
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Classifying Cancer Genomic Alterations Using Machine Learning and Multi-Omic Data

Permalink
https://escholarship.org/uc/item/14h4h24s

Author
Haan, David

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/14h4h24s
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA
SANTA CRUZ

CLASSIFYING CANCER GENOMIC ALTERATIONS USING MACHINE
LEARNING AND MULTI-OMIC DATA

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

BIOMOLECULAR ENGINEERING & BIOINFORMATICS

by

David Haan

September 2019

The Dissertation of David Haan
is approved:

Professor Josh Stuart, Chair

Professor Angela Brooks

Professor Christopher Benz

Dean Quentin Williams
Acting Vice Provost and Dean of Graduate Studies



Copyright c© by

David Haan

2019



Table of Contents

List of Figures v

Abstract xvii

1 Introduction 1

2 Background 4
2.1 Cancer is a Genetic Disease . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 The Cancer Genome Atlas . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Mutation Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.5 Modeling Imbalanced datasets . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.6 Driver Discovery Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Accurate Fusion Detection 10
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Dream Challenge Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Features Influencing the Accuracy of Fusion Detection Methods . . . . . . . . 13
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 LURE: Classifying Coding Variants of Unknown Significance 18
4.1 Introduction/Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.1 TCGA Positive Controls . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3.2 LURE on the PANCAN Dataset . . . . . . . . . . . . . . . . . . . . . 25
4.3.3 LURE finds new drivers of the Alternative Lengthening of Telomeres

in Sarcomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.4 LURE identifies associations within the MAPK signaling pathway . . . 36
4.3.5 LURE ran on the PCAWG dataset (using classifiers from the PANCAN

dataset) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

iii



5 Non-coding Variant Function Discovery 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Using Gene Pathway Networks to Annotate Non-coding Variants . . . . . . . . 42
5.3 Unsupervised Classification of Non-coding Telomere Regions . . . . . . . . . 50

6 Future Directions and Conclusion 60
6.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Bibliography 64

iv



List of Figures

3.1 Boruta Feature Importance Analysis By Fusion Submission. Heatmap show-

ing results from performing the Boruta algorithm on each submissions false

positive fusion events(A) and false negative fusion events(B). Each cell in the

heatmap represents the Z-score Mean Decrease in Accuracy. Higher Z-scores

are in red and represent more important features. Rows are the fusion submis-

sion names and columns are the features. Only features which had a mean value

greater than Borutas shadow max value are shown. . . . . . . . . . . . . . . . 15

3.2 Boruta Feature Importance Analysis Across All Fusion Submissions for

the False Positive Model(A) and False Negative Model(B). Boxplot show-

ing results from performing the Boruta Algorithm on all fusion submissions.

The y-axis represents the Z-score MDA and features are across the x-axis. The

red plots are the Z-scores of the actual features and blue are Borutas shadow

features which are considered the randomized background features. Only fea-

tures which performed significantly better (p < .05) than the shadow features

are shown in this plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

v



3.3 False Negative Feature Analysis T Statistic. Students t-test of top features

identified by False Negative Random Forest model. Students t-test was per-

formed individually on the 5 features comparing false negative fusions missed

by the submission methods to the accurately identified fusions. A negative t

statistic represents a decrease in the feature values for false negative fusions. . 17

4.1 REVEALER results of using IDH1 positive control test sets. Each column

represents the samples in the TCGA Lower Grade Glioma (LGG) dataset. The

top row is the classifier score assigned to each sample using an initial classifier

trained on the first IDH1 test set of 150 samples. The tick marks in the seed row

represent the 150 IDH1 test set samples. REVEALER identified 4 matches,

ATRX truncating mutations, TP53 missense mutations, and a 11p15.5 focal

deletion. While these are not invalid results as it has correctly found genes

co-mutated with IDH1, it was unable to find the 60 left out IDH1 mutants. . . 21

vi



4.2 LURE Method. (A) LURE Oncoprint of Bait Mutation A. Triangle symbol

represents the classification model for samples having event A. Barplot show-

ing the score given to each sample by the model representing the probability the

sample has the mutation event A. The annotation bars below indicate mutations

present in each sample. The check mark annotations on the right mark if events

passed Sample Set Enrichment Analysis (SSEA, see Supplemental Methods)

(p < .05, fdr < .25). (B) LURE Oncoprint of Intermediate Bait Mutation

A:C. Results from a classification model containing both events A and C. (C)

LURE Event Discovery Tree. Directed graph shows LURE’s iterative Event

Discovery Tree. Each node is a classification model built on the events shown

in the triangle symbol within each node. The blue circles within each node rep-

resent the newest event added to the model. (D) LURE Set Cover Algorithm.

Bipartite graph shows the result of running a Set Cover Algorithm on the mu-

tations collected from the Event Discovery Tree and the samples predicted to

be mutated in these genes by the final classification model. The red node and

edges mark Event F, which is completely overlapping with other mutations and

therefore removed from the final event set (’Catch’ Cover). (E) LURE Method

Flowchart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

vii



4.3 LURE Bait and Catch Oncoprints of positive controls. Samples are rep-

resented across the rows. Colored tick marks represent the different types of

alterations present in the samples. Barplot on top shows the LURE classifier

score for each sample after the final iteration. (A) SF3B1 test set in UVM.

Initial bait is set to 8 SF3B1 missense in UVM, and LURE finds the 2 left out

sets of 5 each. (B) IDH1 test set in LGG. Initial bait is set to 150 samples of

IDH1 Missense in LGG and Lure finds the 3 left out sets of 20 each. . . . . . . 25

4.4 Histogram of Bait Precision-Recall Area Under the Curve. Plot shows a his-

togram of the 3,053 Precision Recall AUC cross validation scores from training

a tumor type specific logistic regression classifier on the different 723 COSMIC

genes. Classifiers were created only in tumor types with more than 10 alterations. 27

4.5 Barplot of 81 Bait Classifiers. Barplot shows Precision-Recall AUC test scores

for 81 bait-tumor type classifiers. Bar is colored by tumor type. . . . . . . . . . 28

4.6 Heatmap of baits used in PANCAN LURE analysis. Rows are bait and al-

teration type, and the columns are tumor type. Each cell in the heatmap cor-

responds to the PR AUC score of that bait/alteration/tumor type classifier. The

higher scoring baits are in red/orange and blue denotes no classifier due to lack

of alterations in that bait tissue combination. TP53 was the most common bait

across tissues and the tumor types with highest number of high scoring baits

were LGG, THCA, PRAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

viii



4.7 Bait Catch Association Data Panel. Panel shows bait and catch annotations

for the 35 baits in which associations were found. Baits are across the x-axis and

sorted by final Bait and Catch PR AUC. (A) Precision Recall Area Under the

Curve. Stacked bar plot shows the original PR AUC score of the bait and the

final PR AUC score including the new catch. (B) Number of Samples Stacked

bar plot shows the number of samples in the bait and the additional samples in

the catch. (C) Tumor Type. Annotation bar shows the tumor type in which

the bait-catch association was found.(D) Bait Mutation Type. Annotation bar

shows the type of bait mutation. (E) Bait Gene Name. Annotation bar shows

the name of the bait gene. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.8 High Confident LURE PANCAN Results. Sankey plot shows the high con-

fident 18 bait-catch associations with a final PR AUC greater than 0.8. Bait

gene and mutation type are on the left side and the Catch bait gene and muta-

tion type are on the right side. The flows represent an association between the

bait and catch gene. The color of the left side of each flow is the tumor type in

which each association was found. The color of the right side of each flow is

the association type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.9 LURE ”Event Net” of LURE PANCAN Results LURE Event Net shows all

associations resulting from the 35 successful cosmic bait genes. Edges are col-

ored by the tumor type in which the association was found. Edges are directed

from Bait to Catch. Pathway associations are annotated with circles. . . . . . . 33

ix



4.10 LURE Oncoprint and Survival Plot. (A) Using a known driver for ALT,

ATRX truncating mutations, for bait in Sarcomas(SARC), LURE found three

catch events: copy number deletions in ATRX, RB1, and SP100. (B) Survival

plot shows the ALT classification using the final set cover classifier from the

LURE method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.11 MAPK LURE Pathway Analysis (A) LURE ”Event Net” showing MAPK/RTK

associations. Each node represents an event. The directed edges represent an

association and the direction of the LURE discovery. The color of each edge

represents the tumor type in which the association was found. (B) LURE On-

coprint of HRAS in HNSC. Using HRAS as a bait in HNSC, LURE found a

delection catch event of the 2q23.3 region. . . . . . . . . . . . . . . . . . . . 38

4.12 Alluvial Plot of LURE PCAWG Results. The left side of the plot shows the

Baits and the right side shows Catches. The flow represents the tumor type in

which an association was discovered by LURE. . . . . . . . . . . . . . . . . . 40

x



5.1 Overview of the pathway and network analysis approach. Coding, non-

coding, and combined gene scores were derived for each gene by aggregating

driver p-values from the PCAWG driver predictions in individual elements, in-

cluding annotated coding and non-coding elements (promoter, 5 UTR, 3 UTR,

and enhancer). These gene scores were input to five network analysis algo-

rithms (CanIsoNet [Kahraman et al., in preparation], Hierarchical HotNet, an

induced subnetwork analysis [Reyna and Raphael, in preparation], NBDI, and

SSA-ME), which utilize multiple protein-protein interaction networks, and to

two pathway analysis algorithms (ActivePathways [Paczkowska, Barenboim et

al., in submission] and a hypergeometric analysis [Vazquez]), which utilize

multiple pathway/gene-set databases. We defined a non-coding value-added

(NCVA) procedure to determine genes whose non-coding scores contribute sig-

nificantly to the results of the combined coding and non-coding analysis, where

NCVA results for a method augment its results on non-coding data. We defined

a consensus procedure to combine significant pathways and networks identi-

fied by these seven algorithms. The 87 pathway-implicated driver genes with

coding variants (PID-C) are the set of genes reported by a majority ( 4/7) of

methods on coding data. The 93 pathway-implicated driver genes with non-

coding variants (PID-N) are the set of genes reported by a majority of methods

on non-coding data or in their NCVA results. Only 5 genes (CTNNB1, DDX3X,

SF3B1, TGFBR2, TP53) are both PID-C and PID-N genes. . . . . . . . . . . 44

xi



5.2 Overlap of consensus results for pathway and network methods. (A) PID-C

and PID-N genes have negligible overlap. Only 5 genes (CTNNB1, DDX3X,

SF3B1, TGFBR2, TP53 are both PID-C and PID-N genes. (B) Overlap of all

consensus results. Four-circle Venn diagram for the overlap of the consensus

results on coding data, i.e., PID-C genes; consensus pathway/network results

on non-coding data; consensus pathway/network results on coding and non-

coding data; and the union of the consensus results on non-coding data and the

non-coding value-added (NCVA) results, i.e., PID-N genes. . . . . . . . . . . 45

xii



5.3 Pathway and network modules containing PID-C and PID-N genes. (A)

Network of functional interactions between PID-C and PID-N genes. Nodes

represent PID-C and PID-N genes and edges show functional interactions from

the ReactomeFI network (grey), physical protein-protein interactions from the

BioGRID network (blue), or interactions recorded in both networks (purple).

