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ABSTRACT OF THE DISSERTATION

A continuation of supergravity solutions on warped spacetimes

by

David Ross Corbino

Doctor of Philosophy in Physics

University of California, Los Angeles, 2021

Professor Eric D’Hoker, Chair

In this dissertation, we investigate the existence of solutions with sixteen supersymmetries

to Type IIB supergravity on two sets of spacetimes that each contain an internal factor of

two-dimensional Anti-de Sitter space (AdS2).

The first case is AdS2 × S6 warped over a Riemann surface Σ. We construct the general

Ansatz for the bosonic supergravity fields and supersymmetry generators compatible with

the SO(2, 1)⊕SO(7) isometry algebra of the spacetime, which extends to the corresponding

real form of the exceptional Lie superalgebra F (4). We reduce the BPS equations to this

Ansatz, obtain their general local solutions, and show that these local solutions solve the full

Type IIB supergravity field equations and Bianchi identities. We contrast the AdS2 × S6

solution with the closely related AdS6× S2 case and present the results for both in parallel.

In the second part of this work, we seek global half-BPS AdS2×S6 solutions correspond-

ing to the near-horizon behavior of (p, q)-string junctions. The general local solution was

obtained in terms of two holomorphic functions A± on Σ, which are constrained by a set

of positivity and regularity conditions. We identify the type of singularity in A± needed at

the boundary of Σ to match the solutions locally onto the classic (p, q)-string solution. We

then construct and discuss solutions with multiple (p, q)-strings, however the existence of

geodesically complete solutions remains unsettled.
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The other case we consider is warpedAdS2×S5×S1. The existence of the Lie superalgebra

SU(1, 1|4) ⊂ PSU(2, 2|4), whose maximal bosonic subalgebra is SO(2, 1)⊕SO(6)⊕SO(2),

motivates the search for half-BPS solutions with this same isometry that are asymptotic

to AdS5 × S5. We reduce the BPS equations to the Ansatz for the bosonic fields and

supersymmetry generators compatible with these symmetries, then show that the only non-

trivial solution is the maximally supersymmetric solution AdS5 × S5. We argue that this

implies that no solutions exist for fully back-reacted D7 probe or D7/D3 intersecting branes

whose near-horizon limit is of the form AdS2 × S5 × S1.
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CHAPTER 1

Introduction

Gauge/gravity duality has become a fundamental area of research in modern theoretical

physics. The duality is a realization of the holographic principle, and posits an equivalence

between a quantum field theory in d dimensions and a theory of gravity in d+ 1 dimensions.

The best understood examples of gauge/gravity duality are given by the AdS/CFT corre-

spondence [4, 5, 6] (for reviews, see [7, 8]), and involve conformal field theories (CFTs) with

a large number of fields and their dual Anti-de Sitter (AdS) spacetimes with large degrees

of supersymmetry. The original form of the AdS/CFT correspondence states that Type IIB

superstring theory on the product spacetime AdS5 × S5 is dual to N = 4 Super Yang-Mills

(SYM) theory in four dimensions with gauge group SU(N). Here, the string coupling gs,

Yang-Mills coupling gYM , and radii L of both the AdS5 and S5 spaces are related as follows,

gs = g2
YM L4 = 4πgsN(α′)2 (1.1)

where α′ is the square of the Planck length. Defining the ’t Hooft coupling λ ≡ g2
YMN = gsN ,

the limit of N → ∞ with λ fixed corresponds to weak coupling string perturbation theory,

while for λ� 1 the string theory can be approximated by classical Type IIB supergravity.

A key feature within this correspondence is that of supersymmetry, the presence of which

tightly constrains the set of possible supergravity solutions. The composition of supersym-

metry transformations gives rise to additional bosonic symmetries, such as isometries, which

further constrain the solutions. The supersymmetries and bosonic symmetries form a Lie

superalgebra, under which the solution is invariant, with the isometries extending to the

corresponding real form of the Lie superalgebra. Objects protected by supersymmetry play

an important role in the correspondence, and among the simplest are those corresponding to
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so-called “half-BPS” solutions, which preserve sixteen of the maximal number of supersym-

metries. Special cases involve half-BPS solutions to supergravity on pairs of spacetimes with

internal factors related by “double analytic continuation”, e.g. AdSp × Sq and AdSq × Sp

for p+ q ≤ 10 in the case of Type IIB supergravity. One notable example where such pairs

of half-BPS solutions to Type IIB supergravity have been constructed are for the following

spacetimes warped over a two-dimensional Riemann surface Σ: AdS4 × S2 × S2 ×Σ [9] and

AdS2×S2×S4×Σ [10]. These solutions provide the holographic duals to interface solutions

and Wilson loops, respectively.

In this dissertation, we investigate the existence of half-BPS solutions to Type IIB super-

gravity on two sets of spacetimes that contain an internal (warped) AdS2 factor, and which

are the double-analytic counterpart to two previously studied cases. Experience with solu-

tions to supergravity on spacetimes related through double analytic continuation therefore

motivates the search for new solutions, and suggests that their solutions should be closely re-

lated mathematically, though their physical spacetime structure may be quite different. The

study of AdS2 holography provides further motivation for the search for these supergrav-

ity solutions. Holography on two-dimensional Anti-de Sitter spacetime is arguably less well

understood than its higher-dimensional counterparts. This has lead to significant problems

in the realization of the AdS2/CFT1 correspondence [11, 12, 13, 14], a common source of

which is the disconnectedness of the AdS2 boundary [15]. The technique of double analytic

continuation is therefore a powerful guide in the construction of AdS2 solutions. In addition

to the solutions of [9] and [10] to Type IIB supergravity, a more recent example of AdS2

solutions related by double analytic continuation are the AdS2 × S7 solutions to massive

Type IIA constructed in [16] from the AdS7 × S2 solutions of [17].

In the first part, we consider half-BPS solutions to Type IIB supergravity on a spacetime

of the form AdS2 × S6 × Σ [1, 2]. By double analytic continuation, we expect that these

solutions are related to those for a spacetime of the form AdS6×S2×Σ, which were obtained

in [18, 19, 20, 21]. The motivation for that work was the construction of holographic duals to

five-dimensional superconformal field theories (SCFTs). For AdS6×S2, the SO(2, 5)⊕SO(3)
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isometry algebra of the spacetime manifold extends to invariance under the corresponding

real form of the exceptional Lie superalgebra F (4), which is the unique superconformal

algebra in 5 spacetime dimensions. For AdS2 × S6, the isometry algebra SO(2, 1) ⊕ SO(7)

now extends to a different real form of the exceptional Lie superalgebra F (4), which is one

of the superconformal algebras in 2 dimensions with 16 supercharges [22, 23]. The relation

between these two problems is similar to the one encountered between gravity duals to Wilson

loops [24] and interface solutions [25].

We begin by constructing the local form of half-BPS solutions to Type IIB supergravity

for warped AdS2×S6 following the strategy used for AdS6×S2. We derive the reduced BPS

equations for the general Ansatz dictated by SO(2, 1)⊕SO(7) isometry for the fields of Type

IIB supergravity. These equations are very closely related to the reduced BPS equations for

the AdS6×S2 case, but differ by subtle and crucially important signs and factors of i =
√
−1.

We provide a detailed comparison between the mathematical equations for both cases.

Using methods which are analogous to the ones developed to solve the reduced BPS

equations for the AdS6×S2 case, we construct the general local solutions for the AdS2×S6

case in terms of two locally holomorphic functions A± on the Riemann surface Σ. The

differences between the AdS2×S6 and AdS6×S2 solutions are again subtle, but crucial, and

to facilitate direct comparisons we discuss both cases in parallel. To solve the reduced BPS

equations, we make use of the solution to the axion-dilaton Bianchi identities, but derive

the Bianchi identity for the 3-form field strength from the BPS equations. To complete

the discussion, we verify that the full set of Type IIB field equations are satisfied when the

bosonic supergravity fields are given by the solutions to the BPS equations and axion-dilaton

Bianchi identities. We show this for the AdS2×S6 and AdS6×S2 cases in parallel, and thus

provide this check also for the solutions constructed in [26].

The solutions obtained for the supergravity fields satisfy the BPS and field equations, but

they become physically viable only after certain reality, positivity and regularity conditions

are enforced. We obtain the constraints on the functions A± required by physical positivity

and regularity conditions on the supergravity fields, and exhibit crucial differences between
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the AdS2 × S6 and AdS6 × S2 cases. We discuss the possibility of performing a “double

analytic continuation” of the global AdS6×S2 solutions constructed in [19, 20] to the present

case of AdS2×S6. Although such continuations are found to satisfy the field equations, they

appear to be neither supersymmetric nor physically regular. Therefore, the construction of

global AdS2 × S6 solutions must be conducted independently of the AdS6 × S2 case. With

that objective in mind, we derive the explicit forms of the two-form and six-form potentials

for the AdS2 × S6 and the AdS6 × S2 solutions.

We continue our investigation of this case in the second part, where we turn to the

question of global half-BPS AdS2 × S6 solutions. For AdS6 × S2, globally regular and

geodesically complete solutions sourced by the charges p, q of the complex three-form field

strength of Type IIB were shown to provide full back-reacted geometries for the near-horizon

region of general (p, q) five-brane webs [19, 20, 21]. Therefore, we shall investigate the

existence of global AdS2×S6 solutions sourced by seven-form charges p, q, which are naturally

associated with (p, q)-strings. We shall examine the emergence of (p, q)-string web solutions

[27, 28, 29] in the near-horizon limit. Although the supergravity fields of the AdS2 × S6

solutions differ from those of the AdS6×S2 solutions merely by certain sign reversals, these

simple differences make the construction of globally regular AdS2×S6 solutions intricate and

technically difficult. While we shall succeed in producing solutions with multiple (p, q)-strings

in the near-horizon limit, the geodesic completeness of such solutions remains unsettled.

In the third part of this dissertation, we consider half-BPS solutions to Type IIB super-

gravity on a spacetime of the form AdS2×S5×S1×Σ [3]. In [23], a general correspondence

was proposed between certain Lie superalgebras with 16 fermionic generators and half-BPS

solutions to either Type IIB supergravity or M-theory. In the case of Type IIB, the semi-

simple Lie superalgebras H are subalgebras of PSU(2, 2|4), and the corresponding half-BPS

solutions are invariant under H and locally asymptotic to the maximally supersymmetric

solution AdS5 × S5. It is shown that there exist a finite number of such subalgebras H, and

thus one obtains a classification of half-BPS solutions with the above asymptotics. Among

these are the special classes of exact solutions previously found in [9] and [10], while those
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of [18, 19, 20, 21] and [1, 2] are absent since neither F (4) nor any of its real forms are

subalgebras of PSU(2, 2|4).

Half-BPS solutions related to D7 branes in Type IIB supergravity are of particular in-

terest. The near-horizon limits of D7 probe or D7/D3 intersecting branes seem to support

the existence of corresponding half-BPS solutions. However, D7 branes also produce fla-

vor multiplets which ultimately break exact conformal invariance, and by the arguments

of [30] and [31, 32] (which follows earlier work on D7 branes in [33, 34]) no fully back-

reacted near-horizon limit solutions corresponding to D7 branes should exist. The classifi-

cation of [23] reveals two cases, corresponding to the subalgebras SU(1, 1|4)⊕ SU(1, 1) and

SU(2, 2|4)⊕SU(2), whose global symmetries and spacetime structure match those of the D7

probe or D7/D3 intersecting brane analysis. Each superalgebra contains a purely bosonic

invariant subalgebra, respectively SU(1, 1) and SU(2), which is not required by supercon-

formal invariance. Additionally, these extra bosonic invariant subalgebras are incompatible

with asymptotic AdS5 × S5 behavior (see Section 5.4 of [23] and references therein). Their

removal yields the respective cases SU(1, 1|4) and SU(2, 2|2), for which the superalgebra

correspondence suggests the existence of half-BPS solutions. However, these cases no longer

possess the symmetries necessary for fully back-reacted near-horizon D7 brane solutions.

Therefore, we consider half-BPS solutions with SO(2, 1) ⊕ SO(6) ⊕ SO(2) symmetry,

corresponding to the maximal bosonic symmetry of the superalgebra SU(1, 1|4) and realized

on a spacetime of the form AdS2 × S5 × S1 warped over a Riemann surface Σ. Half-BPS

solutions invariant under SU(2, 2|2) were investigated in [35], where it was shown that on

either AdS5×S2×S1×Σ or AdS5×S3×Σ the only non-trivial solution that exists is AdS5×S5.

Employing the same strategy here, we prove that the only half-BPS solution invariant under

SO(2, 1)⊕SO(6)⊕SO(2) is once again AdS5×S5. Thus, in the supergravity limit no fully

back-reacted solutions of D7 branes can exist whose near-horizon limit match the symmetries

and spacetime geometries of either case. Note that in contrast to the SU(2, 2|2) solutions,

the bosonic invariant Lie subalgebra SU(1, 1) which is removed to obtain the SU(1, 1|4)

case corresponds to a part of the isometry algebra for the original Anti-de Sitter space,
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and thus part of the conformal symmetry of the higher-dimensional dual CFT is broken.

Additional arguments presented in Section 5.4 of [23] provide further evidence that the

case of SU(1, 1|4) ⊕ SU(1, 1) cannot support half-BPS solutions with genuine asymptotic

AdS5 × S5 behavior, and so we do not consider such solutions here.
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CHAPTER 2

AdS2 × S6 versus AdS6 × S2

2.1 AdS2 × S6 × Σ Ansatz in Type IIB supergravity

In this section we begin by reviewing the salient features of Type IIB supergravity needed

in this paper, and then obtain the SO(2, 1)⊕SO(7)-invariant Ansatz for the bosonic super-

gravity fields and the generator of supersymmetry transformations.

2.1.1 Type IIB supergravity review

The bosonic fields of Type IIB supergravity consist of the metric gMN , the complex-valued

axion-dilaton field B, a complex-valued two-form potential C(2) and a real-valued four-form

field C(4). The field strengths of the potentials C(2) and C(4) are given as follows,

F(3) = dC(2)

F(5) = dC(4) +
i

16
(C(2) ∧ F̄(3) − C̄(2) ∧ F(3)) (2.1)

The field strength F(5) satisfies the well-known self-duality condition F(5) = ∗F(5). Instead

of the scalar field B and the 3-form F(3), the fields that actually enter the BPS equations

are composite fields, namely the one-forms P,Q representing B, and the complex 3-form G

representing F(3), given in terms of the fields defined above by the following relations,

P = f 2 dB f 2 = (1− |B|2)−1

Q = f 2 Im (BdB̄)

G = f(F(3) −BF̄(3)) (2.2)
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Under the SU(1, 1) ∼ SL(2,R) global symmetry of Type IIB supergravity, the Einstein-

frame metric gMN and the four-form C(4) are invariant, while B and C(2) transform as,

B → (uB + v)/(v̄B + ū)

C(2) → uC(2) + vC̄(2) (2.3)

where SU(1, 1) is parametrized by u, v ∈ C with |u|2 − |v|2 = 1. The field B takes values

in the coset SU(1, 1)/U(1)q and Q plays the role of a composite U(1)q gauge field. The

transformation laws for the composite fields are as follows [36],

P → e2iθP θ = arg(vB̄ + u)

Q → Q+ dθ

G → eiθG (2.4)

Equivalently, one may formulate Type IIB supergravity directly in terms of gMN , F(5), P,Q

and G provided these fields are subject to the Bianchi identities [36, 37].

The fermionic fields are Weyl fermions with opposite 10-dimensional chirality, namely the

dilatino λ satisfying Γ11λ = λ and the gravitino ψM satisfying Γ11ψM = −ψM . The crucial

information for the construction of supersymmetric solutions to Type IIB supergravity are

the supersymmetry variations of the fermions, respectively δλ and δψM . The BPS equations

are the conditions that the fermion fields and their variations vanish, and are given by,1

0 = i(Γ · P )B−1ε∗ − i

24
(Γ ·G)ε

0 = (∇M −
i

2
QM)ε+

i

480
(Γ · F(5))ΓMε−

1

96
(ΓM(Γ ·G) + 2(Γ ·G)ΓM)B−1ε∗ (2.5)

Here, ε is the generator of infinitesimal supersymmetry transformations. It transforms under

the minus chirality Weyl spinor representation of SO(1, 9) and∇M is the covariant derivative

1The signature convention for the metric is (− + · · ·+), the Dirac-Clifford algebra is defined by the
relation {ΓM ,ΓN} = 2ηMNI32 and the charge conjugation matrix B is defined by the relations B∗B = I and
BΓMB−1 = (ΓM )∗. Repeated indices are summed over, as usual, and complex conjugation is denoted by a
bar for functions and by a star for spinors. We will also use the notation Γ · T ≡ ΓM1···MpTM1···Mp for the
contraction of an antisymmetric tensor field T of rank p with a Γ-matrix of the same rank.
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acting on this representation. In sec. 2.5 we will show that the solutions with 16 supersym-

metries to these BPS equations satisfy the field equations, and when formulated in terms of

P,Q,G, F(5) also satisfy their Bianchi identities.

2.1.2 SO(2, 1)⊕ SO(7) invariant Ansatz for supergravity fields

We construct a general Ansatz for the bosonic fields of Type IIB supergravity invariant or

covariant under the SO(2, 1) ⊕ SO(7) symmetry algebra. The SO(2, 1) and SO(7) parts

are realized by a geometry which contains a factor AdS2 as well as a factor S6, so that the

spacetime is given by,

AdS2 × S6 (2.6)

warped over a two-dimensional space Σ. To produce a geometry of Type IIB supergravity,

Σ has to be orientable and carry a Riemannian metric, and is therefore a Riemann surface.

The resulting SO(2, 1)⊕ SO(7)-invariant Ansatz for the metric can be written as,

ds2 = f 2
2 dŝ

2
AdS2

+ f 2
6 dŝ

2
S6 + ds2

Σ (2.7)

where f2, f6, and ds2
Σ are functions of Σ. We introduce an orthonormal frame,

em = f2 ê
m m = 0, 1

ei = f6 ê
i i = 2, 3, 4, 5, 6, 7

ea a = 8, 9 (2.8)

where êm and êi respectively refer to orthonormal frames for the spaces AdS2 and S6 with

unit radius and ea is an orthonormal frame on Σ only. In particular, we have,

dŝ2
AdS2

= η(2)
mnê

m ⊗ ên η(2) = diag(−+)

dŝ2
S6 = δij ê

i ⊗ êj

ds2
Σ = δabe

a ⊗ eb (2.9)

The requirement for SO(2, 1)⊕ SO(7)-invariance restricts F(5) = 0 as well as,

P = pae
a Q = qae

a G = gae
a ∧ e0 ∧ e1 (2.10)
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where the components pa, qa, and ga are complex and depend on Σ only. We have thus

parametrized the entire configuration in terms of functions that have non-trivial dependence

only on Σ, and it will be convenient to set up the frame and coordinates on Σ more explicitly.

We will use complex frame indices z, z̄ with the following conventions,

δzz̄ = 2 δzz̄ =
1

2
ez =

1

2
(e8 + ie9) ez̄ =

1

2
(e8 − ie9) (2.11)

We introduce local complex coordinates w, w̄ such that the metric on Σ reads,

ds2
Σ = 4ρ2|dw|2 (2.12)

and we have,

ez = ρdw Dz = ρ−1∂w ω̂z = iρ−2∂wρ

ez̄ = ρdw̄ Dz̄ = ρ−1∂w̄ ω̂z̄ = −iρ−2∂w̄ρ (2.13)

This completes the Ansatz for the bosonic fields.

2.1.3 SO(2, 1)⊕ SO(7) invariant Ansatz for susy generators

Next, we decompose the supersymmetry generator spinor ε in an SO(2, 1)⊕SO(7)-invariant

basis of Killing spinors. The Killing spinor equations on AdS2 and on S6 were derived in

Appendix B of [24] and are respectively given by,(
∇̂m −

1

2
η1γm ⊗ I8

)
χη1,η2α = 0(

∇̂i −
i

2
η2I2 ⊗ γi

)
χη1,η2α = 0 (2.14)

where m and i are all frame indices. Note that ∇̂m and ∇̂i stand for the covariant spinor

derivatives respectively on the spaces AdS2 and S6 with unit radius. The spinors χη1,η2α are

16-dimensional, and the parameters η1 and η2 can take the values ±. For each value of

(η1, η2), these equations admit solutions with a four-fold degeneracy, which is labelled by the

index α = 1, 2, 3, 4. The action of the chirality matrices is given by,(
γ(1) ⊗ I8

)
χη1,η2α = χ−η1,η2α(

I2 ⊗ γ(2)

)
χη1,η2α = χη1,−η2α (2.15)
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These equations can be understood as follows. Beginning with η1 = η2 = +, we pick a basis

χ+,+
α for the four-dimensional vector space of spinors for fixed η1, η2 such that the action of

γ(1) and γ(2) are diagonal. The basis for χη1,η2α can then simply be defined for the remaining

three values of η1, η2 by the action of the chirality matrices above.

Using arguments similar to the ones used for the AdS6 × S2 case, we relate the complex

conjugate basis spinors to the original basis by,(
B−1

(1) ⊗B
−1
(2)

)
(χη1,η2α )∗ = η2χ

η1,η2
α (2.16)

for all values of η1, η2, and α. Since this decomposition is now canonical in terms of the

degeneracy index α, we will no longer indicate it explicitly. An arbitrary 32-component

complex spinor ε may be decomposed onto the above Killing spinors as follows,

ε =
∑

η1,η2=±

χη1,η2 ⊗ ζη1,η2 (2.17)

where ζη1,η2 is a complex 2-component spinor for each η1, η2, and the four-fold degeneracy

index is suppressed. As a supersymmetry generator in Type IIB, the spinor ε must be of

definite chirality Γ11ε = −ε, which imposes the following chirality requirements on ζ,

γ(3)ζ−η1,−η2 = −ζη1,η2 (2.18)

Finally, the charge conjugate spinor is given by,

B−1ε∗ =
∑
η1,η2

χη1,η2 ⊗ ?ζη1,η2 ?ζη1,η2 = −iη2σ
2ζ∗η1,−η2 (2.19)

This completes the construction of the SO(2, 1)⊕ SO(7)-invariant Ansatz.

2.2 Reducing the BPS equations

The residual supersymmetries, if any, of a configuration of purely bosonic Type IIB su-

pergravity fields are governed by the BPS equations of (2.5). As we will discuss in more

detail in sec. 2.5, any SO(2, 1)⊕ SO(7) invariant Ansatz for the supergravity fields and for
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the 16-component supersymmetry spinor as discussed in sec. 2.1.2 which satisfies the BPS

equations will automatically solve the Bianchi and field equations, and thus automatically

provides a half-BPS solution to Type IIB supergravity.

In this section, we reduce the BPS equations to the AdS2 × S6 × Σ Ansatz, expose its

residual symmetries, and solve those reduced equations which are purely algebraic in the

supersymmetry spinor components. This will produce simple algebraic expressions for the

metric factors f2, f6 in terms of the spinors. The remaining reduced BPS equations will be

solved for the remaining bosonic fields in subsequent sections. The strategy employed here

is the same as the one used in [26].

2.2.1 The reduced BPS equations

We use the τ matrix notation introduced originally in [38] in order to compactly express the

action of the various γ matrices on the reduced supersymmetry generator ζ introduced in

(2.17). Defining τ (ij) = τ i ⊗ τ j with i, j = 0, 1, 2, 3, we identify τ 0 with the identity matrix

and τ i for i = 1, 2, 3 with the standard Pauli matrices. The action of these matrices on ζ

may be written in components as follows,

(τ (ij)ζ)η1,η2 ≡
∑
η′1,η

′
2

(τ i)η1η′1(τ
j)η2η′2ζη′1η′2 (2.20)

The reduced BPS equations may then be calculated using the decomposition of ε onto Killing

spinors given in (2.17). The reduced dilatino equation is given by,

0 = −4paγ
aσ2ζ∗ + gaτ

(12)γaζ (2.21)

while the reduced gravitino equations take the following form,

(m) 0 =
−i
2f2

τ (21)ζ +
Daf2

2f2

γaζ − 3

16
gaτ

(12)γaσ2ζ∗

(i) 0 =
1

2f6

τ (02)ζ +
Daf6

2f6

γaζ +
1

16
gaτ

(12)γaσ2ζ∗

(a) 0 =

(
Da +

i

2
ω̂aσ

3 − i

2
qa

)
ζ − 3

16
gaτ

(12)σ2ζ∗ +
1

16
gbτ

(12)γa
bσ2ζ∗ (2.22)
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The derivative Da acts on functions of Σ only, and is defined with respect to the frame ea of

Σ, so that the total differential dΣ on Σ takes the form dΣ = eaDa, while the U(1)-connection

with respect to frame indices is ω̂a. The reduction is carried out in Appendix B.

2.2.2 Symmetries of the reduced BPS equations

The global SU(1, 1) symmetry of Type IIB supergravity, whose action on the bosonic fields

was given in (2.3) and (2.4), survives the reduction to the SO(2, 1)⊕SO(7) invariant Ansatz.

It leaves the metric functions f2, f6, ρ invariant, transforms the axion-dilaton field B and the

two-form C(2) as in (2.3), transforms the reduced supersymmetry spinor ζ by ζ → eiθ/2ζ,

and transforms the composite fields of (2.4) as follows,

U(1)q : qa → qa +Daθ pa → e2iθpa ga → gae
iθga (2.23)

The reduced BPS equations are also invariant under the following discrete symmetries which

act only on the reduced supersymmetry generator but not on the reduced supergravity fields,

I : ζ → −τ (11)σ3ζ J : ζ → τ (32)ζ (2.24)

Finally, charge conjugation K acts by,

K : ζ → τ (22)σ2ζ∗ qa → −qa pa → p̄a ga → −ḡa (2.25)

The chirality requirement of Type IIB restricts the spinor ζ to the subspace,

Iζ = −τ (11)σ3ζ = ζ (2.26)

The symmetries I, J , K commute with one another and may be diagonalized simultaneously.

Both I and J commute with U(1)q, but K does not commute with U(1)q.

2.2.3 Restricting to a single subspace of J

The eigenspace of I being already restricted by the chirality condition of (2.26), we now

derive the restrictions to the eigenspaces of J and K which are implied by the reduced BPS
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equations, following the same procedure that was used for AdS6 × S2 in [26]. For any value

of ga, we have the following quadratic relations in ζ,

gaζ
tTτ (12)σ2γaζ = 0 (2.27)

provided the matrix T belongs to the following set of τ (ij)-matrices,

T ∈ T =
{
τ (00), τ (10), τ (20), τ (31), τ (32), τ (33)

}
(2.28)

For these values of T , the combination Tτ (12)σ2γa is anti-symmetric for a = 1, 2 and the

relation (2.27) indeed holds automatically. The reduced dilatino equation implies,

p̄aζ
†Tγaζ = 0 (2.29)

Making use also of the chirality condition (2.26), we obtain the further equation,

p̄aζ
†Tτ (11)γaσ3ζ = 0 (2.30)

When both T and Tτ (11) belong to T , which is the case for only a single pair of matrices,

namely T = τ (20) or T = τ (31), and assuming that pa does not vanish identically, we may

combine (2.29) and (2.30) to obtain the following relations,

ζ†τ (20)γaζ = ζ†τ (31)γaζ = 0 (2.31)

which hold for a = 1, 2 and are equivalent to one another upon using the chirality condition.

