�, yq � 〈w,Φpx, y�q〉� 〈w,Φpx, yq〉q�

� min
w,ξ

1
2
||w||22

�Crmax
yPY

p〈w,Φpx, yq〉�∆py�, yqq � 〈w,Φpx, y�q〉s

after some rearranging, as y � y� makes the expression in the hinge loss equal to 0. This is
a convex program so they propose to optimize it using subgradient descent [Ratliff et al.,
2007]. A subgradient at ŵ is

ŵ � CpΦpx, ŷq � Φpx, y�qq

where

ŷ � arg max
yPY

r〈ŵ,Φpx, yq〉�∆py�, yqs (6.6)

In [Flannick et al., 2009] this is simplified further by ignoring the quadratic term in
the objective function, it being claimed that there is a low risk of overfitting with only 36
free parameters, thus letting C Ñ8.

We can compute ŷ using the subroutine for generalized Viterbi, as ∆py�, yq decomposes
into a component for each type of factor. That is, we can associate the loss of each label
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with a single factor that contains it. We then add all the label losses that correspond to
one type of factor to define the component for that type of factor. Then,

∆py�, yq � 〈
1,Φ∆

〉
where

Φ∆ � p∆1py�, yq, ...,∆N py�, yqq
and ∆ipy�, yq is the component for factor type i, 1 ¤ i ¤ N . Recall that N is the number
of factor types. Thus,

ŷ � arg max
yPY

r〈ŵ,Φpx, yq〉� 〈
1,Φ∆

〉s
� arg max

yPY
r〈ŵ,Φaug〉s

where
Φaug � p∆1py�, yq

ŵ1
� Φpx, yq1, ..., ∆N py�, yq

ŵN
� Φpx, yqN q

which we can solve with our subroutine for generalized Viterbi.
If we try to apply the same conversion to the slack scaling problem we get the subproblem

ŷ � arg max
yPY

r∆py�, yqp1� 〈w,Φpx, y�q〉q �∆py�, yq 〈w,Φpx, yq〉s (6.7)

The term on the right couples components corresponding to different types of factors, pre-
venting us from using our algorithm for generalized Viterbi.

6.5.2 Dual Cutting Plane Algorithm

The dual for the margin scaling problem is

max
α¥0

C
¸
y

αy∆py�, yq � 1
2
C2
¸
yy

αyαy 〈δΦpyq, δΦpyq〉

s.t.
¸
y

αy � 1

where δΦpyq � Φpx, y�q � Φpx, yq. The dual for the slack scaling problem is

max
α¥0

¸
y�y�

αy � 1
2

¸
y�y�,y�y�

αyαy 〈δΦpyq, δΦpyq〉

s.t.
¸
y�y�

αy
∆py�, yq ¤ C

In both cases, w� � °y�y� αypΦpx, y�q � Φpx, yqq. Tsochantaridis et. al. propose a cut-
ting plane approach [Tsochantaridis et al., 2005]. They propose finding the most vio-
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lated constraint using (6.7) or (6.6) and then adding the corresponding dual variable to
a working set. After each iteration the dual is optimized over the working set and w is
updated. They show that after 8C`

3
R2

ε2
iterations, where ` is the number of labels and

R � maxy ||Φpx, yq � Φpx, y�q||2, all constraints in the slack scaling problem will be satis-
fied to within a precision of ε. Each iteration involves solving (6.7) and solving a growing
quadratic program. As observed in Section 6.5.1, we cannot solve (6.7) using our algorithm
for generalized Viterbi as factors of different types are coupled. In [Tsochantaridis et al.,
2005], this problem was not adequately solved for any complex model. In [Tsochantaridis
et al., 2004], the same authors give a dynamic programming algorithm to solve (6.7) for
a hidden Markov model. We leave for future work investigation of whether this algorithm
can be adapted for a reasonable approximate solution of (6.7) in a general factor graph.
Tsochantaridis et. al. also show that after 8C`R2

ε2
iterations, all constraints in the margin

scaling problem will be satisfied to within a precision of ε. We can solve (6.6) to find the
most violated constraint for the margin scaling problem with our algorithm for generalized
Viterbi.

6.5.3 Marginal Dual Algorithm

Taskar et. al. observed that, as the only constraint in the margin scaling dual is
°
y αy � 1,

we can view the αy as a probability distribution [Taskar et al., 2003]. This leads to a
practical method given in [Bartlett et al., 2004] for approximately solving the margin scaling
optimization. Let F be the set of factors. Let Lpfq denote the set of possible labelings of
factor f . Let

Ipy, f, `q �
"

1 if y labels factor f with labeling `
0 otherwise

If we assume that the probability distribution corresponding to the dual variables αy factors
according to the factor graph, we can write it as

αypθq � 1
Z

expt
¸
fPF

¸
`PLpfq

Ipy, f, `qθf`u (6.8)

where Z is a normalization constant obtained by summing over y. This gives us a param-
eterization of the distribution with at most m2k terms, assuming binary labels, where m
is the number of factors and k is the largest number of labels in a factor. Thus, θ should
be much easier to store than the 2` components of α. The αy probabilities are defined
implicitly by (6.8).

Let Qpαq be the objective function in the margin scaling dual, a quadratic function in
α. The exponentiated gradient algorithm is a general algorithm for maximizing a quadratic
function. After initializing α0 to a point in the interior of the feasible region, the iterations
consist of updating α as follows:

αt�1
y � 1

Z
αtyexptηBQpα

tq
Bαy u (6.9)
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where Z is a normalization constant ensuring that the αt�1
y continue to form a probability

distribution, and η ¡ 0 is a step size.
It would be very difficult to update each αy individually so we want to update them

implicitly using our representation in (6.8). The objective function Qpαq can be equivalently
expressed in terms of the factor marginals of the distribution.

Let µf`pαq �
°
y αyIpy, f, `q. Suppressing the dependence of µ on α, and using that

Φpx, yq �
¸
fPF

¸
`PLpfq

Ipy, f, `qφf,`

where φf` � 1
MT pfq

FT pfqpSf`q, T pfq is the type of factor f , and Sf` are the labelled
edges involved in factor f (see (6.5)), and using that the Hamming distance ∆py�, yq �°
fPFs

°
`PLpfq Ipy, f, `qp1� Ipy�, f, `qq where Fs is the set of single-edge factors which here,

for simplicity, we assume are all defined, we have that

Qpαq � Qmpµpαqq � C
¸
fPFs

¸
`PLpfq

µf`p1� Ipy�, f, `qq

�1
2
C2
¸
I
rIpy�, f, `q � µf`srIpy�, f 1, `1q � µf 1`1s

〈
φf`, φf 1`1

〉
where I � tf, f 1 P F, ` P Lpfq, `1 P Lpf 1qu.