Node color indicates PID-C genes (green), PID-N genes (yellow), or both PID-

C and PID-N genes (orange);node size is proportional to the score of the cor-

responding gene; and the pie chart diagram in each node represents the rel-

ative proportions of coding and non-coding cancer mutations associated with

the corresponding gene. Dotted outlines indicate clusters of genes with roles

in chromatin organization and cell proliferation, which predominantly contain

PID-C genes; development, which includes comparable amounts of PID-C and

PID-N genes; and RNA splicing, which contains PID-N genes. A core cluster

of genes with many known drivers are also indicated. (B) Pathway modules

containing PID-C and PID-N genes. Each row in the matrix corresponds to a

PID-C or PID-N gene, and each column in the matrix corresponds to a pathway

module enriched in PID-C and/or PID-N genes (see Methods). A filled entry

indicates a gene (row) that belongs to one or more pathways (column) colored

according to gene membership in PID-C genes (green), PID-N genes (yellow),

or both PID-C and PID-N genes (orange). A darkly colored entry indicates that

a PID-C or PID-N gene belongs to a pathway that is significantly enriched for

PID-C or PID-N genes, respectively. A lightly colored entry indicates that a

PID-C or PID-N gene belongs to a pathway that is significantly enriched for the

union of PID-C and PID-N genes but not for PID-C or PID-N genes separately.

Enrichments are summarized by circles adjacent each pathway module name

and PID gene name. Boxed circles indicate that a pathway module contains a

pathway that is significantly more enriched for the union of the PID-C and PID-

N genes than the PID-C and PID-N results separately. The enriched modules

and PID genes are clustered into four biological processes: chromatin, develop-

ment, proliferation, and RNA splicing as indicated, with differing contributions

of PID-C and PID-N genes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

xiii



5.4 RNA splicing factors are targeted primarily by non-coding mutations and

alter expression of similar pathways as coding mutations in splicing fac-

tors. (A) Heatmap of Gene Set Enrichment Analysis (GSEA) Normalized

Enrichment Scores (NES). The columns of the matrix indicate non-coding mu-

tations in splicing-related PID-N genes and coding mutations in splicing genes

reported in [1] and the rows of the matrix indicate 47 curated gene sets[1]. Red

heatmap entries represent an upregulation of the pathway in the mutant samples

with respect to the non-mutant samples and blue heatmap entries represent a

downregulation. The first column annotation indicates mutation cluster mem-

bership according to common pathway regulation. The second column annota-

tion indicates whether a mutation is a non-coding mutation in a PID-N gene or

a coding mutation[1], with the third column annotation specifies the aberration

type (promoter, 5 UTR, 3 UTR, missense, or truncating). The fourth column

annotation indicates the cancer type for coding mutations from [1]. The mu-

tations cluster into 3 groups: C1, C2, and C3. The pathways cluster into two

groups[1]: P1 and P2, where P1 contains an immune signature gene sets and P2

contains cell autonomous gene sets as reported in [1]. (B) tSNE plot of mu-

tated elements illustrates clustering of gene expression signatures for sam-

ples with non-coding mutations in splicing-related PID-N genes with gene

expression signatures for coding mutations in previously published splic-

ing factors. The shape of each point denotes the mutation cluster assignment

(C1, C2, or C3), and the color represents whether the corresponding gene is a

PID-N gene with non-coding mutations or a splicing factor gene with coding

mutations[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

xiv



5.5 Cluster stability analysis. (A) Silhouette scores of pathway clusters 1 and 2.

Silhouette width is on the x-axis, and the 47 pathways across y-axis. Average

silhouette score per cluster is shown to the right of the bar plots. (B) Silhouette

scoring of the 3 mutation element clusters. (C, D) Histograms representing the

results of a cluster bootstrapping analysis using the Jaccard similarity coefficient

to identify how often pathways (C) or mutation elements (D) clustered together

in each bootstrap. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.6 Differences between normal and cancer-associated telomere properties. Scat-

ter plot showing the four clusters of telomere patterns identified across PCAWG

cancers, together with the more homogeneous cluster of matched normal sam-

ples, generated by t-Distributed Stochastic Neighbour Embedding. . . . . . . . 52

5.7 Telomere sequence patterns across PCAWG. (A) Scatter-plot showing the

four clusters of telomere patterns identified across PCAWG by t-Distributed

Stochastic Neighbour Embedding (tSNE). (B) Distribution of the four clusters

of telomere patterns in selected tumour types from PCAWG. (C) Distribution

of relevant driver mutations associated with alternative lengthening of telomere

and normal telomere maintenance across the four clusters. (D) Distribution

of telomere maintenance abnormalities across tumour types with more than 40

patients in PCAWG. Samples classified as tumour cluster 1-3 if they fall into a

relevant cluster without mutations in TERT, ATRX or DAXX and have no ALT

phenotype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xv



5.8 Properties of telomeres across different tumor clusters. (A) Distribution of

telomere sequence and properties across samples in the four clusters, with both

tumour (blue points) and matched normal (red points) shown. (B) Enrichment

(positive T statistics) or depletion (negative T statistics) of different variant se-

quence motifs in the four clusters of telomere properties. (C) Variance of fre-

quency of different sequence motifs across the four clusters. . . . . . . . . . . 55

5.9 Properties of telomeres across different normal clusters. Properties of telom-

eres across different normal clusters. Enrichment (positive T statistics) or de-

pletion (negative T statistics) of different variant sequence motifs in the four

normal clusters of telomere properties. . . . . . . . . . . . . . . . . . . . . . 56

5.10 Co-mutation and expression levels of genes related to telomere mainte-

nance across the four clusters of telomere properties. (A) Patterns of co-

mutation of the relevant driver mutations across individual patients. Columns

in plot represent individual patients, coloured by type of abnormality observed.

(B) Box and whisker plots of expression levels of key telomere maintenance

genes across the four clusters of telomere properties. The boxes demarcate the

interquartile range, with a horizontal line to mark the median. . . . . . . . . . 57

5.11 Timing of mutation in genes related to telomere maintenance. Clonal [early]

denotes clonal mutations occurring before duplications involving the relevant

chromosome (including whole genome duplications); clonal [late] to clonal mu-

tations occurring after such duplications; and clonal [NA] to mutations occur-

ring when no duplication was observed. . . . . . . . . . . . . . . . . . . . . . 59

xvi



Abstract

Classifying Cancer Genomic Alterations Using Machine Learning and Multi-Omic

Data

by

David Haan

In 2018, an estimated 1,762,450 new cases of cancer will be diagnosed in the United States

and 606,880 people will die from these diseases. Cancer is a group of diseases characterized

by the overgrowth of abnormal cells as the result of genomic mutations. Mutations that initi-

ate tumorigenesis are called driver mutations whereas those which cannot are called passenger

mutations. Driver mutations define a tumor’s subtype and can be used as therapeutic targets

thus, deciphering driver mutations from passenger mutations is of utmost importance as we

strive to improve cancer treatment. As the cost of genome sequencing is decreasing, the amount

of available tumor data is increasing, making it possible to conduct large scale computational

analysis with machine learning to identify novel tumor characteristics. There have been nu-

merous recent collaborations to collect, sequence, and analyze human tumors. The largest of

these collaborations, the Cancer Genome Atlas (TCGA), is a comprehensive analysis of 9,000

patients and 33 sub types cataloging mutation data, DNA, mRNA, methylation, and protein

expression. Whereas the TCGA is mostly whole exome sequencing, the International Cancer

Genome Consortium (ICGC) has begun contributing data from the whole genome sequencing

of a few thousand tumors. Using both the TCGA and ICGC data, I performed four new variant

classification analyses using both unsupervised machine learning techniques and a novel su-

xvii



pervised machine learning technique to identify tumor subtypes, driver mutations and potential

therapeutic targets. I first present an analysis in which I used supervised machine learning to

determine the most important genomic features responsible for accurate gene fusion detection

among a set of fusion detection methods. Next, I present a method of unsupervised machine

learning in which I classify non-coding variants of splicing factors as potential driver mutations

in a number of tumor types. Third, I analyze telomere data from ICGC whole genome sequenc-

ing data using unsupervised machine learning to identify 4 subtypes of telomere maintenance

mechanisms(TMM) among 2,500 tumor samples. Lastly, I present a new variant classification

method called LURE, which uses supervised machine learning to classify variants based on

existing signatures from known driver mutations.
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Chapter 1

Introduction

Approximately 39.3 percent of men and women will be diagnosed with cancer of any

site at some point during their lifetime[2]. In 2016, there were an estimated 15,338,988 people

living with cancer of any site in the United States[2].

Cancer is a genetic disease caused by mutation and selection in somatic cells. Mu-

tations in normal cells are usually repaired or result in apoptosis. Whereas in cancer cells mu-

tations accumulate, leading to uncontrolled growth and tumorigenesis. There are two broadly

defined types of mutations: drivers and passengers. Tumors contain around 2-5 driver mutations

that cause and accelerate cancer, and about 10-200 passenger mutations which are accidental

byproducts of thwarted DNA repair mechanisms[3]. Driver mutations define key characteris-

tics of the tumor and may offer therapeutic targets, yet identifying them amid the myriad of

passengers remains a challenge.

The Cancer Genome Atlas (TCGA) is a publicly accessible dataset of cancer samples

from the National Cancer Institute (NCI)[?]. TCGA catalogues mutations, mRNA, miRNA,
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DNA methylation, copy number variation, and protein expression data for roughly 11,000 pa-

tients across 33 cancer types[?]. The identification of driver mutations played a fundamental

role in many TCGA analyses. Whereas the TCGA is mostly whole exome sequencing, the In-

ternational Cancer Genome Consortium (ICGC) has begun contributing data from the whole

genome sequencing of a few thousand tumors. Using both the TCGA and ICGC data, I per-

formed four new variant classification analyses using both unsupervised machine learning tech-

niques and a novel supervised machine learning technique to identify tumor subtypes, driver

mutations and potential therapeutic targets.

There are two types of machine learning methods: supervised and unsupervised. Un-

supervised learning methods, such as hierarchical clustering and T-distributed Stochastic Neigh-

bor Embedding(t-SNE), are effective at visualizing high dimensional data and identifying clus-

ters or patterns in the data[4]. Supervised machine learning uses prior knowledge or labels to

divide data into two or more classes[4]. By training a classification model on prior knowledge,

supervised machine learning can make predictions about unknown or unlabeled data[4]. In this

thesis, I present unsupervised and supervised machine learning methods I performed on cancer

genomic data to classify mutations or variations found in the genomes of human tumors.

In chapter 3, I recapitulate my participation in a bioinformatics community challenge

ranking user-submitted gene fusion detection methods. In this challenge, we spiked gene fusion

transcripts into a few human cancer cell lines and asked participants to run their own gene

fusion detection methods on these datasets. I was tasked with performing analysis on the data

to determine if the presence of certain genomic features near a fusion prevented methods from

detecting the fusion. After collecting a set of genomic features for each fusion, I used a random

2



forest, a supervised machine learning method, to predict the false positive and false negative

fusion events called by each method. I then preformed a feature importance analysis to identify

the genomic features responsible for each method’s incorrect fusion detection.

Next, I sought to classify mutation variants by developing a supervised machine learn-

ing tool called Learning UnRealized Events (LURE). LURE, discussed in chapter 4, associates

alterations between samples by finding similar signatures in feature data, such as mRNA ex-

pression data or methylation data. LURE achieves this by training a classifier on tumor sample

feature data of a known driver mutation (the bait), applying the classifier to find ”bait”-absent

samples with a high classifier score, and identifying other alterations (the ”catch”) in those sam-

ples that correlate with the high classifier score. Using LURE, I identify new associations across

pan-cancer data and find putative new driver alterations involved with MAPK signaling. In ad-

dition, I associate new driver alterations with the alternative lengthening of telomeres (ALT), a

telomere maintenance mechanism (TMM), in sarcomas.