Next, we analyze the gravitino equations. Multiplying equations (m) and (i) of (2.22)

on the left by ζ†Tσp for p = 0, 3, we obtain a cancellation of the last term when Tτ (12) is

anti-symmetric (which is the same condition we had for the dilatino equation),

0 = − i

2f2

ζ†Tτ (21)σpζ +
Daf2

2f2

ζ†Tσpγaζ

0 =
1

2f6

ζ†Tτ (02)σpζ +
Daf6

2f6

ζ†Tσpγaζ (2.32)

In view of (2.31), the second term will cancel when T = τ (20) and T = τ (31). so that we

obtain the following relations from the remaining cancellation of the first term,

ζ†τ (01)σpζ = 0 p = 0, 3

ζ†τ (22)σpζ = 0 (2.33)
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and their chiral conjugates, which may be obtained by using the chirality condition.

Next, we use the general result of [25] that the bilinear equation ζ†Mζ = 0 is solved by

projecting ζ onto a subspace via a projection matrix Π that anti-commutes with M . Thus,

we must find a projector Π with the following properties,

[Π, τ (11)σ3] = {Πτ (01)σp} = {Π, τ (22)σp} = 0 (2.34)

The solutions to these equations are τ (32), τ (23), τ (32)σ3, and τ (23)σ3. These four possibilities

are pairwise equivalent under the chirality relation. The projector Π = τ (32) precisely corre-

sponds to the symmetry J , so imposing a restriction on the spinor space by this operator is

the only consistent restriction. Therefore, we will impose the restriction,

τ (32)ζ = νζ ν = ±1 (2.35)

which solves all the above bilinear relations for either choice of ν, but not both.

We may solve the projection relations given in (2.26) and (2.35) in terms of two indepen-

dent complex-valued one-component spinors α and β. Denoting the components of ζ by ζabc,

where a, b label the τ -matrix basis, while c labels the chirality basis in which σ3 is diagonal,

and a, b, c take values ±, we have,

ᾱ = ζ+++ = −ζ−−+ = −iνζ+−+ = +iνζ−++

β = ζ−−− = +ζ++− = −iνζ−+− = −iνζ+−− (2.36)

2.2.4 The reduced BPS equations in component form

To decompose the reduced BPS equations in a basis of complex frame indices z, z̄, we use

(2.11) along with the following basis of γ-matrices compatible with a diagonal σ3,

γz =
1

2
(γ8 + iγ9) =

0 1

0 0

 γ z̄ =
1

2
(γ8 − iγ9) =

0 0

1 0

 (2.37)

Using (2.36) the reduced dilatino equations become,

4pzα + gzβ = 0

4pz̄β̄ + gz̄ᾱ = 0 (2.38)
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The gravitino equations which are purely algebraic in α, β, ᾱ, β̄ are given by,

1

2f2

ᾱ +
Dzf2

2f2

β +
3

16
gzα = 0

− 1

2f2

β +
Dz̄f2

2f2

ᾱ +
3

16
gz̄β̄ = 0

ν

2f6

ᾱ +
Dzf6

2f6

β − 1

16
gzα = 0

ν

2f6

β +
Dz̄f6

2f6

ᾱ− 1

16
gz̄β̄ = 0 (2.39)

while the gravitino equations which are differential in α, β, ᾱ, β̄ are given by,(
Dz +

i

2
ω̂z −

i

2
qz

)
ᾱ +

1

4
gzβ̄ = 0(

Dz −
i

2
ω̂z −

i

2
qz

)
β +

1

8
gzα = 0(

Dz̄ +
i

2
ω̂z̄ −

i

2
qz̄

)
ᾱ +

1

8
gz̄β̄ = 0(

Dz̄ −
i

2
ω̂z̄ −

i

2
qz̄

)
β +

1

4
gz̄α = 0 (2.40)

In addition, we have the complex conjugate equations to all of the equations above. Note

that since G and P are complex-valued, we have in general (gz)
∗ 6= gz̄ and (pz)

∗ 6= pz̄.

2.2.5 Determining the radii f2, f6

One may solve for the radii starting from the algebraic gravitino equations of (2.39). Taking

the linear combination of the first equation in (2.39) with coefficient β̄ and the complex

conjugate of the second equation α in (2.39) with coefficient ᾱ on the one hand, and the

third equation in (2.39) with coefficient −β̄ and the complex conjugate of the fourth equation

with coefficient ᾱ, we obtain the following equations,

Dzf2

2f2

(αᾱ + ββ̄) = − 3

16
gzαβ̄ −

3

16
(gz̄)

∗ᾱβ

Dzf6

2f6

(αᾱ− ββ̄) = − 1

16
gzαβ̄ +

1

16
(gz̄)

∗ᾱβ (2.41)
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These combinations suggest that we should evaluate the covariant derivatives Dz(αᾱ± ββ̄)

out of the differential equations (2.40) for α, β, ᾱ, β̄, and we find,

Dz(αᾱ + ββ̄) = −3

8
gzαβ̄ −

3

8
(gz̄)

∗ᾱβ

Dz(αᾱ− ββ̄) = −1

8
gzαβ̄ +

1

8
(gz̄)

∗ᾱβ (2.42)

Eliminating all flux dependences between (2.41) and (2.42), we may integrate the resulting

relations, to obtain the following expressions for the radii,

f2 = c2(αᾱ + ββ̄)

f6 = c6(αᾱ− ββ̄) (2.43)

where c2 and c6 are integration constants.

2.2.6 Solving the remaining algebraic gravitino equations

To obtain the results of the previous subsection, we have taken only pairwise linear combina-

tions of the algebraic gravitino equations. Here, we take the orthogonally conjugate pairwise

linear combinations. To guarantee that the four resulting bilinear equations are equivalent

to the original four algebraic gravitino equations, we must have that the determinant of the

two linear combinations is αᾱ+ ββ̄ 6= 0. Therefore, we multiply the first equation by α and

the second by −β, so that the terms in Dzf2 and Dzf6 cancel out, and we are left with,

1

2c2

+
3

16
gzα

2 − 3

16
(gz̄)

∗β2 = 0

ν

2c6

− 1

16
gzα

2 +
1

16
(gz̄)

∗β2 = 0 (2.44)

The last equation may be simplified with the help of the first and yields,

c6 = −3νc2 (2.45)

Recall that ν is allowed to take either value ν = ±1, but not both.
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2.2.7 Summary and comparison to AdS6 × S2

In this subsection, we summarize the remaining reduced BPS equations for the AdS2 × S6

case and present the result in parallel with the corresponding results for the remaining

reduced BPS equations obtained for the case AdS6 × S2 in [26]. To this end we introduce

the quantities K and c to distinguish between the two cases as follows,

K = i c = νc6 for AdS2 × S6

K = 1 c = c6 for AdS6 × S2 (2.46)

With the help of these quantities the remaining reduced BPS equations take on a remarkably

unified form. The remaining reduced dilatino equations are,

−4iKpzα + gzβ = 0

4pz̄β̄ − iKgz̄ᾱ = 0 (2.47)

along with their complex conjugates. The radii in terms of the spinors α, β are given by,

f2 = −ν
3
c6(αᾱ−K2ββ̄)

f6 = c6(αᾱ +K2ββ̄) (2.48)

The remaining algebraic relation between the spinors and the fluxes is given by,

K

2c
− i

16
gzα

2 +
i

16
(gz̄)

∗β2 = 0 (2.49)

along with its complex conjugate. The remaining differential equations on the spinors are,(
Dz −

i

2
ω̂z +

i

2
qz

)
α +

i

8K
(gz̄)

∗β = 0(
Dz −

i

2
ω̂z −

i

2
qz

)
β +

i

8K
gzα = 0(

Dz +
i

2
ω̂z −

i

2
qz

)
ᾱ− iK

4
gzβ̄ = 0(

Dz +
i

2
ω̂z +

i

2
qz

)
β̄ − iK

4
(gz̄)

∗ᾱ = 0 (2.50)

along with their complex conjugates.
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2.3 Local solutions to the BPS equations

The BPS equations have been reduced to the AdS2 × S6 × Σ Ansatz and solved for the

radii f2 and f6 in the previous section. In this section, the remaining equations, namely

the dilatino BPS equations of (2.47), the remaining algebraic gravitino equation of (2.49)

and the four differential equations (2.50), will be completely solved locally on Σ in terms of

two locally holomorphic functions A± on Σ. Thus we will obtain expressions for all bosonic

supergravity fields that satisfy the BPS equations in terms of A±.

2.3.1 Eliminating the reduced flux fields

We start from the equations summarized in sec. 2.2.7 and keep K and c as defined in (2.46)

for easier comparison with the AdS6 × S2 case. We begin by eliminating the reduced flux

fields gz, gz̄ and their complex conjugates in favor of pz, pz̄ and their complex conjugates

using the dilatino BPS equations of (2.47). The algebraic relation (2.49) becomes,

pz
α3

β
− (pz̄)

∗β
3

α
+

2

c
= 0 (2.51)

The differential equations (2.50) take the following form,(
Dz −

i

2
ω̂z +

i

2
qz

)
α− 1

2
(pz̄)

∗β
2

α
= 0(

Dz −
i

2
ω̂z −

i

2
qz

)
β − 1

2
pz
α2

β
= 0(

Dz +
i

2
ω̂z −

i

2
qz

)
ᾱ +K2pz

αβ̄

β
= 0(

Dz +
i

2
ω̂z +

i

2
qz

)
β̄ +K2(pz̄)

∗ ᾱβ

α
= 0 (2.52)

Equations (2.51) and (2.52) are the remaining relations to be solved. Their solution will give

α, β, f2, f6, ρ, pz and therefore B as well as the flux field gz, gz̄ and their complex conjugates

via the reduced dilatino equations.
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2.3.2 Integrating the first pair of differential equations

Next, we use the expressions for pz, pz̄, qz and their complex conjugates in terms of the axion-

dilation field B via the relations (2.2) and (2.10) to solve the first two equations of (2.52) in

terms of holomorphic functions. To do so, we multiply the first equation of (2.52) by α and

the second equation of (2.52) by β, switch to conformally flat complex coordinates (w, w̄) on

Σ as introduced in (2.13), and use (2.2) and (2.10) to express pz and qz in terms of B,

∂w(ρα2) = −1

2
f 2(B∂wB̄ − B̄∂wB)ρα2 + f 2(∂wB̄)ρβ2

∂w(ρβ2) = +
1

2
f 2(B∂wB̄ − B̄∂wB)ρβ2 + f 2(∂wB)ρα2 (2.53)

By taking suitable linear combinations we obtain the following equivalent equations,

∂w
(
ln{ρ(α2 − B̄β2)}+ ln f

)
= 0

∂w
(
ln{ρ(Bα2 − β2)}+ ln f

)
= 0 (2.54)

These equations are solved in terms of two independent holomorphic 1-forms κ±, as follows,

ρf
(
α2 − B̄β2

)
= κ̄+

ρf
(
β2 −Bα2

)
= κ̄− (2.55)

Inverting (2.55), we obtain the spinor components α, β, and their complex conjugates ᾱ, β̄,

ρα2 = f(κ̄+ + B̄κ̄−) ρᾱ2 = f(κ+ +Bκ−)

ρβ2 = f(Bκ̄+ + κ̄−) ρβ̄2 = f(B̄κ+ + κ−) (2.56)

The right side of all four equations involves only the holomorphic data κ± and the B-field

and their complex conjugates. It remains to solve for the fields ρ and B.
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2.3.3 Preparing the second pair of differential equations

Next, we express the third and fourth equation of (2.52) in terms of B, ρ and the local

complex coordinates (w, w̄), and obtain the following set of equations,(
∂w − ∂w ln ρ2 − f 2B∂wB̄

)
(fρᾱ2) + 2K2f 2(∂wB)fρ

αᾱβ̄

β
= 0

(
∂w − ∂w ln ρ2 − f 2B̄∂wB

)
(fρβ̄2) + 2K2f 2(∂wB̄)fρ

ᾱββ̄

α
= 0 (2.57)

The spinors α, β and their complex conjugates, as well as the derivatives of fρᾱ2 and fρβ̄2

may be evaluated in terms of B, ρ, and κ± and their first derivatives using (2.52). After

some simplifications, we obtain the following equivalent system of equations,

∂w ln ρ2 − f 2(∂wB̄)
κ+ +Bκ−
B̄κ+ + κ−

− 2K2f 2(∂wB̄)e+iϑ =
B̄∂wκ+ + ∂wκ−
B̄κ+ + κ−

∂w ln ρ2 − f 2(∂wB)
B̄κ+ + κ−
κ+ +Bκ−

− 2K2f 2(∂wB)e−iϑ =
∂wκ+ +B∂wκ−
κ+ +Bκ−

(2.58)

where we have used the following abbreviation for the phase angle ϑ,

eiϑ =
ᾱβ

αβ̄
=

(κ+ +Bκ−)|Bκ̄+ + κ̄−|
|κ̄+ + B̄κ̄−|(B̄κ+ + κ−)

(2.59)

The dependence of the algebraic relation (2.51) on α and β may also be eliminated using

(2.56), while pz, pz̄ may be expressed in terms of B, and we find the equivalent relation,

f 3(∂wB)
(κ̄+ + B̄κ̄−)

3
2

(Bκ̄+ + κ̄−)
1
2

− f 3(∂wB̄)
(Bκ̄+ + κ̄−)

3
2

(κ̄+ + B̄κ̄−)
1
2

+
2ρ2

c
= 0 (2.60)

Equations (2.58) and (2.60) are supplemented by their complex conjugates.

Although on the face of it the remaining equations (2.58) and (2.60) depend on both κ±

and their complex conjugates, the conformal invariance of these equations tells us that the

dependence is actually only through the combination ρ2/κ− and the ratio,

λ =
κ+

κ−
(2.61)

In terms of these variables, the equations take the following form,

∂w ln
ρ2

κ−
− f 2(∂wB̄)

λ+B

B̄λ+ 1
− 2K2f 2(∂wB̄)e+iϑ =

B̄∂wλ

B̄λ+ 1

∂w ln
ρ2

κ−
− f 2(∂wB)

B̄λ+ 1

λ+B
− 2K2f 2(∂wB)e−iϑ =

∂wλ

λ+B
(2.62)
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where we now have,

eiϑ =
(λ+B)|Bλ̄+ 1|
|λ̄+ B̄|(B̄λ+ 1)

(2.63)

as well as the equation resulting from (2.60),

(λ̄+ B̄)
3
2

(Bλ̄+ 1)
1
2

f 3∂wB −
(Bλ̄+ 1)

3
2

(λ̄+ B̄)
1
2

f 3∂wB̄ +
2ρ2

c κ̄−
= 0 (2.64)

In summary, we have prepared the remaining reduced BPS equations in the form of complex

differential equations (2.62) and (2.64) along with their complex conjugate equations.

2.3.4 Decoupling by changing variables

In this subsection, we will perform two consecutive changes of variables to decouple the

remaining equations.

2.3.4.1 First change of variables, from B to Z

A first change of variables replaces B by a complex field Z and is designed to parametrize

the phase eiϑ in (2.63) without the square root required from its definition. We make the

following rational change of variables to eliminate B in terms of a complex function Z,

Z2 =
λ+B

Bλ̄+ 1
B =

Z2 − λ
1− λ̄Z2

(2.65)

which will allow us to express eiϑ and f 2 as rational functions of Z and its complex conjugate,

eiϑ =
Z

Z̄

(
1− λZ̄2

1− λ̄Z2

)
f 2 =

(1− λZ̄2)(1− λ̄Z2)

(1− |λ|2)(1− |Z|4)
(2.66)

The equations (2.62) now take the form,

∂w ln
ρ2

κ−
=

2Z2Z̄ + 4K2Z

1− |Z|4
∂wZ̄ +

Z̄2 − λ̄+ 2K2ZZ̄3 − 2K2ZZ̄λ̄

(1− |λ|2)(1− |Z|4)
∂wλ

∂w ln
ρ2

κ−
=

2Z−1 + 4K2Z̄

1− |Z|4
∂wZ +

Z2Z̄2λ̄− Z̄2 − 2K2Z̄Z−1 + 2K2ZZ̄λ̄

(1− |λ|2)(1− |Z|4)
∂wλ (2.67)
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Taking the difference of these two equations eliminates the dependence on ρ2/κ−,

(2 + 4K2|Z|2)∂wZ − Z2(4K2 + 2|Z|2)∂wZ̄

=
2Z̄(K2 + |Z|2 +K2|Z|4)− λ̄Z(1 + 4K2|Z|2 + |Z|4)

1− |λ|2
∂wλ (2.68)

while taking their sum gives,

∂w ln ρ̂2 =
1

2
∂w ln

Z

Z̄
−K2 Z̄

Z

(
∂wλ

1− |λ|2

)
(2.69)

where we have changed variables from ρ to ρ̂ in the following way,

ρ̂2 =
ρ2

c κ−κ̄−

|1− Z2λ̄|(1−K2|Z|2)

f |Z|(1− |λ|2)(1 +K2|Z|2)
(2.70)

Finally, eliminating B in favor of Z in the algebraic flux equation (2.64) as well, we obtain,

(1− |λ|2)∂w

(
Z2 + Z̄−2

1− |λ|2

)
− 2∂wλ

1− |λ|2
+ 2ρ̂2κ−

|Z|
Z̄3

(1 +K2|Z|2)2 = 0 (2.71)

It remains to solve the system of equations (2.68), (2.69), and (2.71).

2.3.4.2 Second change of variables, from Z to R, ψ

A second change of variables is inspired by the form of equation (2.69), in which the norm

of Z and its phase enter in distinct parts of the equation. We express the complex field Z

in terms of two real variables, its absolute value R and phase ψ, as follows,

Z2 = Reiψ (2.72)

In terms of these variables (2.69) takes the form,

∂w ln ρ̂2 − i

2
∂wψ +K2e−iψ

∂wλ

1− |λ|2
= 0 (2.73)

while (2.68) becomes,

(1−R2)
∂wR

R
+ (1 + 4K2R +R2)

(
i∂wψ +

λ̄∂wλ

1− |λ|2

)
− 2K2e−iψ(1 +K2R +R2)

1− |λ|2
∂wλ = 0

(2.74)
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and (2.71) becomes,

(R2−1)
∂wR

R
+(R2+1)

(
i∂wψ +

λ̄∂wλ

1− |λ|2

)
− 2R∂wλ

1− |λ|2
e−iψ+2ρ̂2κ−e

iψ/2(1+K2R)2 = 0 (2.75)

The three equations (2.73), (2.74), and (2.75) are the basic starting point for the complete

solution of the full system of reduced BPS equations.

2.3.4.3 Decoupling the equations for ψ and ρ̂2

Adding equations (2.74) and (2.75) cancels the terms proportional to ∂wR, and concen-

trates the entire R-dependence of this sum in an overall multiplicative factor of (1 +K2R)2.

Omitting this factor, the sum becomes,

2i∂wψ +
2λ̄∂wλ

1− |λ|2
− 2K2e−iψ

∂wλ

1− |λ|2
+ 2ρ̂2κ−e

iψ/2 = 0 (2.76)

Equations (2.73) and (2.76) involve only ψ and ρ̂2 but not R. Up to factors of K2, this system

is the same as the system in [26], and we will solve it with the same methods. Adding twice

(2.73) to (2.76) eliminates the term proportional to e−iψ, and we obtain,

∂w ln ρ̂2 +
i

2
∂wψ − ∂w ln(1− |λ|2) + ρ̂2κ−e

iψ/2 = 0 (2.77)

Clearly, this equation involves only the following specific complex combination of ρ̂2 and ψ,

Kξ = ρ̂−2e−iψ/2 (2.78)

where we have included a factor of K in the definition of ξ for later convenience. In terms

of ξ we may express (2.77) as follows,

K∂w
(
ξ(1− |λ|2)

)
= κ−(1− |λ|2) = κ− − κ+λ̄ (2.79)

where we have used the relation κ+ = λκ−. The integrable structure of the system of

equations (2.68), (2.69), and (2.71) has therefore been exposed clearly with the help of this

sequence of changes of variables. Indeed, equation (2.79) involves only the field ξ, which

is the combination of ρ̂ and ψ entering (2.78). Having obtained ξ, equation (2.77) may be

solved for ρ̂ and ψ. Finally, having ρ̂ and ψ, equation (2.74) becomes an equation for R only,

and we will see below that it can be solved as well.
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2.3.5 Solving for ψ, ρ̂2, and R in terms of A±

Having decoupled the reduced BPS equations in the preceding subsection, we will solve the

decoupled equations in the present section. We begin by solving (2.79) for ξ, then obtain ψ,

ρ̂2, and R as described above. We introduce locally holomorphic functions A± such that,

κ± = K∂wA± λ =
∂wA+

∂wA−
(2.80)

Given the one-forms κ±, the functions A± are unique up to an additive constant for each

function.

With the conventions used to define ξ and A±, the equations governing ξ in terms of A±

are identical to those of the AdS6 × S2 case, and we import their solution from [26],

ξ =
L

1− |λ|2
L = A− − Ā+ + λ̄(Ā− −A+) (2.81)

Note that ρ̂ and ψ are directly determined by ξ using equation (2.78).

To solve for R, we begin with equation (2.74) before using (2.73) to eliminate the term

proportional to e−iψ. We then divide the resulting equation by R, and find,

0 =

(
1

R2
− 1

)
∂wR +

(
R +

1

R
+ 4K2

)(
i∂wψ − ∂w ln(1− |λ|2)

)
+

(
R +

1

R
+K2

)
(2∂w ln ρ̂2 − i∂wψ) (2.82)

Changing variable from R to a new variable W , which we conveniently define by,

K2W = R +
1

R
(2.83)

renders equation (2.82) linear in W with an inhomogeneous part,

∂wW − 2(W + 1)∂w ln ρ̂2 + (W + 1)∂w ln(1− λλ̄) = 3i∂wψ − 3∂w ln(1− λλ̄) (2.84)

We note that this equation is now independent of K2 and therefore coincides with the

corresponding equation for the AdS6 × S2 case, whose solution we import from [26],

W = 2 +
6κ2 G
|∂wG|2

(2.85)
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where we have defined κ2 and G through,

κ2 = −|∂wA+|2 + |A−|2

G = |A+|2 − |A−|2 + B + B̄

∂wB = A+∂wA− −A−∂wA+ (2.86)

Since ∂wB is a holomorphic 1-form, there exists a locally holomorphic function B, defined

up to the addition of an arbitrary complex constant. This completes the solution of the

decoupled reduced BPS equations for the fields ψ, ρ̂, and R.

2.4 Supergravity fields of the local solutions

The general local half-BPS solution to Type IIB supergravity with SO(2, 1) ⊕ SO(7) sym-

metry can now be expressed in terms of the locally holomorphic functions A± introduced

above. Here we will translate from the local solution of the reduced BPS equations to the

supergravity fields and discuss some of the immediate properties of the solutions.

For comparison we present the AdS6×S2 and AdS2×S6 cases in parallel. The five-form

field strength and all fermion fields vanish. The remaining bosonic fields in both cases are

distinguished merely by the parameter Λ = K2. The metric Ansatz and Λ are given by,

ds2 = f 2
2ds

2
AdS2

+ f 2
6ds

2
S6 + ds2

Σ for AdS2 × S6 Λ = −1

ds2 = f 2
6ds

2
AdS6

+ f 2
2ds

2
S2 + ds2

Σ for AdS6 × S2 Λ = +1 (2.87a)

The remaining fields in both cases are given by,

ds2
Σ = 4ρ2dwdw̄ F(3) = dC ∧ v̂ol2 (2.87b)

where v̂ol2 is the volume form on AdS2 of unit radius for Λ = −1 and the volume form

of S2 with unit radius for the case Λ = 1. The metric functions f2, f6, ρ, and C and the

dilaton-axion field B are all functions on Σ.

26



2.4.1 The metric functions

The metric functions f2, f6, and ρ are naturally expressed in terms of composite quantities

κ2 and G defined in (2.86), and the function R obtained by eliminating W between equations

(2.83) and (2.85). The latter is given in terms of κ2 and G by,

ΛR +
1

ΛR
= 2 + 6

κ2G
|∂wG|2

(2.88)

To obtain the explicit expressions for the metric functions, we begin by eliminating α and β

from the combinations (f6± 3
ν
f2)2 in favor of κ± and f using (2.48) and (2.56), and we find,

(f6 +
3

ν
f2)2 =

4c2f 2

ρ2
|κ−|2|Bλ̄+ 1|2 (f6 −

3

ν
f2)2 =

4c2f 2

ρ2
|κ−|2|λ+B|2 (2.89)

Changing variables from B to Z using (2.65) and (2.66), solving for f2 and f6, and expressing

the result in terms of |Z|2 = R, we obtain,

f 2
2 =

c2κ2(1− ΛR)

9ρ2(1 + ΛR)
f 2

6 =
c2κ2(1 + ΛR)

ρ2(1− ΛR)
(2.90)

To calculate ρ2 we express the result of (2.70) for ρ2 in terms of ρ̂2, use (2.78) to obtain ρ̂2

in terms of ξ, and (2.81) to express ξ in terms of L, which in turn is given by,

ρ̂4 =
1

ξξ̄
=

(1− λλ̄)2

LL̄
L̄∂wA− = −∂wG (2.91)

Expressing the result in terms of R, G and κ2, we find,

ρ2 =
c(κ2)

3
2

|∂wG|
(R + ΛR2)

1
2

(1− ΛR)
3
2

(2.92)

Alternatively, after making use of (2.88), and eliminating ρ2 from f 2
2 and f 2

6 , we have,

f 2
2 =

c

9

√
6ΛG

(
1− ΛR

1 + ΛR

)3
2

f 2
6 = c

√
6ΛG

(
1 + ΛR

1− ΛR

)1
2

ρ2 =
cκ2

√
6ΛG

(
1 + ΛR

1− ΛR

)1
2

(2.93)

Some care will be needed with the choice of the branch of the square root, which will be

discussed in detail in section 2.6.
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2.4.2 The axion-dilaton

The axion-dilaton field B is obtained using its expression of (2.65) in terms of Z, eliminating

Z in favor of R and ψ using (2.72), and eliminating ψ in favor of ξ and L using (2.81),

B =
Reiψ − λ
1− λ̄Reiψ

=
K2RL̄ − λL
L − λ̄K2RL̄

(2.94)

Multiplying numerator and denominator by |κ−|2 and using (2.91) to eliminate L yields,

B =
∂wA+∂w̄G − ΛR∂w̄Ā−∂wG
ΛR∂w̄Ā+∂wG − ∂wA−∂w̄G

(2.95)

One verifies that this field automatically satisfies |B| < 1 provided κ2(1−R2) > 0.