We will perform the exponentiated gradient updates on θ using 5µQmpµpαpθqqq and
then show that the resulting αpθq are implicitly updated according to (6.9). The algo-
rithm consists of choosing initial values for θ0 and then iteratively calculating all marginals
µtf`pαpθqq and setting

θt�1
f` � θtf` � η

BQmpµpαpθtqqq
Bµf` (6.10)

where, by direct differentiation,

BQmpµpαpθtqqq
Bµf` � Cp1� Ipy�, f, `qq

�1
2
C2
¸
f 1PF

¸
`1PLpf 1q

rIpy�, f, `q � µf 1,`1s
〈
φf`, φf 1`1

〉

Theorem: αpθtq � αt, where αpθtq is defined in (6.8) and (6.10), and αt is defined in (6.9).

117



Chapter 6. Improving Protein Orthology Detection Using Protein Interactions

Proof:

BQpαq
Bαy � BQmpµpαqq

Bαy
�

¸
fPF

¸
`PLpfq

BQmpµpαqq
Bµf`

Bµf`
Bαy

�
¸
fPF

¸
`PLpfq

BQmpµpαqq
Bµf` Ipy, f, `q

�

¸
fPF

¸
`PLpfq

δf`Ipy, f, `q

Then, from the definitions of the updates, allowing Z to be a normalization constant that
changes from line to line,

αypθt�1q � 1
Z

expt
¸
fPF

¸
`PLpfq

Ipy, f, `qθt�1
f` u

� 1
Z

expt
¸
fPF

¸
`PLpfq

Ipy, f, `qpθtf` � ηδtf`qu

� 1
Z
αypθtqexptη

¸
fPF

¸
`PLpfq

Ipy, f, `qδtf`u

� 1
Z
αypθtqexptηBQpαqBαy u

� αt�1
y

[\

6.5.4 Discussion

From a computational perspective, the margin scaling problem seems preferable to the slack
scaling problem. Sarawagi et. al. argue that the slack scaling problem may still deserve
continued study as margin scaling may give too much importance to increasing the margin
for labelings that are already well-separated from the margin [Sarawagi and Gupta, 2008].

Some variants of the methods described in this paper for solving the margin scaling and
slack scaling optimization problems have been proposed in the literature. Sarawagi et. al.
propose a variational approximation for the slack scaling optimization problem [Sarawagi
and Gupta, 2008]. Using this variational approximation they are able to use the algorithm
for generalized Viterbi to approximately solve (3.2) . Using a program implementing their
methods, which they call PosLearn, they report results on some examples with test error
reduced by 25% over margin scaling and by 10% over exact slack scaling. They argue
that their variational approximation provides better loss characterization than exact slack
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scaling, explaining the latter surprising result.
Rousu et. al. propose a simple conditional gradient algorithm for optimizing the margin

scaling dual [Rousu et al., 2007]. They test on simple examples and barely outperform
ordinary SVM that assumes sample independence. They did not compare the conditional
gradient algorithm to the exponentiated gradient algorithm and it seems unlikely that it
would compare well.

Collins et. al. adapt the exponentiated gradient updates for structured learning to the
problem of minimizing the regularized negative log likelihood loss rather than the regularized
hinge loss [Collins et al., 2008]. The negative log likelihood loss is the negative logarithm
of the conditional distribution on the labelings defined by ppy|x;wq � 1

Z exptw � Φpx, yqu
where Z is a normalization constant. By using the negative log likelihood loss, we can
view parameter learning as a regularized maximum likelihood procedure on the conditional
distribution defined above. Using the negative log likelihood loss leads to a different dual to
which the same exponentiated gradient updates can be applied, which, similarly, under the
same assumptions, reduce to computing factor marginals in the factor graph. Interestingly,
Collins et. al. obtain a significantly better theoretical rate of convergence for the negative
log likelihood loss than for the hinge loss. They show that, using the hinge loss, at most
Op1

ε q exponentiated gradient updates are required to converge to within ε of the optimal
dual objective function value. Using the negative log likelihood loss, they show that only
at most Oplog 1

ε q updates are required. They acknowledge the possibility that their bound
for the hinge loss may not be tight. Though they compare the exponentiated gradient
algorithms empirically to other methods using both hinge loss and negative log likelihood
loss, they do not empirically compare the exponentiated gradient algorithms using these
two loss functions to each other.

All algorithms for the margin scaling and slack scaling problems require as a subroutine
either an algorithm for generalized Viterbi on a factor graph or an algorithm for computing
factor marginals of a distribution defined on a factor graph. When the factor graph is
such that these problems are NP-hard, as is likely to be the case for the factor graphs
in biological network alignment, it becomes necessary to study approximate algorithms.
Theoretical results, such as the polynomial bound on the number of iterations required
for satisfaction of all constraints to within an ε precision, rely on exact solutions to the
inference problem. Kulesza et. al. and Finley et. al. have studied various approximate
methods for inference and show that, in some cases, approximate inference methods do not
combine well with the proposed approximate methods for solving the structured learning
optimization problems [Kulesza and Pereira, 2007; Finley and Joachims, 2008]. Both studies
conclude that the best results are likely to be obtained from inference algorithms based on
the LP-relaxation studied by Wainwright et. al. [Wainwright and Jordan, 2008].

6.6 Whole Genome Probabilistic Model of Evolution

Orthologous proteins are proteins in two separate species that derive from the same ancestral
protein in the last common ancestor of those two species [Alberts et al., 2008]. Detecting
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orthologous proteins is important not only for its intrinsic interest in reconstructing the
evolutionary history of proteins, but also because orthologous proteins often maintain sim-
ilar function [Koonin, 2005]. Experiments on a protein in a model organism often provide
information about the function of its orthologous proteins in other species. Proteins are
composed of protein domains that are used in constructing proteins of many different func-
tions [Alberts et al., 2008]. A protein with multiple domains may be orthologous to many
seemingly unrelated proteins. The best conserved domain across two proteins may not be
the domain that determines the primary function of the proteins.

The most popular protein orthology detection methods, as reviewed in [Kuzniar et al.,
2008] and [Alexeyenko et al., 2006], are based entirely on neutral models of DNA sequence
evolution of genes [Kimura, 1983], though some also consider the physical arrangement of
genes on the chromosomes. Many are based on local sequence alignment algorithms that
focus only on the best conserved domain, ignoring the rest of the proteins which may in-
clude the more informative domains. Others are based on multiple sequence alignment
that attempts to align full proteins which is not very good at detecting orthology between
multiple-domain proteins that do not have identical domains, a common situation in align-
ments between vertebrates and invertebrates where protein interaction domains often tag
on to preexisting proteins. These methods construct multiple alignments of protein fami-
lies that are themselves determined using Hidden Markov models [Zmasek and Eddy, 2002;
Storm and Sonnhammer, 2002]. cite Song 08 and protein interaction domain papers.

Research in the alignment of protein interaction networks has attempted to model
changes in the genome, such as protein loss, protein duplication, and changes in protein
interactions [Sharan and Ideker, 2006; Flannick et al., 2009; Koyutürk et al., 2006b]. How-
ever, a probabilistic model of genome evolution suitable for protein orthology detection has
not yet been defined.