In chapter 5, I discuss variant classification of non-coding mutations using supervised

learning. First, using hierarchical clustering of pathway expression data, I relate non-coding

mutations of splicing factors with coding mutations of the same splicing factors. Next, using

t-SNE on telomere related features, I identify 4 unique groups of tumor samples that employ

different TMMs and associate mutations with each of these groups. In chapter 6, I outline

conclusions based on my research and discuss the future directions of cancer genomics.
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Chapter 2

Background

2.1 Cancer is a Genetic Disease

Cancer is a genetic disease typically resulting from an accumulation of mutations[3].

Mutations in normal cells generally result in repair or cell suicide. However, in cancer cells, the

mutations accumulate leading to an uncontrolled growth otherwise known as a tumor. There are

two broadly defined types of mutations, driver and passenger mutations. Tumors contain around

2-5 driver mutations which cause and accelerate cancer, and about 10-200 passenger mutations

that are accidental byproducts of thwarted DNA repair mechanism. Driver mutations define a

tumor’s subtype and can be used as therapeutic targets.

2.2 The Cancer Genome Atlas

TCGA (cancergenome.nih.gov) is a publicly accessible collection of data from the

NCI[5]. This atlas of data is a comprehensive analysis of 9,000 patients and 33 cancer subtypes
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cataloging mutation data, DNA, mRNA, methylation, and protein expression[5]. The majority

of the TCGA data is whole exome sequencing that covers only protein coding regions of the

genome[5]. As the cost of sequencing is decreasing, whole genome sequencing of numerous

and diverse patient samples has become more practical. This has enabled the creation of the

PanCancer Analysis of Whole Genomes (PCAWG), a data base of 2,500 patient-derived tumor

sequencing profiles of various cancer subtypes[6].

2.3 Mutation Types

There are numerous types of mutations and other genetic alterations that directly ini-

tiate tumorigenesis[3]. Single nucleotide variations (SNVs) result from the insertion, deletion

or subsitution of a single nucleotide and are the most common genomic mutations. SNVs in

non-coding regions of the genome can result in aberrant activity of promoters, enhancers, and

silencers. SNVs in coding regions are typically single nucleotide substitutions that change a

three-base amino acid codon sequence resulting in either the production of the same amino acid

(silent mutation), a different amino acid (missense mutation), or a stop codon (truncating muta-

tion). Missense and truncating mutations are more deleterious because they change the amino

acid composition of a protein. Insertions and deletions of nulceotides in the coding sequences

can also affect protein composition by causing a frameshift mutation that typically results in

an early stop codon and thus, a truncated protein product. Copy number alterations are large

deletions or amplifications of a genomic region that result in either decreased or excessive pro-

tein production. Gene fusions occur when two genes at the DNA level are joined through a

5



translocation, interstitial deletion, or chromosomal inversion and produce a chimeric protein.

2.4 Machine Learning

There are two types of machine learning: unsupervised and supervised. Unsupervised

machine learning is a method that finds new patterns in a dataset without pre-existing labels and

is typically used in cancer genomics to identify subtypes or clusters of tumors that share a sim-

ilar set of features. Supervised learning is used when a computer algorithm cannot be used to

solve a given problem without implementing example data or previous experiences[7]. A super-

vised machine learning method builds a model by defining a set of features and labels for each

data point or observation in an example dataset. There are many types of supervised machine

learning such as linear regression, logistic regression, random forest and neural networks.[7].

To illustrate the utility of supervised machine learning, consider an example in which a logistic

regression model is used to distinguish between different species of flowers. The length and

width of the sepals and petals may be considered flower features and the flower species (a label)

is assigned to each flower based on their specific features. The model is trained on this existing

data, known as training data, and can be used to further predict the species of a new flower

given its sepal and petal measurements. In this thesis, I present my work based on similar prin-

ciples of machine learning to determine a tumor’s mutation status based on gene expression or

methylation data and determine which features are most important for tumor classification.
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2.5 Modeling Imbalanced datasets

Biological data is often imbalanced, leading to difficulty in building accurate clas-

sification models. In cancer genomic data, there is more data collected from tumors of par-

ticular subtypes, usually those subtypes exhibiting well-studied genetic mutations, like PTEN

or BRCA. This leads to misleading analysis results when metrics are not weighed per class.

For example, when using such data to classify multiple different tumor subtypes, a model may

achieve better overall accuracy by classifying both the larger and smaller classes as the larger

class. Thus, it is imperative that the correct accuracy metric is chosen to avoid a false depiction

of good accuracy. The Receiver Operating Characteristic Area Under the Curve (ROC AUC)

is a very popular metric but is highly inaccurate for imbalanced models because it relies on

the true positive rate and false positive rate, the later being weighted for the negative class[8].

Overall, this results in the inaccurate measurement of false positives. To further explore the

cause of this defect, imagine classifying a dataset with a 5-95 (true-false) split. If the classifier

guessed all 5 true positives as positive but classified 5 false positives as positive as well, then

the false positive rate for the ROC curve would be 5/95, or 0.0526, which is very low. Although

only 0.0526 of the negative class was incorrectly classified, equal numbers of samples were

guessed wrong as were guessed right therefore, this classification is unreliable. Usually in the

case of imbalanced classes, there is more concern with how well the classifier can identify the

smaller class or classes. When trying to model a rare genetic mutation, accurately determining

the mutated samples is crucial for analysis while the negative class is of little interest. In this

situation, it is best to use precision and recall to measure accuracy of imbalanced classification
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models because they are weighted for only the positive class. Precision is a measure of the false

positives that is weighted for the positive class. This quantifies how often a model incorrectly

guessed a negative label as a positive per the number of true positive samples. In the example

above where the false positive rate was only 0.0526, the precision is 0.5 (false positives/(correct

true positives+false positives)). With a precision of only 0.5, it would most likely be necessary

to discredit the classification model. Recall is the true positive rate; it measures how often the

model accurately identifies the positive labels as positive per the number of true positives. To-

gether, these two metrics can be used to create either an F1 score, which is the harmonic mean

of precision and recall, or a precision-recall area under the curve(PR AUC)[8]. When classify-

ing imbalanced datasets, precision-recall AUC or F1 scores can be used to add a description of

the model’s accuracy.

2.6 Driver Discovery Tools

There are several existing computational tools that try to decipher driver from passen-

ger mutations[9]. EPoC uses network modeling of the transcriptional effects of copy number

aberrations to identify driver mutations in glioblastoma (GBM)[10]. DriverNet employs a prob-

abilistic model to locate driver mutations using transcriptional networks[11]. These methods

can predict novel drivers given a set of SNVs or copy number alterations and the corresponding

mRNA gene expression data. In addition, there are methods that identify modules of driver

genes based on mutual exclusivity in certain tumor types, such as CoMEt[12] and MEMo, the

latter of which incorporates prior knowledge such as pathway data into driver gene module

8



discovery[13].
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Chapter 3

Accurate Fusion Detection

3.1 Introduction

Genomic rearrangements in cancer cells produce fusion transcripts that may give rise

to protein products not present in normal cells. These can serve as robust diagnostic markers,

e.g. TMPRSS2-ERG in prostate cancer[14] or drug targets, e.g. BCR-ABL1 in chronic myeloid

leukemia[15]. Ongoing research efforts are beginning to unveil the potential clinical relevance

of aberrant processing of RNA in cancer, such as defects in alternative-splicing. An assortment

of computational methods are needed to fully document the transcriptomic differences between

tumor cells and their normal counterparts. Increasing the alterome of tumors by fully character-

izing their RNA landscapes will expand our understanding of cancer mechanisms, provide new

biomarkers and reveal possible new RNA-based therapeutics, improving personalized patient

treatment.

Gene fusions occur when two genes at the DNA level are joined through a translo-
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cation, interstitial deletion, or chromosomal inversion. A fusion may also occur at the RNA

level, resulting from a ligation between two transcripts. Gene fusions often play an important

role in the initial steps of tumorigenesis. Specifically, gene fusions have been found to be the

driver mutations in neoplasia and have been linked to various tumour subtypes. An increasing

number of gene fusions are being recognized as important diagnostic and prognostic parameters

in malignant haematological disorders and childhood sarcomas. Reviews have estimated that

gene fusions occur in all malignancies and that 20% of human cancer cases harbour at least one

to RNA fusion events[16, 17].

The goal of this challenge is to use a crowd-based competition to identify the opti-

mal methods for quantifying isoforms and detecting mRNA fusions from RNA-seq data. Sev-

eral methods have been published that detect and quantify cancer-associated RNA abundance

species. Yet, it is not clear which methods are best used and under what contexts. Recent

systematic comparisons have been performed[18, 19] to evaluate RNA-Seq analysis methods.

Most comparisons have been performed by an author of one of the competing methods and so

may suffer self assessment bias. One of the more recent evaluations, performed by an impartial

list, was the study by Kumar et al 2016 that compared 12 different methods based on their accu-

racy, length of execution time, and memory requirements. The work performed by the authors

in Creason, et al, includes several newly developed tools, the use of spike-ins for an unbiased

assessment of sensitivity, an objective evaluation framework in which the administrators ran

submitted methods to generate all predictions, and a statistical procedure to infer background

fusions to accurately measure precision. In addition to a new evaluation of methods, our work

provides a tool for simulating RNA isoforms and fusions, a new benchmark dataset against
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which forthcoming methods can be compared, and all of the tested methods in standardized

workflow for re-execution, which should further progress this area of study. My contribution

to the community challenge was to rank the isoform challenge and run a feature importance

pipeline on the fusion detection methods.

3.2 Dream Challenge Results

The fusion detection evaluation challenge received 63 entries, of which the organizers

were able to run 37. The final evaluation consisted of 17 entries, which included multiple sub-

missions by the same team (up to three per team allowed). Two different datasets were created

to evaluate methods-a computationally simulated dataset and another experimentally generated

set using spike-ins (Figure 2a). The simulated dataset was used to evacuate the preliminary

rounds. The simulated data were generated with the program rnaseqSim (in preparation) that

created synthetic reads from computationally constructed fusions. On average, the simulated

tumor samples contained 39 fusions per transcriptome. The second evaluation dataset of spike-

ins was used for the final evaluation of methods. The spike-in data were created in the lab using

a prescribed series of fusion products spiked in to several cancer cell lines, using 18 different

fusion constructs. Scoring of the fusion methods was performed using the F1 score against the

spike-in set. To account for fusions found in the cell line background, fusions called by mul-

tiple methods across multiple replicates were collected for PCR based validation, and utilized

as an imputed truth set to augment the spike-in set (see methods). An additional F1 score was

calculated for the combined (spike-in plus imputed) truth set. All submitted entries were ranked
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according to their F1 score on the combined data. Two of the submitted methods emerged as

the overall winners of this sub-challenge – Arriba and STAR-Fusion – based on their perfor-

mance in spike-in benchmarks with the addition of the imputed truth set. Arriba achieved an

F1 of 0.73, and STAR-Fusion had an F1 of 0.70. The next closest entry, another permutation

of STAR-Fusion, was at 0.63. Based on a bootstrap analysis, no other methods were found to

have achieved results as accurate as these top two entries. The next method, not submitted by

one of the winning teams was fusioncatcher, submitted by the challenge administrators, at 0.58.

Finally, the highest scoring method, not submitted by the top two teams or the administrators,

was STAR-SEQR with an F1 of 0.47.

