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ABSTRACT

Cell-specific patterns of gene expression are de-
termined by combinatorial actions of sequence-
specific transcription factors at cis-regulatory ele-
ments. Studies indicate that relatively simple com-
binations of lineage-determining transcription fac-
tors (LDTFs) play dominant roles in the selection
of enhancers that establish cell identities and func-
tions. LDTFs require collaborative interactions with
additional transcription factors to mediate enhancer
function, but the identities of these factors are of-
ten unknown. We have shown that natural genetic
variation between individuals has great utility for dis-
covering collaborative transcription factors. Here, we
introduce MMARGE (Motif Mutation Analysis of Reg-
ulatory Genomic Elements), the first publicly avail-
able suite of software tools that integrates genome-
wide genetic variation with epigenetic data to iden-
tify collaborative transcription factor pairs. MMARGE
is optimized to work with chromatin accessibility
assays (such as ATAC-seq or DNase I hypersensi-
tivity), as well as transcription factor binding data
collected by ChIP-seq. Herein, we provide investi-
gators with rationale for each step in the MMARGE
pipeline and key differences for analysis of datasets
with different experimental designs. We demon-
strate the utility of MMARGE using mouse peritoneal
macrophages, liver cells, and human lymphoblastoid
cells. MMARGE provides a powerful tool to identify
combinations of cell type-specific transcription fac-
tors while simultaneously interpreting functional ef-
fects of non-coding genetic variation.

INTRODUCTION

Molecular mechanisms enabling cell-specific transcrip-
tional responses to intra- and extra-cellular signals remain

poorly understood. Genome-wide studies of most lineage-
determining (LDTF) and signal-dependent transcription
factors (SDTF) indicate that the vast majority of their bind-
ing sites are in distal intra- and intergenic locations that
frequently exhibit epigenomic features associated with en-
hancers (1–6) and are evolutionary well conserved (7–9).
The complement of active cis-regulatory elements bound by
LDTFs changes across cell types, whereas promoters stay
the same. Therefore, these findings introduced the notion
that enhancers are largely responsible for cell type-specific
gene expression (10–12). The ENCODE consortium anno-
tated epigenetic features associated with enhancers in sev-
eral different cell lines, primary cells and tissues providing
evidence for hundreds of thousands of such elements in the
human genome (13), greatly exceeding the number of pro-
moters.

Previous studies of macrophages and B cells provided the
basis for a collaborative and hierarchical model (14–16). In
this model, collaborative binding of two or more LDTFs
opens up chromatin to establish enhancers (1), enabling cell-
specific actions of broadly expressed SDTFs (17) (reviewed
in (18)). The collaborative nature of LDTFs was further
demonstrated by analysis of effects of genetic variation in
macrophages provided by two inbred strains of mice (19).

Genome-wide association studies, or GWAS (20) have
shown that most complex trait-associated genetic variation
is located in non-gene/protein regions of the genome. Such
non-coding variants have the potential to change conserved
sequences recognized by LDTFs and thereby alter enhancer
landscapes between different alleles. These differences could
manifest between individuals (i.e., between individuals that
are each homozygous for opposite alleles), or within an in-
dividual that is heterozygous for a functional enhancer vari-
ant. A straightforward mechanism by which enhancer func-
tion would be altered by genetic variation is where alleles
alter the affinity of transcription factors to bind their mo-
tifs. Consistent with the enhancer model whereby transcrip-
tion factors collaborate with each other to bind DNA mo-
tifs, reports have found that allelic variation that mutates
DNA binding motifs reduces binding of the respective fac-
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tor while at the same time reducing binding of collaborat-
ing factors within 100 base pairs (19,21,22). Since the DNA
binding motif of the partner factor is not mutated, these ex-
amples demonstrate a coordinated action of transcription
factors in accessing DNA. The implication for cell-specific
gene regulation is that genetic variants altering collabora-
tive factor binding at enhancers will only be functional in
the appropriate cell type where the correct combinations of
transcription factors are expressed. The practical implica-
tion of these observations is that the particular combina-
tions of factors may be discovered with the general strategy
in any cell type. In addition to the discovery of transcrip-
tion factors, this method identifies the precise genomic loci
where genetic variation has a functional role in factor bind-
ing that may influence higher order biological processes.