Except for preliminary studies such as [Bandyopadhyay et al., 2006] and [Yosef et
al., 2008], and the use of conserved synteny in some methods, the methods currently
used to detect protein orthology can be divided into two classes. One class, the phy-
logeny reconstruction methods, use a multiple alignment of the protein sequences to re-
construct a phylogeny of the proteins from which orthology can be inferred [Storm and
Sonnhammer, 2002; Zmasek and Eddy, 2002]. It is difficult to reconstruct an accurate
multiple alignment when proteins have diverged significantly in sequence making this step
of multiple sequence alignment error-prone [Levasseur et al., 2008]. The other class of
methods, the pairwise similarity methods, are based on pairwise measures of sequence
similarity, such as Smith-Waterman [Smith and Waterman, 1981] or BLAST [Altschul et
al., 1997]. Most pairwise similarity methods are variants of a reciprocal best hits algo-
rithm in which the proteins are predicted to be orthologous if each is the highest scor-
ing match in the genome of the other species [Tatusov et al., 1997; Remm et al., 2001;
Kuzniar et al., 2008]. Recent studies have disagreed as to whether phylogeny reconstruc-
tion or pairwise similarity methods are more reliable [Hulsen et al., 2006; Chen et al., 2007;
Altenhoff and Dessimoz, 2009]. Both classes of methods have difficulty working with protein
deletions [Kuzniar et al., 2008]. Neither class of methods considers evidence from protein
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Figure 6.4: An alignment can be represented either as a bipartite graph or as a partial phylogeny.

interaction patterns. Because pairwise similarity methods are computationally more effi-
cient than phylogeny reconstruction methods, databases of putative protein orthology such
as HCOP [Eyre et al., 2006], YOGY [Penkett et al., 2006], KEGG [Kanehisa et al., 2006;
Aoki and Kanehisa, 2005], and P-POD [Heinicke et al., 2007] are populated primarily with
predictions from pairwise similarity methods.

Protein interaction network alignment began with a search for conserved signalling
pathways and protein complexes across species [Kelley et al., 2003; Sharan et al., 2004;
Koyutürk et al., 2006b; Flannick et al., 2006]. This approach is called local protein interac-
tion network alignment because it does not attempt to align all proteins, rather searching
for local highly conserved regions in the network. Global protein interaction network align-
ment aligns all proteins of interest, aligning proteins based on the alignment of neighboring
proteins in the networks [Singh et al., 2007; Flannick et al., 2009]. For orthology detec-
tion, if one is interested in finding a few nonspecific highly-supported orthologous proteins
between two species, local alignment would be appropriate, but if one is searching for pro-
teins orthologous to particular proteins or conducting a comprehensive study of orthology
between two species, global alignment is the better approach.

A basic premise is that there is some sequence conservation between orthologous pro-
teins, but the amount may vary depending on the proteins. Moreover when one is detecting
protein orthology, one is primarily interested in functional orthology, those orthologous pro-
teins that have conserved function. If a pair of orthologous proteins is orthologous because
of sharing a domain that does not primarily determine the functions of the proteins, those
proteins are orthologous but not functionally orthologous.

In this paper we propose a method, Orthalign, for detecting orthology between two
animal species by probabilistically modeling whole genome evolution. We test the method
using species at varied evolutionary distances: among mammals and between vertebrates
and invertebrates. Our method resolves some orthologous proteins correctly that are not
resolved correctly by other methods with which we compare.
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Figure 6.5: Not every bipartite graph is an alignment.

6.6.1 Probabilistic Model

We define an alignment as a partial phylogeny on the proteins in which all coalescence
prior to the speciation is ignored, all branching subsequent to the speciation represents
protein duplication, and the branching pattern within each lineage is collapsed to a single
multifurcation. That is, there is a one-to-many relationship between alignments and phy-
logenies. Given any phylogeny on the proteins, a unique alignment is implied. Figure 6.4
illustrates an alignment using two representations: a bipartite graph and a partial phy-
logeny. Figure 6.5 shows that not every bipartite graph is an alignment. All four proteins
are connected, implying, by transitivity, that they descended from a single protein in the
LCA, but the absence of edge (b,d) implies that b and d descended from distinct proteins
in the LCA, a contradiction. An orthologous group (OG) is a maximal complete bipartite
subgraph. An alignment is a bipartite graph that can be partitioned into OGs. For example,
the alignment in Figure 6.4 can be partitioned into 3 OGs.

Given the genome of the LCA, the random effects of evolution imply a probability
distribution on the genomes of the present-day species. As modeled by standard models for
sequence evolution, there is a probability distribution on the divergence of two orthologous
proteins over the time since the LCA, but there is also a probability in one or both lineages of
each protein being lost or duplicated, genes being physically rearranged on the chromosomes,
protein interaction patterns being conserved or altered, and similar but nonorthologous
proteins forming identical interaction patterns. Many protein interaction changes may be
caused by small modifications of coding regions that have a major functional effect [Alberts
et al., 2008]. Alternately, many changes in coding regions may have only a small effect
on basic function [Fay and Wu, 2003]. Thus, protein interaction information supplements
sequence information in the prediction of protein orthology, and while amount of sequence
change is correlated with change of function, neither determines the other with certainty
(cite Espadaler).

For i P tA,B,LCAu, let Gi � pVi,Mi, Ciq where Vi is the set of proteins, Mi is the
set of modules weighted to reflect any uncertainty in our knowledge, and Ci is the set
of chromosomes on which the protein-coding genes are located. Given the genome of the
LCA, GLCA, we can model the probability of evolving the genomes GA and GB as follows.
Summing over all alignments, A, that, at this stage, include the ancestral proteins:
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PrpGA,GB | GLCAq �
¸
A

PrpGA,GB,A | GLCAq

�
¸
A

PrpGA,GB | A,GLCAqPrpA | GLCAq.

Since

PrpA | GA,GB,GLCAq � PrpGA,GB | A,GLCAqPrpA | GLCAq
PrpGA,GB | GLCAq ,

by Bayes’ Rule, each term in the sum is proportional to the posterior probability of the
corresponding alignment given the ancestral and present-day genomes. Thus, an alignment
that maximizes

PrpGA,GB | A,GLCAqPrpA | GLCAq

is a maximum a posteriori (MAP) estimate.
We have three types of data representing GA and GB: 1) protein sequence data represent-

ing mutations, 2) locations of genes on chromosomes representing synteny, and 3) protein
interaction data representing functional modules. The events representing mutations and
protein interactions are not independent as high numbers of mutations in a protein are likely
to change its interactions. However, it is unclear how the events causing change in synteny,
that is, chromosomal inversions and translocations, are correlated, if at all, with mutations
and protein interactions, so for these we assume independence. Using these dependency
assumptions, we have

PrpGA,GB | A,GLCAq � PrpVA, VB | A,GLCAq
PrpCA, CB | A,GLCAq
PrpMA,MB | VA, VB,A,GLCAq

Thus,

PrpA | GA,GB,GLCAq 9 PrpVA, VB | A,GLCAq
PrpCA, CB | A,GLCAq
PrpMA,MB | VA, VB,A,GLCAq
PrpA | GLCAq

and to find the MAP estimate we want to maximize the expression on the right-hand side
over alignments.