3.3 Features Influencing the Accuracy of Fusion Detection Meth-

ods

In an effort to determine what factors influence methods to incorrectly call fusion

events, I created a fusion feature importance pipeline, similar to what was done for the SMC-

DNA challenge[20]. To start, I collected 128 genomic features for each predicted fusion event,

including gene length, transcript length, distance from the breakpoint to repeats, and the abun-

dance for each fusion partner. Next, I built a random forest (RF) classification model to predict

the false-positive fusion events from each submission. The RF was trained to select features

that predict when a method erroneously calls a fusion event when no such event was present

according to the i-truth. Also, I built a second RF model to select features that predict false

negative events; i.e. the RF predicts when a method fails to detect a spiked-in fusion construct.

13



To determine feature importance among our classification models I applied our random forest

models to the algorithm Boruta, an all relevant feature selection algorithm[21][22](Figure 3.1).

Boruta determines feature relevance by comparing the original importance with the

importance achievable at random, estimated using permuted versions of a feature, and progres-

sively eliminating irrelevant features to stabilise the test. In order to determine the features

most relevant to all the methods, Iincluded the submission ID as a feature and created one false

positive classification model achieving an out-of-bag (OOB) error rate of only 0.26%. The

false negative RF model was more difficult to predict due to fewer observations, but achieved

an error rate of 7.64%. The Boruta algorithm revealed that the number of transcripts and GC

content were the most important features for determining the false positives among all fusion

methods whereas submission id, coverage across junction and expression were the top fea-

tures for the false negative model(Figure 3.2). Further analysis of the top features for the false

negative model revealed a marked decrease in coverage and expression for the false negative

fusions(Figure 3.3).

3.4 Conclusion

Here I presented some of the results of the SMC-RNA DREAM challenge in which

we synthetically introduced fusions and asked contestants to run fusion detection methods and

report the results. Through my feature importance analysis I determined that coverage, expres-

sion, GC content, and the number of transcripts of each fusion partners are the most important

features. Identifying alterations in tumor sequence data is very important, but even more so is
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Figure 3.1: Boruta Feature Importance Analysis By Fusion Submission. Heatmap show-
ing results from performing the Boruta algorithm on each submissions false positive fusion
events(A) and false negative fusion events(B). Each cell in the heatmap represents the Z-score
Mean Decrease in Accuracy. Higher Z-scores are in red and represent more important features.
Rows are the fusion submission names and columns are the features. Only features which had
a mean value greater than Borutas shadow max value are shown.

15



●●●

●
●

●

●●●●●●●●●
●

●
●
●

●●●

●

●
●
●●●●

●●
●●

●

●●
●
●●●●●●
●

●●●●

●
●●●

●

●
● ●●●●●●

●
●

●

●●
●●● ●

●

●
●
●●
●

●

●
●

● ●●●

●

●

●

●

●

●
●
●

●●
●

●

●●
●
●

●●
●

●

●
●

●

●
●●
●

●

●●
●
●
●
●●

●

●

0

20

40

R
an

do
m

_M
in

R
an

do
m

_M
ea

n
R

an
do

m
_M

ax
LT

R
_r

ep
ea

ts
_0

_5
00

U
nk

no
w

n_
re

pe
at

s_
15

00
_2

00
0

LT
R

_r
ep

ea
ts

_1
00

0_
15

00
sc

R
N

A
_r

ep
ea

ts
_2

00
0_

25
00

Lo
w

_c
om

pl
ex

ity
_r

ep
ea

ts
_1

50
0_

20
00

D
N

A
_r

ep
ea

ts
_0

_5
00

LT
R

_r
ep

ea
ts

_2
00

0_
25

00
LT

R
_r

ep
ea

ts
_5

00
_1

00
0

S
im

pl
e_

re
pe

at
_r

ep
ea

ts
_2

00
0_

25
00

LT
R

_r
ep

ea
ts

_1
50

0_
20

00
la

st
_p

ar
tn

er
_l

as
t_

ex
on

Lo
w

_c
om

pl
ex

ity
_r

ep
ea

ts
_2

00
0_

25
00

D
N

A
_r

ep
ea

ts
_5

00
_1

00
0

D
N

A
_r

ep
ea

ts
_1

50
0_

20
00

D
N

A
_r

ep
ea

ts
_2

00
0_

25
00

fir
st

_p
ar

tn
er

_f
irs

t_
ex

on
S

im
pl

e_
re

pe
at

_r
ep

ea
ts

_1
50

0_
20

00
S

im
pl

e_
re

pe
at

_r
ep

ea
ts

_5
00

_1
00

0
D

N
A

_r
ep

ea
ts

_1
00

0_
15

00
S

im
pl

e_
re

pe
at

_r
ep

ea
ts

_0
_5

00
LI

N
E

_r
ep

ea
ts

_1
50

0_
20

00
Lo

w
_c

om
pl

ex
ity

_r
ep

ea
ts

_5
00

_1
00

0
S

IN
E

_r
ep

ea
ts

_1
00

0_
15

00
LI

N
E

_r
ep

ea
ts

_2
00

0_
25

00
LI

N
E

_r
ep

ea
ts

_0
_5

00
su

bm
is

si
on

_i
d

Lo
w

_c
om

pl
ex

ity
_r

ep
ea

ts
_1

00
0_

15
00

LI
N

E
_r

ep
ea

ts
_1

00
0_

15
00

S
im

pl
e_

re
pe

at
_r

ep
ea

ts
_1

00
0_

15
00

S
IN

E
_r

ep
ea

ts
_2

00
0_

25
00

S
IN

E
_r

ep
ea

ts
_0

_5
00

S
IN

E
_r

ep
ea

ts
_5

00
_1

00
0

LI
N

E
_r

ep
ea

ts
_5

00
_1

00
0

ce
ll_

lin
e

D
on

or
_G

en
e_

S
iz

e
A

cc
ep

to
r_

N
um

_E
xo

ns
S

IN
E

_r
ep

ea
ts

_1
50

0_
20

00
D

on
or

_T
rs

cp
t_

S
iz

e_
w

_i
nt

ro
ns

A
cc

ep
to

r_
N

um
_T

ra
ns

cr
ip

ts
_2

Lo
w

_c
om

pl
ex

ity
_r

ep
ea

ts
_0

_5
00

A
cc

ep
to

r_
Tr

sc
pt

_S
iz

e_
w

_i
nt

ro
ns

D
on

or
_G

C
_c

on
te

nt
_w

_i
nt

ro
ns

D
on

or
_T

rs
cp

t_
S

iz
e_

w
o_

in
tr

on
s

D
on

or
_E

xp
re

ss
io

n
A

cc
ep

to
r_

G
en

e_
S

iz
e

A
cc

ep
to

r_
Tr

sc
pt

_S
iz

e_
w

o_
in

tr
on

s
A

cc
ep

to
r_

E
xp

re
ss

io
n

D
on

or
_G

C
_c

on
te

nt
_w

o_
in

tr
on

s
D

on
or

_N
um

_E
xo

ns
D

on
or

_N
um

_T
ra

ns
cr

ip
ts

_1
A

cc
ep

to
r_

G
C

_c
on

te
nt

_w
o_

in
tr

on
s

A
cc

ep
to

r_
G

C
_c

on
te

nt
_w

_i
nt

ro
ns

Feature

Z
−

sc
or

e 
M

D
A

Category

Actual

Random

(a) False Positive Feature Importance

●●
●

●

●

●●● ●●●●●●

●

●

●
●

●
●

●●

●

●

●

●●

●

●
●

● ●
●

●
●

●●●●
●

●
●

●
● ●●

● ●

●

●
●●

●

●●

●

●●
●● ●●

●

●
●
●
●●●
●●

●

●

●

●

●

●●●
●●●

●

●

●

●

●

●

●

0

10

20

30

40

R
an

do
m

_M
in

R
an

do
m

_M
ea

n
R

an
do

m
_M

ax
D

N
A

_r
ep

ea
ts

_0
_5

00
Lo

w
_c

om
pl

ex
ity

_r
ep

ea
ts

_1
50

0_
20

00
S

im
pl

e_
re

pe
at

_r
ep

ea
ts

_5
00

_1
00

0
la

st
_p

ar
tn

er
_l

as
t_

ex
on

S
im

pl
e_

re
pe

at
_r

ep
ea

ts
_2

00
0_

25
00

LI
N

E
_r

ep
ea

ts
_1

00
0_

15
00

Lo
w

_c
om

pl
ex

ity
_r

ep
ea

ts
_0

_5
00

D
N

A
_r

ep
ea

ts
_2

00
0_

25
00

fir
st

_p
ar

tn
er

_f
irs

t_
ex

on
D

N
A

_r
ep

ea
ts

_1
50

0_
20

00
D

N
A

_r
ep

ea
ts

_5
00

_1
00

0
S

IN
E

_r
ep

ea
ts

_1
00

0_
15

00
LI

N
E

_r
ep

ea
ts

_1
50

0_
20

00
S

IN
E

_r
ep

ea
ts

_0
_5

00
sp

ik
ed

_i
n_

am
t

D
N

A
_r

ep
ea

ts
_1

00
0_

15
00

S
IN

E
_r

ep
ea

ts
_1

50
0_

20
00

S
IN

E
_r

ep
ea

ts
_5

00
_1

00
0

Lo
w

_c
om

pl
ex

ity
_r

ep
ea

ts
_5

00
_1

00
0

S
IN

E
_r

ep
ea

ts
_2

00
0_

25
00

LI
N

E
_r

ep
ea

ts
_5

00
_1

00
0

LI
N

E
_r

ep
ea

ts
_0

_5
00

LT
R

_r
ep

ea
ts

_1
50

0_
20

00
Lo

w
_c

om
pl

ex
ity

_r
ep

ea
ts

_1
00

0_
15

00
LI

N
E

_r
ep

ea
ts

_2
00

0_
25

00
LT

R
_r

ep
ea

ts
_2

00
0_

25
00

LT
R

_r
ep

ea
ts

_5
00

_1
00

0
A

cc
ep

to
r_

Tr
sc

pt
_S

iz
e_

w
_i

nt
ro

ns
A

cc
ep

to
r_

N
um

_E
xo

ns
A

cc
ep

to
r_

N
um

_T
ra

ns
cr

ip
ts

_2
A

cc
ep

to
r_

G
en

e_
S

iz
e

D
on

or
_G

C
_c

on
te

nt
_w

_i
nt

ro
ns

D
on

or
_G

C
_c

on
te

nt
_w

o_
in

tr
on

s
A

cc
ep

to
r_

G
C

_c
on

te
nt

_w
o_

in
tr

on
s

D
on

or
_N

um
_E

xo
ns

A
cc

ep
to

r_
Tr

sc
pt

_S
iz

e_
w

o_
in

tr
on

s
D

on
or

_G
en

e_
S

iz
e

D
on

or
_N

um
_T

ra
ns

cr
ip

ts
_1

D
on

or
_T

rs
cp

t_
S

iz
e_

w
_i

nt
ro

ns
A

cc
ep

to
r_

G
C

_c
on

te
nt

_w
_i

nt
ro

ns
D

on
or

_T
rs

cp
t_

S
iz

e_
w

o_
in

tr
on

s
ce

ll_
lin

e
A

cc
ep

to
r_

C
ov

er
ag

e
D

on
or

_E
xp

re
ss

io
n

D
on

or
_C

ov
er

ag
e

A
cc

ep
to

r_
E

xp
re

ss
io

n
Ju

nc
tio

n_
C

ov
er

ag
e

su
bm

is
si

on
_i

d

Feature

Z
−

sc
or

e 
M

D
A

Category

Actual

Random

(b) False Negative Feature Importance

Figure 3.2: Boruta Feature Importance Analysis Across All Fusion Submissions for the
False Positive Model(A) and False Negative Model(B). Boxplot showing results from per-
forming the Boruta Algorithm on all fusion submissions. The y-axis represents the Z-score
MDA and features are across the x-axis. The red plots are the Z-scores of the actual features
and blue are Borutas shadow features which are considered the randomized background fea-
tures. Only features which performed significantly better (p < .05) than the shadow features
are shown in this plot.