2.4.3 Two-form and six-form flux potentials

The evaluation of the two-form flux potential C(2) and of its magnetic dual six-form flux

potential C(6) on the solutions to the BPS equations is considerably more involved than for

the other supergravity fields. Here we shall summarize the result, and relay an account of the

detailed calculations to Appendix C. As a byproduct, the calculations of the flux potentials

will prove that the solutions to the BPS equations for 16 supersymmetries together with the

Bianchi identities for the P,Q one-forms, imply the Bianchi identity and field equation for

the three-form field G.

Consider the three-form F(3) and dual seven-form F(7) field strengths defined by,

F(3) = f(G+BḠ)

F(7) = ?f(G−BḠ) +
4i

3

(
2C(4) ∧ F(3) − F(5) ∧ C(2)

)
(2.96)

where ? denotes the Poincaré dual. It is a standard result that the Bianchi identity for the

field F(3) is given by dF(3) = 0. By inverting the relation between F(3) and G one deduces

the well-known Bianchi identity for G, which takes the form,

dG− iQ ∧G+ P ∧ Ḡ = 0 (2.97)
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where P and Q are given in terms of B by (2.2). The field equation for G is equivalent to

the condition dF(7) = 0. Here we shall be interested only in solutions to the field equations

for which F(5) = C(2) ∧ F̄(3) = 0, so that the field equation for G reduces to,

∇P
(
f(GMNP −BḠMNP )

)
= 0 (2.98)

The closure conditions on the three-form F(3) and on the seven-form F(7) may be solved

locally in terms of flux potentials C(2) and C(6) by,

dC(2) = f(G+BḠ)

dC(6) = ?f(G−BḠ) (2.99)

In view of the SO(2, 1) ⊕ SO(7) isometry algebra of AdS2 × S6 and the SO(5, 2) ⊕ SO(3)

isometry algebra of AdS6 × S2, we have the following Ansatz for C(2), C(6) and G,

C(2) = C v̂ol2 G = gae
a ∧ vol2

C(6) =M v̂ol6 (2.100)

where v̂ol2 and v̂ol6 denote the volume forms of the maximally symmetric spaces of unit

radius respectively of the two-dimensional and six-dimensional factors of the spacetime.

Integrating these equations for our solutions results in the following flux potentials,

C =
4ic

9
Λ

{
∂w̄Ā−∂wG

κ2
− 2ΛR

(∂w̄G∂wA+ + ∂wG∂w̄Ā−)

(1 + ΛR)2κ2
− Ā− − 2A+

}
M = −24c3G

(
∂wG∂w̄Ā−

κ2
+ 3Ā− + 2A+

)
+ 80c3(W+ + W̄−)

+40c3(A+ + Ā−)(|A+|2 − |A−|2) (2.101)

where W± are locally holomorphic functions defined up to a constant by A±∂wB = ∂wW±.

2.4.4 SU(1, 1) transformations induced on the supergravity fields

The action of the global SU(1, 1) symmetry of Type IIB supergravity on the supergravity

fields, as given in (2.3), is induced by an action of SU(1, 1)⊗ C on A±, in parallel with the
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AdS6 × S2 case of [26],

A+ → A′+ = +uA+ − vA− + a

A− → A′− = −v̄A+ + ūA− + ā (2.102)

where we have parametrized SU(1, 1) by u, v ∈ C with |u|2 − |v|2 = 1 and a is a complex

constant. The transformation of B is given by,

B → B′ = B + aA′− − āA′+ (2.103)

These transformations leave κ2 and G and consequently also the metric functions invariant.

The condition F(5) = 0 is also left invariant. They transform B as given in (2.3), while C

and M transform as follows,

C → C ′ = uC + vC̄ − C0

M → M′ = uM− vM̄+M0 (2.104)

Consistently with the SU(1, 1) action of (2.3) and (2.4), F(3) and F(7) transform as follows,

F(3) → uF(3) + vF̄(3)

F(7) → uF(7) − vF̄(7) (2.105)

where the first transformation law follows from the second equation in (2.3) and F(3) = dC(2).

2.5 Verifying the field equations

Whether the BPS equations for 16 residual supersymmetries imply the full set of Bianchi

identities and field equations for the form fields P,Q,G, F(5), the spacetime metric, and the

spin connection is, in general, an open problem. In our solution of the BPS equations, we

have assumed the expression for the spin connection in terms of the metric, and we have

assumed that the Bianchi identities for P,Q, given by,

0 = dP − 2iQ ∧ P

0 = dQ+ iP ∧ P̄ (2.106)
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have been solved in terms of the axion-dilaton field B by the first two equations in (2.2). The

Bianchi identity for the F(5) field is trivially satisfied since in our solutions we have F(5) = 0

as well as G ∧ Ḡ = 0. But the Bianchi identity for the field G in (2.97) was not assumed

from the outset and instead has been shown in subsection 2.4.3 to result from the solution

to the BPS equations and the Bianchi identity for P,Q.

In this section we show that the field equations of Type IIB supergravity are obeyed for

the general local solution obtained in section 2.4. We continue to treat the AdS2 × S6 × Σ

and AdS6×S2×Σ cases in parallel, and establish the Type IIB field equations for both cases.

In particular, we verify the field equations for the warped AdS6 solutions obtained in [26], a

result that was not completely obtained in that paper. The full Type IIB supergravity field

equations for the bosonic fields are [36, 37],

0 = ∇MPM − 2iQMPM +
1

24
GMNPG

MNP

0 = ∇PGMNP − iQPGMNP − P P ḠMNP +
2

3
iF(5)MNPQRG

PQR

0 = RMN − PM P̄N − P̄MPN −
1

6
(F 2

(5))MN

− 1

8
(GM

PQḠNPQ + ḠM
PQGNPQ) +

1

48
gMNG

PQRḠPQR (2.107)

To show that these equations are satisfied, we start with Einstein’s equations and then turn

to the field equations for B and the three-form flux. We will need the components of the

Ricci tensor, which are derived for general AdSp × Sq ×Σ warped products in Appendix D.

We will use the labels p and q for the dimensions of the AdS and S parts of the geometry

throughout this section, as well as fA and fS for their respective radii. The general procedure

for verifying the field equations is to reduce them to a form where they only involve quantities

for which we have given explicit expressions in terms of the holomorphic data in sec. 2.4,

and then verify them via a strategy that will be explained in sec. 2.5.4.
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2.5.1 Einstein’s equations

For easier reference we reproduce here the explicit expressions for the components of the

Ricci tensor along Σ, with fA, fS, p and q defined in Appendix D,

Rww = − p

fA

[
∂w − (∂w ln ρ2)

]
∂wfA −

q

fS

[
∂w − (∂w ln ρ2)

]
∂wfS

Rww̄ = −p∂w∂w̄fA
fA

− q∂w∂w̄fS
fS

− ∂w∂w̄ ln ρ2 (2.108)

We will also use the explicit expansions of P and G,

P = pzρdw + pz̄ρdw̄ G = (gzdw + gz̄dw̄)ρf 2
2 ∧ v̂ol2 (2.109)

where v̂ol2 is the canonical volume form on AdS2 of unit radius for AdS2 × S6 × Σ and on

S2 of unit radius for AdS6 × S2 × Σ.

2.5.1.1 Components along Σ

The ww component of Einstein’s equations in (2.107) simplifies to,

0 = Rww − 2PwP̄w −
1

4
G PQ
w ḠwPQ (2.110)

Evaluating G PQ
w ḠwPQ amounts to contracting two volume forms on the two-dimensional

space, for which the difference in signature between AdS2 and S2 is crucial. We thus find,

G PQ
w ḠwPQ = 2Λρ2gz(gz̄)

∗ (2.111)

Using the expression for the components of P in (2.47) and that K̄/K = Λ, the ww compo-

nents of Einstein’s equations then become,

0 = Rww −
3Λ

8
ρ2gz(gz̄)

∗ (2.112)

With (C.2) this can be further evaluated to ρ2gz(gz̄)
∗ = −16Λf 4(∂wB)(∂wB̄), and the ww

component of Einstein’s equations consequently becomes,

0 = Rww + 6f 4(∂wB)(∂wB̄) (2.113)

32



Note that f 4dBdB̄ is the Poincaré metric on the disc, and SU(1, 1) invariant.

Using the expansions of P and G in (2.109) and again that contractions of G produce

overall factors as given in (2.111), the ww̄ component of Einstein’s equations becomes,

0 = Rww̄ − ρ2 [pz(pz)
∗ + pz̄(pz̄)

∗]− Λ

4
ρ2 [gz(gz)

∗ + gz̄(gz̄)
∗] +

1

48
gww̄G

PQRḠPQR (2.114)

We can now use gww̄ = 2ρ2 to evaluate,

GPQRḠPQR = 3Λ [gz(gz)
∗ + gz̄(gz̄)

∗] (2.115)

Using also (2.47), the ww̄ component of Einstein’s equations consequently becomes,

0 = Rww̄ −
ρ2

16

[(
2Λ +

ββ̄

αᾱ

)
|gz|2 +

(
2Λ +

αᾱ

ββ̄

)
|gz̄|2

]
(2.116)

Using (C.5) with (2.72) yields,

αᾱ

ββ̄
= R (2.117)

With (C.2), this yields for the ww̄ component of Einstein’s equations,

0 = Rww̄ − (2ΛR + 1) f 4|∂wB|2 −
(

2Λ

R
+ 1

)
f 4|∂wB̄|2 (2.118)

2.5.1.2 Components along AdS2 × S6 and AdS6 × S2

For the components of Einstein’s equations in (2.107) along the six-dimensional space, AdS6

for the case of AdS6 × S2 and S6 for the case of AdS2 × S6, the only non-vanishing contri-

butions are coming from the Ricci tensor and the last term. We thus find,

0 = RMN +
1

48
gMNG

PQRḠPQR M,N along AdS6/S6 (2.119)

With (2.115), (C.2) and (2.117), we find,

1

48
GPQRḠPQR = Λρ−2f 4

[
R|∂wB|2 +R−1|∂wB̄|2

]
(2.120)

For the components along the six-dimensional spaces, AdS6 and S6, we thus have,

0 = Rmn + ηmnρ
−2f 4

[
R|∂wB|2 +R−1|∂wB̄|2

]
for AdS6

0 = Rij − δijρ−2f 4
[
R|∂wB|2 +R−1|∂wB̄|2

]
for S6 (2.121)
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The three-form field G has non-vanishing components along the two-dimensional space

AdS2/S2, and the corresponding components of Einstein’s equations therefore become,

0 = RMN −
1

8

(
G PQ
M ḠNPQ + Ḡ PQ

M GNPQ

)
+

1

48
gMNG

PQRḠPQR (2.122)

The contraction of G in the last term has already been evaluated in (2.115). Explicitly

evaluating the second term with M,N along AdS2/S2 produces a contribution similar to the

last term, only with a different numerical coefficient. A factor Λ again originates from the

difference in signature between AdS2 and S2. The components of Einstein’s equations along

AdS2/S2 become,

0 = RMN −
3Λ

16
gMN

(
|gz|2 + |gz̄|2

)
(2.123)

For the components along the two-dimensional spaces, AdS2 and S2, we thus have,

0 = Rmn + 3ηmnρ
−2f 4

(
R|∂wB|2 +R−1|∂wB̄|2

)
for AdS2

0 = Rij − 3δijρ
−2f 4

(
R|∂wB|2 +R−1|∂wB̄|2

)
for S2 (2.124)

2.5.2 Axion-dilaton field equations

We now turn to the axion-dilaton equation. We will perform the index contractions as

contractions of spacetime indices instead of frame indices, without introducing new notation.

The equation then reads,

0 = ∂MPM − gMNΓRMNPR − 2iQMPM +
1

24
GMNPG

MNP (2.125)

With the definitions of P and Q in (2.2), we find,

∂MPM − 2iQMPM = 2gww̄
(
f 2∂w∂w̄B + 2f 4B̄(∂wB)∂w̄B

)
(2.126)

The connection term in the covariant derivative evaluates to,

gMNΓRMNPR = −1

2
gww̄

[
Pw∂w̄ ln(f 2p

A f
2q
S ) + Pw̄∂w ln(f 2p

A f
2q
S )
]

(2.127)

This leaves only the term involving G to be evaluated. We find,

GMNQG
MNQ = 6Λgzgz̄ = 96Λρ−2αβ̄

ᾱβ
f 4(∂wB)(∂w̄B) (2.128)
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where (C.2) was used to obtain the second equality. Using (2.117) and (2.56) shows,

αβ̄

ᾱβ
= R

β̄2

ᾱ2
= R

B̄κ+ + κ−
κ+ +Bκ−

(2.129)

The complete equation of motion, after dividing by 2gww̄f 2, becomes,

0 = ∂w∂w̄B + 2f 2B̄(∂wB)∂w̄B

+
p

4f 2
A

[
(∂w̄B)∂wf

2
A + (∂wB)∂w̄f

2
A

]
+

q

4f 2
S

[
(∂w̄B)∂wf

2
S + (∂wB)∂w̄f

2
S

]
+ 4ΛR

B̄κ+ + κ−
κ+ +Bκ−

f 2(∂wB)(∂w̄B) (2.130)

2.5.3 The 3-form flux field equation

The field equation for the 3-form field G with vanishing F(5) reads,

0 = ∇PGMNP − iQPGMNP − P P ḠMNP (2.131)

We have already presented one proof that this field equations holds for our solution in section

5.3, by showing that the form F(7) is closed. Here, we provide a second proof, obtained by

direct evaluation.

Analyzing (2.131), we see that the last two terms vanish unless M,N are both along

AdS2 for the AdS2 × S6 case or correspondingly along S2 for the AdS6 × S2 case. The only

non-trivial components of the entire equation are when M,N are either both on S2/AdS2,

or one of them on S2/AdS2 and one on Σ. In the latter case, (2.131) reduces to an equation

that is satisfied automatically due to metric compatibility of the connection on S2/AdS2.

It therefore only remains to consider the case with both components on S2/AdS2. For

notational convenience we will introduce coordinate indices µ, ν, which correspond to AdS2

for the AdS2 × S6 case and to S2 for the AdS6 × S2 case. We will also again perform index

contractions as contractions of spacetime indices, without introducing additional notation.

When M,N = µ, ν are both along S2/AdS2, the field equation reads,

0 = ∂PGµνP − iQPGµνP − P P ḠµνP

− gPQΓRPQGµνR − gPQ
(
ΓRPµGRνQ + ΓRPνGµRQ

)
(2.132)
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Evaluating the connection terms in analogy with (2.127), the field equation becomes,

0 =

(
∂w − iQw +

1

2
∂w ln

f 2p
A f

2q
S

f 8
2

)
Gw̄µν − PwḠw̄µν + (w ↔ w̄) (2.133)

We now use the expansion (2.109) along with (C.2) to replace,

Gwµν = 4iKf 2
2

α

β
Pw v̂ol2µν Gw̄µν = −4iKΛf 2

2

β̄

ᾱ
Pw̄ v̂ol2µν (2.134)

With (2.117), we then find,

1

4iK

ᾱ

β̄
(∂wGw̄µν + ∂w̄Gwµν) = R

(
∂w̄ +

1

2
∂w̄ ln

α2

β2

)
f 2

2Pw v̂ol2µν

− Λ

(
∂w +

1

2
∂w ln

β̄2

ᾱ2

)
f 2

2Pw̄ v̂ol2µν

1

4iK

ᾱ

β̄

(
PwḠw̄µν + Pw̄Gwµν

)
= f 2

2

ᾱ2

β̄2

(
R−1|Pw̄|2 − Λ|Pw|2

)
v̂ol2µν (2.135)

The equation of motion, after dividing by 4iΛKf 2
2 β̄/ᾱ and separating off the volume form

on the two-dimensional space, consequently becomes,

0 = ΛR

[
∂w̄ − iQw̄ +

1

2
∂w̄ ln

(
f 2p
A f

2q
S

f 4
2

α2

β2

)]
Pw

−
[
∂w − iQw +

1

2
∂w ln

(
f 2p
A f

2q
S

f 4
2

β̄2

ᾱ2

)]
Pw̄ −

ᾱ2

β̄2

(
|Pw̄|2

ΛR
− |Pw|2

)
(2.136)

Evaluating the derivatives and using the components of Q as defined in (2.2) yields,

0 = (ΛR− 1)

(
f 2∂w∂w̄B +

3

2
B̄PwPw̄

)
+

(
1

2
BΛR +

ᾱ2

β̄2

)(
|Pw|2 −

|Pw̄|2

ΛR

)
+

1

2
ΛRPw∂w̄ ln

(
f 2p
A f

2q
S

f 4
2

α2

β2

)
− 1

2
Pw̄∂w ln

(
f 2p
A f

2q
S

f 4
2

β̄2

ᾱ2

)
(2.137)

With Pw = f 2∂wB, Pw̄ = f 2∂w̄B as well as,

ᾱ2

β̄2
=
∂wA+ +B∂wA−
B̄∂wA+ + ∂wA−

(2.138)

2.5.4 Explicitly evaluating the equations

To summarize, the non-trivial components of Einstein’s equations take the form given in

(2.113) for the ww component, in (2.118) for the ww̄ component, in (2.121) for the AdS6/S6
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components, and in (2.124) for the AdS2/S2 components. The equation for the axion-dilaton

scalar takes the form given in (2.130) and the non-trivial components of the equation for G

are given in (2.137) with (2.138).

We will now describe the strategy to verify that these equations are satisfied. We use the

explicit expressions for the metric functions in (2.93), for B in (2.95), and for the components

of the Ricci tensor. This reduces the field equations to a set of equations involving only

the holomorphic functions and their derivatives, as well as R, G and κ2 along with their

derivatives. We will avoid using the explicit definition for G or R, since G involves an

integration that we have not performed for generic A± while the definition of R involves a

square root with a corresponding choice of branch that we do not wish to specify explicitly.

The first step will be to make the expressions algebraic in R and G, i.e. to eliminate all their

derivatives. From the definitions for G in (2.86) and for R in (2.88), we straightforwardly

derive,

∂wR =
6ΛR2

R2 − 1
∂w

(
κ2G
|∂wG|2

)
∂wG =

(
Ā+ −A−

)
∂wA+ +

(
A+ − Ā−

)
∂wA− (2.139)

The ∂w̄ derivatives of R and G are obtained by complex conjugation. Repeatedly using these

relations to reduce the rank in derivatives acting on R and G, we can eliminate all derivatives

of G and R. We now use the definition of R in (2.88) to eliminate G, by setting,

G =

(
R +

1

R
− 2Λ

)
|∂wG|2

6Λκ2
(2.140)

Using also the explicit definition of κ2, we have at this point reduced Einstein’s equations

to relations involving only the holomorphic functions and their differentials along with R. G

and its derivatives as well as the derivatives of R are eliminated completely. Straightforward

evaluation now shows that the equations are indeed satisfied for both, the AdS6 and AdS2

cases, with the corrsponding choices of Λ and K as well as of p and q for the dimensions of the

AdS and S parts of the geometry. This shows that the local solution to the BPS equations

presented in sec. 2.4 solves the field equations of Type IIB supergravity as well. We point
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out that, for the discussion of the BPS equations, c was assumed real and R constrained

to be positive by its definition as absolute value of Z in (2.72), but that neither of these

constraints appear to be necessary for the equations of motion to be satisfied.

We close this section with a comment on the sign of G. It is generally true that, for a

solution to Type IIB supergravity, flipping the sign of G produces another solution, since G

appears quadratically in the equations of motion. In general, supersymmetry is not preserved

under this sign flip, since the BPS equations do depend on the sign of G. For our solutions,

however, flipping the sign of G again produces a supersymmetric solution. This may be

seen from the fact that a sign reversal in G corresponds to a special case of the SU(1, 1)

transformations discussed in sec. 2.4.4. Choosing u = −1 and v = 0 indeed leaves all

supergravity fields invariant except for the two-form potential C(2), on which it induces a

sign flip that results in a sign reversal on G. The sign-flipped solution is therefore again in

our class of supersymmetric solutions, although with a different form of the Killing spinors,

which depend on the A± directly.

2.6 Reality, positivity, and regularity conditions

The solutions obtained for the supergravity fields of the case AdS2 × S6 in the previous

section satisfy the BPS equations, but are physically viable solutions only after certain

reality, positivity, and regularity conditions are enforced on the supergravity fields of the

solutions. In this section we establish these conditions and uncover their implications on the

functions A±. We set Λ = −1 throughout this section.

2.6.1 Reality and positivity conditions

For an acceptable solution with appropriate signature, the metric is real-valued and the

functions f 2
2 , f

2
6 ρ

2 positive on Σ. There are no reality constraints on the fields B and C(2),

but B is restricted by the condition of positive coupling constant, |B| < 1. We now extract

the necessary and sufficient conditions on κ2, G, and R for these properties to hold.
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Recalling that the functions κ2 and G, which were defined in (2.86), are real-valued by

construction, and that R is real and non-negative by construction, (2.88) implies,

3κ2G < −2|∂wG|2 (2.141)

In particular, κ2 and G need to have opposite signs. Assuming positive ρ2, the positivity of

f 2
2 and f 2

6 in (2.90) furthermore requires,

(1−R)κ2 > 0 (2.142)

With this assumption ρ2, given in (2.90), is real and can be made positive by appropriately

choosing the sign of the constant c. To verify |B| ≤ 1 we calculate f 2 using (2.66),

f 2 =
1

1− |B|2
= 1 +

|λ− Z2|2

(1− |λ|2)(1− |Z|4)
(2.143)

Since κ2(1−R) = |κ−|2(1−|λ|2)(1−|Z|2), (2.142) implies f 2 ≥ 1. The reality and positivity

conditions are therefore given by (2.141) and (2.142).

2.6.1.1 Inversion and complex conjugation

The space of allowed triplets (κ2,G, R) naturally divides into two branches, according to

whether the conditions (2.141) and (2.142) are realized for R > 1 or R < 1. We shall refer

to these branches as B±, defined by,

B+ =
{
κ2 > 0, G < 0, R < 1

}
B− =

{
κ2 < 0, G > 0, R > 1

}
(2.144)

These two branches are mapped into one another by an involution, which is a combination

of complex conjugation, reversal of the complex structure on Σ, and reversal of the indices ±

on the functions A±, given by,

A±(w)→ A′±(w) = Ā∓(w) = A∓(w̄) (2.145)

combined with R → R−1. This transformation leaves eq. (2.88) invariant and reverses

the sign of κ2 and G. It leaves the metric functions f 2
2 , f 2

6 and ρ2 invariant and complex
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conjugates the fields B and C,

B(w, w̄)→ B′(w, w̄) = B̄(w, w̄) = B(w̄, w)

C(w, w̄)→ C ′(w, w̄) = C̄(w, w̄) = C(w̄, w) (2.146)

2.6.2 Global regularity and boundary conditions

By inspection of the metric functions f 2
2 , f

2
6 , and ρ2 in (2.90), it is manifest that a supergravity

solution considered on a compact subset U of Σ for which (κ2,G, R) maps to a compact subset

of either B+ or B− (but not both) is locally regular in U . If the supergravity solution

considered throughout a compact surface Σ is such that (κ2,G, R) maps to a compact subset

of either branches B+ or B− then the supergravity solution is globally regular on Σ.

If Σ has a non-empty boundary, ∂Σ, additional regularity conditions have to be satisfied

on ∂Σ. We assume geodesic completeness of the spacetime manifold allowed for a super-

gravity solution, so that the boundary of spacetime is at infinite geodesic distance (modulo

issues of the Minkowski signature of the AdS2-factor). The only way we know how to realize

this when Σ has a boundary is by closing off the sphere S6, namely f 2
6 → 0, while keeping

f 2
2 finite. In view of the expression obtained from (2.90) for the ratio,

f 2
6

f 2
2

= 9
(1−R)2

(1 +R)2
(2.147)

this corresponds to the boundary condition R = 1. As R → 1, factors of 1 − R in the

expressions for the metric functions vanish at a number of places, and having a regular

limit therefore imposes additional constraints: From the expression for f 2
2 in (2.93), we see

that finiteness of the AdS2 radius needs G = O ((1−R)3) as the boundary is approached.

Similarly, from the finiteness of ρ2 we then conclude that κ2 = O(1−R). The boundary ∂Σ

is therefore mapped to the common boundary of the two branches B±, namely κ2 = G = 0

and R = 1. Lastly, in view of (2.88) we also have the constraint that ∂wG = O((1−R)2).
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2.6.3 Implications of regularity and boundary conditions

In this subsection we will discuss some immediate implications of the global regularity con-

ditions for the structure of the solutions.

2.6.3.1 No smooth solutions for compact Σ without boundary

Assuming that G is smooth, there are no globally regular solutions on a compact surface Σ

without boundary. The argument is parallel to the one already given for the case AdS6×S2.

It is based on the following differential equation,

∂w∂w̄G = −κ2 (2.148)

which readily follows from the definitions of κ2 and G in (2.86). If G is smooth, then on a

compact surface without boundary, the integral of the left side over Σ must vanish. But the

sign of κ2 is constant throughout Σ so the integral of the right side cannot vanish, which is

in contradiction to our assumptions. Hence such globally regular solutions cannot exist. We

are thus left with two options: either Σ has a non-empty boundary, or Σ is compact without

boundary and the functions A± have singularities in Σ.

2.6.3.2 No smooth solutions for compact Σ with boundary

We show that for smooth G and an arbitrary Riemann surface Σ with non-empty boundary

∂Σ, the conditions G|∂Σ = 0 and sgn(κ2) = −sgn(G) can not be satisfied simultaneously. We

start from (2.148) and solve this equation along with the boundary condition G|∂Σ = 0 to

obtain the following integral equation,

G(w) = H(w) +
1

π

∫
Σ

d2z G(w, z)κ2(z) (2.149)

Here, G(w, z) is the scalar Green function on Σ, which is symmetric G(z, w) = G(w, z) and

vanishes on the boundary ∂Σ,

∂w∂w̄G(w, z) = −πδ(w, z)

G(w, z)|w∈∂Σ = 0 (2.150)
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As shown in detail in sec. 2.3 of [20], for any two points w, z in the interior of Σ, the

function G(w, z) is strictly positive. H(w) is a harmonic function. Since G(w) vanishes on

the boundary by assumption, and by construction the Green function G(w, z) vanishes for

w ∈ ∂Σ, then H itself must also vanish on ∂Σ, and we have

∂w∂w̄H(w) = 0

H(w)|w∈∂Σ = 0 (2.151)

By the min-max principle for harmonic functions, H(w) takes its minimum and maximum

values on the boundary of Σ. Since H(w) = 0 for w ∈ ∂Σ, this implies that H(w) = 0 both

on ∂Σ and in the interior of Σ. But this is incompatible with sgn(κ2) = −sgn(G), due to

the positivity of the Green function G(w, z), which implies that the integral term in (2.149)

is strictly positive for the branch B+ with κ2 > 0 and strictly negative for the branch B−

with κ2 < 0. Thus, no regular supergravity solutions exist when G vanishes on ∂Σ.