Our goal is to remove the dependence on GLCA, for which we do not have any data, by the
use of reasonable approximations. We desire an approximate distribution over alignments

123



Chapter 6. Improving Protein Orthology Detection Using Protein Interactions

that, at the end, will not include ancestral proteins, that is, an approximate distribution of
the form

PrpA | GA,GBq 9 PrpVA, VB | AqPrpCA, CB | AqPrpMA,MB | VA, VB,AqPrpAq

There is a natural prior PrpA | GLCAq on alignments. An alignment that requires a large
number of duplications of a single protein between closely related species should have low
probability whereas alignments that follow reasonable patterns of protein duplication and
deletion should have high probability. There are, thus, four factors in the distribution which,
in order, represent 1) mutations in coding regions, 2) conservation and changes in synteny,
3) protein interaction conservation, loss, and gain, and 4) protein deletion and duplication.
The models and approximations for the factors are described in the four subsections that
follow.

6.6.1.1 Protein Deletion and Duplication

First we discuss the prior, that is, the model of protein deletion and duplication. A natural
prior is

PrpA | GLCAq �
¹

pPVLCA

PrpdAppqqPrpdBppqq

where dippq � number of proteins descended from p in Vi.
Eliminating the dependence on GLCA requires some approximation. First, an alignment

that does not include ancestral proteins does not give any information about duplications in
one lineage when the orthologous protein in the other lineage was lost. Second, we must be
careful not to count the same duplication multiple times. Figure 6.4 shows an alignment as a
partial phylogeny. We can see from the figure that we should count a total of 5 duplications.
Figure 6.4 also shows the same alignment as a bipartite graph. Using pairwise comparisons
from each node naively, we would count 17 duplications. To count only 5 duplications, as
we should, we must use a more clever algorithm, finding each connected component and
then counting the number of proteins on each side of the bipartition. Alternately, we can
scale the probabilities by the appropriate amount. For example, in Figure 6.4, we can use

Prpnodeldupq2 p 3
a

Prp3 dupqq3 p 4
a

Prp2 dupqq4 Prpdelq.

If we know how many proteins are in-paralogous to a protein in an alignment, we can use
this to compute the root value. We can still compute factors locally if we store at each node
the number of proteins in-paralogous to each protein relative to the current alignment, and
when changing the alignment, automatically update these.

These approximations give the approximate prior distribution

PrpAq �
¹
aPVA

|IP paq�1|
a

Prp|Orpaq|
¹
bPVB

|IP pbq�1|
a

Prp|Orpbq|

124



Chapter 6. Improving Protein Orthology Detection Using Protein Interactions

where IP paq is the set of proteins in-paralagous to proteins in a and Orpaq is the set of
proteins orthologous to proteins in a. We use a distribution with 6 parameters: Prp0q,
Prp1q, Prp2q, Prp3q, Prp4q, Prp5�q.

6.6.1.2 Mutations in Coding Regions

Let Ancpaq � the protein in VLCA ancestral to a. Then,

PrpVA, VB | A,GLCAq �
¹
aPVA

Prpspa,Ancpaqqq
¹
bPVB

Prpspa,Ancpbqqq

where spa,Ancpaqq is the event of sequence a diverging from the sequence of Ancpaq in the
amount that it has.

Not having access to ancestral proteins, a reasonable approximation is to assume the
absence of homoplasy and to compare proteins in VA directly to proteins in VB. Using
this approximation we must omit the probabilities of sequence divergence for proteins that
have been deleted in one of the lineages. We must be careful to avoid multiple counting
of divergence for duplicated proteins. The divergence of each protein from its putative
ancestral protein should be considered only once. A reasonable heuristic is, for each protein,
to consider half the average sequence divergence with its orthologous proteins. Using this
heuristic for an approximation, we get

PrpVA, VB | Aq �
¹
aPVA

Prp 1
2|Orpaq|

¸
bPOrpaq

spa, bqq

¹
bPVB

Prp 1
2|Orpbq|

¸
aPOrpbq

spb, aqq

where Orpaq is the set of proteins orthologous to proteins in a.
To calculate the probabilities on the right-hand side, we translate sequence-similarity

scores to approximate mutation rate per amino acid necessary if the proteins were orthol-
ogous. We then use a normal distribution on observing that mutation rate. We learn the
mean and variance of the normal distribution on mutation rate from data.

Not all proteins evolve at the same rate even for a constant mutation rate because
proteins are subject to varying amounts of purifying selection. Above we are not actually
using mutation rate but rather average rate of substitution per nucleotide, averaging over
all possible amounts of purifying selection.

6.6.1.3 Conservation and Changes in Synteny

Let ripaq be the protein to the right of a on Ci. Let sconspa, ripaqq be the event of a and
ripaq having conserved synteny from GLCA according to A. Then,

PrpCA, CB | A,GLCAq �
¹
aPVA

Prpsconspa, rApaqqq
¹
bPVB

Prpsconspb, rBpbqqq.
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Here, because of inversions, synteny can be in either direction. Two genes have conserved
synteny in two genomes if they are adjacent in both genomes regardless of whether they
appear in the same order.

It is desirable to eliminate dependence on CLCA. Thus, we assume each pair of physi-
cally adjacent genes in CLCA remain physically adjacent in at least one of the present-day
genomes. This gives the approximate distribution

PrpCA, CB | Aq �
¹
aPVA

Prpscons1pa, rApaqqq
¹
bPVB

Prpscons1pb, rBpbqqq

where scons1ipaq is the event of proteins a, ripaq P Vi being mapped by A to adjacent proteins
in Cj , i � j. The proteins a and ripaq may be mapped to multiple proteins in Cj , some of
which, but not all, may be adjacent. In this case, if any mapped proteins are adjacent, we
consider this to be overwhelming evidence of conserved synteny, and the mapped proteins
that are not adjacent are inferred to be the result of duplications.

There are just two parameters to learn here: the probability of two adjacent proteins in
Species A not being aligned to adjacent proteins in Species B, and the probability of two
adjacent proteins in Species B not being aligned to adjacent proteins in Species A.

Conserved synteny only applies to closely related species, such as human and mouse.
It is estimated that only 180 chromosome rearrangements took place between human and
mouse [Alberts et al., 2008].

6.6.1.4 Protein Interaction Conservation, Gain, and Loss

In line with the neutral theory of molecular evolution, we consider de novo module gain as
a rare event.

Let proteinsipmq be the set of proteins in Vi to which A maps m. Let Mipmq be the
restriction of Mi to modules of the same type as m consisting of proteins descended from
the proteins in m according to A. Let N be the set of modules not in any Mipmq for any
i P tA,Bu for any m. Then,

PrpMA,MB | VA, VB,A,GLCAq �
¹

mPMLCA

PrpMApmq | proteinsApmq, VA, VLCAq

PrpMBpmq | proteinsBpmq, VB, VLCAq¹
nPN

Prpnq

It is desirable to eliminate the dependence on MLCA and VLCA. Thus, we make the
simplifying assumptions that each module remains conserved in at least one of the present-
day genomes and that there are no de novo modules, and then we compare modules in the
present-day genomes with each other.