determining if these alterations would be considered drivers and contribute to tumorigenesis. Is

it possible that a fusion event is capable of driving cancer? What other events could be driving

cancer and how can we identify them?
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Figure 3.3: False Negative Feature Analysis T Statistic. Students t-test of top features iden-
tified by False Negative Random Forest model. Students t-test was performed individually on
the 5 features comparing false negative fusions missed by the submission methods to the ac-
curately identified fusions. A negative t statistic represents a decrease in the feature values for
false negative fusions.
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Chapter 4

LURE: Classifying Coding Variants of

Unknown Significance

LURE (Learning UnRealized Events): Finding New(or Equivalent) Driver Mutation

Events using Supervised Machine Learning

4.1 Introduction/Background

There are several existing computational tools that try to decipher driver from passen-

ger mutations[9]. EPoC uses network modeling of the transcriptional effects of copy number

aberrations to identify driver mutations in glioblastoma (GBM)[10]. DriverNet employs a prob-

abilistic model to locate driver mutations using transcriptional networks[11]. These methods

can predict novel drivers given a set of SNVs or copy number alterations and the corresponding

mRNA gene expression data. In addition, there are methods that identify modules of driver

genes based on mutual exclusivity in certain tumor types, such as CoMEt[12] and MEMo, the
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latter of which incorporates prior knowledge such as pathway data into driver gene module

discovery[13]. In contrast, LURE uses mRNA data to identify mutations in “driver-unknown”

samples with similar expression signatures to known drivers, thereby implicating a novel set of

mutations as possible drivers.

Several studies have built gene expression signatures to identify samples with certain

driver events. For example, studies have identified a TP53 gene expression signature as a re-

liable and independent predictor of disease outcome in breast cancer[23, 24]. In addition, in

patients with epithelial ovarian cancer, a BRCAness gene expression signature is just as pre-

dictive of chemotherapy responsiveness and outcome as mutation status.[25] While creating

signatures as prognostic markers to guide treatment is important in a clinical setting, there has

been little work using such gene expression signatures to find related mutational events. LURE

identifies gene expression signatures across the 723 COSMIC cancer genes[26] and then uses

iterative semi-supervised learning to discover potentially related events.

A similar method, REVEALER is a computational method that identifies combina-

tions of genomic alterations correlated with functional phenotypes, such as the activation or

gene dependency of oncogenic pathways or sensitivity to a drug treatment[27]. While the con-

cept of REVEALER is very similar to LURE, there are few differences which make LURE

better. For one, at every iteration of the process LURE produces a new classification model

slightly more accurate than the previous as the newly discovered events are no longer false

positives and now aide in determining features relevant to the signature. Second, REVEALER

utilizes a mutual exclusive relationship between new events which may limit results as muta-

tion calls are not 100% accurate. Allowing some overlap between predicted events LURE can
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account for possible mutation call errors and identify modules containing co mutated events. In

an effort to compare methods, my undergraduate mentee, Ruikang Tao ran REVEALER using

one of our test sets described in our positive controls and REVEALER was unable to identify

the leave-out test sets (Supplemental Figure 4.1).

4.2 Method

LURE attempts to associate alterations between samples by finding similar signatures

in feature data such as mRNA expression data. LURE achieves this by training a classifier using

the samples of a known driver mutation (the bait) applying it to find ”bait”-absent samples with

a high classifier score, and looking for other alterations (the ”catch”) in those samples that

correlate with the high classifier score.

The first step (Step 0) is to establish a known driver mutation as the initial bait, for

example event A (Figure 4.2A,E). In the next step (Step 1) LURE trains a logistic regression

classification model using gene expression as features and bait mutation status as the label to

be predicted. A cross-validation is run for the classification task and baits can be filtered by

model performance, e.g. area under the precision recall curve (PR AUC). LURE then uses the

classification model to score each sample in the dataset (Figure 4.2A,E). Notwithstanding the

inherent bias towards overfitting, there might be some negative samples not mutated in the bait

gene that still receive a high classifier score. These false positives from the classification task

show the same expression signal as the bait-mutated samples hinting to a different driver event

having a similar effect on the cancer cells.
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REVEALER − Iteration: 1

TARGET: LGG IC / CIC

SUMMARY SEED: 0.75

SEED: IDH1_test_set1_set1 0.75

Top 4 Matches

CARS_del 11p15.5 

HRAS_del 11p15.5 

TP53_missense 17p13.1 

ATRX_truncating Xq21.1 

CIC p−val FDR

0.2 <7e−05 0

0.21 <7e−05 0
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Figure 4.1: REVEALER results of using IDH1 positive control test sets. Each column
represents the samples in the TCGA Lower Grade Glioma (LGG) dataset. The top row is the
classifier score assigned to each sample using an initial classifier trained on the first IDH1 test
set of 150 samples. The tick marks in the seed row represent the 150 IDH1 test set samples.
REVEALER identified 4 matches, ATRX truncating mutations, TP53 missense mutations, and
a 11p15.5 focal deletion. While these are not invalid results as it has correctly found genes
co-mutated with IDH1, it was unable to find the 60 left out IDH1 mutants.

21



Therefore, in Step 2, LURE takes the false positive samples and the rest of the nega-

tive samples and runs SSEA (Sample Set Enrichment Analysis). Our SSEA runs the GSEAPre-

ranked tool in which the mutation status forms sample sets and the classification score is the

sample ranking. SSEA tests each mutation event if the samples having that mutation are associ-

ated with the false positive samples (Figure 4.2A). The events with significant SSEA association

are called ”catch” events. For each catch event, LURE then combines the positive samples for

both catch and bait event into a new, intermediate bait event and trains a new classifier for these

samples (Figure 4.2B,E). A cross-validation is run for the new classification model and the PR

AUC results are compared to the initial classifier to ensure the model improves when including

the new positive samples (Student’s t-test t-statistic > 0). In addition, the new classifier has to

outperform a null model background distribution by adding the same number of randomly cho-

sen catch samples to the true positives and running a cross-validation (Student’s t-test p-value

< .05). After establishing that the new additional event both improves the original classifier

and significantly outperforms a random background distribution, the new classifier is run on all

samples again (Figure 4.2B,E) in an effort to search for the next set of catch events. This itera-

tive event discovery builds new classifiers by adding one catch event at a time until no further

events are found by SSEA or classifier performance is not increased anymore. LURE builds an

Event Discovery Tree and recursively returns to the root after exploring all events at each node

(Figure 4.2C).

In Step 3 LURE builds a final classification model from the union of all events in

the event discovery tree. It then runs a set coverage algorithm between all events in the event

discovery tree and the samples predicted to be positive by the final classification model (Fig-
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ure 4.2D,E). The set coverage algorithm identifies the minimum set of events which cover all

the positive samples allowing us to remove completely overlapping mutations. The minimal set

of events representing the positive samples is called the ”Catch” Cover.

4.3 Results

4.3.1 TCGA Positive Controls

Splicing Factor 3b Subunit 1 (SF3B1) is a well known splicing factor which is recur-

rently mutated in many tumor types, including Uveal Melanoma (UVM). Missense mutations

in SF3B1 leads to aberrant splicing and a unique gene expression signature[28]. In order to test

LURE’s ability to discover known ’catch’ events, I created a test set of bait and catch events

using SF3B1 missense mutations in the TCGA UVM sample set. Of the 80 UVM samples, 18

samples have missense mutations in SF3B1. I created an initial bait out of 8 of those samples

and left out 2 sets of 5 SF3B1-mutated samples for discovery. LURE re-discovered both held

out sets correctly, collecting all of the SF3B1 missense events in the Catch Cover (Figure 4.3A).

Isocitrate Dehydrogenase 1 (IDH1) is one of three isocitrate dehydrogenase isozymes,

which when mutated causes hypermethylation and subsequent altered gene expression in Gliomas[29].

I chose this driver gene as another positive control and created a test set using IDH1 mutations

in the TCGA Lower Grade Glioma (LGG) sample set. Of the 210 LGG samples with an IDH1

missense mutation, I created an initial bait with 150 samples and three sets of 20 samples as

potential catch events. LURE collected all three of the left out events in the Catch Cover, as

well as including the IDH2 missense mutation event. IDH2 is another one of the three IDH
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Figure 4.2: LURE Method. (A) LURE Oncoprint of Bait Mutation A. Triangle symbol
represents the classification model for samples having event A. Barplot showing the score given
to each sample by the model representing the probability the sample has the mutation event
A. The annotation bars below indicate mutations present in each sample. The check mark
annotations on the right mark if events passed Sample Set Enrichment Analysis (SSEA, see
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A B

Figure 4.3: LURE Bait and Catch Oncoprints of positive controls. Samples are represented
across the rows. Colored tick marks represent the different types of alterations present in the
samples. Barplot on top shows the LURE classifier score for each sample after the final iteration.
(A) SF3B1 test set in UVM. Initial bait is set to 8 SF3B1 missense in UVM, and LURE finds
the 2 left out sets of 5 each. (B) IDH1 test set in LGG. Initial bait is set to 150 samples of
IDH1 Missense in LGG and Lure finds the 3 left out sets of 20 each.

isozymes and a mutation has the same oncogenic effect as an IDH1 mutation[30](Figure 4.3B).

4.3.2 LURE on the PANCAN Dataset

In order to look for novel associations between genes already associated with cancer,

I decided to run LURE across all tumor types in TCGA, the Pan-Cancer dataset, restricting

both baits and catches to mutation events in the 723 COSMIC genes[26]. I created bait events

for missense mutations, truncating mutations, homozygous focal point copy number deletions,

splice site mutations, and gene fusions and required at least 10 alterations per tumor type. I

restricted our classification models to within tumor types, as different tumor types typically

have unique expression patterns so unless our mutation status was equally stratified across tumor

types our models would simply predict tumor type and not mutation status. By creating baits for

different alteration types in the same gene, as opposed to one bait for any alteration in a gene,
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I are able to identify associations between different alteration types of the same gene as well as

identify functional alterations. For example, -thalassemia mental retardation X-linked (ATRX),

a gene recurrently mutated in Lower Grade Gliomas (LGG), only has an oncogenic effect with

a loss of function mutation, either truncating mutation or copy number loss, whereas a missense

mutation may not have an effect[30]. I then trained logistic regression models on the resulting

3,053 bait/tumor type combinations.

I tested both random forest and neural network and found the linear model to con-

sistently score higher in the majority of models (Suppl. Figure 1-Rick’s Figure). In order to

limit the number of putative false positive results, I restricted the number of bait classifiers by

considering only those with PR AUC > 0.5, precision > 0.4, and recall > 0.75 (Supplemen-

tal Figure 4.4). Since the objective of LURE is to classify false positives, I were more lenient

with the precision and placed more restriction on the recall. Among the bait classifiers passing

these thresholds, the most common bait across all tumor types was TP53, and the tumor types

with the highest number of passing bait classifiers were Lower Grade Glioma (LGG), Thyroid

Carcinoma (THCA), and Prostate Adenocarcinoma (PRAD) (Supplemental Figure 4.6) After

trimming the models, I ran LURE with the 81 remaining baits (Figure: 4.5) using missense mu-

tations, truncating mutations, splice site mutations, gene fusions, and focal point copy number

amplifications and homozygous deletions of COSMIC genes as possible catches.