2.7 Double analytic continuation

In this section we study the relation between AdS2 × S6 and AdS6 × S2 via double analytic

continuation of the spacetime manifold metrics in more detail, and discuss the implications

from the perspective of the solutions to the BPS equations. At the level of the geometry,

one may perform an analytic continuation from AdS6 × S2 to AdS2 × S6 via2

AdS6 → −S6 S2 → −AdS2 (2.152)

and these continuations can be extended straightforwardly to the remaining bosonic super-

gravity fields. This does not produce a ten-dimensional spacetime of the desired signature,

since the eight-dimensional symmetric space has changed signature from mostly plus to

mostly minus while the metric on Σ remains positive definite, but it does formally produce

2The signs can be understood as follows. Starting from AdS in mostly plus signature, one obtains
Euclidean hyperbolic space by a standard Wick rotation in Poincaré coordinates. From Euclidean hyperbolic
space, for which we can take global coordinates such that ds2 = dr2+sinh2r dΩ2, we can then get to a sphere
by setting r = iθ. The resulting metric is ds2 = −(dθ2 + sin2θ dΩ2), i.e. a sphere with negative signature.
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a solution to the equations of motion. We may therefore wonder whether we can recover the

analytic continuation of the globally regular AdS6×S2×Σ solutions constructed in [19, 20]

as a special case of the AdS2 × S6 × Σ solutions presented in sec. 2.4. In the remainder of

this section we will show that this is indeed the case, but that the result is neither regular

(even leaving aside the signature issue) nor supersymmetric.

The construction in [19, 20] started from Σ a disc, realized as the upper half plane. The

holomorphic functions A± were given by,

A± = A0
± +

L∑
`=1

Z`
± ln(w − p`) Z`

+ = σ
L−2∏
n=1

(p` − sn)
L∏
k 6=`

1

p` − pk
(2.153)

where w is a complex coordinate on the upper half plane, sn a collection of points inside the

upper half plane and p` a set of poles of the differentials ∂wA± on the boundary of the upper

half plane. With a suitable choice of the integration constant implicit in G, this produced,

κ2,G > 0 on int(Σ) κ2 = G = 0 on ∂Σ (2.154)

We can assume the same choice of holomorphic data as input for the AdS2×S6×Σ solutions.

The expressions for κ2 and G in terms of the locally holomorphic functions are the same for

AdS2 × S6 × Σ and AdS6 × S2 × Σ, such that we realize (2.154) in both cases. Eq. (2.88)

then implies ΛR > 0 in the interior of the upper half plane and ΛR → 1 on the boundary,

and we choose the branch 0 < ΛR ≤ 1. This implies that R is positive for AdS6 × S2 × Σ

and negative for AdS2×S6×Σ. We note that negative R was not acceptable for solving the

BPS equations, where R was positive by construction. But, as noted at the end of sec. 2.5,

neither R nor the constant c are constrained by the equations of motion. So at the level of

the equations of motion these AdS2 × S6 configurations are acceptable, and we have,

(ΛR)AdS2×S6×Σ = (ΛR)AdS6×S2×Σ (2.155)

The expressions for the supergravity fields in (2.93), (2.95) and (2.101) depend on R only

through this combination ΛR. The form of the axion-dilaton B in (2.95) is, in fact, exactly

the same for AdS2×S6×Σ and AdS6×S2×Σ. The metric functions in (2.93) are real provided
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that c is chosen real for AdS6 × S2 × Σ and imaginary for AdS2 × S6 × Σ, to compensate

for the phase in
√

ΛG. They only differ between AdS2×S6×Σ and AdS6×S2×Σ through

their signs: while f 2
2 , f 2

6 and ρ2 all have the same sign for AdS6×S2×Σ, the sign of f 2
2 and

f 2
6 is opposite to that of ρ2 for AdS2 × S6 × Σ. This is precisely as expected for solutions

connected by the analytic continuation in (2.152). The gauge potential C in (2.101) differs

only by an overall factor of i between AdS2×S6×Σ and AdS6×S2×Σ. This produces the

expected behavior under a Wick rotation for the three-form field strength, where one of the

components along S2 becomes timelike and picks up a factor of i. We have thus recovered

the analytic continuation of the global AdS6×S2×Σ solutions to AdS2×S6×Σ via (2.152),

which is simply realized by the same choice of locally holomorphic functions.

This naive analytic continuation does, however, not lead to physically regular solutions.

Aside from the inappropriate signs for the metric functions, it is still the two-dimensional

space that collapses on the boundary of Σ. This was the desired behavior for the AdS6×S2×Σ

case, with the collapsing S2 smoothly closing off spacetime. But it is not desirable for the

AdS2 × S6 × Σ solutions to have the AdS2 cap off on ∂Σ. Moreover, the solutions are

not supersymmetric, since we do not recover them from the BPS equations where R ≥ 0

was required by construction. The loss of supersymmetry under Wick rotation may be

understood from the change in the Clifford algebra due to the changed signature in the two-

and six-dimensional spaces.

2.8 Discussion

We have constructed the general local form of solutions to Type IIB supergravity that are

invariant under SO(2, 1) ⊕ SO(7) and sixteen supersymmetries. The geometry takes the

form AdS2 × S6 warped over a two-dimensional Riemann surface Σ, and the local form

of the solutions is strikingly similar to the AdS6 × S2 case considered in [26]. The entire

solution is summarized, in parallel with the AdS6×S2 case, in sec. 2.4, and we have verified

for both cases that the solution to the BPS equations also satisfies the field equations of
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Type IIB supergravity in sec. 2.5. The differences between the local solutions for AdS2×S6

and AdS6 × S2 are subtle, and encoded entirely in sign flips at various places.

To obtain physically acceptable solutions additional positivity and regularity conditions

have to be imposed on the general local form of the solutions. We have presented a prelim-

inary analysis of these conditions for AdS2 × S6 in sec. 2.6. Subtle but crucial differences

between the solutions for AdS2×S6 and AdS6×S2 appear to render ineffective the strategy

followed in [20] to obtain global solutions for AdS6 × S2. An analytic continuation of the

physically regular AdS6 × S2 solutions to AdS2 × S6, discussed in sec. 2.7, gives rise to field

configurations which solve the field equations, but are neither regular nor supersymmetric.

The construction of physically regular AdS2×S6 solutions is the subject of the next chapter.

Finally, we comment on the superalgebra structure of these AdS2 solutions. While

the five-dimensional superconformal algebra is unique and corresponds to a specific real

form of F (4), there exist several superconformal algebras for AdS2 [22, 23]. They are

SU(1, 1|4), OSp(8|2,R), and OSp(4∗|4), with maximal bosonic subalgebras respectively re-

alized by AdS2×S5×S1×Σ, AdS2×S7×L, and AdS2×S2×S4×Σ, where Σ is a Riemann

surface and L is a one-dimensional line. The first case is the subject of Chapter 4; the last

case was solved already in [24].
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CHAPTER 3

Global half-BPS AdS2 × S6 solutions

3.1 Local solution and regularity conditions

For convenience, we once again summarize the local form of Type IIB supergravity solutions

with 16 supersymmetries and spacetime of the form AdS2×S6 warped over a Riemann surface

Σ, and discuss the conditions for physical positivity and regularity of the supergravity fields.

The local solutions are invariant under the real form of the exceptional Lie superalgebra

F (4) which has maximal bosonic subalgebra SO(1, 2)⊕ SO(7).

3.1.1 Supergravity fields

Invariance under SO(1, 2)⊕SO(7) dictates the general form of the supergravity fields of the

solutions. All Fermi fields vanish and the spacetime metric takes the form,

ds2 = f 2
2ds

2
AdS2

+ f 2
6ds

2
S6 + 4ρ2|dw|2 (3.1)

The five-form field strength vanishes F(5) = 0 and the three-form field strength F(3) and its

Poincaré dual F(7) are given by,

F(3) = dC(2) C(2) = C volAdS2

F(7) = dC(6) C(6) =M volS6 (3.2)

Throughout, w is a local complex coordinate on Σ while f2, f6, and ρ are real-valued functions

on Σ. The fields C, M, and the axion-dilaton B = (1 + iτ)/(1 − iτ) are complex-valued

functions on Σ. The line elements ds2
AdS2

, ds2
S6 , and the volume forms volAdS2 , volS6 are for

maximally symmetric AdS2 and S6 with unit radius.
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The solutions are parametrized by two locally holomorphic functions A± and expressed

conveniently in terms of the composite quantities κ2, G, and T given in terms of A± by,

κ2 = −|∂wA+|2 + |∂wA−|2 ∂wB = A+∂wA− −A−∂wA+

G = |A+|2 − |A−|2 + B + B̄ T =
1−R
1 +R

=

(
1 +

2|∂wG|2

3κ2G

)1/2

(3.3)

where κ2 = −∂w∂w̄G. By construction, the functions κ2, G, and R are real. Furthermore, R

is non-negative so that T is real and satisfies T ∈ [−1, 1]. In terms of these composites, the

metric functions are given by,

f 2
2 =

1

9

(
−6G
T 3

)1/2

f 2
6 = (−6GT )1/2 ρ2 = κ2

(
T

−6G

)1/2

(3.4)

The functions C and M parametrizing the two- and six-form potentials are given by,

C = −2i

3

(
U

3T 2
− Ā− −A+

)
M = 80(W+ + W̄−)− 12GU + 20(A+ + Ā−)

(
2|A+|2 − 2|A−|2 − 3G

)
(3.5)

where U and W± are defined by,

κ2U = ∂wG∂wA+ + ∂wG∂wA− ∂wW± = A±∂wB (3.6)

The axion-dilaton scalar field is given,

B = −∂wA+∂w̄G +R∂w̄Ā−∂wG
R∂w̄Ā+∂wG + ∂wA−∂w̄G

(3.7)

The global SU(1, 1) symmetry transformations of the Type IIB supergravity fields are in-

duced by the following transformations of A± under the group SU(1, 1)⊗ C,

A+ → A′+ = +uA+ − vA− + a

A− → A′− = −v̄A+ + ūA− + ā (3.8)

where SU(1, 1) is parametrized by u, v ∈ C with |u|2 − |v|2 = 1 and the complex shift

parameter a has the effect of producing gauge transformations in C and M only.
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3.1.2 Positivity and regularity conditions

Minkowski signature of the ten-dimensional spacetime metric imposes the positivity condi-

tions f 2
2 , f

2
6 , ρ

2 > 0 which require κ2 > 0 and GT < 0, assuming that all square roots of

positive real arguments in (3.4) are taken to be positive. Without loss of generality, we may

choose the branch T > 0 for the square root in (3.3), so that 0 < R < 1. As a result, the

positivity conditions become,

κ2 > 0 G < 0 0 < R < 1 (3.9)

Regularity of the supergravity fields of the solutions in the interior of Σ requires that the

inequalities of (3.9) be obeyed strictly. If Σ has a non-empty boundary ∂Σ, then geodesic

completeness of the solutions requires that the six-sphere shrinks to zero size f6 → 0 at the

boundary, while the radius of AdS2 remains finite. Since we have f 2
6 /f

2
2 = 9T 2 this means

that T → 0 and R → 1 as the boundary is being approached. Regularity of the solution at

the boundary then requires the following behavior as r ≡ 1−R→ 0,

κ2 = O(r) G = O(r3) ∂wG = O(r2) (3.10)

The explicit expression for R in terms of κ2G and ∂wG in (3.3) furthermore requires,

κ2G
|∂wG|2

→ −2

3
(3.11)

Note that the boundary condition ∂wG = 0 on ∂Σ is stronger than the corresponding condi-

tion for the AdS6 case, where (∂w + ∂w̄)G = 0 was sufficient [18].

3.1.3 Realizing the regularity conditions at the boundary ∂Σ

The boundary conditions discussed in sec. 3.1.2 can be realized naturally by imposing a

conjugation condition on the holomorphic functions A± on ∂Σ. We shall take ∂Σ to consist

of only a single connected boundary component, though the construction may be easily

generalized to the case when ∂Σ has several components. We may map the boundary ∂Σ

to the real line by a Schwarz-Christoffel transformation, which is piecewise conformal. Let
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w, w̄ be local complex coordinates in terms of which a boundary segment is given by w = w̄.

The conjugation condition is then given by,

A±(w̄) = A∓(w) (3.12)

This condition readily implies κ2 = 0 on ∂Σ and, noting that we have,

∂wG(w, w̄) =
(
A+(w)−A−(w)

)
∂wA+(w) +

(
A+(w)−A−(w)

)
∂wA−(w) (3.13)

it also implies ∂wG = 0 on ∂Σ. Consequently, G is constant along each boundary segment

and can be made to vanish on any one single segment by fixing the integration constant

implicit in the definitions of B and G. The behaviors near the boundary in (3.10) are implied

by the relations between G, ∂wG, and κ2 via differentiation, which in turn imply (3.11).

We conclude this section by drawing a comparison between the boundary conditions for

the AdS2×S6 case studied here and the boundary conditions for the AdS6×S2 case studied in

[20]. The conjugation relation between the differentials resulting from (3.12) differs from the

analogous condition for the differentials in the AdS6×S2 solutions of [20] only by a sign. More

importantly, it was sufficient in [20] to implement a conjugation condition on the differentials

∂wA± to ensure (∂w + ∂w̄)G|∂Σ = 0, whereas here we impose the conjugation relation on the

functions A± themselves in order to implement the stronger condition ∂wG|∂Σ = 0.

Furthermore, the conjugation condition of (3.12) is incompatible with the presence of

logarithmic branch cuts in A± starting at branch points on the boundary ∂Σ and with

branch cuts along the boundary. Suppose that we have a branch point at w = 0,

A±(w) = A(0)
± (w) +A(1)

± (w) lnw A(i)
± (w̄) = A(i)

∓ (w) (3.14)

where A(0)
± (w) and A(1)

± (w) are regular and single-valued in a neighborhood of w = 0. Upon

encircling w = 0 counterclockwise, A± → A± + iπA(1)
± . This is compatible with (3.12)

and the assumed conjugation properties of A(i)
± only if A(1)

± is zero as a function. Hence

such branch cuts are ruled out, contrary to the case of AdS6 × S2 where they were crucial

ingredients in the construction of the global solutions.
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3.2 Towards string junction solutions

In this section we determine the behavior needed for the functions A± to source the seven-

form charges associated with (p, q)-strings. We shall show that, in addition to reproducing

the charges, A± with this behavior correctly reproduces the metric, axion-dilaton, and two-

form fields of the near-horizon limit of the classic (p, q)− stringsolution, provided we carry

out a certain coordinate inversion to be explained below. Though we will be able to write

down the functions A± producing (p, q)-string charges at multiple points on ∂Σ, the question

of whether these supergravity solutions are actually geodesically complete for some choices

of the parameters remains unsettled.

3.2.1 Realizing the charge and the S7 of the (p, q)-string solution

To realize a (p, q)-string charge in an AdS2 × S6 supergravity solution, we begin by deter-

mining the behavior of the functions A± near a point b ∈ ∂Σ where a (p, q)-string charge

resides. A first ingredient is that the supergravity fields should be regular in a neighborhood

of the point b with b itself removed, and the seven-form should support (p, q) charge. A

second ingredient is the fact that the classic (p, q)-string solution exhibits a round S7 in the

directions transverse to the string. Noting that the metric function f 2
6 vanishes on ∂Σ, we

conclude that the S7 is realized by a fibration of S6 over a curve in Σ which begins and ends

on ∂Σ. The angular dependence required to realize this fibration smoothly will constrain

the functions A±.

Consider a point b ∈ ∂Σ and local complex coordinates w, w̄ which vanish at this point.

Regularity and single-valuedness of the supergravity fields f 2
2 , f

2
6 , ρ

2, and B near w = 0

require A± to be single-valued in a neighborhood of w = 0, just as was the case for AdS6×S2

solutions. The extra condition that the factor dC in F(3) be residue-free at w = 0 ensures the

absence of five-brane charges and excludes logarithmic branch cuts emanating from w = 0.

Thus, we shall assume that A± has a Laurent expansion in w at w = 0. While A± and

B + B̄ are single-valued near w = 0, this set-up still allows the factor dM of F(7) to have a
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non-zero residue and thus to carry a non-zero (p, q)-string charge.

Next, we determine the order of the pole in A± by requiring a smooth S6 slicing of S7.

We shall assume that A± has a pole at w = 0 of order at most p− 1,

A±(w) =
α±
wp−1

+
β±
wp−2

+
γ±
wp−3

+ · · · (3.15)

The coefficients are constrained by (3.12), so that ᾱ± = α∓ and likewise for β±, γ±, which

forces the orders of the poles in A± to coincide with one another. Whether a smooth 7-cycle

is formed around the pole at w = 0 can be inferred from the ratio f 2
6 /ρ

2. In terms of polar

coordinates w = reiθ near the pole, the metric (3.1) may be written as,

ds2 = f 2
2ds

2
AdS2

+ 4ρ2

(
dr2 + r2dθ2 +

f 2
6

4ρ2
ds2

S6

)
(3.16)

A smooth cycle is formed if f 2
6 /ρ

2 is positive for θ ∈ (0, π) and approaches zero quadratically

as θ → 0 and θ → π. For p = 2 no smooth 7-cycle is formed. For p ≥ 3 we find,

f 2
6

4ρ2
= − 3G

2κ2
= 3r2 (2p− 3) sin θ − sin(2pθ − 3θ)

2(p− 1)(p− 2)(2p− 3) sin θ
+O(r3) (3.17)

For p = 3 we find f 2
6 /4ρ

2 ≈ r2 sin2 θ, giving rise to a round S7 from S6 and the polar part

of the metric on Σ. For integer p > 3, a smooth 7-cycle is formed which is not a round S7.

We conclude that the poles in A± must be double, with p = 3.

3.2.2 Supergravity fields near a double pole in A±

To obtain the supergravity fields near a double pole in A±, we need the Laurent expansions

of these functions to order w3,

A± =
α±
w2

+
β±
w

+ γ± + δ±w + ε±w
2 + χ±w

3 +O(w4) (3.18)

along with the conjugation condition implied by (3.12) so that ᾱ± = α∓, etc. The first

regularity condition is that κ2 > 0 in the interior of Σ. The leading behavior of κ2 is

obtained from (3.18),

κ2 =
2ζαβImw

|w|6
+O(|w|−3) ζαβ = 2i(α+β− − α−β+) (3.19)

51



The conjugation conditions imply that ζαβ is real, and positivity of κ2 in the upper half-

plane requires ζαβ > 0. In addition, the function G, and hence B+ B̄, must be single-valued.

Computing B in terms of (3.18), we find,

B =
iζαβ
6w3

+
iζαγ
2w2

+
i(3ζαδ + ζβγ)

2w
− 2i(2ζαε + ζβδ) lnw +O(|w|) (3.20)

with ζαγ etc. defined in analogy with ζαβ. Single-valuedness of B + B̄ requires the purely

imaginary coefficient of lnw to vanish,

2ζαε + ζβδ = 0 (3.21)

The functions G and T , in terms of which the metric functions f 2
2 , f 2

6 , ρ2 are given by (3.4),

take the following form near w = 0,

G ≈ −4ζαβ(Imw)3

3|w|6
T ≈ 4ξ|w|2(Imw)2 −ξ =

2ζαχ + ζβε
ζαβ

+
ζ2
αδ

ζ2
αβ

(3.22)

The condition ζαβ > 0, which already guaranteed κ2 > 0, is seen to also guarantee that

G < 0, as is indeed required by the regularity of the supergravity solution. In addition, we

impose the requirement ξ > 0 to render T positive.

With these conditions fulfilled, the behavior of the functions f 2
2 , f 2

6 , ρ2, and C near the

pole is given as follows in terms of polar coordinates w = reiθ near w = 0,

ρ2 ≈
ζ

1/2
αβ ξ

1/4

r5/2
f 2

6 ≈ 4r2 sin2 θρ2 f 2
2 ≈

ζ
1/2
αβ

9ξ3/4r9/2
C ≈ −2iα+

9ξr6
(3.23)

The complex axion-dilaton field τ , for α+ 6= α− = ᾱ+, is given by,

Re(τ) ≈ Re(α+)

Im(α+)
Im(τ) ≈ ξ1/2ζαβ

4Im(α+)2
r3 (3.24)

Finally, the presence of string charge at the pole may be verified by examining the potential

M for the seven-form field strength F(7). By inspection of (3.5) we see that all terms in M

are single-valued by construction, except for the contributions from the locally holomorphic

functions W±, whose behavior near w = 0 is given as follows,

W±(w) =Ws
±(w)− 3

2
i
(

(3ζαχ + ζβε)β± + ζαδδ± − ζαβχ±
)

lnw (3.25)
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where Ws
± denotes the single-valued part. Therefore, as w encircles the pole at w = 0

counterclockwise in Σ by a 180◦ degree arc, the potential M shifts as follows,

M→M+ 240π
(

(3ζαχ + ζβε)β+ + ζαδδ+ − ζαβχ+

)
(3.26)

The shift in M gives the integral of the seven-form field strength over the S7, producing a

formula for the p, q string charges in terms of the coefficients of the Laurent series,

p+ iq =

∫
S7

F(7) = 80π5
(

(3ζαχ + ζβε)β+ + ζαδδ+ − ζαβχ+

)
(3.27)

where we have used vol(S7) = π4/3. Note that the dependence of the string charges p, q on

the coefficients of the Laurent series is trilinear, in contrast with the AdS6 × S2 case where

the five-brane charges had linear dependence.

3.2.3 Satisfying the regularity conditions near a double pole

The various positivity and regularity conditions derived in the preceding subsection may be

satisfied simultaneously. To see this, we use the SU(1, 1) symmetry of supergravity to rotate

α± to be real, and furthermore scale it to 1 without loss of generality. The conditions then

reduce to the following relations

ζαβ = 4Im(β+) > 0, Im(ε+) = −1

8
ζβδ, ξ = − (Im δ+)2

(Im β+)2
− 8Imχ+ + ζβε

4Im β+

> 0 (3.28)

For given Re(β+), Im(β+) > 0, δ+, and ε+, we may always choose Im(−χ+) large enough

to satisfy the remaining condition ξ > 0. The expression for the charge p is unenlightening,

but the charge q takes the simple form q = −320π5ξ(Im β+)2 and must be negative.

We conclude this subsection with a remark on a no-go result derived in sec. 2.6.3.2.

Assuming certain regularity conditions on κ2 and G, it was argued that κ2 > 0 and G < 0

cannot both be realized for compact Σ with boundary. This argument was based on an

integral representation for G, obtained by solving the differential relation κ2 = −∂w∂w̄G

G(w) = H(w) +
1

π

∫
Σ

d2z G(w, z)κ2(z) (3.29)
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with harmonic H and G the Green’s function on Σ. The functions κ2 and G obtained here

circumvent this no-go result, because they are too singular at the pole to allow for the

integral representation (3.29). Indeed, the singularity in κ2 is not integrable against the

Green function, as may be seen from the form of κ2 and G given in (3.19) and (3.22). This

shows that the assumptions entering the argument of sec. 2.6.3.2 do not hold here.

3.2.4 Matching with the classic (p, q)-string solutions

The classic (p, q)-string solutions of Type IIB supergravity constructed in [39] are labeled

by a pair of integers (q1, q2) which characterize the charges. The metric, two-form, and

axion-dilaton τ = χ+ ie−φ are given by,

ds2 = A−3/4
q ds2

R1,1 + A1/4
q (dy2 + y2ds2

S7) τ =
q1χ0 − q2|τ0|2 + iq1e

−φ0A
1/2
q

q1 − q2χ0 + iq2e−φ0A
1/2
q

B
(i)
01 =

(
M−1

0

)
ij
qj∆

−1/2
q A−1

q Aq = 1 +
αq
y6

(3.30)

The asymptotic values of the axion-dilaton are given by τ0 = χ0 + ie−φ0 , and we have,

αq = ∆1/2
q Q ∆q =

q1

q2

t

M−1
0

q1

q2

 M = eφ

|τ |2 χ

χ 1

 (3.31)

As y →∞ we recover flat spacetime R1,9. The near-horizon limit corresponds to y6 � αq, so

that the first term in Aq may be neglected in this limit and we have simply Aq(y)→ αq/y
6.

The supergravity fields take the following form,

ds2 =
y9/2

α
3/4
q

ds2
R1,1 +

α
1/4
q

y3/2
(dy2 + y2ds2

S7) τ =
q1χ0 − q2|τ0|2 + iq1e

−φ0√αq/y3

q1 − q2χ0 + iq2e−φ0
√
αq/y3

B
(i)
01 =

(
M−1

0

)
ij
qj∆

−1/2
q

y6

αq
(3.32)

In this limit, y → 0 corresponds to the location of the string, but this is a strong coupling

limit since the dilaton blows up there. The limit y →∞ corresponds to the other end of the

throat which is also a strong coupling limit. Clearly, identifying the coordinate r of (3.23)

with y does not lead to a match between the supergravity fields of the AdS2 × S6 solutions

and the supergravity fields of the classic (p, q)-string solution to Type IIB. However, if we
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perform a coordinate inversion on y in the string solution by setting,

y = L/r (3.33)

then the supergravity fields of the string solution in terms of r are given by,

ds2 =
L9/2

α
3/4
q r9/2

ds2
R1,1 +

L1/2α
1/4
q

r5/2
(dr2 + r2ds2

S7) τ =
q1χ0 − q2|τ0|2 + iq1e

−φ0√αqr3/L3

q1 − q2χ0 + iq2e−φ0
√
αqr3/L3

B
(i)
01 =

(
M−1

0

)
ij
qj∆

−1/2
q

L6

αqr6
(3.34)

which perfectly match with the AdS2 × S6 solution provided we identify the parameters,

L3 =
ζαβ
3

αq = ξ(3ζ2
αβ)2/3 (3.35)

and a corresponding identification for the flux field. Note that the worldvolume for the

AdS2 × S6 solution is AdS2, whereas for the classic string solution it is R1,1. The inversion

in the identification (3.33) may play a role in the physical interpretation of potential global

solutions.

3.2.5 Multiple (p, q) charge solutions on the upper half-plane

In the previous subsection, we have shown that a double pole in the functions A± on the

boundary ∂Σ produces supergravity fields which may be identified locally, i.e. in a finite

neighborhood of the pole, with the supergravity fields of the classic (p, q)-string solution.