Let OGpmq be the set of OGs in A associated with m. Let modules(m) be the restriction
of MA and MB to modules of the same type as m consisting of proteins in the same ordered
OGs as m. LetM be the set of module sets: tmodulespmq : m PMAYMBu. Note that all
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modules appear in M. Then,

PrpMA,MB | VA, VB,Aq �
¹

modulespmqPM
Prpmodulespmq | OGpmq, VA, VBq

Determining these probabilities would involve considering each possible module and,
for each, considering how many modules in the corresponding OGs are conserved. For
modules consisting of k proteins, there could be Ωpnkq sets of OGs to evaluate where n is
the number of proteins in the larger species. Even evaluating a single OG could be difficult
for an alignment with large OGs.

A more tractable approximation is to model the probability of protein q taking part in
x conserved motifs of type i, where the conservation is according to A on edges each having
sequence similarity above threshold t. This probability can be written pjpxq, i, tq. Then,

PrpMA,MB | VA, VB,Aq �
¹
qPVA

m¹
i�1

pApxq, i, tq
¹
qPVB

m¹
i�1

pBpxq, i, tq

where xq is the number of conserved motifs with protein q of type i in MA and MB where
conservation is with respect to threshold t using the protein sequences in VA and VB. Each
pjpxq, i, tq can be modeled by a Poisson distribution with mean learned from data.

One nice feature of the above approximation is that it allows us to model the decreased
purifying selection on the copies of modules that include duplicated proteins. If a protein is
duplicated, each protein not duplicated begins to take part in twice as many modules of the
same type. Thus, the probability distributions pjpxq, i, tq model the decrease in purifying
selection by lowering the probability of a single protein taking part in too many modules of
the same type.

Given a fixed threshold t, there are 2 � i parameters to learn, the means of the 2 � i
Poisson distributions.

6.6.2 Computing a MAP Alignment

To compute the MAP estimate we want to maximize PrpA | GA,GBq over A. The alignment
A is completely specified by the OGs. Thus, we implement a hill-climbing algorithm to find
the mode of the distribution. We start by assigning each protein to its own OG. Thereafter,
we implement the following moves:

1. Merge two OGs

2. Place a protein in its own OG

We iterate until we reach a local maximum.

6.6.3 Parameter Learning

We want to choose the parameters such that the correct alignment on the training set is
the MAP estimate and such that our algorithm can find this estimate. There are 10 � 2i
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parameters to learn where i is the number of motifs.
We could try to learn the correct parameters by examining the training set, but, given

that the algorithm to find the MAP estimate is only approximate, it may be a better
approach to set the parameters iteratively while ensuring that the MAP algorithm can
always find the correct alignment on the training set. This ensures that the parameters
work together to guide the MAP algorithm to the correct alignment.

If the parameters are poorly set, the MAP algorithm will find an alignment with higher
probability than the desired alignment on the training set. There will be some gap between
the probabilities of the alignment found and the correct alignment. Our goal is to minimize
this gap, ideally to 0. If the correct alignment has a higher probability than the alignment
found by the MAP algorithm, this means that the MAP algorithm is unable to find the
correct alignment, and so, in this case too, we should adjust the parameters to guide the
MAP algorithm to the correct alignment. Thus, we make random changes to the parameters
and accept each change with a probability that grows as the gap shrinks.

6.6.4 Discussion

6.6.4.1 Need for Gold Standard

Orthalign requires a sufficiently-large, reliable, and representative gold standard collection
of orthologous proteins for a pair of species in order to estimate the parameters of the prob-
abilistic model. With a reasonable model in hand, the detection of additional orthologous
proteins between these species can be improved and simplified. Moreover, putative ortholo-
gous proteins in the gold standard collection that do not conform well with the model and,
thus, may have been incorrectly predicted, can be identified.

6.6.4.2 Graemlin 2.0

The burgeoning research in protein interaction network alignment has used information
beyond protein interactions alone to align protein networks across species. One recent
study, Graemlin 2.0, uses both phylogeny reconstruction and pairwise BLAST scores to
augment information from protein interactions [Flannick et al., 2009]. In principle, the extra
evidence of protein orthology given by conserved protein interaction patterns should enable
network alignment algorithms to detect orthologous proteins more reliably than extant
protein orthology detection methods, but few comparisons have been made [Bandyopadhyay
et al., 2006].

Graemlin 2.0 was the first method that attempted to learn species-dependent parame-
ters for protein interaction network alignment. They attempted to learn parameters for a
scoring function based on sequence similarity as measured by BLAST, protein deletion and
duplication, and single protein interaction gain or loss. They did not attempt to cast their
scoring function as a probabilistic model of evolution and while interpreting certain features
as probabilities, they add rather than multiply them. Graemlin 2.0 learns parameters from
KEGG, a database populated by a pairwise sequence similarity method. Thus, the method
and parameters may be optimized to imitate pairwise sequence similarity methods and may
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not be fully utilizing the protein interaction data. The large equivalence classes of Graem-
lin 2.0 cause a loss of protein orthology information since they are paralogous families of
proteins that may include duplication events above internal nodes in the phylogenetic tree.

6.6.4.3 CAPPI

One protein interaction alignment method, CAPPI, is based on a probabilistic model of
genome evolution, but has severe limitations for the detection of orthologous proteins
[Dutkowski and Tiuryn, 2007]. Using BLAST scores, CAPPI divides proteins into clus-
ters which subsequently cannot be modified. It then reconstructs the phylogeny for each
cluster with neighbor-joining. Using a Bayesian network based on a model of evolution
with parameters fine-tuned by hand, it computes posterior protein interaction probabilities
on the supposedly ancestral proteins corresponding to the clusters. Highly probable inter-
actions are then projected down to all proteins in the clusters of present-day species. For
protein orthology detection, this method can, at best, be considered as a filter to remove
some protein orthology predictions made by pairwise similarity methods, but it is limited
in that it must take or reject each cluster as a whole. CAPPI does not claim nor attempt
to be a protein orthology detection method; rather it attempts to identify a few regions
in each protein interaction network that share conserved interactions. It seems difficult or
impossible to extend their framework to a useful protein orthology detection method as the
clusters corresponding to proteins descending from a putative single ancestral protein are
generated without using protein interaction data and cannot be changed during the course
of the algorithm.

6.6.4.4 Method of Berg and Lässig

Another method based on a probabilistic model of genome evolution models protein in-
teraction change with a diffusion process [Berg and Lässig, 2006]. it combines this model
of interaction change with a model of sequence change and estimates parameters using a
Bayesian analysis. Instead of using the prior on alignments to model deletions and duplica-
tions, as described in the sequel, they use a flat prior and do not attempt to model deletions
or duplications, though the same authors earlier developed a probabilistic model for dupli-
cations [Berg et al., 2004]. They model each interaction identically and do not assume
stronger purifying selection on intramodular interactions so they are unable accurately to
model modular evolution such as that described in [Hartwell et al., 1999].