LURE found significant catch-associations for 35 of the 81 baits tested. By adding

catches to each initial bait event, the classifier PR AUC was increased in varying amounts across

the different baits (Supp Figure 4.7A). The most common bait among the 35 were associations

with TP53 (Supp Figure 4.7E). Tumor type was evenly distributed and SNVs dominated the
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Figure 4.4: Histogram of Bait Precision-Recall Area Under the Curve. Plot shows a his-
togram of the 3,053 Precision Recall AUC cross validation scores from training a tumor type
specific logistic regression classifier on the different 723 COSMIC genes. Classifiers were cre-
ated only in tumor types with more than 10 alterations.
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Figure 4.5: Barplot of 81 Bait Classifiers. Barplot shows Precision-Recall AUC test scores for
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Figure 4.6: Heatmap of baits used in PANCAN LURE analysis. Rows are bait and alteration
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bait mutation type (Supp Figure 4.7F).

Among the high confidence results with a final classifier PR AUC > 0.8, 14 of 59

associations were between different alterations types within the same gene, such as TP53 trun-

cating, splice site, and missense mutations in various tumor types (Figure 4.8). There were four

associations within the same gene families, e.g. IDH1/2 or the RAS protein family. In addi-

tion, I identified gene fusion events partners in BRAF and RET which associated with BRAF

missense mutation in THCA. I also identified that for 20 of the 59 high confidence bait-catch

associations both genes were present in the same human pathway gene set (not regarding gene

sets with > 1000 genes)[?].

When all Pan-Cancer results are considered, the resulting association network does

not group by tumor type but surprisingly by pathway (Suppl. Figure showing large cytoscape

plot), and in particular four canonical pathways emerge (Figure 4.9). LURE identified very

interesting associations for PTEN, in particular between PTEN and CTNNB1, a connection

supported by recent research which suggests PTEN plays a role in regulating the subcellular

localization of β-catenin[31]. Another striking association is between PTEN and EGFR, for

which recent findings provide evidence that PTEN regulates EGFR signaling[32]. These LURE

associations for PTEN reveal cross talk between pathways and provide further evidence that

alterations in PTEN influence EGFR signaling and/or β-catenin signaling.
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Figure 4.9: LURE ”Event Net” of LURE PANCAN Results LURE Event Net shows all
associations resulting from the 35 successful cosmic bait genes. Edges are colored by the tumor
type in which the association was found. Edges are directed from Bait to Catch. Pathway
associations are annotated with circles.
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4.3.3 LURE finds new drivers of the Alternative Lengthening of Telomeres in

Sarcomas

Tumors must employ Telomere Maintenance Mechanisms (TMM) to extend their

telomeres in order to avoid senescence and multiply rapidly[33]. To date, there are two known

mechanisms which tumor cells use to avoid telomere erosion: the overexpression of telomerase,

an enzyme with the ability to extend telomeres, or the Alternative Lengthening of Telomeres

(ALT) pathway. The vast majority of tumors overexpress telomerase in some way, whereas a

small portion (10-15%) use ALT[34]. ALT+ samples lengthen telomeres through homologous

recombination, mediated by loss-of-function mutations in the ATRX and DAXX genes[35]. Ap-

proximately 80% of tumors with ALT harbor mutations in ATRX or DAXX[36] leaving 20%

with no known driver and in particular there are Lower Grade Glioma tumor samples which do

not harbor a mutation in ATRX or the TERT promoter[37]. Using LURE, I sought to identify

new driver mutations of ALT pathway using gene expression signatures of samples harboring

ATRX loss of function mutations. Sarcomas and Lower Grade Gliomas have the highest preva-

lence of ALT+ samples, and ATRX is recurrently mutated, so I chose these tumor types to

search for new drivers of the ALT pathway[35]. I restricted our gene set to a manually curated

set of genes associated with telomere maintenance from the TelNet database[38], therefore I

can expect results of telomere associated genes, but in particular I am looking for associations

with ALT. Since TP53 is commonly mutated in ALT-positive (ALT+) samples and is not known

to solely cause ALT[39], I decided to exclude any TP53 alterations in the possible catches in an

effort to hone in on new ALT drivers.
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Using ATRX truncating mutations as bait, LURE associated four mutations in Sarco-

mas (Figure 4.10A). While it is expected to associate ATRX truncating mutations with a ATRX

copy number deletion[37], the deletions in RB1 and SP100 are novel results. I suggest the ex-

pression signature LURE identified in this analysis is classifying ALT+ TMM samples and the

associated alterations are possibly driving the TMM. Previous work has associated RB1 alter-

ations with long telomeres in the absence of TERT mutations and ATRX inactivation[40]. In

addition, mouse models have revealed that the knock-out of Rb-family proteins causes elon-

gated telomeres[41]. LURE also identified SP100 deletions as an ALT driver, and while SP100

deletions have not been directly reported to be involved in ALT, overexpression of SP100 in

ALT+ cell lines resulted in suppression of ALT characteristics[42]. I therefore think it is pos-

sible that a SP100 deletion leads to unhindered ALT TMM activity. To further investigate the

subset of LURE classified ALT+ samples, I performed a survival analysis and found the ALT+

samples show a significantly worse prognosis agreeing with recent research[43].

In Lower Grade Gliomas (LGG), also using ATRX truncating mutation as bait, LURE

found similar results identifying associations with other ATRX alterations such as ATRX dele-

tions, splice site, and missense mutations (Suppl. Figure X-oncoprint). Surprisingly, ATRX

missense mutations were associated with truncating and as previously thought these mutations

were not drivers, but this evidence suggests otherwise. Together these findings implicate new

single and/or combinations of driver mutations required for the initiation of the ALT telomere

maintenance mechanism and with further testing could prove to be therapeutic targets.
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Figure 4.10: LURE Oncoprint and Survival Plot. (A) Using a known driver for ALT, ATRX
truncating mutations, for bait in Sarcomas(SARC), LURE found three catch events: copy num-
ber deletions in ATRX, RB1, and SP100. (B) Survival plot shows the ALT classification using
the final set cover classifier from the LURE method.

4.3.4 LURE identifies associations within the MAPK signaling pathway

Oncogenic mutations of the HRAS, NRAS, or KRAS genes are frequently found in

human tumors and known to throw off the normal balance of signaling networks controlling

cellular proliferation, differentiation, and survival. Oncogenic mutations in a number of other

upstream or downstream components of MAPK/RTK signaling pathways, including membrane

receptor tyrosine kinases (RTKs) or cytosolic kinases, have been detected more recently to be

associated with a variety of cancer types[44]. The oncogenic RAS mutations and other mutation

events within the MAPK/RTK signaling pathways are often mutually exclusive, indicating that

the deregulation of Ras-dependent signaling is the essential requirement for tumorigenesis[44].

Previous studies have shown that tumor samples harboring Ras protein mutations have a unique

gene expression signature and Ras-dependent samples can be more accurately defined by us-

ing the signature instead of the mutation status alone.[45] Building on this knowledge I was

able to use LURE to not only train an accurate Ras-dependent classifier as was done in Way

et al[46], but also identify new alterations which may be activating the MAPK/RTK signaling
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pathway in samples without a Ras protein mutation. To begin I restricted our baits to genes

known to be involved in the MAPK/RTK signaling pathway[47]. Of those initial baits 23 event

classifiers scored greater 0.5. I ran LURE for these 23 bait events and did not place any restric-

tions on the ”catch” set. The resulting ”Event Net” revealed known as well as new associations

(Figure 4.11A). One interesting association found by LURE in Head-Neck Squamous Cell Car-

cinomas (HNSC) is between HRAS missense mutations and a focal deletion in the 2q23.3 locus

(Figure 4.11B). The samples were by and large mutually exclusive with only one sample having

both a 2q23.3 and HRAS alteration and no samples with alterations in either KRAS or NRAS.

Among the 61 genes in the 2q23.3 locus, CHST11 has been shown to regulate MAPK/RTK

pathway activity in hepatocellular carcinoma[48]. I suggest that in the absence of a HRAS mu-

tation, MAPK signaling is activated by a deletion of the 2q23.3 locus in Head-Neck Squamous

Cell Carcinomas (HNSC).

4.3.5 LURE ran on the PCAWG dataset (using classifiers from the PANCAN

dataset)

In an effort to use LURE to find a functional impact of non-coding mutations by as-

sociation with known coding driver mutations I incorporated the new PanCancer Analysis of

Whole Genomes (PCAWG) dataset into our analysis. Using even a larger set of bait classifiers

which included not only the bait classifiers from the previous exercise I also included copy

number alterations. After preparing the bait classifiers, I quantile normalized the two different

datasets to remove any platform batch effects and ran LURE which identified 4 new associa-

tions (Figure 4.12). Of particular interest, the association between MDM2 amplifications and
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coding mutations of TP53 is expected and worked as a positive control. Another association

of CTNNB1 coding mutations with enhancer mutations in PSIP1 enhancer mutations in Liver

Hepatocellular Carcinoma is novel and interesting as there has been recent work correlating

expression between PSIP1 and CTNNB1 in gliomas[49].

4.4 Discussion

Here I presented a new method to classify genomic alterations in tumors with other

well known alterations using a specific feature dataset such as gene expression. This method

works best with a large dataset because in order to build an accurate bait classifier there needs

to be an adequate number of positive samples. In addition, identifying catch samples requires

a fair amount of samples with the same alteration in order to pass the FDR correction in the

sample set enrichment test (SSEA). The most common associations found with LURE in the

PANCAN analysis were between different alteration types within the same gene, such as TP53.

Also a considerable amount of associations were found within the same gene family as well

as pathway. In addition to associating known alterations across PANCAN, I also demonstrated

LURE’s ability to find novel drivers of the ALT TMM and the MAPK/RTK pathway. LURE’s

inability to find novel non-coding associations with coding variants lies in the fact the power

was lacking in the smaller number of non-coding tumor samples. I believe there needs to be

an increase of whole genome sequencing of tumors in order to correlate non-coding mutations

with coding.
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Chapter 5

Non-coding Variant Function Discovery

5.1 Introduction

Over the past decade, cancer genome sequencing efforts such as The Cancer Genome

Atlas (TCGA) have identified millions of somatic genetic aberrations; however, the annotation

and interpretation of these aberrations remains a major challenge[9]. Specifically, while some

aberrations occur frequently in specific cancer types, there is a long tail of rare aberrations

that are difficult to distinguish from random passenger aberrations in modestly sized patient

cohorts[50, 3] In many cancers, a significant proportion of patients do not have known coding

driver mutations[51], suggesting that additional driver mutations remain undiscovered. To date,

the vast majority of known driver mutations affect protein-coding regions. Only a few non-

coding driver mutations, most notably mutations in the TERT promoter[52, 53, 54], have been

identified; somatic expression Quantitative Trait Loci (eQTLs) correlate with gene expression

changes in some cancer types[55]. Recent studies from the Pan-Cancer Analysis of Whole
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Genomes (PCAWG) project of the International Cancer Genome Consortium (ICGC) reveal

few recurrent non-coding drivers in analyses of individual genes and regulatory regions[54].