Here we shall extend this construction to the case of multiple double poles which are all

located on the boundary ∂Σ. For simplicity, we shall consider the case where Σ has the

topology of the upper half-plane, for which the boundary is the real line. Hence we shall

consider functions A± with N double poles, located at points pl ∈ R for l = 1, · · · , N .

To make further progress, we shall assume that A± are rational functions of w and that

w = ∞ is a regular point (which may always be achieved by conformal mapping). The

functions may therefore be decomposed into partial fractions in w as follows,

A± = A(0)
± +

N∑
l=1

(
Y l
±

(w − pl)2
+

Z l
±

w − pl

)
(3.36)
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where Y l
− = Ȳ l

+, Z l
− = Z̄ l

+, and A±(0) are complex parameters which are independent of

w. This Ansatz implements the reflection condition (3.12), as a result of which κ2 and G

vanish on ∂Σ = R. It remains to enforce the positivity requirement κ2 > 0 everywhere in

the interior of the upper half-plane, which in particular requires that ∂A− has no zeros in

the upper half-plane. We also need the condition that the function B + B̄ be single-valued.

An alternative formulation starts from the differentials ∂A±, which have a triple pole at

each w = pl. We may easily enforce the conditions that the zeros of ∂A+ and ∂A− all be

located in the upper and lower half-planes, respectively, by the following parametrization

(analogous to the parametrization used for the AdS6 case in [20]),

∂wA± = P±(w)
N∏
l=1

1

(w − pl)3
, P+(w) =

3N−2∏
n=1

(w − sn), P−(w) =
3N−2∏
n=1

(w − s̄n) (3.37)

with Im(sn) > 0. In order to integrate to single-valued functions A± and B + B̄, the

differentials ∂A± must have vanishing residues at pl, while the imaginary part of the residue

of the differential ∂wB must also vanish,

Res(∂wA±)
∣∣∣
w=pl

= 0 Res(∂wB)
∣∣∣
w=pl
∈ R (3.38)

The counting of parameters shows that, for a given arrangement of poles pl, there are 3N−2

complex zeros, subject to 3N−3 real residue conditions. Thus parameter counting allows for

the existence of large families of solutions. While it is clear that the positivity and regularity

conditions are satisfied in the neighborhood of each pole, and that the supergravity fields

match onto a classical (p, q)-string solution in the near-horizon limit, it is unclear how to

ensure regularity throughout the upper half-plane. The solutions found numerically thus far

have all been geodesically incomplete, and this includes the cases with one and two charges.

The situation will be discussed explicitly for the case of three charges in the next subsection.

3.2.6 Three charges

In this final subsection, we analyze the case of three double poles in A±, and thus three

(p, q)-string charges. In order to conveniently exploit as much symmetry of the configuration
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as possible, we shall work on the unit disc with complex coordinates z, z̄ rather than on the

upper half-plane with complex coordinates w, w̄. The conjugation condition (3.12) on the

disc becomes A±(1/z̄) = A∓(z), and we may exploit SU(1, 1) symmetry of the unit disc to

map the positions of the poles to 1, ε, ε2 where ε is a non-trivial cube root of unity. The

differentials and polynomials of (3.37) then take the form,

∂zA±(z) =
P±(z)

(z3 − 1)3
, P+(z) =

7∑
k=0

ckz
k, P−(z) =

7∑
k=0

c̄7−kz
k (3.39)

The vanishing of the residues of ∂zA± at the poles gives two complex linearly independent

relations between the coefficients ck,

c3 = 5c0 + 2c6 c4 = 5c7 + 2c1 (3.40)

while the vanishing of the imaginary part of the residues of ∂zB gives two independent real

relations, which may be combined into one complex relation between the coefficients ck,

0 = 27|c7|2 + 9|c6|2 − 2|c5|2 + 2|c2|2 − 9|c1|2 − 27|c0|2

− 18c̄7c6 + 21c̄2c7 − 9c̄1c7 − 36c̄7c1 − 3c̄6c2

+ 9c̄0c6 + 36c̄6c0 + 3c̄5c1 − 21c̄0c5 + 18c̄1c0 (3.41)

where we have eliminated c3, c4 using (3.40). Global regularity and geodesic completeness

requires furthermore that we have κ2 > 0, G < 0, and T real. The condition κ2 > 0 in the

interior of the disc requires that all the zeros of P+(z) be in the interior of the disc, which

implies that all the zeros of P−(z) will be outside the disc. We have not been able to solve

this condition in any general form, nor numerically for any particular choice of parameters

ck. However, we have also not been able to show convincingly that no solutions exist. The

cases with 4 poles have also been explored, but the complexity of the conditions required is

then even more involved. In the absence of these results, we are left only with solutions with

(p, q)-string charges which are not geodesically complete.
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3.3 Discussion

We have constructed an Ansatz for global Type IIB supergravity solutions with 16 super-

symmetries on a spacetime of the from AdS2 × S6 warped over the unit disc or equivalently

the upper half-plane, which may allow for an identification with string junctions. These

solutions circumvent the no-go results of sec. 2.6.3.2, and naturally implement the bound-

ary conditions on ∂Σ which impose stronger constraints than in the AdS6 × S2 case. The

remaining conditions for regularity and geodesic completeness were reduced to algebraic con-

straints on the parameters of the Ansatz, whose complete solution remains an open problem.

In analogy with the relation of AdS6 solutions to M5-brane curves [40], one may expect the

data (Σ,A±) for solutions corresponding to string junctions to define the holomorphic curve

wrapped by the M2-brane in the M-theory uplift of the string junctions [41, 42, 43, 44].

Finally, we briefly summarize sec. 5 of [2], in which the T-duals of the D0-F1-D8 system

in massive Type IIA supergravity [16] is studied. Such solutions take the form AdS2 × S7

warped over an interval. It is shown that T-dualizing along the S1 fiber in the fibration over

CP3 yields a configuration that could naturally arise from Type IIB solutions of the form

AdS2 × CP3 warped over a Riemann surface Σ, where the appropriate superalgebra would

be SU(1, 1|4). However, CP3 is not maximally symmetric and AdS2×CP3 can only support

12 supersymmetries instead of the desired number of 16 (see e.g. [45]). Another option for

T-duality is the S1 in the S5 × S1 slicing of S7. While this does not produce an S6 in the

T-dual geometry, such solutions would also realize SU(1, 1|4) symmetry and so we consider

the case of AdS2 × S5 × S1 × Σ in the next chapter.
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CHAPTER 4

Warped AdS2 and SU(1, 1|4) symmetry

4.1 AdS2 × S5 × S1 × Σ Ansatz in Type IIB supergravity

In this section, we again review key aspects of Type IIB supergravity, then obtain the Ansatz

for bosonic supergravity fields and susy generators with SO(2, 1)⊕SO(6)⊕SO(2) symmetry.

4.1.1 Type IIB supergravity review

The bosonic fields of Type IIB supergravity consist of the metric gMN , the complex-valued

axion-dilaton field B, a complex-valued two-form potential C(2) and a real-valued four-form

field C(4). The field strengths of the potentials C(2) and C(4) are given as follows,

F(3) = dC(2) F(5) = dC(4) +
i

16
(C(2) ∧ F̄(3) − C̄(2) ∧ F(3)) (4.1)

The field strength F(5) satisfies the well-known self-duality condition F(5) = ∗F(5). Instead

of the scalar field B and the 3-form F(3), the fields that actually enter the BPS equations

are composite fields, namely the one-forms P,Q representing B, and the complex 3-form G

representing F(3), given in terms of the fields defined above by the following relations,

P = f 2
B dB f 2

B = (1− |B|2)−1

Q = f 2
B Im (B dB̄)

G = fB(F(3) −BF̄(3)) (4.2)

Under the SU(1, 1) ∼ SL(2,R) global symmetry of Type IIB supergravity, the Einstein-

frame metric gMN and the four-form C(4) are invariant, while B and C(2) transform as,

B → uB + v

v̄B + ū
C(2) → uC(2) + vC̄(2) (4.3)
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where SU(1, 1) is parametrized by u, v ∈ C with |u|2 − |v|2 = 1. The field B takes values

in the coset SU(1, 1)/U(1)q and Q acts as a composite U(1)q gauge field. The SU(1, 1)

symmetry induces the following transformations on the composite fields [36],

P → e2iθP θ = arg(vB̄ + u)

Q→ Q+ dθ

G→ eiθG (4.4)

Equivalently, one may formulate Type IIB supergravity directly in terms of gMN , F(5), P,Q

and G provided these fields are subject to the Bianchi identities [36, 37],

0 = dP − 2iQ ∧ P (4.5)

0 = dQ+ iP ∧ P̄ (4.6)

0 = dG− iQ ∧G+ P ∧ Ḡ (4.7)

0 = dF(5) −
i

8
G ∧ Ḡ (4.8)

The fermion fields of Type IIB supergravity are the dilatino λ and the gravitino ψM . The

conditions that these fields and their variations δλ, δψM vanish yield the BPS equations, 1

0 = i(Γ · P )B−1ε∗ − i

24
(Γ ·G)ε

0 = (∇M −
i

2
QM)ε+

i

480
(Γ · F(5))ΓMε−

1

96
(ΓM(Γ ·G) + 2(Γ ·G)ΓM)B−1ε∗ (4.9)

where ε is the supersymmetry generator transforming under the minus chirality Weyl spinor

representation of SO(1, 9) and ∇M is the covariant derivative acting on this representation.

4.1.2 SO(2, 1)⊕ SO(6)⊕ SO(2)-invariant Ansatz for supergravity fields

We construct a general Ansatz for the bosonic fields of Type IIB supergravity consistent

with the SO(2, 1)⊕ SO(6)⊕ SO(2) symmetry algebra. A natural realization is a spacetime

1Repeated indices are summed over, and complex conjugation is denoted by a bar for functions and by a
star for spinors. We use the notation Γ · T ≡ ΓA1···ApTA1···Ap

for the contraction of an antisymmetric tensor
field T of rank p with a Γ-matrix of the same rank. The matrices ΓA and B are defined in Appendix A.
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geometry of the form AdS2 × S5 × S1 warped over a two-dimensional Riemann surface Σ.

The SO(2, 1)⊕SO(6)⊕SO(2)-invariant Ansatz for the metric is then of the following form,

ds2 = f 2
2 dŝ

2
AdS2

+ f 2
5 dŝ

2
S5 + f 2

1 dŝ
2
S1 + ds2

Σ (4.10)

where the radii f2, f5, f1 and ds2
Σ are functions of Σ. We define an orthonormal frame,

em = f2 ê
m m = 0, 1

ei = f5 ê
i i = 2, 3, 4, 5, 6

ea = ρ êa a = 7, 8

e9 = f1 ê
9 (4.11)

where êm, êi, and ê9 respectively refer to orthonormal frames for the spaces AdS2, S5, and

S1 with unit radius. Here, ea is an orthonormal frame on Σ only, so that we have,

dŝ2
AdS2

= η(2)
mn ê

m ⊗ ên dŝ2
S5 = δij ê

i ⊗ êj

ds2
Σ = δab e

a ⊗ eb dŝ2
S1 = ê9 ⊗ ê9 (4.12)

The axion-dilaton field B is a function of Σ only, so the 1-forms P and Q can be written as,

P = pae
a Q = qae

a (4.13)

where the components pa, qa are complex and depend on Σ only. Finally, the complex 3-form

G and self-dual 5-form field strength F(5) = ∗F(5) are given as follows,

G = igāe
01ā + he789 F(5) = f

(
e01789 + e23456

)
(4.14)

where the indices ā run over the values 7, 8, 9. The coefficients are constrained by SO(2, 1)⊕

SO(6)⊕ SO(2) invariance, so that both the real-valued functions f , qa and complex-valued

functions pa, h, ga, g9 depend only on Σ. This completes the Ansatz for the bosonic fields.

4.1.3 SO(2, 1)⊕ SO(6)⊕ SO(2)-invariant Ansatz for susy generators

We decompose the supersymmetry generator ε onto the Killing spinors of the various com-

ponents of AdS2 × S5 × S1. The Killing spinor equations on AdS2 and on S5 were derived
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in the appendices of [10] and [46], and are given (respectively) by,(
∇̂m −

1

2
η1γm ⊗ I4

)
χη1,η2 = 0

(
∇̂i −

i

2
η2I4 ⊗ γi

)
χη1,η2 = 0 (4.15)

Here, ∇̂m and ∇̂i are the covariant spinor derivatives on the respective spaces, and integra-

bility requires that η2
1 = η2

2 = 1. The action of the chirality matrices is given by,(
γ(1) ⊗ I8

)
χη1,η2 = χ−η1,η2

(
I2 ⊗ γ(2)

)
χη1,η2 = χη1,+η2 (4.16)

while under charge conjugation we have,

χη1,η2 → (χc)η1,η2 =
(
B(1) ⊗B(2)

)−1
(χη1,η2)∗ ∝ χ−η1,−η2 (4.17)

The components are found by first choosing (χc)++ ≡ χ−−, then using the chirality matrix

γ(1) and charge conjugation matrices B(1), B(2) to obtain the following relations for all η1, η2:

(χc)η1,η2 = η2χ
−η1,−η2 (4.18)

Killing spinors χη3 on S1 are single functions for each value of η3 which solve the equation,(
∇̂9 −

i

2
η3

)
χη3 = 0 (4.19)

As explained in [35], we may set (χη3)∗ = χ−η3 , with the values η3 = ±1 corresponding to

a double-valued representation for the spinors. The most general 32-component complex

spinor ε that can be decomposed onto the Killing spinors of AdS2 × S5 × S1, and which is

consistent with the 10-dimensional chirality condition Γ11ε = −ε, is of the following form,

ε =
∑

η1,η2,η3

χη1,η2χη3 ⊗ ζη1,η2,η3 ⊗ φ (4.20)

where we have defined the constant spinor,

φ ≡ e−iπ/4

1

0

+ eiπ/4

0

1

 (4.21)

Finally, the charge conjugate spinor is given by,

B−1ε∗ =
∑

η1,η2,η3

χη1,η2χη3 ⊗ ?ζη1,η2,η3 ⊗ φ ?ζη1,η2,η3 = −iη2σ
2ζ∗−η1,−η2,−η3 (4.22)

This completes the construction of the SO(2, 1)⊕ SO(6)⊕ SO(2)-invariant Ansatz.
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4.2 Reducing the BPS equations

For purely bosonic Type IIB supergravity fields, half-BPS configurations are those for which

the BPS equations yield 16 independent solutions. In this section, we reduce the BPS

equations to the Ansatz, employing the same strategy and methods as those used in [35].

4.2.1 The reduced BPS equations

As before, we use the τ matrix notation introduced originally in [38] to compactly express

the action of the various γ matrices on ζ. Defining τ (ijk) = τ i⊗τ j⊗τ k with i, j, k = 0, 1, 2, 3,

τ 0 the identity matrix and τ i for i = 1, 2, 3 the standard Pauli matrices, we can write,

(τ (ijk)ζ)η1,η2,η3 ≡
∑

η′1,η
′
2,η

′
3

(τ i)η1η′1(τ
j)η2η′2(τ

k)η3η′3ζη′1,η′2,η′3 (4.23)

The reduction of the BPS equations (4.9) using the decomposition of ε (4.20) onto the Killing

spinors (4.15) is discussed in Appendix B. The reduced dilatino BPS equation is given by,

(d) 0 = 4paγ
aσ2ζ∗ + igāτ

(021)γāζ − ihτ (121)ζ (4.24)

while the various components of the reduced gravitino BPS equations are as follows,

(m) 0 =
1

2f2

τ (300)ζ +
Daf2

2f2

τ (100)γaζ +
1

2
fζ

+
1

16

(
3igāτ

(121)γāσ2ζ∗ + ihτ (021)σ2ζ∗
)

(i) 0 =
1

2f5

τ (030)ζ +
Daf5

2f5

τ (100)γaζ − 1

2
fζ

+
1

16

(
−igāτ (121)γāσ2ζ∗ + ihτ (021)σ2ζ∗

)
(a) 0 =

(
Da +

i

2
ω̂aσ

3

)
ζ − i

2
qaζ +

1

2
fτ (100)γaζ

+
1

16

(
3igaτ

(021)σ2ζ∗ − igb̄τ (021)γa
b̄σ2ζ∗ − 3ihτ (121)γaσ

2ζ∗
)

(9) 0 =
i

2f1

τ (103)σ3ζ +
Daf1

2f1

τ (100)γaζ +
1

2
fζ

+
1

16

(
3ig9τ

(121)σ3σ2ζ∗ − igaτ (121)γaσ2ζ∗ − 3ihτ (021)σ2ζ∗
)

(4.25)
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The derivative Da is defined with respect to the frame ea of Σ, so that the total differential

dΣ takes the form dΣ = eaDa, while the U(1)-connection with respect to frame indices is ω̂a.

4.2.2 Symmetries of the reduced BPS equations

The global SU(1, 1) symmetry of Type IIB, whose action on the bosonic fields was given in

(4.3) and (4.4), survives the reduction to the SO(2, 1) ⊕ SO(6) ⊕ SO(2)-invariant Ansatz.

Upon reduction to the Ansatz, the U(1)q gauge transformations of (4.4) are now given by,

ζ → eiθ/2ζ ga → eiθga

qa → qa +Daθ g9 → eiθg9

pa → e2iθpa h→ eiθh (4.26)

In addition to the continuous symmetries, there are linear discrete symmetries which leave the

reduced supergravity fields unchanged and act on the supersymmetry generator as follows,

ζ → ζ ′ = Sζ S ∈ S0 ≡
{
I, τ (033), iτ (030), iτ (003)

}
(4.27)

Finally, composing complex conjugation with an arbitrary U(1)q transformation, we have,

ζ → Kζ = eiθτ (033)σ1ζ∗ ga → Kga = e2iθg∗a

pa → Kpa = e4iθp∗a g9 → Kg9 = −e2iθg∗9

qa → Kqa = −qa + 2Daθ h→ Kh = e2iθh∗ (4.28)

while the pure discrete complex conjugation corresponds to the special case where θ = 0.

4.2.3 Further reduction and chiral form of the BPS equations

We now derive the restrictions to one of the linear discrete symmetries which are implied

by the reduced BPS equations, following the same procedure that was used for [35]. From

(4.27), we see that only τ (033) ∈ S0 commutes with the BPS differential operator and admits

real eigenvalues. Therefore, we may diagonalize this symmetry simultaneously with the BPS
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operator and analyze separately the restriction of the BPS equations to the two eigenspaces,

ζ → τ (033)ζ = νζ ν = ±1 (4.29)

The non-zero components of ζ are then redefined in terms of a new ζ-spinor with two indices,

ν = +1



ζ++ ≡ ζ+++

ζ+− ≡ ζ+−−

ζ−+ ≡ ζ−++

ζ−− ≡ ζ−−−

ν = −1



ζ++ ≡ ζ++−

ζ+− ≡ ζ+−+

ζ−+ ≡ ζ−+−

ζ−− ≡ ζ−−+

(4.30)

The remaining elements iτ (030), iτ (003) ∈ S0 (4.27) map between identical ν, and along with

the complex conjugations symmetries (4.28) reduce under (4.30) to the following transfor-

mations,

iτ (030)ζ → iτ (03)ζ iτ (003)ζ → iντ (03)ζ Kζ → νeiθσ1ζ∗ (4.31)

We then decompose the spinors ζη1,η2 in terms of complex frame basis ea = (ez, ez̄) on Σ,

with a metric δzz̄ = δz̄z = 2 and Clifford algebra generators γa = (γz, γ z̄) defined as follows,

ez =
1

2

(
e7 + ie8

)
ez̄ =

1

2

(
e7 − ie8

)
γz =

0 1

0 0

 γ z̄ =

0 0

1 0

 (4.32)

Similar relations hold for pa, qa, ga, e.g. pz = p7 − ip8 and pz̄ = p7 + ip8. In this same 2-

dimensional spinor basis, we decompose the two-index spinor ζ into the chirality components,

ζη1,η2 =

τ (02)ξ∗η1,η2

ψη1,η2

 (4.33)

where ξ∗η1,η2 , ψη1,η2 are 1-component spinors. In this basis, the reduced dilatino equation is,

(d1) 0 = 4ipzξ − igzψ − ig9τ
(02)ξ∗ + ihτ (12)ξ∗

(d2) 0 = 4ip∗z̄ψ − ig∗z̄ξ − ig∗9τ (02)ψ∗ − ihτ (12)ψ∗ (4.34)
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The components of the reduced gravitino equation along AdS2, S5, S1 are given by,

(m1) 0 =
−i
2f2

τ (22)ξ∗ +
Dzf2

2f2

ψ +
1

2
fτ (12)ξ∗ +

1

16

(
3gzξ + 3g9τ

(02)ψ∗ + hτ (12)ψ∗
)

(m2) 0 =
i

2f2

τ (22)ψ∗ +
Dzf2

2f2

ξ − 1

2
fτ (12)ψ∗ +

1

16

(
3g∗z̄ψ + 3g∗9τ

(02)ξ∗ − h∗τ (12)ξ∗
)

(i1) 0 =
−i
2f5

τ (11)ξ∗ +
Dzf5

2f5

ψ − 1

2
fτ (12)ξ∗ +

1

16

(
−gzξ − g9τ

(02)ψ∗ + hτ (12)ψ∗
)

(i2) 0 =
−i
2f5

τ (11)ψ∗ +
Dzf5

2f5

ξ +
1

2
fτ (12)ψ∗ +

1

16

(
−g∗z̄ψ − g∗9τ (02)ξ∗ − h∗τ (12)ξ∗

)
(91) 0 =

ν

2f1

τ (01)ξ∗ +
Dzf1

2f1

ψ +
1

2
fτ (12)ξ∗ +

1

16

(
−gzξ + 3g9τ

(02)ψ∗ − 3hτ (12)ψ∗
)

(92) 0 =
ν

2f1

τ (01)ψ∗ +
Dzf1

2f1

ξ − 1

2
fτ (12)ψ∗ +

1

16

(
−g∗z̄ψ + 3g∗9τ

(02)ξ∗ + 3h∗τ (12)ξ∗
)

(4.35)

together with the components along Σ,

(+1) 0 =

(
Dz̄ −

i

2
ω̂z̄ +

i

2
qz̄

)
ξ +

1

4
g∗zψ

(+2) 0 =

(
Dz −

i

2
ω̂z −

i

2
qz

)
ψ + fτ (12)ξ∗ +

1

8

(
gzξ − g9τ

(02)ψ∗ − 3hτ (12)ψ∗
)

(−1) 0 =

(
Dz −

i

2
ω̂z +

i

2
qz

)
ξ − fτ (12)ψ∗ +

1

8

(
g∗z̄ψ − g∗9τ (02)ξ∗ + 3h∗τ (12)ξ∗

)
(−2) 0 =

(
Dz̄ −

i

2
ω̂z̄ −

i

2
qz̄

)
ψ +

1

4
gz̄ξ (4.36)

where ω̂z = i(∂wρ)/ρ2. The action of the complex conjugation symmetry (4.31) is given by,

ξ → ξ′ = −νe−iθτ (02)ψ ψ → ψ′ = −νe+iθτ (02)ξ (4.37)

with the transformations on the bosonic fields (4.28) translated as follows in the chiral basis,

pz → p′z = e4iθ(pz̄)
∗ gz → g′z = e2iθ(gz̄)

∗ h→ h′ = e2iθh∗

qz → q′z = −qz + 2Dzθ g9 → g′9 = −e2iθg∗9 (4.38)

Finally, we note that shifting the metric factor f1 → νf1 removes all explicit dependence

on ν from the reduced BPS equations, which is irrelevant since the supergravity fields only

ever depend on the square f 2
1 . Thus, for every solution to the reduced BPS equations with

ν = +1, there exists another solution with ν = −1 so that a systematic doubling of the total

number of spinor solutions is produced. Together with the counting of components for the

66



basis of Killing spinors in (4.20), this implies that any solution with ν = +1 produces 16

linearly independent solutions to the BPS equations, thereby generating a half-BPS solution.

4.3 Metric factors in terms of spinor bilinears

In this section, we use the gravitino BPS equations to solve for the metric factors f1, f2, f5.