6.6.4.5 Genome Wide Applications

For the method to be useful at the genome level, it must be capable of aligning full genomes.
Currently this would require significant running time. We note, however, that genome-wide
detection of orthologous proteins, even with simple methods, is an expensive and time-
consuming process. One genome-wide protein orthology detection method, OMA [Dessimoz
et al., 2005], required more than 500,000 CPU hours. When we consider that for the small
examples in this paper we use less than 24 CPU hours, it remains likely that Orthalign will
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compare favorably with extant methods even at a genome-wide scale. OMA is a symmetric
best-hits algorithm based on pairwise Smith-Waterman sequence similarity scores with a
consistency check. Computing the Smith-Waterman scores is the most time consuming step.
It may be possible to use pre-computed Smith-Waterman scores from a comprehensive effort
such as OMA to improve protein orthology detection in a second phase using Orthalign. One
difficulty with this latter approach is that different researchers use different sets of proteins,
though recently some standardization has been under way [Reference Genome Group of
the Gene Ontology Consortium, 2009]. As computing power continues to increase, more
reliable methods such as Orthalign may soon become feasible at a genome-wide scale.

It is not necessary to align full genomes with Orthalign, but it is important to use identi-
cal complete homologous families in the two species in order to ensure that the interactions
that appear to have changed are not missing simply because of incomplete protein families.

6.6.4.6 Nonorthologous Gene Displacement

In some cases nonorthologous gene displacement may cause nonorthologous proteins to
assume similar functional roles [Koonin et al., 1996]. However, it is also possible that, due to
the different environments encountered by the species, positive selection changes orthologous
proteins considerably while they retain their high-level function and interaction patterns
within the protein complex or pathway. When interaction patterns disagree with sequence
homology, it may be difficult or impossible to distinguish between these two cases. In this
work we favor the latter interpretation. A previous study favored the former interpretation,
but the same authors, in subsequent work, comparing viral genomes, favored the latter
interpretation [Berg and Lässig, 2006; Kolár̆ et al., 2008]. The truth is likely to include a
combination of these two scenarios and their relative effects are likely to remain a source
of research and debate for some time to come. Resolving this matter is not essential for
practical purposes as, whether orthologous proteins have diverged in sequence but retained
function or whether nonorthologous proteins have converged to the same function, in either
case transfer of functional annotation is more reliable using the extra information of protein
interaction patterns than transfer of functional annotation based only on sequence. In
addition to its intrinsic interest in elucidating the evolutionary history of protein families,
Orthalign can be used to determine which protein in one species is most likely to recover
the function of a homologous protein in another species.

6.6.4.7 Orthologous and Paralogous Proteins

The GO consortium currently uses larger paralogous families as determined by PAN-
THER [Thomas et al., 2003] for their transfer of functional annotation [Reference Genome
Group of the Gene Ontology Consortium, 2009]. For functional annotation transfer at a
more specific level of detail, it may be useful to transfer annotation only between orthologous
proteins.

Traditional phylogenomics approaches based entirely on sequence can have difficulty
disambiguating between orthologous proteins and paralogous proteins. Sometimes this is
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because of ancient divergence, huge populations, and fast generation time as in the case of
some viruses [Kolár̆ et al., 2008]. Sometimes it is because of protein deletions [Kuzniar et
al., 2008]. Sometimes it is because of approximations in the multiple alignment algorithms.
This study is meant to be an investigation into whether probabilistic modeling of genomic
changes other than those considered by multiple alignment programs and traditional phy-
logenomics can assist in disambiguation of protein orthology detection in these difficult
cases and improve the current methods used for functional annotation transfer between
orthologous proteins and homologous proteins in general. Our results show that in some
cases it may be beneficial to model changes in protein interaction patterns.

6.6.4.8 Neutralism and Selectionism

The neutral theory [Kimura, 1983] makes good sense for DNA sequence evolution. It may be
somewhat less applicable for protein interaction evolution and evolution by protein deletions
and duplications, as these changes are less likely to be neutral. Here we do not enter
into the neutralist-selectionist debate. The probabilistic model makes sense under both
interpretations. Even if selection is a dominant force, by choosing a training set similar
to the set for which we desire a protein orthology mapping, we can learn frequencies of
evolutionary events and attempt to match these in the alignment that we output. Provided
our training set is under a selective force of an amount that is similar, on average, to the
set for which we desire a protein orthology mapping, it makes no difference to our model
whether selection or genetic drift is the driving force in the evolution of protein interactions
and protein deletions and duplications.

6.6.4.9 Philosophical Justification for Approximations on a Complex Model

To effectively model evolution, both reasonable models and efficient heuristics for working
with the models are needed. A similar conclusion was recently reached for the problem of
modeling sequence evolution [Liu et al., 2009] . Performing exact inference on reasonable
models is often intractable. Developing approximate models and using algorithms for ap-
proximate inference with good heuristics are complementary approaches to make inference
tractable.

6.6.4.10 Protein Domains

One topic for future research is to consider protein domains. Many domains evolve inde-
pendently so it may make more sense to speak of protein domain orthology than protein
orthology [Babushok et al., 2007]. If the most highly conserved domain between two pro-
teins is not the domain that most accurately determines function, local sequence similarity
methods such as Smith-Waterman and BLAST will not be accurate methods for trans-
ferring functional annotation. Taking into account functional interaction patterns should
significantly improve functional annotation transfer. Still, it may be useful to know do-
main orthology. Some databases of orthologous proteins, such as HOPS, are databases of
domain-based orthology [Storm and Sonnhammer, 2003] using Pfam domains [Sammut et
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al., 2008]. The method of Orthalign can be applied to the detection of protein domain
orthology by building on recent methods that decompose protein interactions into protein
domain interactions [Schelhorn et al., 2008]. We leave this for future work.

6.6.4.11 Protein Duplications

In eukaryotes each gene every million years has one percent probability of duplication [Al-
berts et al., 2008, page 255]. Mouse and humans diverged 80 million years ago [Alberts
et al., 2008, page 249]. Thus as low as p.99q80 � 45% of genes may have a one-to-one
correspondence even between human and mouse.

6.6.4.12 Limitations

One limitation of the proposed model is that it does not model domain shuffling or reassort-
ment of gene segments. Homology is detected using a local sequence alignment tool which
detects homology only between the best matching domains. It may be that the best match-
ing domain is not the domain that determines the primary function of the protein. The
Orthalign model for evolution of functional modules should help to mitigate this limitation
and is, indeed, one of the primary motivations for the development of Orthalign.
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Chapter 7

Outlook

7.1 As New Data Arrives

As cell systems continue to be better understood with increased development of systems
biology [Vidal, 2009], this line of research has a bright future beyond the current concept of
interactome. Interaction assays are being designed to overcome limitations of the common
yeast two-hybrid (Y2H) [Fields, 2009] and affinity-purification mass spectrometry (AP-MS)
assays [Lalonde et al., 2008]; these include surface plasmon resonance (SPR) [Lalonde et
al., 2008; Madeira et al., 2009], optical microscopic techniques such as FRET [Lalonde et
al., 2008; Masi et al., 2010; Alberts et al., 2008], and mating-based split ubiquitin systems
(mbSUS) [Lalonde et al., 2008]. As techniques are improved, each interactome is likely
to be separated into various sub-interactomes distinguished by cell type and interaction
type. A natural next step from the work presented here is to study the relationships
between algorithms being used to detect conserved modules, experimental assays being
used to construct interactomes, and organization of the cell. This should prove to be fertile
ground for designing algorithms tailored to specific experimental assays, with the aim to
overcome limitations of each assay and to uncover more details of cellular organization. It
was shown the the properties of tissue-specific protein interaction networks differ from those
of conglomerate networks [Zhang and Lu, 2010].