In this chapter I will discuss a pathway and network analysis of coding and non-

coding somatic mutations from 2,583 tumors from 27 tumor types compiled by the Pan-Cancer

Analysis of Whole Genomes (PCAWG) project of the International Cancer Genome Consortium

(ICGC)[56], the largest collection of uniformly processed cancer whole genomes to date.

In addition to unlocking the non-coding areas of the genome enabling further analysis

of the tumor variants, whole genome sequencing has allowed for sequencing for other regions

such as telomeres to be sequenced. This chapter also includes a discussion on such sequencing

and the analysis I performed confirming results of a possible new driver of the ALT pathway

found by LURE in Sarcomas.

5.2 Using Gene Pathway Networks to Annotate Non-coding Vari-

ants

Cancer driver mutations unlock oncogenic properties of cells by altering the activity

of hallmark pathways[57]. Accordingly, cancer genes are known to cluster in small number of

cellular pathways and interacting subnetworks[3]. Previously, pathway and network analysis

has proven useful for implicating infrequently mutated genes as cancer genes based on their

pathway membership and physical/regulatory interactions with recurrently mutated genes[58,

57]. However, the interactions between coding and non-coding driver mutations have not been

systematically explored.
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In work described elsewhere, Reyna, Haan et al[59] employed seven distinct path-

way and network analysis methods and derived the consensus of the methods predictions as

pathway-implicated driver (PID) genes(Figure 5.1). In total, we identified a consensus set of

93 high-confidence pathway-implicated driver genes using non-coding variants (PID-N) and a

consensus set of 87 pathway-implicated driver genes using coding variants (PID-C)(PID venn

diagram figure). Both sets of PID genes, particularly the PID-N set, contain rarely mutated

genes that were not identified by individual recurrence tests but interact with other well-known

cancer genes. In total, 121 novel PID-N and PID-C genes are revealed as promising candidates,

expanding the landscape of driver mutations in cancer.

Furthermore, we examined the contribution of coding and non-coding mutations in

altering biological processes, finding that while chromatin remodeling and some well-known

signaling and proliferation pathways are altered primarily by coding mutations, other impor-

tant cancer pathways, including developmental pathways such as Wnt and Notch pathways, are

altered by both coding and non-coding mutations in PID genes. Intriguingly, we find many

non-coding mutations in PID-N genes with roles in RNA splicing, and samples with these non-

coding mutations exhibit similar gene expression signatures as samples with well-known coding

mutations in RNA splicing factors(Figure 5.3). I sought to identify an orthogonal analysis sup-

porting the RNA splicing module of non-coding mutants. The splicing module consisted of 17

PID-N genes belonging to splicing-related pathways (pathway oncoprint plot), including several

heterogeneous nuclear ribonucleoproteins (hnNRP) and serine and arginine rich splicing factors

(SRSFs). None of these PID-N genes were significantly mutated according to single-element

tests of the PCAWG driver discovery analysis. I did not find any significant (FDR < 0.1) in
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Figure 5.1: Overview of the pathway and network analysis approach. Coding, non-coding,
and combined gene scores were derived for each gene by aggregating driver p-values from the
PCAWG driver predictions in individual elements, including annotated coding and non-coding
elements (promoter, 5 UTR, 3 UTR, and enhancer). These gene scores were input to five net-
work analysis algorithms (CanIsoNet [Kahraman et al., in preparation], Hierarchical HotNet,
an induced subnetwork analysis [Reyna and Raphael, in preparation], NBDI, and SSA-ME),
which utilize multiple protein-protein interaction networks, and to two pathway analysis algo-
rithms (ActivePathways [Paczkowska, Barenboim et al., in submission] and a hypergeometric
analysis [Vazquez]), which utilize multiple pathway/gene-set databases. We defined a non-
coding value-added (NCVA) procedure to determine genes whose non-coding scores contribute
significantly to the results of the combined coding and non-coding analysis, where NCVA re-
sults for a method augment its results on non-coding data. We defined a consensus procedure
to combine significant pathways and networks identified by these seven algorithms. The 87
pathway-implicated driver genes with coding variants (PID-C) are the set of genes reported by
a majority ( 4/7) of methods on coding data. The 93 pathway-implicated driver genes with non-
coding variants (PID-N) are the set of genes reported by a majority of methods on non-coding
data or in their NCVA results. Only 5 genes (CTNNB1, DDX3X, SF3B1, TGFBR2, TP53) are
both PID-C and PID-N genes.
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Figure 5.2: Overlap of consensus results for pathway and network methods. (A) PID-C and
PID-N genes have negligible overlap. Only 5 genes (CTNNB1, DDX3X, SF3B1, TGFBR2,
TP53 are both PID-C and PID-N genes. (B) Overlap of all consensus results. Four-circle Venn
diagram for the overlap of the consensus results on coding data, i.e., PID-C genes; consensus
pathway/network results on non-coding data; consensus pathway/network results on coding and
non-coding data; and the union of the consensus results on non-coding data and the non-coding
value-added (NCVA) results, i.e., PID-N genes.
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Figure 5.3: Pathway and network modules containing PID-C and PID-N genes. (A) Net-
work of functional interactions between PID-C and PID-N genes. Nodes represent PID-C
and PID-N genes and edges show functional interactions from the ReactomeFI network (grey),
physical protein-protein interactions from the BioGRID network (blue), or interactions recorded
in both networks (purple). Node color indicates PID-C genes (green), PID-N genes (yellow),
or both PID-C and PID-N genes (orange);node size is proportional to the score of the cor-
responding gene; and the pie chart diagram in each node represents the relative proportions
of coding and non-coding cancer mutations associated with the corresponding gene. Dotted
outlines indicate clusters of genes with roles in chromatin organization and cell proliferation,
which predominantly contain PID-C genes; development, which includes comparable amounts
of PID-C and PID-N genes; and RNA splicing, which contains PID-N genes. A core cluster of
genes with many known drivers are also indicated. (B) Pathway modules containing PID-C and
PID-N genes. Each row in the matrix corresponds to a PID-C or PID-N gene, and each column
in the matrix corresponds to a pathway module enriched in PID-C and/or PID-N genes (see
Methods). A filled entry indicates a gene (row) that belongs to one or more pathways (column)
colored according to gene membership in PID-C genes (green), PID-N genes (yellow), or both
PID-C and PID-N genes (orange). A darkly colored entry indicates that a PID-C or PID-N gene
belongs to a pathway that is significantly enriched for PID-C or PID-N genes, respectively. A
lightly colored entry indicates that a PID-C or PID-N gene belongs to a pathway that is signif-
icantly enriched for the union of PID-C and PID-N genes but not for PID-C or PID-N genes
separately. Enrichments are summarized by circles adjacent each pathway module name and
PID gene name. Boxed circles indicate that a pathway module contains a pathway that is signif-
icantly more enriched for the union of the PID-C and PID-N genes than the PID-C and PID-N
results separately. The enriched modules and PID genes are clustered into four biological pro-
cesses: chromatin, development, proliferation, and RNA splicing as indicated, with differing
contributions of PID-C and PID-N genes.
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cis associations between non-coding mutations and altered expression of these genes. Thus,

I explored potential in trans effects on pathway expression changes. I found that non-coding

mutations in splicing-related PID-N genes largely recapitulate a recently published association

by TCGA[1] between coding mutations in several splicing factors and differential expression

of 47 pathways (Figure 5.5). Three clusters of mutations were identified using hierarchical

clustering based on patterns of differential expression (C1, C2, and C3;Figure 5.5). The clus-

ters were found to be robust to the choice of clustering approach as a highly overlapping set

of clusters was produced by t-distributed stochastic neighbor embedding (top annotation bar in

Figure 5.5). Further support for robustness of clusters was found via silhouette scores and boot-

strapping (silhoutte plot). Each of these clusters contained at least one coding mutation in the

splicing genes SF3B1, FUBP1, and RBM10 as reported in [1], with non-coding mutations in

splicing-related PID-N genes showing similar gene expression signatures. The joint analysis of

coding and non-coding mutations in splicing factors also recovered the two groups of enriched

pathways (P1 and P2 in Figure 5A) reported in [1]. One group (P1) is characterized by immune

cell signatures and the other group (P2) reflects mostly cell-autonomous gene signatures of cell

cycle, DDR, and essential cellular machineries[1]. The similarity between the gene expression

signatures for non-coding mutations in several PID-N splicing factors and coding mutations in

splicing factor genes[1] supports a functional role for splicing-related PID-N genes in altering

similar gene expression programs.

This splicing analysis and the other analysis by [59] demonstrates that somatic non-

coding mutations in untranslated and cis-regulatory regions constitute a complementary set of

genetic perturbations with respect to coding mutations, affect several biological pathways and
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A

B

Figure 5.4: RNA splicing factors are targeted primarily by non-coding mutations and al-
ter expression of similar pathways as coding mutations in splicing factors. (A) Heatmap
of Gene Set Enrichment Analysis (GSEA) Normalized Enrichment Scores (NES). The
columns of the matrix indicate non-coding mutations in splicing-related PID-N genes and cod-
ing mutations in splicing genes reported in [1] and the rows of the matrix indicate 47 curated
gene sets[1]. Red heatmap entries represent an upregulation of the pathway in the mutant sam-
ples with respect to the non-mutant samples and blue heatmap entries represent a downregula-
tion. The first column annotation indicates mutation cluster membership according to common
pathway regulation. The second column annotation indicates whether a mutation is a non-
coding mutation in a PID-N gene or a coding mutation[1], with the third column annotation
specifies the aberration type (promoter, 5 UTR, 3 UTR, missense, or truncating). The fourth
column annotation indicates the cancer type for coding mutations from [1]. The mutations clus-
ter into 3 groups: C1, C2, and C3. The pathways cluster into two groups[1]: P1 and P2, where
P1 contains an immune signature gene sets and P2 contains cell autonomous gene sets as re-
ported in [1]. (B) tSNE plot of mutated elements illustrates clustering of gene expression
signatures for samples with non-coding mutations in splicing-related PID-N genes with
gene expression signatures for coding mutations in previously published splicing factors.
The shape of each point denotes the mutation cluster assignment (C1, C2, or C3), and the color
represents whether the corresponding gene is a PID-N gene with non-coding mutations or a
splicing factor gene with coding mutations[1].48
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Figure 5.5: Cluster stability analysis. (A) Silhouette scores of pathway clusters 1 and 2.
Silhouette width is on the x-axis, and the 47 pathways across y-axis. Average silhouette score
per cluster is shown to the right of the bar plots. (B) Silhouette scoring of the 3 mutation element
clusters. (C, D) Histograms representing the results of a cluster bootstrapping analysis using
the Jaccard similarity coefficient to identify how often pathways (C) or mutation elements (D)
clustered together in each bootstrap.
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molecular interaction networks, and should be further investigated for their role in the onset and

progression of cancer.

5.3 Unsupervised Classification of Non-coding Telomere Regions

One of the hallmarks of cancer is its ability to evade the normal cellular mechanisms

of senescence[60]. Normal somatic cells typically have finite cell division potential, with telom-

ere attrition one mechanism to limit numbers of mitoses[33]. Cancers enlist multifarious strate-

gies to achieve replicative immortality. Over-expression of the telomerase gene, TERT, which

maintains telomere lengths, is especially prevalent. This can be achieved via point mutations in

the promoter that lead to de novo transcription factor binding[52, 53]; hitching TERT to highly

active regulatory elements elsewhere in the genome[61]; insertions of viral enhancers upstream

of the gene[62]; and increased dosage through chromosomal amplification. In addition, there

is an alternative lengthening of telomeres (ALT) pathway, in which telomeres are lengthened

through homologous recombination, mediated by loss-of-function mutations in the ATRX and

DAXX genes[35].