We find that their solutions may be related to bilinears of the spinors ψ, ξ. The reality

properties of the metric factors impose the conditions that the spinor bilinears be real and

invariant under U(1)q transformations. The only combinations that satisfy these require-

ments are those of the form ψ†τ (αβ)ψ, ξ†τ (αβ)ξ. We seek relations that hold for generic

values of the supergravity fields f1, f2, f5, f, gz, gz̄, h and g9. Following the same procedure

that was used for [35], we will use combinations of the differential equations (±) in (4.36),

Dz

(
ψ†τ (αβ)ψ

)
=− fψ†τ (αβ)τ (12)ξ∗ − 1

4
g∗z̄ξ
†τ (αβ)ψ

+
1

8

(
−gzψ†τ (αβ)ξ + g9ψ

†τ (αβ)τ (02)ψ∗ + 3hψ†τ (αβ)τ (12)ψ∗
)

Dz

(
ξ†τ (αβ)ξ

)
= + fξ†τ (αβ)τ (12)ψ∗ − 1

4
gzψ

†τ (αβ)ξ

+
1

8

(
−g∗z̄ξ†τ (αβ)ψ + g∗9ξ

†τ (αβ)τ (02)ξ∗ − 3h∗ξ†τ (αβ)τ (12)ξ∗
)

(4.39)

and of the algebraic gravitino BPS equations (4.35) to find relations of the following type,

Dz

(
r1ψ

†τ (αβ)ψ + r2ξ
†τ (αβ)ξ

)
+
Dzfi
fi

(
r3ψ

†τ (αβ)ψ + r4ξ
†τ (αβ)ξ

)
= 0 (4.40)

where i = 1, 2, 5, and the coefficients r1, r2, r3, r4 may depend on i and α, β, but not on Σ.
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4.3.1 AdS2 metric factor

Left-multiplying equation (m1) by ψ† and the complex conjugate of equation (m2) by ξ†,

then term by term cancellation imposes the following requirements for generic fields,

(f2) 0 = r3τ
(αβ)τ (22) − r4τ

(22)
(
τ (αβ)

)t
(f) 0 = (r1 + r3)τ (αβ)τ (12) + (r2 + r4)τ (12)

(
τ (αβ)

)t
(g∗z̄) 0 = 2r1 + r2 + 3r4

(gz) 0 = 2r2 + r1 + 3r3

(g9) 0 = (r1 − 3r3)g9ψ
†τ (αβ)τ (02)ψ∗ = (r2 − 3r4)g∗9ξ

†τ (αβ)τ (02)ξ∗

(h) 0 = (3r1 − r3)hψ†τ (αβ)τ (12)ψ∗ = −(3r2 − r4)h∗ξ†τ (αβ)τ (02)ξ∗ (4.41)

If r3 = 0, then (f2) implies r4 = 0, and (gz) and (g∗z̄) imply r1 = r2 = 0. Therefore, for

non-trivial solutions we have r3 6= 0, and without loss of generality we set r3 = 1. Then (f2)

implies that |r4| = 1, so that (gz) and (g∗z̄) reduce to r1 = −2r2 − 3 and r4 = r2 + 2, with

the condition that |r2 + 1| = 1. For r4 = ±1, (f2) and (f) yield two sets of solutions,

(r1, r2, r3, r4) = (−1,−1,+1,+1) τ (αβ) ∈
{
τ (00), τ (11), τ (12), τ (13), τ (21),

τ (22), τ (23), τ (31), τ (32), τ (33)
}

(r1, r2, r3, r4) = (+3,−3,+1,−1) τ (αβ) ∈
{
τ (10), τ (20)

}
(4.42)
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4.3.2 S5 metric factor

Left-multiplying equation (i1) by ψ† and the complex conjugate of equation (i2) by ξ†, then

term by term cancellation imposes the following requirements for generic fields,

(f5) 0 = r3τ
(αβ)τ (11) + r4τ

(11)
(
τ (αβ)

)t
(f) 0 = (r3 − r1)τ (αβ)τ (12) + (r4 − r2)τ (12)

(
τ (αβ)

)t
(g∗z̄) 0 = 2r1 + r2 − r4

(gz) 0 = 2r2 + r1 − r3

(g9) 0 = (r1 + r3)g9ψ
†τ (αβ)τ (02)ψ∗ = (r2 + r4)g∗9ξ

†τ (αβ)τ (02)ξ∗

(h) 0 = (3r1 − r3)hψ†τ (αβ)τ (12)ψ∗ = −(3r2 − r4)h∗ξ†τ (αβ)τ (02)ξ∗ (4.43)

If r3 = 0, then (f5) implies r4 = 0, and (gz) and (g∗z̄) imply r1 = r2 = 0. Therefore, for

non-trivial solutions we have r3 6= 0, and without loss of generality we set r3 = 1. Then (f5)

implies that |r4| = 1, so that (gz) and (g∗z̄) reduce to r1 = −2r2 + 1 and r4 = −3r2 + 2, with

the condition that | − 3r2 + 2| = 1. For r4 = ±1, (f5) and (f) yield two sets of solutions,

(r1, r2, r3, r4) = (−1,+1,+1,−1) τ (αβ) ∈
{
τ (00), τ (10), τ (20), τ (33)

}
(r1, r2, r3, r4) = (1/3, 1/3,+1,+1) τ (αβ) ∈

{
τ (03), τ (13), τ (23), τ (30)

}
(4.44)

4.3.3 S1 metric factor

Left-multiplying equation (91) by ψ† and the complex conjugate of equation (92) by ξ†, then

term by term cancellation imposes the following requirements for generic fields,

(f1) 0 = r3τ
(αβ)τ (01) + r4τ

(01)
(
τ (αβ)

)t
(f) 0 = (r1 + r3)τ (αβ)τ (12) + (r2 + r4)τ (12)

(
τ (αβ)

)t
(g∗z̄) 0 = 2r1 + r2 − r4

(gz) 0 = 2r2 + r1 − r3

(g9) 0 = (r1 − 3r3)g9ψ
†τ (αβ)τ (02)ψ∗ = (r2 − 3r4)g∗9ξ

†τ (αβ)τ (02)ξ∗

(h) 0 = (r1 + r3)hψ†τ (αβ)τ (12)ψ∗ = −(r2 + r4)h∗ξ†τ (αβ)τ (02)ξ∗ (4.45)
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If r3 = 0, then (f1) implies r4 = 0, and (gz) and (g∗z̄) imply r1 = r2 = 0. Therefore, for

non-trivial solutions we have r3 6= 0, and without loss of generality we set r3 = 1. Then (f1)

implies that |r4| = 1, so that (gz) and (g∗z̄) reduce to r1 = −2r2 + 1 and r4 = −3r2 + 2, with

the condition that | − 3r2 + 2| = 1. For r4 = ±1, (f1) and (f) yield two sets of solutions,

(r1, r2, r3, r4) = (−1,+1,+1,−1) τ (αβ) ∈
{
τ (00), τ (01), τ (02), τ (10), τ (11),

τ (12), τ (23), τ (30), τ (31), τ (32)
}

(r1, r2, r3, r4) = (1/3, 1/3,+1,+1) τ (αβ) ∈
{
τ (03), τ (13), τ (21), τ (22)

}
(4.46)

4.3.4 Summary of expressions

Imposing the (g9) and (h) conditions in each case, then in terms of the Hermitian forms,

H
(αβ)
± ≡ ψ†τ (αβ)ψ ± ξ†τ (αβ)ξ (4.47)

we have the following generic relations, valid for arbitrary values of all the supergravity fields,

f−1
2 H

(00)
+ = C

(00)
2

f
1/3
2 H

(αβ)
− = C

(αβ)
2 τ (αβ) ∈

{
τ (10), τ (20)

}

f−1
5 H

(αβ)
− = C

(αβ)
5 τ (αβ) ∈

{
τ (00), τ (10), τ (20), τ (33)

}
f 3

5H
(αβ)
+ = C

(αβ)
5 τ (αβ) ∈

{
τ (23), τ (30)

}

f−1
1 H

(αβ)
− = C

(αβ)
1 τ (αβ) ∈

{
τ (00), τ (10), τ (23), τ (30)

}
(4.48)

Since both f2 and ψ†ψ+ ξ†ξ must be positive, we rescale ξ and ψ by a real constant, so that,

H
(00)
+ = f2 (4.49)
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4.4 Vanishing Hermitian forms

We can use the reality properties of various combinations of the BPS equations to show that

certain Hermitian forms vanish automatically. We consider the following Hermitian forms,

H
(αβ)
± ≡ ψ†τ (αβ)ψ ± ξ†τ (αβ)ξ

H
(αβ)
g± ≡ g9ψ

†τ (αβ)ξ ± g∗9ξ†τ (αβ)ψ

H
(αβ)
h± ≡ hψ†τ (αβ)ξ ± h∗ξ†τ (αβ)ψ (4.50)

where H
(αβ)
± , H

(αβ)
g+ , H

(αβ)
h+ are real, while H

(αβ)
g− , H

(αβ)
h− are purely imaginary. In the following

sections, we consider three particular combinations. Then in section 4.4.4, separating out the

real and imaginary parts yields the full sets of vanishing and non-trivial Hermitian relations.

4.4.1 First set of Hermitian relations

We consider the linear combination (m) + 2(i) + (9) of the BPS equations (4.35). Note that

all the terms containing f , gz, gz̄, h, h∗ are cancelled. Multiplying the first equation by

ξtτ (αβ), the second by −ψtτ (αβ)t, then adding them and taking the transpose, we obtain,

0 = ψ†
(
− i

f2

τ (22) +
2i

f5

τ (11) − ν

f1

τ (01)

)
τ (αβ)ψ − 1

2
g9ψ

†τ (02)τ (αβ)tξ

+ ξ†
(
− i

f2

τ (22) − 2i

f5

τ (11) +
ν

f1

τ (01)

)
τ (αβ)tξ +

1

2
g∗9ξ
†τ (02)τ (αβ)ψ (4.51)

4.4.2 Second set of Hermitian relations

We eliminate the Dzfi, gz, g
∗
z̄ terms in each set of equations (m), (i), or (9). We calculate

only the (m) and (i) equations, since the relations for the (9) equation can be obtained from

a linear combination of the (m) and (i) equations, together with the first set of relations.

For each pair of the f2 and f5 equations in the BPS equations (4.35), we multiply the

first by ξtτ (αβ) and the second by ψtτ (αβ). The gz, g
∗
z̄ terms then vanish automatically if
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τ (αβ)t = −τ (αβ). Adding both to cancel the Dzfi terms, then taking the transpose, we have,

(m) : 0 = ψ†
(
i

f2

τ (22) + fτ (12)

)
τ (αβ)ψ − 3

8
g9ψ

†τ (02)τ (αβ)ξ − 1

8
hψ†τ (12)τ (αβ)ξ

+ ξ†
(
− i

f2

τ (22) − fτ (12)

)
τ (αβ)ξ − 3

8
g∗9ξ
†τ (02)τ (αβ)ψ +

1

8
h∗ξ†τ (12)τ (αβ)ψ

(i) : 0 = ψ†
(
− i

f5

τ (11) − fτ (12)

)
τ (αβ)ψ +

1

8
g9ψ

†τ (02)τ (αβ)ξ − 1

8
hψ†τ (12)τ (αβ)ξ

+ ξ†
(
− i

f5

τ (11) + fτ (12)

)
τ (αβ)ξ +

1

8
g∗9ξ
†τ (02)τ (αβ)ψ +

1

8
h∗ξ†τ (12)τ (αβ)ψ (4.52)

4.4.3 Third set of Hermitian relations

Finally, we consider the combination (i)− (9). We multiply the first equation by ξtτ (αβ) and

the second by ψtτ (αβ), with τ (αβ)t = +τ (αβ). Taking the difference and then the transpose,

0 = ψ†
(
i

f5

τ (11) +
ν

f1

τ (01) + 2fτ (12)

)
τ (αβ)ψ + ψ†

(
1

2
g9τ

(02) − 1

2
hτ (12)

)
τ (αβ)ξ

+ ξ†
(
− i

f5

τ (11) − ν

f1

τ (01) + 2fτ (12)

)
τ (αβ)ξ + ξ†

(
−1

2
g∗9τ

(02) − 1

2
h∗τ (12)

)
τ (αβ)ψ (4.53)

4.4.4 Summary of all Hermitian relations

The full set of vanishing Hermitian relations is given by,

Hαβ
+ = 0 (αβ) ∈ {(03), (11), (12), (13), (23), (33)}

Hαβ
− = 0 (αβ) ∈ {(00), (01), (02), (10), (20), (21), (22), (30), (31), (32)}

Hαβ
g+ = 0 (αβ) ∈ {(00), (10), (23), (30)}

Hαβ
g− = 0 (αβ) ∈ {(03), (11), (12), (13), (31), (32), (33)}

Hαβ
h+ = 0 (αβ) ∈ {(03), (11), (12), (13), (23)}

Hαβ
h− = 0 (αβ) ∈ {(00), (10), (20), (33)} (4.54)

72



The remaining non-trivial Hermitian relations are as follows. We have the first set,

(00)
1

f2

H
(22)
+ − 2

f5

H
(11)
− − i

2
H

(02)
g− = 0

(03)
1

f2

H
(21)
+ +

2

f5

H
(12)
− − i1

2
H

(01)
g− = 0

(10)
1

f2

H
(32)
+ +

ν

f1

H
(11)
− = 0

(13)
1

f2

H
(31)
+ − ν

f1

H
(12)
− = 0

(20)
2

f5

H
(31)
+ +

ν

f1

H
(21)
+ − 1

2
H

(22)
g+ = 0

(21)
1

f2

H
(03)
− +

2

f5

H
(30)
+ +

ν

f1

H
(20)
+ = 0

(22)
1

f2

H
(00)
+ +

2

f5

H
(33)
− +

ν

f1

H
(23)
− − i

2
H

(20)
g− = 0

(23)
2

f5

H
(32)
+ +

ν

f1

H
(22)
+ +

1

2
H

(21)
g+ = 0 (4.55)

the second set,

(20) 3H
(22)
g+ + iH

(32)
h− = 0

1

f5

H
(31)
+ +

1

8
H

(22)
g+ − i

1

8
H

(32)
h− = 0

(21)
1

f2

H
(03)
− + fH

(33)
− = 0

1

f5

H
(30)
+ − fH(33)

− = 0

(23) 3H
(21)
g+ + iH

(31)
h− = 0

1

f5

H
(32)
+ − 1

8
H

(21)
g+ +

i

8
H

(31)
h− = 0 (4.56)

and finally the third set,

(00)
1

f5

H
(11)
− − i1

2
H

(02)
g− = 0

(03)
1

f5

H
(12)
− + i

1

2
H

(01)
g− = 0

(10)
ν

f1

H
(11)
− + 2fH

(02)
+ − 1

2
H

(02)
h+ = 0

(13)
ν

f1

H
(12)
− − 2fH

(01)
+ +

1

2
H

(01)
h+ = 0

(22)
1

f5

H
(33)
− − ν

f1

H
(23)
− − 2fH

(30)
+ +

i

2
H

(20)
g− +

1

2
H

(30)
h+ = 0

(30) 2fH
(22)
+ − 1

2
H

(22)
h+ = 0

(33) 2fH
(21)
+ − 1

2
H

(21)
h+ = 0 (4.57)
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4.4.5 Implications for the metric factors

Together with (4.48), the above relations imply the vanishing of the following constants,

0 = C
(10)
2 = C

(20)
2

0 = C
(00)
5 = C

(10)
5 = C

(20)
5 = C

(23)
5

0 = C
(00)
1 = C

(10)
1 = C

(30)
1 (4.58)

which leaves the following non-vanishing Hermitian forms,

f−1
2 H

(00)
+ = 1

f−1
5 H

(33)
− = C

(33)
5

f 3
5H

(30)
+ = C

(30)
5

f−1
1 H

(23)
− = C

(23)
1 (4.59)

where we have used the normalization C
(00)
2 = 1.

4.5 General solutions to the reduced BPS equations

In this section, we use the vanishing Hermitian forms to solve the reduced BPS equations.

We follow the same procedure and reach the same conclusion as in [35], namely that the only

solution to the reduced BPS equations is the maximally supersymmetric solution AdS5×S5.

4.5.1 Solving the Hermitian relations H
(αβ)
± = 0

Grouping the vanishing Hermitian relations H
(αβ)
± = 0 from (4.54) into four sets, we obtain

the following relations between the spinor components for η1 = ± and η2 = ± independently,

0 = H
(00)
− = H

(30)
− = H

(03)
+ = H

(33)
+ =⇒ ξ∗η1,η2ξη1,η2 − ψ

∗
η1,−η2ψη1,−η2 = 0

0 = H
(10)
− = H

(20)
− = H

(13)
+ = H

(23)
+ =⇒ ξ∗η1,η2ξ−η1,η2 − ψ

∗
η1,−η2ψ−η1,−η2 = 0

0 = H
(01)
− = H

(31)
− = H

(02)
− = H

(32)
− =⇒ ξ∗η1,η2ξη1,−η2 − ψ

∗
η1,η2

ψη1,−η2 = 0

0 = H
(11)
+ = H

(21)
− = H

(12)
+ = H

(22)
− =⇒ ξ∗η1,η2ξ−η1,−η2 + ψ∗−η1,η2ψη1,−η2 = 0 (4.60)
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When the ψη1,η2 are all generic and non-vanishing, the solutions to (4.60) are of the form,

ψ++ = r++e
iΛ+iΦ ξ++ = eiθ1ψ+− = r+−e

iΛ′+iΦ

ψ+− = r+−e
iΛ−iΦ ξ+− = eiθ2ψ++ = r++e

iΛ′−iΦ

ψ−+ = r−+e
iΛ+iΦ+iπ/2 ξ−+ = eiθ1ψ−− = r−−e

iΛ′+iΦ+iπ/2

ψ−− = r−−e
iΛ−iΦ+iπ/2 ξ−− = eiθ2ψ−+ = r−+e

iΛ′−iΦ+iπ/2 (4.61)

parametrized in terms of 4 real functions rη1,η2 plus the angles θ1 = 2Φ+2Φ′, θ2 = −2Φ+2Φ′,

Λ′ = 2Φ′ + Λ, and Λ arbitrary. The case where one component ψη1,η2 = 0 can be viewed

as the limit in which rη1,η2 = 0. The only exception is when ψη1,η2 = ψ−η1,η2 = 0 and

ψη1,−η2 = ψ−η1,−η2 6= 0. We consider the case ψ+− = ψ−− = 0 and ψ++, ψ−+ 6= 0, which may

be parametrized by four real fuctions r++ ≡ r1, r−+ ≡ r3,Λ1,Λ3, plus an angle θ, as follows,

ψ++ = r1e
iΛ1 ξ+− = eiθψ++ = r1e

i(Λ1+θ)

ψ−+ = r3e
iΛ3 ξ−− = eiθψ−+ = r3e

i(Λ3+θ) (4.62)

The solutions (4.61) - which we will refer to as the “first type” of solutions - reproduce all

the relations H
(αβ)
± = 0 in (4.54), as well as two additional relations not listed in section

4.4.4,

H
(10)
+ = 0 H

(13)
− = 0 (4.63)

The solutions (4.62) - which we will refer to as the “second type” of solutions - reproduce all

the relations H
(αβ)
± = 0 in (4.54), as well as the following additional vanishing conditions,

0 = H
(01)
+ = H

(02)
+ = H

(21)
+ = H

(22)
+ = H

(31)
+ = H

(32)
+ = H

(11)
− = H

(12)
− (4.64)

4.5.2 Solving the Hermitian relations H
(αβ)
g± , H

(αβ)
h±

Next, we use the solutions of the previous section to obtain conditions from the remaining

vanishing Hermitian forms. It is then straightforward but tedious to show that the only non-

trivial solutions are those with g9 = 0. The calculation parallels the one in [35], so we will
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summarize the results while highlighting any notable differences. We define the quantities,

r =


r++

r+−

r−+

r−−

 ≡

r1

r2

r3

r4



G±

H±

 ≡

g9e

i(Λ′−Λ) ± g∗9e−i(Λ
′−Λ)

hei(Λ
′−Λ) ± h∗e−i(Λ′−Λ)

 (4.65)

4.5.2.1 First type of solution

For the first type of solutions (4.61), the following Hermitian forms vanish automatically,

H
(αβ)
g± = H

(αβ)
h± = 0 (αβ) ∈ {(03), (10), (11), (12), (23), (33)} (4.66)

The remaining vanishing Hermitian forms (4.54) yield two sets of conditions for H
(αβ)
g± = 0:

G+r
tτ (γδ)r = 0 (γδ) ∈ {(01), (22), (31)} (4.67)

Mg

rtτ (30)r

rtτ (33)r

 ≡
 cos (2Φ)G− −i sin (2Φ)G+

− sin (2Φ)G− −i cos (2Φ)G+

rtτ (30)r

rtτ (33)r

 = 0 (4.68)

From the relations (4.54), we also have a set of conditions for the Hermitian forms H
(αβ)
h± = 0:

H−rtτ (γδ)r = 0 (γδ) ∈ {(01), (11), (22)} (4.69)

From (4.68) we have detMg = −iG+G−. For trivial solutions corresponding to G+G− 6= 0,

the conditions (4.67) and (4.68), together with the (22) relations in (4.55) and (4.57), imply

H
(00)
+ = 0 and thus all rη1,η2 = 0. Non-trivial solutions correspond to G+G− = 0, and one

can show that for either choice G± = 0 and G∓ 6= 0, the conditions (4.67) and (4.68) plus

the non-trivial relations from section 4.4.4, imply that all rη1,η2 = 0. For example, if G+ = 0

and G− 6= 0 then (4.67) is automatically satisfied, while (4.68) and the second (21) relation

in (4.56) imply,

rtτ (30)r = 0 : H
(33)
− =

1

ff5

H
(30)
+ = 0 =⇒ rtτ (33)r = 0 (4.70)
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The Hermitian forms that vanish under rtτ (30)r = rtτ (33)r = 0 cause a number of relations in

section 4.4.4 to become trivial, which in turn produce conditions that can only be satisfied

if all rη1,η2 = 0. The only remaining possibility is g9 = 0, which yields extra vanishing forms:

0 = H
(21)
+ = H

(22)
+ = H

(31)
+ = H

(32)
+ = H

(11)
− = H

(12)
−

0 = H
(21)
h+ = H

(22)
h+ = H

(31)
h− = H

(32)
h− (4.71)

The top line of (4.71) plus the original vanishing Hermitian forms imply the conditions,

r1r4 = r2r3 = 0 r1r2 − r3r4 = 0 (4.72)

Without loss of generality, we choose r4 = 0, so that either r1 = r3 = 0 or r2 = 0, and

examine the dilatino equation (4.34). If r1, r3 6= 0 and r2 = r4 = 0, then we must have,

pz = pz̄ = 0 |h|2 − |gz|2 = 0 |h|2 − |gz̄|2 = 0 (4.73)

for non-vanishing spinor solutions. But in order to have non-trivial solutions while satisfying

both the original conditions (4.69) and the bottom line of (4.71), we must set h = 0 so that,

pz = pz̄ = gz = gz̄ = h = 0 (4.74)

On the other hand, if we take r1 = r3 = r4 = 0 and r3 6= 0, then this result is automatic.

4.5.2.2 Second type of solution

For the second type of solutions (4.62), the following Hermitian forms vanish automatically,

H
(αβ)
g± = H

(αβ)
h± = 0 (αβ) ∈ {(00), (03), (10), (13), (20), (23), (30), (33)} (4.75)

and the extra forms H
(30)
h+ = H

(20)
g− = 0 modify the (22) relations in (4.55) and (4.57) as

follows,

1

f2

H
(00)
+ +

2

f5

H
(33)
− +

ν

f1

H
(23)
− = 0

1

f5

H
(33)
− − ν

f1

H
(23)
− − 2fH

(30)
+ = 0 (4.76)

From the remaining cases of H
(αβ)
g± = 0 and H

(αβ)
h± = 0 in (4.54), we obtain the conditions,[

ei(Λ1−Λ3) + e−i(Λ1−Λ3)
] (
eiθg9 ± e−iθg∗9

)
r1r3 = 0(

eiθg9 ± e−iθg∗9
) (
r2

1 − r2
3

)
= 0 (4.77)
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[
ei(Λ1−Λ3) + e−i(Λ1−Λ3)

] (
eiθh± e−iθh∗

)
r1r3 = 0 (4.78)

For non-trivial solutions with g9 6= 0, we must have Re
[
ei(Λ1−Λ3)

]
= 0 and r2

1 = r2
3. Under

this choice, the (22) relations of (4.55) and (4.57) reduce to H
(00)
+ = 0 and thus all rη1,η2 = 0.

So we again must have g9 = 0, which then yields the additional vanishing Hermitian forms,

0 = H
(21)
h+ = H

(22)
h+ = H

(31)
h− = H

(32)
h− (4.79)

Examining the dilatino equation (4.34), we find the same constraints as (4.73) on the super-

gravity fields. The extra forms in (4.76) together with (4.79) impose the following conditions:

Λη1Θη2r1r3 = 0 Θη3

(
r2

1 − r2
3

)
= 0 (4.80)

where the ηi = ± for i = 1, 2, 3 independently, and we have defined the quantities,

Λη1 = ei(Λ1−Λ3) + η1e
−i(Λ1−Λ3) Θη2 = eiθh+ η2e

−iθh∗ (4.81)

An analysis similar to the one used for the first type of solution again yields the result (4.74).

4.5.3 Vanishing G implies the AdS5 × S5 solution

When G = 0, we have gz = gz̄ = g9 = h = 0. For half-BPS solutions, ψ and ξ cannot

both vanish, and the reduced dilatino equation (4.36) implies pz = pz̄ = 0. By the Bianchi

identities (4.5), P = 0 implies dQ = 0, and we use the U(1)q gauge symmetry to set Q = 0.

Therefore, the requirements (4.74) can be obtained directly by imposing the vanishing of G.

4.5.3.1 Using the discrete symmetries

The generators τ (033), τ (030) (4.27) and K (4.28) may be simultaneously diagonalized as fol-

lows,

τ (033)ζ = νζ τ (030)ζ = γζ Kζ = µζ (4.82)
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where ν, γ, µ take on the values ±1 independently. The τ (033) projection was used to obtain

the chiral form of the reduced BPS equation. We define the projections of τ (030) and K as,

τ (030) : τ (03)ψ = γψ τ (03)ξ = −γξ

K : ξ = τ (02)ψ µ ≡ −νeiθ (4.83)

using the U(1)q gauge symmetry to fix the sign of the K projection. For γ = +1, we take,

ψ =

ψ+

ψ−

 =

ψ++

ψ−+

 ξ =

ξ+

ξ−

 =

ξ+−

ξ−−

 = −i

ψ++

ψ−+

 (4.84)

to be two-component spinors with η2 fixed. The remaining reduced BPS equations are then,

(m) ± 1

f2

ψ∗∓ +
Dzf2

f2

ψ± − fψ∗∓ = 0

(i) − 1

f5

ψ∗∓ +
Dzf5

f5

ψ± + fψ∗∓ = 0

(9) − iν

f1

ψ∗± +
Dzf1

f1

ψ± − fψ∗∓ = 0

(−)

(
Dz̄ −

i

2
ω̂z̄

)
ψ± = 0

(+)

(
Dz −

i

2
ω̂z

)
ψ± − fψ∗∓ = 0 (4.85)

4.5.3.2 Generic solutions when G = 0

Using ω̂z = i(∂zρ)/ρ2 and Dz = ρ−1∂z, the solution to the (−) equation of (4.85) is given by,

ψ+ =
√
ρα ψ− =

√
ρβ ∂z̄α = ∂z̄β = 0 (4.86)

Employing the same strategy as [35], the (±) equations are used in combination with the

(m), (i), (9) equations of (4.85) to obtains solutions in terms of ψ± for the metric factors,

f2 = |ψ+|2 + |ψ−|2, f5 = |ψ+|2 − |ψ−|2, f1 = c1

(
ψ∗+ψ− − ψ∗−ψ+

)
(4.87)

where Dzf5 = 0 and we set f5 ≡ 1. We can rewrite the (±) equations (4.85) involving f5 as,∣∣∣∣Dzf5

f5

∣∣∣∣2 ψ+ψ
∗
− −

(
1

f5

− f
)2

ψ+ψ
∗
− = 0 (4.88)
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If ψ+ψ
∗
− 6= 0, then Dzf5 = 0 implies that ff5 = 1. If either ψ+ = 0 or ψ∗− = 0, the (i)

equations of (4.85) also imply that ff5 = 1. The (+) equations of (4.85) then reduce to,

β∂zα− α∂zβ + 1 = 0 (4.89)

The solution is given, in terms of an arbitrary holomorphic function A(z), by the expressions,

α(z) =
1√

∂zA(z)
β(z) =

A(z)√
∂zA(z)

(4.90)

4.5.3.3 Solution of AdS5 × S5

Choosing A(z) = −e−2z, with c1 = i so that f1 is real, the 10-dimensional metric becomes,

ds2 = (cothx7)2 ds2
AdS2

+ ds2
S5 +

dx2
7 + dx2

8

(sinhx7)2
+

sin2 x8dx
2
9

(sinhx7)2
(4.91)

where z = (x7 + ix8)/2. Performing the following transformation on the x7 coordinate,

ex7 = tanh

(
θ

2

)
(4.92)

we recover the AdS5 × S5 metric in the standard form,

ds2 = cosh2 θ ds2
AdS2

+ ds2
S5 + sinh2 θ

(
dx2

7 + dx2
8

)
+ sinh2 θ sin2 x8dx

2
9

= cosh2 θ ds2
AdS2

+ ds2
S5 + dθ2 + sinh2 θdx2

8 + sinh2 θ sin2 x8dx
2
9

=
[
dθ2 + cosh2 θ ds2

AdS2
+ sinh2 θ ds2

S2

]
+ ds2

S5 (4.93)

The solution to the spinor ζ is characterized by the three projections,

σ1ζ∗ = −ζ τ (033)ζ = νζ τ (030)ζ = γζ (4.94)

With 8 independent Killing spinors χ in (4.20) and 4 independent solutions to ζ of the form,

ν = η2η3 γ = η2 : ζ±,η2,η3 =

 ζ±

−ζ̄±

 (4.95)

we indeed recover 32 supersymmetries for the maximally supersymmetric solution AdS5×S5.
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4.6 Discussion

We have proven that for a spacetime of the form AdS2 × S5 × S1 warped over a Riemann

surface Σ, the only solution with at least 16 supersymmetries is just the maximally supersym-

metric solution AdS5×S5. As we discussed, this then implies that no supergravity solutions

exist for fully back-reacted D7 probe or D7/D3 intersecting branes whose near-horizon limit

has the same spacetime structure with corresponding SO(2, 1)⊕ SO(6)⊕ SO(2) symmetry.