Can conserved multiprotein modules be found in gene co-expression networks? A gene
co-expression network is a weighted network with genes as vertices and edge weights mea-
suring correlation of expression levels [Stuart et al., 2003; Werner, 2004]. Similar techniques
to those used for unweighted networks may be successful, as the original definition of graph
conductance applies to weighted networks [Jerrum and Sinclair, 1988]. For future work, we
would like to consider using gene expression data [Wang et al., 2009] or combining types of
data [Narayanan et al., 2010].

As perhaps 8% of the coding capacity of a mammalian genome is devoted to the synthesis
of proteins that serve as regulators of gene transcription [Alberts et al., 2008, page 450], a
possibility is to search for conserved multiprotein modules in regulomes: directed graphs
with multiple kinds of edges specifying regulatory relationships among genes and proteins.
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Early studies analysed modular structure in regulatory networks using small numbers of
genes compiled from experimental studies of regulatory relationships [Thieffry and Sánchez,
2004].

Some proteins interact by operating on a common substrate, possibly a molecule other
than a protein. These are called functional interactions [Werner, 2004, Figure 5]. Can
modules be defined and discovered on functional interactions?

Genetic interactions for yeast have recently been detected using a high-throughput as-
say [Costanzo et al., 2010]. Are similar networks available for any other species for a com-
parative analysis? Can the use of modularity assist in the interpretation of these genetic
interactomes?

Exciting research on differences in genetic evolutionary modularity between sexual and
asexual species has recently been conducted [Livnat et al., 2010]. The finding is that mixable
alleles, those that can be matched with a variety of alleles at other genetic loci, have a
selective advantage in sexual populations. Each protein interaction in the cell required for
organismal fitness imposes an epistatic constraint between the two interactants. Epistasis
and co-evolution are related [Schlosser and Wagner, 2008]. Multiprotein modularity implies
greater mixability as it implies primarily local interactions, so that proteins in a module
are free to evolve independently from proteins in other modules. It may be illuminative to
investigate whether there is a greater degree of multiprotein modularity in the interactomes
of sexual species relative to those of asexual species. A challenge is to find asexual species
that have maintained asexuality for an evolutionarily significant period of time.

Another challenge is to design a reasonable notion of modularity for metabolic networks
[Lacroix et al., 2008]. Modularity based on graph conductance is especially suited as it pe-
nalizes high-degree nodes: such as the troublesome compounds such as water, etc... that
have enormous degree in the metabolic networks. Most people filter these ad hoc before ap-
plying algorithms, but a reasonable definition of modularity should allow them to remain in
the networks to be processed naturally. The networks could be either directed hypergraphs
or directed bipartite graphs where the nodes are compounds and reactions. Enzymes could
also play a role [Cottret and Jourdan, 2010]. Building metabolic networks for sequenced
genomes and analyzing them comparatively has already led to interesting results [Cottret
et al., 2010].

7.2 As New Algorithms Arrive

A new algorithm, EvoNibble [Andersen and Peres, 2009], has been designed for finding sets
of vertices with low conductance in a graph, which may be adapted to find small modules
in a large interactome. EvoNibble is a randomized algorithm based on a volume-biased
evolving set process. Though a randomized algorithm complicates replication of results, it
can be run multiple times to create a high-confidence set that may also include results from
other module-detection algorithms.
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Neyer, and Kimmen Sjölander. Berkeley PHOG: PhyloFacts orthology group prediction
web server. Nucleic Acids Research, 37:D5–D15, 2009.

[de Duve, 2011] Christian de Duve. Life as a cosmic imperative? Philosophical Transactions
of the Royal Society A, 369(1936):620–623, 2011.

139



BIBLIOGRAPHY

[Dean and Ghemawat, 2008] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified
data processing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

[Deelman et al., 2005] Ewa Deelman, Gurmeet Singh, Mei-Hui Su, James Blythe, Yolanda
Gil, et al. Pegasus: a framework for mapping complex scientific workflows onto distributed
systems. Scientific Programming, 13:219–237, 2005.

[Demir et al., 2010] Emek Demir, Michael P. Cary, Suzanne Paley, Ken Fukuda, Christian
Lemer, et al. The BioPAX community standard for pathway data sharing. Nature
Biotechnology, 28(9):935–942, 2010.

[Deng et al., 2003] Minghua Deng, Fengzhu Sun, and Ting Chen. Assessment of the relia-
bility of protein-protein interactions and protein function prediction. Pacific Symposium
on Biocomputing, pages 140–151, 2003.

[Dessimoz et al., 2005] Christophe Dessimoz, Gina Cannarozzi, Manuel Gil, Daniel Mar-
gadant, Alexander Roth, Adrian Schneider, and Gaston H. Gonnet. OMA, a comprehen-
sive, automated project for the identification of orthologs from complete genome data:
introduction and first achievements. Proceedings of the 9th International Conference on
Research in Computational Molecular Biology (RECOMB), pages 61–72, 2005.

[Donoho et al., 2009] David L. Donoho, Inam Ur Rahman, and Victoria Stodden. Repro-
ducible research in computational harmonic analysis. Computing in Science and Engi-
neering, 11(1):8–18, 2009.

[Dudley and Butte, 2010] Joel T. Dudley and Atul J. Butte. In silico research in the era of
cloud computing. Nature Biotechnology, 28(11):1181–1185, 2010.

[Dutkowski and Tiuryn, 2007] Janusz Dutkowski and Jerzy Tiuryn. Identification of func-
tional modules from conserved ancestral protein-protein interactions. Bioinformatics,
23:i149–i158, 2007.

[Eyre et al., 2006] Tina A. Eyre, Matthew W. Wright, Michael J. Lush, and Elspeth A.
Bruford. HCOP: a searchable database of human orthology predictions. Briefings in
Bioinformatics, 8(1):2–5, 2006.

[Fay and Wu, 2003] Justin C. Fay and Chung-I Wu. Sequence divergence, functional con-
straint, and selection in protein evolution. Annual Review of Genomics and Human
Genetics, 4:213–235, 2003.

[Fields and Song, 1989] Stanley Fields and Ok-Kyu Song. A novel genetic system to detect
protein-protein interactions. Nature, 340:245–246, 1989.

[Fields, 2009] Stanley Fields. Interactive learning: lessons from two hybrids over two
decades. Proteomics, 9:5209–5213, 2009.

140



BIBLIOGRAPHY

[Finley and Haigis, 2009] Lydia W. S. Finley and Marcia C. Haigis. The coordination of
nuclear and mitochondrial communication during aging and calorie restriction. Ageing
Research Reviews, 8:173–188, 2009.

[Finley and Joachims, 2008] Thomas Finley and Thorsten Joachims. Training structural
SVMs when exact inference is intractable. Proceedings of the 25th International Confer-
ence on Machine Learning (ICML 2008), pages 304–311, 2008.