Overall, 16% of tumours in the PCAWG dataset exhibited somatic mutations in ATRX,

DAXX and/or TERT with a number of altered genes correlating with individual telomeric fea-

tures such as TP53, ATRX, PLCB2, MEN1, TSSC4, RB1, and DAXX. TERT alterations were

detected in 270 samples, whereas 128 tumours had somatic mutations in ATRX or DAXX, of

which 71 were protein-truncating.

Whole genome sequencing includes reads of DNA from the telomeres, which can be
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recognised by the preponderance of the characteristic hexameric repeat, TTAGGG. In work de-

scribed elsewhere in Sieverling, et al, 12 features of telomeric sequence were measured on the

PCAWG cohort, including counts of nine variants of the core hexameric sequence, the num-

ber of ectopic telomere-like insertions within the genome, the number of genomic breakpoints,

and the telomere length as a ratio between tumour and normal. I clustered the PCAWG sam-

ples based on their telomere sequence-associated features, normal and tumour samples formed

distinct, non-overlapping clusters (Figure 5.6), suggesting that the biology of telomere mainte-

nance is nearly universally altered in cancer.

Unexpectedly, I noticed the tumour samples formed four distinct sub-clusters (Figure

5.7A), suggesting a more diverse array of telomere maintenance mechanisms than the usual

TERT/ALT dichotomy. Clusters C1 (47 tumours) and C2 (42 tumours) were enriched for

traits of the ALT pathway, having longer telomeres, more genomic breakpoints, more ectopic

telomere insertions, and variant telomere sequence motifs (Figure 5.8). C1 and C2 were dis-

tinguished from one another by the latter having striking elevation in the number of TTCGGG

and TGAGGG variant motifs among the telomeric hexamers. Samples in clusters C3 (33 tu-

mours) and C4 (2396 tumours) had relatively short telomere lengths, fewer genomic break-

points and more normal frequencies of variant hexamers. Interestingly, samples in C2 and C3

only infrequently underwent whole genome duplication, as opposed to those in C1 and C4

(p < 6.985x10− 6). Thyroid adenocarcinomas were strikingly enriched among C3 samples

(26/33 C3 samples; p < 2.2x10− 16); the C1 cluster (ALT subtype 1) was common among

sarcomas; and both pancreatic endocrine neoplasms and low-grade gliomas had a high propor-

tion of samples in the C2 cluster (ALT subtype 2) (Figure 5.7B). Interestingly, some of the
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Figure 5.6: Differences between normal and cancer-associated telomere properties. Scatter
plot showing the four clusters of telomere patterns identified across PCAWG cancers, together
with the more homogeneous cluster of matched normal samples, generated by t-Distributed
Stochastic Neighbour Embedding.

52



thyroid adenocarcinomas and pancreatic neuroendocrine tumours that cluster together (Cluster

C3; (Figure 5.7) have matched normals that also cluster together (Normal cluster N3, Figure

5.6). This suggests that a subtype of these tumor types share telomeric maintenance proper-

ties: for example, the GTAGGG repeat is overrepresented among samples in this group (Ex-

tended Data Figure 19). Somatic driver mutations were also unevenly distributed across the

four clusters (Figure 5.7C). C1 tumours were enriched for RB1 mutations or structural vari-

ants (p=3.1x10-5), as well as frequent structural variants affecting ATRX (p=6x10-14), but not

DAXX. The RB1 and ATRX mutations were, by and large, mutually exclusive (Extended Data

Figure 20A). In contrast, C2 tumours were enriched for somatic point mutations in ATRX and

DAXX (p < 6.4x10−5), but not RB1. The enrichment of RB1 mutations in C1 remained sig-

nificant when only leiomyosarcomas and osteosarcomas were considered, confirming that this

enrichment is not merely a consequence of the different distribution of tumour types across

clusters. C3 samples had frequent TERT promoter mutations (30%; p=2.3x10-6). Patterns of

RB1, ATRX, DAXX and TERT expression confirmed the associations revealed in the mutation

analysis (Figure 5.10B).

The predominance of RB1 mutations in C1 was striking. Nearly a third of the sam-

ples in C1 contained an RB1 alteration, evenly distributed across truncating SNVs, SVs and

shallow deletions, with a mix of clonal and subclonal events (Figure 5.11). Interestingly, pre-

vious work has shown that RB1 mutations are associated with long telomeres in the absence

of TERT mutations and ATRX inactivation[40], and mouse models have revealed that knock-

out of Rb-family proteins causes elongated telomeres[41]. The association with the C1 cluster

here suggests that RB1 mutations can represent another route to activating the ALT pathway.
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Figure 5.7: Telomere sequence patterns across PCAWG. (A) Scatter-plot showing the four
clusters of telomere patterns identified across PCAWG by t-Distributed Stochastic Neighbour
Embedding (tSNE). (B) Distribution of the four clusters of telomere patterns in selected tumour
types from PCAWG. (C) Distribution of relevant driver mutations associated with alternative
lengthening of telomere and normal telomere maintenance across the four clusters. (D) Distri-
bution of telomere maintenance abnormalities across tumour types with more than 40 patients
in PCAWG. Samples classified as tumour cluster 1-3 if they fall into a relevant cluster without
mutations in TERT, ATRX or DAXX and have no ALT phenotype.
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Figure 5.8: Properties of telomeres across different tumor clusters. (A) Distribution of
telomere sequence and properties across samples in the four clusters, with both tumour (blue
points) and matched normal (red points) shown. (B) Enrichment (positive T statistics) or deple-
tion (negative T statistics) of different variant sequence motifs in the four clusters of telomere
properties. (C) Variance of frequency of different sequence motifs across the four clusters.
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Figure 5.9: Properties of telomeres across different normal clusters. Properties of telomeres
across different normal clusters. Enrichment (positive T statistics) or depletion (negative T
statistics) of different variant sequence motifs in the four normal clusters of telomere properties.
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Figure 5.10: Co-mutation and expression levels of genes related to telomere maintenance
across the four clusters of telomere properties. (A) Patterns of co-mutation of the rele-
vant driver mutations across individual patients. Columns in plot represent individual patients,
coloured by type of abnormality observed. (B) Box and whisker plots of expression levels of
key telomere maintenance genes across the four clusters of telomere properties. The boxes
demarcate the interquartile range, with a horizontal line to mark the median.
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This route gives subtly different properties of telomeric sequence compared to tumours with

ALT through inactivated DAXX, which fall almost exclusively in cluster C2. The finding of a

distinct cluster of telomeric features, C3, so strongly associated with thyroid adenocarcinomas

remains unexplained.
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Figure 5.11: Timing of mutation in genes related to telomere maintenance. Clonal [early]
denotes clonal mutations occurring before duplications involving the relevant chromosome (in-
cluding whole genome duplications); clonal [late] to clonal mutations occurring after such du-
plications; and clonal [NA] to mutations occurring when no duplication was observed.
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Chapter 6

Future Directions and Conclusion

6.1 Future Directions

Despite the efforts of TCGA and ICGC, there is still a lack of data for the majority

of tumor types, including rare adult and pediatric tumors. For example, in the TCGA data,

BRCA-type cancers have over 1,000 samples while UVM-type cancers have only about 80

samples. This is just one example of the many underrepresented tumor types among the TCGA

and ICGC data.[63]. Of course, BRCA is a relatively common cancer mutation so there is

an abundance of individuals to pull samples from, but there remains an immediate need for

a greater variety of sample data to better understand and improve cancer treatments. LURE

requires a minimum of 3-4 samples with a specific unclassified mutation in order to associate

an event with a known driver, so tumor types with a lower number of samples are incompatible

with LURE. In addition, it is difficult to draw statistical power with such a small number of

samples. The PCAWG analysis put forth great effort to find driver mutations in the non-coding
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regions of the genome, but they only sequenced approximately 2,500 tumor samples and about

half of these samples were not analyzed for gene expression data. Some specific tumor types had

fewer than 10 samples. As I learned from the fusion detection method challenge, sequencing

coverage was vital in accurate fusion detection. Thus, in addition to more sample types, we

need samples with higher coverage to accurately make confident mutation calls.

Improving cancer detection technologies is an important goal of cancer genomics re-

search, as early detection of cancer improves patient response to treatment and overall prognosis[64].

One particular method of early detection involves analyzing cell free DNA (cfDNA) in blood

plasma for specific biomarkers to reveal the existence of a tumor in the body. cfDNA contains

both tumor-derived DNA, or ”circulating tumor DNA” (ctDNA), and DNA derived from non-

tumor cells such as hematopoietic and stromal cells[65]. ctDNA shares unique characteristics

of tumor DNA, such as cancer-associated mutations, translocations, and/or large CNVs not typ-

ically found in the cfDNA of healthy patients[66]. In patients with cancer, ctDNA generally

represents a small fraction of the cfDNA, ranging from 5-10% in late-stage disease to 0.01-

1.0% in early-stage disease. This value is even lower in premalignant conditions, so methods

that consider both ctDNA and total cfDNA could be very beneficial[67]. The goal of an early

cancer detection method would be to identify the existence of a tumor as well as the tumor’s

subtype. Recently, a method was published that uses machine learning to predict the existence

of colon cancer among 546 patients and 271 non-cancer control subjects using a supervised ma-

chine learning[65]. The cancer patients were divided equally by gender and consisted of 80&

early-stage (stages I and II) patients[65]. The cfDNA of the 817 total subjects was sequenced

using whole genome sequencing and their machine learning method was able to correctly di-
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agnosis the cancer patients with a mean ROC AUC of 0.92[65]. To date, this was the largest

study using only cfDNA whole genome sequencing in patients for the early detection of colon

cancer. While the group was successfully able to build a classification model to determine the

existence of a tumor, an analysis of feature importance was absent. Such feature importance

analysis could possibly reveal novel biomarkers, which would limit the amount of sequencing

necessary to make a prediction and allow hospitals to perform early tumor detection without

invasive procedures.

6.2 Conclusion

It is widely accepted that tumorigenesis is a multistep process that depends on the

sequential accumulation of mutations within cells[68]. Although tumor cells often exhibit

a large number of mutations[69][70], only a relatively small subset is crucial for neoplastic

development[70][71][72]. In this thesis, I presented multiple methods and the necessary data to

categorize and prioritize mutations as potential drivers for tumorigenesis using both supervised

and unsupervised machine learning. In chapter one, I showed that low sequencing coverage

is the most important feature that causes fusion detection methods to fail in identifying fusion

breakpoints. By increasing sequencing coverage, we can identify more fusions and potentially

identify more cancer drivers in samples that have no known drivers. In chapter two, I presented

a new method called LURE, which associates different alterations based on mRNA expression

signatures using supervised machine learning. I identified associations between alterations in

the same gene, the same gene family, and within the same pathway. Using LURE I also found
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new associations in Sarcomas, linking ATRX mutations with two new possible drivers of the

ALT TMM, RB1 and SP100. In order to provide an orthogonal analysis supporting these re-

sults, I present unsupervised clustering of TMM features in Chapter three. This revealed a sub-

group of samples harboring mutations in RB1 and showing characteristics of ALT. In addition,

I presented results from a network and pathway analysis showing how non-coding mutations

in splicing factors can affect tumors in the same manner as a coding mutation in the splicing

factor. In this thesis, I presented just a glimpse of the on-going research in the field of cancer

genomics. I hope to inspire new ideas and spur greater interest in the field of genomics with the

intention of overcoming the extremely convoluted problems associated with cancer.
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