Thus the SU(1, 1|4)-invariant AdS2 solutions are rigid in exactly the same sense as the two

SU(2, 2|2)-symmetric cases considered in [35], while the case of SU(1, 1|4)⊕ SU(1, 1) is left

for consideration in a future work.

Finally, we observe that for both the present case as well as the two cases in [35], one

of the internal factors of the corresponding maximally supersymmetric solution is present in

the warped spacetime of the half-BPS solutions, either AdS5 or S5 for Type IIB supergravity.

One can show (as was done in Sec. 2.3 of [35]) that in each case the Bianchi identity for

F(5) yields the same constraint on the corresponding metric factor and field strength as was

obtained by solving the BPS equations. Namely, the condition that the product ff 5
5 is

constant, which in each case could only be satisfied if both f and f5 are constant, and in

turn leaves only the AdS5 × S5 solution. An open question is whether such rigidity extends

to any half-BPS solution that has a spacetime factor in common with the corresponding

maximally supersymmetric solution, for example warped AdS2 × S7 solutions to M-theory.
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APPENDIX A

Clifford algebra basis adapted to the Ansatz

A.1 AdS2 × S6 × Σ

The signature of the spacetime metric is chosen to be (− + · · ·+). The Dirac-Clifford

algebra is defined by {ΓA,ΓB} = 2ηABI32, where A,B are the 10-dimensional frame indices.

We construct a basis for the Clifford algebra that is well-adapted to AdS2 × S6 ×Σ Ansatz,

with the frame labeled as in (2.8),

Γm = γm ⊗ I8 ⊗ I2 m = 0, 1

Γi = γ(1) ⊗ γi ⊗ I2 i = 2, 3, 4, 5, 6, 7

Γa = γ(1) ⊗ γ(2) ⊗ γa a = 8, 9 (A.1)

where a convenient basis for the lower dimensional Dirac-Clifford algebra is as follows,

γ0 = iσ2 γ2 = σ1 ⊗ I2 ⊗ I2

γ1 = σ1, γ3 = σ2 ⊗ I2 ⊗ I2

γ4 = σ3 ⊗ σ1 ⊗ I2

γ5 = σ3 ⊗ σ2 ⊗ I2

γ6 = σ3 ⊗ σ3 ⊗ σ1 γ8 = σ1

γ7 = σ3 ⊗ σ3 ⊗ σ2, γ9 = σ2 (A.2)
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We will also need the chirality matrices on the various components of AdS2 × S6 × Σ,

Γ01 = γ(1) ⊗ I8 ⊗ I2 γ(1) = σ3

Γ234567 = −iI2 ⊗ γ(2) ⊗ I2 γ(2) = σ3 ⊗ σ3 ⊗ σ3

Γ89 = iI2 ⊗ I8 ⊗ γ(3) γ(3) = σ3 (A.3)

The 10-dimensional chirality matrix in this basis is then given by,

Γ11 = Γ0123456789 = γ(1) ⊗ γ(2) ⊗ γ(3) = σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 (A.4)

The complex conjugation matrices in each component are defined as follows,

(γm)∗ = +B(1)γ
mB−1

(1)

(
B(1)

)∗
B(1) = +I2 B(1) = I2

(γi)∗ = −B(2)γ
iB−1

(2)

(
B(2)

)∗
B(2) = +I8 B(2) = σ2 ⊗ σ1 ⊗ σ2

(γa)∗ = −B(3)γ
aB−1

(3)

(
B(3)

)∗
B(3) = −I2 B(3) = σ2 (A.5)

where in the last column we have also listed the form of these matrices in our particular

basis. The 10-dimensional complex conjugation matrix B satisfies,

(ΓM)∗ = BΓMB−1 B∗B = I32 [B,Γ11] = 0 (A.6)

and in this basis is given by,

B = −iB(1) ⊗
(
B(2)γ(2)

)
⊗B(3) = I2 ⊗ σ1 ⊗ σ2 ⊗ σ1 ⊗ σ2 (A.7)

A.2 AdS2 × S5 × S1 × Σ

The Dirac-Clifford algebra is defined by {ΓA,ΓB} = 2ηABI32, where A,B are 10-dimensional

frame indices and ηAB = diag(− + · · ·+). We choose a basis for the Clifford algebra which

is well-adapted to the AdS2 × S5 × Σ× S1 Ansatz, with the frame labeled as in (4.11),

Γm = γm ⊗ I4 ⊗ I2 ⊗ σ1 m = 0, 1

Γi = I2 ⊗ γi ⊗ I2 ⊗ σ3 i = 2, 3, 4, 5, 6

Γa = σ3 ⊗ I4 ⊗ γa ⊗ σ1 a = 7, 8

Γ9 = σ3 ⊗ I4 ⊗ γ9 ⊗ σ1 (A.8)
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where the lower dimensional Dirac-Clifford algebra is defined as follows,

γ0 = iσ1 γ2 = σ1 ⊗ I2

γ1 = σ2 γ3 = σ2 ⊗ I2

γ4 = σ3 ⊗ σ1 γ7 = σ1

γ5 = σ3 ⊗ σ2 γ8 = σ2

γ6 = σ3 ⊗ σ3 γ9 = σ3 (A.9)

The chirality matrices on the various components of AdS2 × S5 × Σ× S1 are given by,

Γ01 = −γ(1) ⊗ I4 ⊗ I2 ⊗ I2 γ(1) = −γ0γ1 = σ3

Γ23456 = −I2 ⊗ γ(2) ⊗ I2 ⊗ σ3 γ(2) = −γ2 · · · γ6 = I4

Γ78 = iI2 ⊗ I4 ⊗ γ(3) ⊗ I2 γ(3) = −iγ7γ8 = σ3 (A.10)

which yields the following 10-dimensional chirality matrix,

Γ11 = Γ0123456789 = −I2 ⊗ I4 ⊗ I2 ⊗ σ2 (A.11)

The complex conjugation matrices in each component are defined by,

(γm)∗ = −B(1)γ
mB−1

(1)

(
B(1)

)∗
B(1) = +I2 B(1) = I2

(γi)∗ = +B(2)γ
iB−1

(2)

(
B(2)

)∗
B(2) = −I4 B(2) = σ1 ⊗ σ2

(γa)∗ = −B(3)γ
aB−1

(3)

(
B(3)

)∗
B(3) = −I2 B(3) = σ2

(γ9)∗ = +B(4)γ
9B−1

(4)

(
B(4)

)∗
B(4) = +I2 B(4) = I2 (A.12)

where in the last column we have also listed the form of these matrices in our particular

basis. The 10-dimensional complex conjugation matrix B satisfies,

(ΓM)∗ = BΓMB−1 B∗B = I32 {B,Γ11} = 0 (A.13)

and in this basis has the following form,

B = I2 ⊗ σ1 ⊗ σ2 ⊗ σ2 ⊗ σ3 (A.14)
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APPENDIX B

Derivation of the BPS equations

B.1 AdS2 × S6 × Σ

In reducing the BPS equations, we will use the following decompositions of ε and B−1ε∗,

ε =
∑
η1,η2

χη1,η2 ⊗ ζη1,η2 B−1ε∗ =
∑
η1,η2

χη1,η2 ⊗ ?ζη1,η2 (B.1)

where we use the abbreviations,

?ζη1,η2 = −iσ2η2ζ
∗
η1,−η2 ?ζ = τ (02) ⊗ σ2ζ∗ (B.2)

in τ -matrix notation. We will also need the chirality relations,

σ3ζη1,η2 = −ζ−η1,−η2 τ (11) ⊗ σ3ζ = −ζ (B.3)

B.1.1 The dilatino equation

Reduced to the Ansatz, and using the above decomposition, the dilatino equation is,

0 = iPAΓAB−1ε∗ − i

24
Γ ·Gε

= ipaΓ
a
∑
η1,η2

χη1,η2 ⊗ ?ζη1,η2 −
i

4
gaΓ

a
∑
η1,η2

χ−η1,η2 ⊗ ζη1,η2 (B.4)

where we have used the following simplifications for the inner products,

PAΓA = paΓ
a

Γ ·G = 3! gaΓ
01a = 6gaΓ

aγ(1) ⊗ I8 ⊗ I2 (B.5)

Using the expression for ?ζ and reversing the sign of η2, we extract an equation satisfied by

the ζ-spinors, and recover the reduced dilatino BPS equation announced in (2.21).
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B.1.2 The gravitino equation

The gravitino equation is,

0 = (d+ ω)ε− i

2
Qε+ gB−1ε∗

ω =
1

4
ωABΓAB

g = − 1

96
eA
(
ΓA(Γ ·G) + 2(Γ ·G)ΓA

)
(B.6)

where A, B are the 10-dimensional frame indices.

B.1.2.1 The calculation of (d+ ω)ε

The spin connection components for a generic spacetime of the form AdSp × Sq × Σ are

worked out in Appendix D. Here we quote results for the case of p = 2 and q = 6, and in

particular we reproduce equation (D.5),

ωmn = ω̂mn ωma = emDa ln f2

ωij = ω̂ij ωia = eiDa ln f6 (B.7)

which gives the relevant spin connection components, along with ωab whose explicit form

we will not need. The hats refer to the canonical connections on AdS2 and S6, respectively.

We replace the covariant derivative of the spinor along the AdS2 and S6 directions by the

corresponding group action, SO(2, 1) and SO(7), as defined in (2.14). The additional term

that appears in going from ∇ to ∇̂ is due to the warp factors in the ten-dimensional metric.

The covariant derivatives along AdS2 and S6, respectively, are given by,

(m) ∇mε =

(
1

f2

∇̂m +
Daf2

2f2

ΓmΓa
)
ε

(i) ∇iε =

(
1

f6

∇̂i +
Daf6

2f6

ΓiΓ
a

)
ε (B.8)
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as well as ∇aε along Σ. Using the Killing spinor equations (2.14) to eliminate the hatted

covariant derivatives, as well as the equation Γa = γ(1) ⊗ γ(2) ⊗ γa, we have,

(m) ∇mε = Γm
∑
η1,η2

χη1,η2 ⊗
(

1

2f2

η1ζη1,η2 +
Daf2

2f2

γaζ−η1,−η2

)
(i) ∇iε = Γi

∑
η1,η2

χη1,η2 ⊗
(

i

2f6

η2ζ−η1,η2 +
Daf6

2f6

γaζ−η1,−η2

)
(B.9)

As we will show, each term in the gravitino equation contains ΓAχ
η1,η2 , which we argue are

linearly independent. Therefore, we will require that the coefficients vanish independently

along the various directions of AdS2, S6, and Σ.

B.1.2.2 The calculation of gB−1ε∗

The relevant expression is as follows,

gB−1ε∗ = − 3!

96
eBga(Γ

BΓ01a + 2Γ01aΓB)B−1ε∗ (B.10)

We make use of the following identities,

ΓmΓ01b + 2Γ01bΓm = 3ΓmΓ01b

ΓiΓ01b + 2Γ01bΓi = −ΓiΓ01b

ΓaΓ01b + 2Γ01bΓa = Γ01(3δab − Γab) = (γ1 ⊗ I8 ⊗ I2)(3δabI2 − γab) (B.11)

where γab ≡ iεabσ3 and ε89 = +1. Projecting along the various directions, we obtain,

(m) Γm
∑
η1,η2

χη1,η2 ⊗
(
− 3

16
gaγ

a ? ζη1,−η2

)
(i) Γi

∑
η1,η2

χη1,η2 ⊗
(

1

16
gaγ

a ? ζη1,−η2

)
(a)

∑
η1,η2

χη1,η2 ⊗
(
− 3

16
ga ? ζ−η1,η2 +

1

16
gbγ

ab ? ζ−η1,η2

)
(B.12)
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B.1.2.3 The complete gravitino BPS equation

We now assemble the reduced gravitino equations. Requiring the coefficients of ΓAχ
η1,η2 to

vanish independently, then rewriting the relations using the τ -matrix notation, we have,

(m) 0 =
1

2f2

τ (30)ζ +
Daf2

2f2

τ (11)γaζ − 3

16
gaτ

(01)γa ? ζ

(i) 0 =
i

2f6

τ (13)ζ +
Daf6

2f6

τ (11)γaζ +
1

16
gaτ

(01)γa ? ζ

(a) 0 =

(
Da +

i

2
ω̂aσ

3 − i

2
qa

)
ζ − 3

16
gaτ

(10) ? ζ +
1

16
gbτ

(10)γab ? ζ (B.13)

where ω̂a = (ω̂89)a is the spin connection along Σ, and we have used the fact Γ89 = iσ3.

Eliminating the star using the definition (B.15), then multiplying the (m) and (i) equations

by τ (11), we recover the system of reduced gravitino BPS equations announced in (2.22).

B.2 AdS2 × S5 × S1 × Σ

In reducing the BPS equations, we will use the following decompositions of ε and B−1ε∗,

ε =
∑

η1,η2,η3

χη1,η2χη3 ⊗ ζη1,η2,η3 ⊗ φ B−1ε∗ =
∑

η1,η2,η3

χη1,η2χη3 ⊗ ?ζη1,η2,η3 ⊗ φ (B.14)

where we have used the abbreviations,

?ζη1,η2,η3 = −iη2σ
2ζ∗−η1,−η2,−η3 ?ζ = τ (121)σ2ζ∗ (B.15)

in τ -matrix notation. The strategy employed here is the same as the one used in Appendix

B of [35], therefore we will summarize the derivation while highlighting certain key details.

B.2.1 The dilatino equation

Using the explicit form of the supergravity fields and Γ-matrices, the dilatino equation is,

0 =
∑

η1,η2,η3

χη1,η2χη3 ⊗
[
η2paγ

aσ2ζ∗η1,−η2,−η3 −
1

4
gāγ

āζη1,η2,η3 +
1

4
hζ−η1,η2,η3

]
⊗ φ∗ (B.16)
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The linear independence of the χη1,η2χη3 implies that each coefficient in the square brackets

must vanish separately. Rewriting the result in terms of τ -matrix notation, we recover (4.24):

0 = 4paγ
aσ2ζ∗ + igāτ

(021)γāζ − ihτ (121)ζ (B.17)

B.2.2 The gravitino equation

The components of the covariant derivative ∇Mε along AdS2, S5, and S1 are given by,

(m) ∇mε =

(
1

f2

∇̂m +
Daf2

2f2

ΓmΓa
)
ε

(i) ∇iε =

(
1

f5

∇̂i +
Daf5

2f5

ΓiΓ
a

)
ε

(9) ∇9ε =

(
1

f1

∇̂9 +
Daf1

2f1

Γ9Γa
)
ε (B.18)

as well as ∇aε along Σ. The hats refer to the canonical connections on AdS2, S5, and

S1, respectively, and the additional term that appears in going from ∇ to ∇̂ is due to the

warp factors in the ten-dimensional metric, with Daf = ρ−1∂af . Using the Killing spinor

equations (4.15) to eliminate the hatted covariant derivatives, we have,

(m) ∇mε = Γm
∑

η1,η2,η3

χη1,η2χη3 ⊗
(
η1

2f2

ζη1,η2,η3 +
Daf2

2f2

γaζ−η1,η2,η3

)
⊗ φ∗

(i) ∇iε = Γi
∑

η1,η2,η3

χη1,η2χη3 ⊗
(
η2

2f5

ζη1,η2,η3 +
Daf5

2f5

γaζ−η1,η2,η3

)
⊗ φ∗

(9) ∇9ε = Γ9

∑
η1,η2,η3

χη1,η2χη3 ⊗
(
iη3

2f1

γ9ζ−η1,η2,η3 +
Daf1

2f1

γaζ−η1,−η2,η3

)
⊗ φ∗ (B.19)

For the additional terms involving ε, we project along the various directions and obtain,

(m) Γm
∑

η1,η2,η3

χη1,η2χη3 ⊗
(

1

2
fζη1,η2,η3

)
⊗ φ∗

(i) Γi
∑

η1,η2,η3

χη1,η2χη3 ⊗
(
−1

2
fζη1,η2,η3

)
⊗ φ∗

(a)
∑

η1,η2,η3

χη1,η2χη3 ⊗
(
− i

2
qaζη1,η2,η3 +

1

2
fγaζ−η1,η2,η3

)
⊗ φ

(9) Γ9

∑
η1,η2,η3

χη1,η2χη3 ⊗
(

1

2
fζη1,η2,η3

)
⊗ φ∗ (B.20)
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while for the terms involving ε∗ we have,

(m) Γm
∑

η1,η2,η3

χη1,η2χη3 ⊗ 1

16
(3igāγ

ā ? ζη1,η2,η3 + ih ? ζ−η1,η2,η3)⊗ φ∗

(i) Γi
∑

η1,η2,η3

χη1,η2χη3 ⊗ 1

16
(−igāγā ? ζη1,η2,η3 + ih ? ζ−η1,η2,η3)⊗ φ∗

(a)
∑

η1,η2,η3

χη1,η2χη3 ⊗ 1

16

[(
3iga − igb̄γab̄

)
? ζ−η1,η2,η3 − 3ihγa ? ζη1,η2,η3

]
⊗ φ

(9) Γ9

∑
η1,η2,η3

χη1,η2χη3 ⊗ 1

16

[(
3ig9σ3 − igaγa

)
? ζη1,η2,η3 − 3ih ? ζ−η1,η2,η3

]
⊗ φ∗

(B.21)

We observe that each term in the gravitino equation contains ΓAχ
η1,η2χη3 or χη1,η2χη3 , which

we argue are linearly independent. Requiring the coefficients to vanish independently, then

rewriting the relations using the τ -matrix notation and eliminating the star using the defini-

tion (B.15), we recover the system of reduced gravitino BPS equations announced in (4.25).
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APPENDIX C

Calculation of the AdS2 × S6 × Σ flux potentials

In this appendix, we present the calculations of the reduced flux potentials C and M.

C.1 Calculation of the flux potential C

Expressing the field strength G in terms of ga, the equations for the derivatives of the

potential C are given by,

∂wC = ρf 2
2 f(gz +Bḡz)

∂w̄C = ρf 2
2 f(gz̄ +Bḡz̄) (C.1)

Converting G into P and then into derivatives of B using (2.2) and (2.47) yields,

ρgz = 4iK
α

β
f 2∂wB ρgz̄ = −4iK3 β̄

ᾱ
f 2∂w̄B (C.2)

along with ḡz = (gz̄)
∗ and ḡz̄ = (gz)

∗, and we obtain the following expressions,

∂wC = 4iKf 2
2 f

3

(
α

β
∂wB +B

β

α
∂wB̄

)
∂wC̄ = 4iKf 2

2 f
3

(
β

α
∂wB̄ + B̄

α

β
∂wB

)
(C.3)

We will now apply the same changes of variables used to solve the BPS equations. In the

derivation of C as well as M, it will be useful to have the derivatives of B and B̄ expressed

in terms of the new variables, and these derivatives are given by,

∂wB =
1− |λ|2

(1− λ̄Z2)2
∂wZ

2 − ∂wλ

1− λ̄Z2

∂wB̄ =
1− |λ|2

(1− λZ̄2)2
∂wZ̄

2 +
Z̄2(Z̄2 − λ̄)∂wλ

(1− λZ̄2)2
(C.4)
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C.1.1 Expressing variables in terms of holomorphic functions

Recall that we have,

α

β
=

(
λ̄+ B̄

λ̄B + 1

)1
2

= Z̄

(
1− λ̄Z2

1− λZ̄2

)1
2

,

∣∣∣∣αβ
∣∣∣∣ = |Z| (C.5)

as well as the expressions for B in (2.65) and f 2 in (2.66). Using these, along with the

rearrangement formula following from (2.78),

K

ρ̂2Z̄|Z|
=

ξ̄

|Z|2
(C.6)

we write (C.3) as,

∂wC =
4ic

9

(1−K2|Z|2)

(1 +K2|Z|2)3

ξ̄

|Z|2
(
∂w|Z|4 − λ(∂wZ̄

2 + Z̄4∂wZ
2)− Z̄2(1− |Z|4)∂wλ

)
∂wC̄ =

4ic

9

(1−K2|Z|2)

(1 +K2|Z|2)3

ξ̄

|Z|2
(
−λ̄∂w|Z|4 + ∂wZ̄

2 + Z̄4∂wZ
2
)

(C.7)

Next, we define the combination C̄ + λ̄C by its derivative with respect to w as,

∂w(C̄ + λ̄C) =
4iK2c

9
Pw (C.8)

where Pw is given by,

Pw = ξ
(1−K2|Z|2)

(1 +K2|Z|2)3

(
(1− |λ|2)(∂w ln Z̄2 + Z̄2∂wZ

2) + (1− |Z|4)∂w(1− |λ|2)
)

(C.9)

Using ξ(1− |λ|2) = L to eliminate ξ and then changing variables via Z2 = Reiψ, we find,

Pw = L (1−K2R)

(1 +K2R)3

{(
R +

1

R

)
∂wR− (1−R2)

(
i∂wψ − ∂w ln(1− |λ|2)

)}
(C.10)

The combinations of R and ∂wW can be expressed in terms of W defined in (2.83) and its

derivative ∂wW . The latter is given by equation (2.84), from which we eliminate ρ̂ in favor

of ξ, as well as eliminate ξ in favor of L and λ, to obtain,

∂wW = −(W + 1)∂w lnLL̄+ (W − 2)∂w ln(1− |λ|2) + 3i∂wψ (C.11)

Using the relation eiψ = K2L̄/L to express the derivative i∂wψ in terms of L, then separating

the dependence of L and L̄, we find,

Pw =
2L

(W + 2)2
[(W 2 + 2W − 2)∂w lnL+ (W − 2){∂w ln(1− |λ|2)− ∂w ln L̄}] (C.12)
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The last term inside the square brackets can be replaced using the differential equation for

W in (C.11), which upon expressing ψ in terms of L takes the form,

(W − 2){∂w ln(1− |λ|2)− ∂w ln L̄} = ∂wW + (W + 4)∂w lnL (C.13)

Eliminating this term between (C.11) and (C.12) and integrating the result, we find,

Pw = ∂w

(
2L(W + 1)

W + 2

)
(C.14)

Therefore, we have, with some holomorphic function K1,

C̄ + λ̄C =
4iK2c

9

(
2L(W + 1)

W + 2
+ K̄1

)
(C.15)

Proceeding analogously for C̄, and using the equations for ∂wξ and ∂wξ̄, we find,

C̄ =
4iK2c

9

(
−2

ξ + λ̄ξ̄

W + 2
+

L
1− |λ|2

+A− + K̄2

)
(C.16)

for some holomorphic function K2. To determine K2, we equate the two different expressions

for C̄ + λ̄C, eliminate the dependence on W and separate holomorphic and anti-holomorphic

dependences to obtain,

C =
4iK2c

9

(
+2

ξ̄ + λξ

W + 2
− L̄

1− |λ|2
− (Ā− + 2A+ +K0)

)
(C.17)

where K0 is an arbitrary complex constant. Eliminating ξ and L leads to (2.101).

C.2 Calculation of the reduced flux potential M

To evaluate M, we proceed in analogy with the calculation of C. Reducing G(3) to P and

then expressing this quantity in terms of derivatives of B using (2.2) and (2.47) yields,

∂wM = 4Kf 6
6 f

3

(
−α
β
∂wB +B

β

α
∂wB̄

)
∂wM̄ = 4Kf 6

6 f
3

(
−β
α
∂wB̄ + B̄

α

β
∂wB

)
(C.18)

Using (C.5) and (C.4) to express α/β and the derivatives of B and B̄ in terms of Z, λ and

ρ̂2, as well as the following expression,

f 6
6 f

3 =
c3

ρ̂6

|1− λ̄Z2|3

|Z|3
(C.19)
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we find, after some simplifications,

∂wM = 4K
c3Z̄

ρ̂6|Z|3
(
− (1− |λ|2)(1− λZ̄2)∂wZ

2 + (1− |λ|2)(Z2 − λ)∂w ln Z̄2

+|1− λZ̄2|2∂wλ+ |Z2 − λ|2∂wλ
)

∂wM̄ = 4K
c3Z̄

ρ̂6|Z|3
(
− (1− |λ|2)(1− λ̄Z2)∂w ln Z̄2 + (1− |λ|2)(Z̄2 − λ̄)∂wZ

2

−2(Z̄2 − λ̄)(1− λ̄Z2)∂wλ
)

(C.20)

Significant cancellations occur when combining these results into the following form,

∂w(M̄ − λ̄M) = 4K
c3Z̄3

ρ̂6|Z|3
(1− |λ|2)3

(
∂w(Z2 + Z̄−2)

1− |λ|2
+
λ̄(Z2 + Z̄−2)− 2

(1− |λ|2)2
∂wλ

)
(C.21)

Combining the relations,

Kξ =
e−iψ/2

ρ̂2

Z̄

|Z|
= e−iψ/2 ξ(1− |λ|2) = L (C.22)

we find,

Z̄3

ρ̂6|Z|3
(1− |λ|2)3 = K3L3 (C.23)

Recognizing a total derivative in the expression for ∂w(M̄ − λ̄M), we may rearrange the

result as follows,

∂w(M̄ − λ̄M) = 4c3L3 ∂w

(
Z2 + Z̄−2 − 2λ̄−1

1− |λ|2

)
(C.24)

Extracting a total derivative again significantly simplifies the expression, and we have,

∂w(M̄ − λ̄M) = 12c3Sw + ∂w

[
4c3L3

(
Z2 + Z̄−2 − 2λ̄−1

1− |λ|2

)]
(C.25)

where Sw is given by,

Sw = −
(
Z2 + Z̄−2 − 2λ̄−1

1− |λ|2

)
L2∂wL (C.26)

Using the relation ∂wL = (1 − |λ|2)∂wA−, we find a remarkable cancellation of the factor

(1 − |λ|2), and recover an expression which, after converting Z and Z̄ to R and ψ using

(2.72), is given as follows,

Sw = −L2eiψ
(
R +

1

R

)
∂wA− +

2L2

λ̄
∂wA− (C.27)
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Next, we make use of the identity Leiψ = ΛL̄, and then use ∂wG = −L̄∂wA− to obtain the

following expression,

Sw = −
(

ΛR +
1

ΛR

)
|∂wG|2

∂w̄Ā−
+

2L2

λ̄
∂wA− (C.28)

Using the definition of R as well as κ2 = −∂w∂w̄G, this can be rewritten as follows,

Sw = ∂w

(
6
G∂w̄G
∂w̄Ā−

)
+ 8L∂wG +

2L2

λ̄
∂wA− (C.29)

The first term already is in integrated form, and the last two terms are of degree at most two

in A+ and A− and of degree at most one in ∂wA+ and ∂wA+, and they may be integrated

in their holomorphic dependence on w.