[Finn et al., 2010] Robert D. Finn, Jaina Mistry, John Tate, Penny Coggill, Andreas Heger,
et al. The Pfam protein families database. Nucleic Acids Research, 38:D211–D222, 2010.

[Fitch, 2000] Walter M. Fitch. Homology: a personal view on some of the problems. Trends
in Genetics, 16(5):227–231, 2000.

[Flannick et al., 2006] Jason Flannick, Antal Novak, Balaji S. Srinivasan, Harley H.
McAdams, and Serafim Batzoglou. Graemlin: general and robust alignment of multi-
ple large interaction networks. Genome Research, 16:1169–1181, 2006.

[Flannick et al., 2009] Jason Flannick, Antal Novak, Chuong B. Do, Balaji S. Srinivasan,
and Serafim Batzoglou. Automatic parameter learning for multiple local network align-
ment. Journal of Computational Biology, 16(8):1001–1022, 2009.

[Franceschini et al., 2013] Andrea Franceschini, Damian Szklarczyk, Sune Frankild,
Michael Kuhn, Milan Simonovic, et al. STRING v9.1: protein-protein interaction net-
works, with increased coverage and integration. Nucleic Acids Research, 41:D808–D815,
2013.

[Futuyma, 2009] Douglas J. Futuyma. Evolution. Sinauer, Second edition, 2009.

[Gabaldón, 2008] Toni Gabaldón. Large-scale assignment of orthology: back to phyloge-
netics? Genome Biology, 9(10):235, 2008.

[Gandhi et al., 2006] T. K. B. Gandhi, Jun Zhong, Suresh Mathivanan, L. Karthik, K. N.
Chandrika, et al. Analysis of the human protein interactome and comparison with yeast,
worm and fly interaction datasets. Nature Genetics, 38:285–293, 2006.
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[Tora, 2002] László Tora. A unified nomenclature for TATA box binding protein (TBP)-
associated factors (TAFs) involved in RNA polymerase II transcription. Genes and De-
velopment, 16:673–675, 2002.

[Tsochantaridis et al., 2004] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. Support vector machine learning for interdepen-
dent and structured output spaces. Proceedings of the 21st International Conference on
Machine Learning (ICML 2004), page 104, 2004.

[Tsochantaridis et al., 2005] Ioannis Tsochantaridis, Thorsten Joachims, Thomas Hof-
mann, and Yasemin Altun. Large margin methods for structured and interdependent
output spaces. Journal of Machine Learning Research, 6:1453–1484, 2005.

[Turanalp and Can, 2008] Mehmet E. Turanalp and Tolga Can. Discovering functional
interaction patterns in protein-protein interaction networks. BMC Bioinformatics, 9:276,
2008.

155



BIBLIOGRAPHY

[UniProt Consortium, 2012] UniProt Consortium. Reorganizing the protein space at the
University Protein Resource (UniProt). Nucleic Acids Research, 40:D71–D75, 2012.

[Vazirani, 2003] Vijay V. Vazirani. Approximation Algorithms. Springer-Verlag, 2003.

[Vidal, 2005] Marc Vidal. Interactome modeling. FEBS Letters, 579:1834–1838, 2005.

[Vidal, 2009] Marc Vidal. A unifying view of 21st century systems biology. FEBS Letters,
583(24):3891–3894, 2009.

[Voevodski et al., 2009] Konstantin Voevodski, Shang-Hua Teng, and Yu Xia. Finding local
communities in protein networks. BMC Bioinformatics, 10(297), 2009.

[von Mering et al., 2002] Christian von Mering, Roland Krause, Berend Snel, Michael Cor-
nell, Stephen G. Oliver, Stanley Fields, and Peer Bork. Comparative assessment of
large-scale data sets of protein-protein interactions. Nature, 417:399–403, 2002.

[Wagner, 1996] Günter P. Wagner. Homologues, natural kinds and the evolution of modu-
larity. American Zoologist, 36(1):36–43, 1996.

[Wainwright and Jordan, 2008] Martin J. Wainwright and Michael I. Jordan. Graphical
models, exponential families, and variational inference. Foundations and Trends in Ma-
chine Learning, 1(1-2):1–305, 2008.

[Wainwright et al., 2004] Martin Wainwright, Tommi Jaakkola, and Alan Willsky. Tree
consistency and bounds on the performance of the max-product algorithm and its gen-
eralizations. Statistics and Computing, 14(2):143–166, 2004.

[Wainwright et al., 2007] Martin Wainwright, Tommi Jaakkola, and Alan Willsky. MAP
estimation via agreement on trees: message-passing and linear programming. IEEE
Transactions on Information Theory, 51(11):3697–3717, 2007.

[Walhout and Boulton, 2006] Albertha J. M. Walhout and Simon J. Boulton. Biochemistry
and molecular biology. In WormBook. The C. elegans Research Community, 2006.

[Wang and Page, 2002] P. Jeremy Wang and David C. Page. Functional substitution for
TAFII250 by a retroposed homolog that is expressed in human spermatogenesis. Human
Molecular Genetics, 11(19):2341–2346, 2002.

[Wang et al., 2007] Chunlin Wang, Chris Ding, Qiaofeng Yang, and Stephen R. Holbrook.
Consistent dissection of the protein interaction network by combining global and local
metrics. Genome Biology, 8:R271, 2007.

[Wang et al., 2009] Kai Wang, Manikandan Narayanan, Hua Zhong, Martin Tompa, Eric E.
Schadt, and Jun Zhu. Meta-analysis of inter-species liver co-expression networks elu-
cidates traits associated with common human diseases. PLoS Computational Biology,
5(12):e1000616, 2009.

156



BIBLIOGRAPHY

[Wang et al., 2011] Jianxin Wang, Min Li, Jianer Chen, and Yi Pan. A fast hierarchical
clustering algorithm for functional modules discovery in protein interaction networks.
IEEE/ACM Transactions in Computational Biology and Bioinformatics, 8(3):607–620,
2011.

[Ware, 2004] Colin Ware, editor. Information Visualization: Perception for Design. Morgan
Kaufmann Publishers Inc., San Francisco, CA, 2004.

[Weiss and Freeman, 2001] Yair Weiss and William T. Freeman. On the optimality of solu-
tions of the max-product belief-propagation algorithm in arbitrary graphs. IEEE Trans-
actions on Information Theory, 47(2):736–744, 2001.

[Welsh et al., 2001] Matt Welsh, David Culler, and Eric Brewer. SEDA: an architecture
for well-conditioned, scalable internet services. Proceedings of the 18th Symposium on
Operating Systems Principles (SOSP), ACM, pages 230–243, 2001.

[Werner, 2004] Thomas Werner. Proteomics and regulomics: the yin and yang of functional
genomics. Mass Spectrometry Reviews, 23(1):25–33, 2004.

[Wheeler et al., 2006] David L. Wheeler, Tanya Barrett, Dennis A. Benson, Stephen H.
Bryant, Kathi Canese, et al. Database resources of the National Center for Biotechnology
Information. Nucleic Acids Research, 34:D173–D180, 2006.

[Wieczorek et al., 1998] Elzbieta Wieczorek, Marjorie Brand, Xavier Jacq, and László Tora.
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