C.2.1 Integrating for M̄ − λ̄M

We introduce two locally holomorphic functions, W± such that

∂wW± = A±∂wB (C.30)

One may then verify by straightforward evaluation that the second term in (C.29) can be

integrated as follows

L∂wG = −∂w
[(

1

2
G + B

)
(Ā+ − λ̄Ā−)− 1

2

(
|A+|2 − |A−|2

)
L+ λ̄W+ −W−

]
(C.31)

For the remaining term we use repeatedly the relation ∂wL = ∂wA− − λ̄∂wA+ and find

L2∂wA− = ∂w

[
L2A− + (λ̄A+ −A−)A−

(
L+

λ̄A+ −A−
3

)
+ λ̄

(
Ā+ − λ̄Ā−

)
B +

2

3
λ̄2W+ −

2

3
λ̄W−

]
(C.32)

Combining (C.31) and (C.32) with the expression for Sw in (C.29) shows that we have

thus integrated Sw. Coming back to the expression for ∂w(M̄ − λ̄M) in (C.25), we can

thus integrate for M̄ − λ̄M. After a number of simplifications and using that λ̄L̄ − L =

(1− |λ|2)(Ā+ −A−), we find

M̄ − λ̄M
4c3

=
2L2

λ̄
(Ā+ −A−)− 12

(
G − |A+|2 + |A−|2

)
L+

2A−
λ̄

(λ̄A+ −A−)2

− 6
(
Ā+ − λ̄Ā−

)(
3B + 2G +

LA−
λ̄

)
− 20(λ̄W+ −W−) + V̄1 (C.33)
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where V1 is a so far arbitrary locally holomorphic function. The terms of degree −1 in λ̄

combine to a purely anti-holomorphic function and can be absorbed into V1.

C.2.2 Integrating M̄

To fix the so far unspecified locally holomorphic function, we go back to the expression for

∂wM̄ in (C.20). Using (C.23), and combining all the derivative terms, it can be rewritten as

∂wM̄ = −4c3L3λ̄−1∂w

(
(1− λ̄Z2)(1− λ̄Z̄−2)

(1− |λ|2)2

)
(C.34)

To evaluate the terms in the derivative further, we perform the variable changes to R and ψ

and then to L, which yields

(1− λ̄Z2)(1− λ̄Z̄−2) = 1− λ̄L̄
L

(
ΛR +

1

ΛR

)
+
λ̄2L̄2

L2

= L−2
(
L − λ̄L̄

)2 − 6λ̄
L̄
L

κ2G
|∂wG|2

(C.35)

Using that λ̄L̄ − L = (1− |λ|2)(Ā+ −A−) and ∂wG = −L̄∂wA−, yields

(1− λ̄Z2)(1− λ̄Z̄−2)

1− |λ|2
= L−2(Ā+ −A−)2 − 6λ̄GL−2

1− |λ|2
(C.36)

We thus have

∂wM̄ = −4c3L3∂w

(
λ̄−1L−2(Ā+ −A−)2 − 6GL−2

1− |λ|2

)
(C.37)

Extracting a total derivative and using again that ∂wL = (1 − |λ|2)∂wA−, this expression

can be further evaluated. Extracting total derivatives iteratively eventually yields

∂wM̄
4c3

= ∂w

(
6LG

1− |λ|2
+ (A+ − Ā−)(Ā+ −A−)2 − 18A−G

)
+ 18A−∂wG − 3(Ā+ −A−)2∂wA+ (C.38)

The terms in the second line are again of degree at most two in A± and at most one in

∂wA−, and can be integrated straightforwardly. We find

18A−∂wG − 3(Ā+ −A−)2∂wA+ = ∂w

[
12|A+|2A− − 12Ā+B − 9|A−|2A−

− 3|A+|2Ā+ + 20W− −A+A2
−

]
(C.39)
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This completes the integration and we conclude that

M̄ = 4c3
[ 6LG

1− |λ|2
+ (A+ − Ā−)(Ā+ −A−)2 − 18A−G + 12|A+|2A−

− 12Ā+B − 9|A−|2A− − 3|A+|2Ā+ + 20W− −A+A2
− + V̄2

]
(C.40)

with a locally holomorphic function V2. To fix V1 and V2, we equate the two expressions

forM in (C.40) and (C.33) and isolate the holomorphic and anti-holomorphic dependences.

This yields

V2 = 20W+ − 12A+B +A−A2
+ (C.41)

The final form of M then becomes

M = 8c3
[
3G
(

∂wG
λ̄∂wA+ − ∂wA−

− 3Ā− − 2A+

)
+ 10(W+ + W̄−)

+ 5(A+ + Ā−)(|A+|2 − |A−|2)
]

(C.42)

where W± are defined up to complex constants by (C.30).
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APPENDIX D

Curvature for AdSp × Sq × Σ warped products

To compute the curvature for the AdS6 × S2 and AdS2 × S6 cases in parallel, we generalize

the setting to AdSp × Sq warped over a Riemann surface Σ, with metric

ds2 = 4ρ2|dw|2 + f 2
A dŝ

2
AdSp

+ f 2
S dŝ

2
Sq (D.1)

The functions ρ2, f 2
A, f

2
S depend only on Σ and dŝ2

AdSp
, dŝ2

Sq are respectively the SO(2, p− 1)

and SO(q + 1)-invariant metric of unit radius on AdSp and Sq.

With êm and êi denoting the orthonormal frames for the unit radius AdSp and Sq, re-

spectively, we make the following choice for the orthonormal frame,

em = fA ê
m m = 1, · · · , p

ei = fS ê
i i = p+ 1, · · · , p+ q (D.2)

combined with ez, ez̄ for Σ as defined in (2.13). We collectively denote the frame indices

by A,B. The frame metrics are given as in (2.11) for Σ and ηmn = diag [− + · · ·+], δij =

diag [+ · · ·+]. Denoting the connection 1-form by ωAB, the torsion equations are,

deA + ωAB ∧ eB = 0 (D.3)

The connection forms of the symmetric spaces, denoted by a hat in analogy to the notation

for the frame, are defined by the analogous vanishing torsion conditions. The connection

components on Σ are given by

ωzz = dw ∂w ln ρ− dw̄ ∂w̄ ln ρ (D.4)

We use the notation of (2.13) for the frame-covariant derivative when no connection is needed,

and analogous notation when a connection is needed, e.g. Dzv
a = ρ−1(∂wv

a + ω a
w bv

b). The
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remaining components are then,

ωmn = ω̂mn ωma = emDa ln fA

ωij = ω̂ij ωia = eiDa ln fS (D.5)

and ωmi = 0. The components of the Riemann tensor, defined via

1

2
RA

BCDe
C ∧ eD = dωAB + ωAC ∧ ωCB (D.6)

are then found as

Rm
nAB = −1 + |DafA|2

f 2
A

δm[A ηB]n Ri
jAB =

1− |DafS|2

f 2
S

δi[A δB]j

Ra
bAB = R(2) δa[A δB]b Rm

iAB = −DafAD
afS

fAfS
δm[A δB]i

Rm
aAB = −DbDafA

fA
δb[A δB]

m Ri
aAB = −DbDafS

fS
δb[A δB]

i (D.7)

where we use the notation |Da ln f |2 ≡ (Da ln f)(Da ln f) and square brackets denote anti-

symmetrization of the enclosed indices, e.g. δm[A ηB]n = δmA ηBn − δmB ηAn. Furthermore,

R(2) = − 1

ρ2
∂w∂w̄ ln ρ (D.8)

where the normalization is such that R(2) = −1 when ρ2 = y−2 corresponds to the Poincaré

metric on the upper half space. The components of the Ricci tensor (in frame index conven-

tion) are defined by RAB = RC
ACB, and the non-vanishing ones are given by,

Rmn = ηmn

(
−p− 1

f 2
A

− (p− 1)
|DafA|2

f 2
A

− qD
afADafS
fAfS

− DaDafA
fA

)
Rij = δij

(
+
q − 1

f 2
S

− (q − 1)
|DafS|2

f 2
S

− pD
afADafS
fAfS

− DaDafS
fS

)
Rab = −pDbDafA

fA
− qDbDafS

fS
+R(2)δab (D.9)

99



Bibliography

[1] D. Corbino, E. D’Hoker and C. F. Uhlemann, AdS2 × S6 versus AdS6 × S2 in Type
IIB supergravity, JHEP 03 (2018) 120, [1712.04463].

[2] D. Corbino, E. D’Hoker, J. Kaidi and C. F. Uhlemann, Global half-BPS AdS2 × S6

solutions in Type IIB, JHEP 03 (2019) 039, [1812.10206].

[3] D. Corbino, Warped AdS2 and SU(1, 1|4) symmetry in Type IIB, JHEP 03 (2021)
060, [2004.12613].

[4] J. M. Maldacena, The Large N limit of superconformal field theories and supergravity,
Int. J. Theor. Phys. 38 (1999) 1113–1133, [hep-th/9711200].

[5] S. Gubser, I. R. Klebanov and A. M. Polyakov, Gauge theory correlators from
noncritical string theory, Phys. Lett. B 428 (1998) 105–114, [hep-th/9802109].

[6] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998)
253–291, [hep-th/9802150].

[7] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri and Y. Oz, Large N field
theories, string theory and gravity, Phys. Rept. 323 (2000) 183–386, [hep-th/9905111].

[8] E. D’Hoker and D. Z. Freedman, Supersymmetric gauge theories and the AdS / CFT
correspondence, in Theoretical Advanced Study Institute in Elementary Particle
Physics (TASI 2001): Strings, Branes and EXTRA Dimensions, pp. 3–158, 1, 2002,
hep-th/0201253.

[9] E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I.
Local solution and supersymmetric Janus, JHEP 06 (2007) 021, [0705.0022].

[10] E. D’Hoker, J. Estes and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP
06 (2007) 063, [0705.1004].

[11] J. M. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation,
JHEP 02 (1999) 011, [hep-th/9812073].

[12] F. Denef, D. Gaiotto, A. Strominger, D. Van den Bleeken and X. Yin, Black Hole
Deconstruction, JHEP 03 (2012) 071, [hep-th/0703252].

[13] J. Maldacena and D. Stanford, Remarks on the Sachdev-Ye-Kitaev model, Phys. Rev.
D 94 (2016) 106002, [1604.07818].

[14] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two
dimensional Nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104, [1606.01857].

[15] D. Harlow and D. Jafferis, The Factorization Problem in Jackiw-Teitelboim Gravity,
JHEP 02 (2020) 177, [1804.01081].

100

https://doi.org/10.1007/JHEP03(2018)120
https://arxiv.org/abs/1712.04463
https://doi.org/10.1007/JHEP03(2019)039
https://arxiv.org/abs/1812.10206
https://doi.org/10.1007/JHEP03(2021)060
https://doi.org/10.1007/JHEP03(2021)060
https://arxiv.org/abs/2004.12613
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://doi.org/10.1016/S0370-1573(99)00083-6
https://arxiv.org/abs/hep-th/9905111
https://arxiv.org/abs/hep-th/0201253
https://doi.org/10.1088/1126-6708/2007/06/021
https://arxiv.org/abs/0705.0022
https://doi.org/10.1088/1126-6708/2007/06/063
https://doi.org/10.1088/1126-6708/2007/06/063
https://arxiv.org/abs/0705.1004
https://doi.org/10.1088/1126-6708/1999/02/011
https://arxiv.org/abs/hep-th/9812073
https://doi.org/10.1007/JHEP03(2012)071
https://arxiv.org/abs/hep-th/0703252
https://doi.org/10.1103/PhysRevD.94.106002
https://doi.org/10.1103/PhysRevD.94.106002
https://arxiv.org/abs/1604.07818
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://doi.org/10.1007/JHEP02(2020)177
https://arxiv.org/abs/1804.01081


[16] G. Dibitetto and A. Passias, AdS2 × S7 solutions from D0-F1-D8 intersections, JHEP
10 (2018) 190, [1807.00555].

[17] F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS7 solutions of type II
supergravity, JHEP 04 (2014) 064, [1309.2949].

[18] E. D’Hoker, M. Gutperle, A. Karch and C. F. Uhlemann, Warped AdS6 × S2 in Type
IIB supergravity I: Local solutions, JHEP 08 (2016) 046, [1606.01254].

[19] E. D’Hoker, M. Gutperle and C. F. Uhlemann, Holographic duals for five-dimensional
superconformal quantum field theories, Phys. Rev. Lett. 118 (2017) 101601,
[1611.09411].

[20] E. D’Hoker, M. Gutperle and C. F. Uhlemann, Warped AdS6 × S2 in Type IIB
supergravity II: Global solutions and five-brane webs, JHEP 05 (2017) 131,
[1703.08186].

[21] E. D’Hoker, M. Gutperle and C. F. Uhlemann, Warped AdS6 × S2 in Type IIB
supergravity III: Global solutions with seven-branes, JHEP 11 (2017) 200,
[1706.00433].

[22] A. Van Proeyen, SUPERCONFORMAL ALGEBRAS, in IN *VANCOUVER 1986,
PROCEEDINGS, SUPER FIELD THEORIES* 547-555., 1986.

[23] E. D’Hoker, J. Estes, M. Gutperle, D. Krym and P. Sorba, Half-BPS supergravity
solutions and superalgebras, JHEP 12 (2008) 047, [0810.1484].

[24] E. D’Hoker, J. Estes and M. Gutperle, Gravity duals of half-BPS Wilson loops, JHEP
06 (2007) 063, [0705.1004].

[25] E. D’Hoker, J. Estes and M. Gutperle, Exact half-BPS Type IIB interface solutions. I.
Local solution and supersymmetric Janus, JHEP 06 (2007) 021, [0705.0022].

[26] E. D’Hoker, M. Gutperle, A. Karch and C. F. Uhlemann, Warped AdS6 × S2 in Type
IIB supergravity I: Local solutions, JHEP 08 (2016) 046, [1606.01254].

[27] A. Sen, String network, JHEP 03 (1998) 005, [hep-th/9711130].

[28] O. Bergman and B. Kol, String webs and 1/4 BPS monopoles, Nucl. Phys. B 536
(1998) 149–174, [hep-th/9804160].

[29] O. Lunin, Brane webs and 1/4-BPS geometries, JHEP 09 (2008) 028, [0802.0735].

[30] I. Kirsch and D. Vaman, The D3 / D7 background and flavor dependence of Regge
trajectories, Phys. Rev. D72 (2005) 026007, [hep-th/0505164].

[31] E. I. Buchbinder, J. Gomis and F. Passerini, Holographic gauge theories in background
fields and surface operators, JHEP 12 (2007) 101, [0710.5170].

101

https://doi.org/10.1007/JHEP10(2018)190
https://doi.org/10.1007/JHEP10(2018)190
https://arxiv.org/abs/1807.00555
https://doi.org/10.1007/JHEP04(2014)064
https://arxiv.org/abs/1309.2949
https://doi.org/10.1007/JHEP08(2016)046
https://arxiv.org/abs/1606.01254
https://doi.org/10.1103/PhysRevLett.118.101601
https://arxiv.org/abs/1611.09411
https://doi.org/10.1007/JHEP05(2017)131
https://arxiv.org/abs/1703.08186
https://doi.org/10.1007/JHEP11(2017)200
https://arxiv.org/abs/1706.00433
https://doi.org/10.1088/1126-6708/2008/12/047
https://arxiv.org/abs/0810.1484
https://doi.org/10.1088/1126-6708/2007/06/063
https://doi.org/10.1088/1126-6708/2007/06/063
https://arxiv.org/abs/0705.1004
https://doi.org/10.1088/1126-6708/2007/06/021
https://arxiv.org/abs/0705.0022
https://doi.org/10.1007/JHEP08(2016)046
https://arxiv.org/abs/1606.01254
https://doi.org/10.1088/1126-6708/1998/03/005
https://arxiv.org/abs/hep-th/9711130
https://doi.org/10.1016/S0550-3213(98)00565-3
https://doi.org/10.1016/S0550-3213(98)00565-3
https://arxiv.org/abs/hep-th/9804160
https://doi.org/10.1088/1126-6708/2008/09/028
https://arxiv.org/abs/0802.0735
https://doi.org/10.1103/PhysRevD.72.026007
https://arxiv.org/abs/hep-th/0505164
https://doi.org/10.1088/1126-6708/2007/12/101
https://arxiv.org/abs/0710.5170


[32] J. A. Harvey and A. B. Royston, Gauge/Gravity duality with a chiral N=(0,8) string
defect, JHEP 08 (2008) 006, [0804.2854].

[33] O. Aharony, A. Fayyazuddin and J. M. Maldacena, The Large N limit of N=2, N=1
field theories from three-branes in F theory, JHEP 07 (1998) 013, [hep-th/9806159].

[34] M. Grana and J. Polchinski, Gauge / gravity duals with holomorphic dilaton, Phys.
Rev. D 65 (2002) 126005, [hep-th/0106014].

[35] E. D’Hoker and Y. Guo, Rigidity of SU(2,2—2)-symmetric solutions in Type IIB,
JHEP 05 (2010) 088, [1001.4808].

[36] J. H. Schwarz, Covariant Field Equations of Chiral N=2 D=10 Supergravity, Nucl.
Phys. B226 (1983) 269.

[37] P. S. Howe and P. C. West, The Complete N=2, D=10 Supergravity, Nucl. Phys.
B238 (1984) 181–220.

[38] J. Gomis and C. Romelsberger, Bubbling Defect CFT’s, JHEP 08 (2006) 050,
[hep-th/0604155].

[39] J. H. Schwarz, An SL(2,Z) multiplet of type IIB superstrings, Phys. Lett. B360 (1995)
13–18, [hep-th/9508143].

[40] J. Kaidi and C. F. Uhlemann, M-theory curves from warped AdS6 in Type IIB, JHEP
11 (2018) 175, [1809.10162].

[41] Y. Matsuo and K. Okuyama, BPS condition of string junction from M theory, Phys.
Lett. B 426 (1998) 294–296, [hep-th/9712070].

[42] M. Krogh and S. Lee, String network from M theory, Nucl. Phys. B 516 (1998)
241–254, [hep-th/9712050].

[43] S.-J. Rey and J.-T. Yee, BPS dynamics of triple (p, q) string junction, Nucl. Phys. B
526 (1998) 229–240, [hep-th/9711202].

[44] P. Shocklee and L. Thorlacius, Zero mode dynamics of string webs, Phys. Rev. D 63
(2001) 126002, [hep-th/0101080].

[45] B. E. W. Nilsson and C. N. Pope, Hopf fibration of eleven-dimensional supergravity,
Classical and Quantum Gravity 1 (sep, 1984) 499–515.

[46] E. D’Hoker, J. Estes, M. Gutperle and D. Krym, Exact Half-BPS Flux Solutions in
M-theory. I: Local Solutions, JHEP 08 (2008) 028, [0806.0605].

102

https://doi.org/10.1088/1126-6708/2008/08/006
https://arxiv.org/abs/0804.2854
https://doi.org/10.1088/1126-6708/1998/07/013
https://arxiv.org/abs/hep-th/9806159
https://doi.org/10.1103/PhysRevD.65.126005
https://doi.org/10.1103/PhysRevD.65.126005
https://arxiv.org/abs/hep-th/0106014
https://doi.org/10.1007/JHEP05(2010)088
https://arxiv.org/abs/1001.4808
https://doi.org/10.1016/0550-3213(83)90192-X
https://doi.org/10.1016/0550-3213(83)90192-X
https://doi.org/10.1016/0550-3213(84)90472-3
https://doi.org/10.1016/0550-3213(84)90472-3
https://doi.org/10.1088/1126-6708/2006/08/050
https://arxiv.org/abs/hep-th/0604155
https://doi.org/10.1016/0370-2693(95)01405-5, 10.1016/0370-2693(95)01138-G
https://doi.org/10.1016/0370-2693(95)01405-5, 10.1016/0370-2693(95)01138-G
https://arxiv.org/abs/hep-th/9508143
https://doi.org/10.1007/JHEP11(2018)175
https://doi.org/10.1007/JHEP11(2018)175
https://arxiv.org/abs/1809.10162
https://doi.org/10.1016/S0370-2693(98)00288-3
https://doi.org/10.1016/S0370-2693(98)00288-3
https://arxiv.org/abs/hep-th/9712070
https://doi.org/10.1016/S0550-3213(98)00062-5
https://doi.org/10.1016/S0550-3213(98)00062-5
https://arxiv.org/abs/hep-th/9712050
https://doi.org/10.1016/S0550-3213(98)00401-5
https://doi.org/10.1016/S0550-3213(98)00401-5
https://arxiv.org/abs/hep-th/9711202
https://doi.org/10.1103/PhysRevD.63.126002
https://doi.org/10.1103/PhysRevD.63.126002
https://arxiv.org/abs/hep-th/0101080
https://doi.org/10.1088/0264-9381/1/5/005
https://doi.org/10.1088/1126-6708/2008/08/028
https://arxiv.org/abs/0806.0605

	Title Page
	Abstract
	Committee
	Table of Contents
	Acknowledgments
	Vita
	1 Introduction
	2 AdS2 S6 versus AdS6 S2
	2.1  AdS2xS6xSigma Ansatz in Type IIB supergravity
	2.1.1 Type IIB supergravity review
	2.1.2 SO(2,1)xSO(7) invariant Ansatz for supergravity fields
	2.1.3 SO(2,1)xSO(7) invariant Ansatz for susy generators

	2.2 Reducing the BPS equations
	2.2.1 The reduced BPS equations
	2.2.2 Symmetries of the reduced BPS equations
	2.2.3 Restricting to a single subspace of cJ
	2.2.4 The reduced BPS equations in component form
	2.2.5 Determining the radii f2, f6
	2.2.6 Solving the remaining algebraic gravitino equations
	2.2.7 Summary and comparison to AdS6xS2

	2.3 Local solutions to the BPS equations
	2.3.1 Eliminating the reduced flux fields
	2.3.2 Integrating the first pair of differential equations
	2.3.3 Preparing the second pair of differential equations
	2.3.4 Decoupling by changing variables
	2.3.5 Solving for psi, rhohat2, and R in terms of Apm

	2.4 Supergravity fields of the local solutions
	2.4.1 The metric functions
	2.4.2 The axion-dilaton
	2.4.3 Two-form and six-form flux potentials
	2.4.4 SU(1,1) transformations induced on the supergravity fields

	2.5 Verifying the field equations
	2.5.1 Einstein's equations
	2.5.2 Axion-dilaton field equations
	2.5.3 The 3-form flux field equation
	2.5.4 Explicitly evaluating the equations

	2.6 Reality, positivity, and regularity conditions
	2.6.1 Reality and positivity conditions
	2.6.2 Global regularity and boundary conditions
	2.6.3 Implications of regularity and boundary conditions

	2.7 Double analytic continuation
	2.8 Discussion

	3 Global half-BPS AdS2S6 solutions
	3.1 Local solution and regularity conditions
	3.1.1 Supergravity fields
	3.1.2 Positivity and regularity conditions
	3.1.3 Realizing the regularity conditions at the boundary 

	3.2 Towards string junction solutions
	3.2.1 Realizing the charge and the S7 of the (p, q)-string solution
	3.2.2 Supergravity fields near a double pole in A
	3.2.3 Satisfying the regularity conditions near a double pole
	3.2.4 Matching with the classic (p, q)-string solutions
	3.2.5 Multiple (p, q) charge solutions on the upper half-plane
	3.2.6 Three charges

	3.3 Discussion

	4 Warped AdS2 and SU(1,1|4) symmetry
	4.1  AdS2xS5xS1xSigma Ansatz in Type IIB supergravity
	4.1.1 Type IIB supergravity review
	4.1.2 SO(2,1)SO(6)SO(2)-invariant Ansatz for supergravity fields
	4.1.3 SO(2,1)SO(6)SO(2)-invariant Ansatz for susy generators

	4.2 Reducing the BPS equations
	4.2.1 The reduced BPS equations
	4.2.2 Symmetries of the reduced BPS equations
	4.2.3 Further reduction and chiral form of the BPS equations

	4.3 Metric factors in terms of spinor bilinears
	4.3.1 AdS2 metric factor
	4.3.2 S5 metric factor
	4.3.3 S1 metric factor
	4.3.4 Summary of expressions

	4.4 Vanishing Hermitian forms
	4.4.1 First set of Hermitian relations
	4.4.2 Second set of Hermitian relations
	4.4.3 Third set of Hermitian relations
	4.4.4 Summary of all Hermitian relations
	4.4.5 Implications for the metric factors

	4.5 General solutions to the reduced BPS equations
	4.5.1 Solving the Hermitian relations H() = 0
	4.5.2 Solving the Hermitian relations Hg(), Hh()
	4.5.3 Vanishing G implies the AdS5S5 solution

	4.6 Discussion

	A Clifford algebra basis adapted to the Ansatz
	A.1 AdS2S6
	A.2 AdS2S5S1

	B Derivation of the BPS equations
	B.1 AdS2S6
	B.1.1 The dilatino equation
	B.1.2 The gravitino equation

	B.2 AdS2S5S1
	B.2.1 The dilatino equation
	B.2.2 The gravitino equation


	C Calculation of the AdS2S6 flux potentials
	C.1 Calculation of the flux potential C
	C.1.1 Expressing variables in terms of holomorphic functions

	C.2 Calculation of the reduced flux potential M
	C.2.1 Integrating for Mb-lambdab M
	C.2.2 Integrating cMb


	D Curvature for AdSpxSqxSigma warped products
	Bibliography