To facilitate discovery of novel collaborating transcrip-
tion factors using the genetic variation approach, we devel-
oped MMARGE (Motif Mutation Analysis for Regulatory
Genomic Elements). MMARGE is a suite of software tools
to analyze ChIP-seq, ATAC-seq, DNase I Hypersensitiv-
ity or other next generation sequencing (NGS) assays where
genotyping or DNA sequence data is available.

MMARGE requires two data types: (i) genetic varia-
tion, and (ii) high-throughput sequencing data (ChIP-seq,
ATAC-seq, DNaseI-seq). It then integrates these data and
provides visualization tools to interpret the results. Impor-
tantly, MMARGE was built to test for functional effects of
alternate alleles at single nucleotide polymorphisms (SNPs)
as well as short insertion-deletions (InDels). It performs tra-
ditional de-novo motif analysis on genomic sequence for
each polymorphic allele to identify DNA binding motifs
that potentially affect transcription factor binding based on
sequence analysis alone. The next step is to test whether the
set of potential variants that mutate a single DNA bind-
ing motif are enriched in a set of loci where differential
binding/accessibility is observed. For this step, MMARGE
associates quantitative measures of binding or accessibility
from the ChIP/ATAC/DNaseI-seq data with the list of po-
tential mutations in motifs. It analyzes differences in two
genotypes by comparing the transcription factor binding
distribution in relation to motif mutations between both
genotypes, and also takes advantages of a Linear Mixed
Model (LMM) (23,24) to compare many different individ-
uals at the same time

In this report, we apply MMARGE and demonstrate
its ability to reliably identify known key regulators of
macrophage lineage. We further apply MMARGE to three
different ChIP-seq datasets from mouse liver cells and also
show that MMARGE can identify important B cell factors
in a human PU.1 ChIP-seq dataset from lymphoblastoid
cell lines (25). In conclusion, MMARGE is the first pub-
licly available tool that is created to identify combinations
of collaborating transcription factors. This approach is ag-
nostic to cell type and can be applied to any dataset where
genotypes and epigenetic signatures are measured.

MMARGE is based on the ChIP-seq analysis tool
HOMER (1) (http://homer.ucsd.edu/homer/) and it is an
extension to the software used in (19,21). Furthermore,
MMARGE was used to analyze ChIP-seq and ATAC-
seq data from five different strains of mice in (26). The
source code and installation package are freely available
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Figure 1. Overview of the MMARGE pipeline. (A) MMARGE merges
VCF files for SNPs and InDels, offers some basic filtering and split the
merged VCF file into separate genotype-specific mutation files. (B) It then
generates individual genomes by inserting the annotated mutations in the
reference genome per genotype and (C) allows mapping of the experi-
mental data sets to the individualized genomes. (D) The data mapped to
the individualized genomes is then shifted back to the reference coordi-
nates. (E) In case of heterozygous data additional processing is necessary.
MMARGE offers (F) scripts for data visualization including BED files for
genetic variation per genotype. It further offers (G) de-novo motif analysis
for the individual genomes to make sure the enrichment analysis is per-
formed on the correct sequence instead of the reference. MMARGE also
offers a new algorithm (H) to associated TF binding motifs with genotype-
specific binding for pairwise comparisons, as well as comparisons for many
different individuals (all-versus-all comparison). Taken all of that together
MMARGE is able to identify TF binding motifs that are functionally as-
sociated with TF binding.

on GitHub (https://github.com/vlink/marge/blob/master/
MMARGE v1.0.tar.gz) or Zenodo (10.5281/zenodo.12452
09).

MATERIALS AND METHODS

Overview

A schematic outlining the major steps of MMARGE is
shown in Figure 1. First, MMARGE offers a complete
pipeline to process VCF (Variant Call Format) files (27) and
generate individualized diploid genomes by extrapolating
genetic variants from VCF files and swapping in alternate
alleles into a reference genome (Figure 1A and B). Impor-
tantly, MMARGE is able to analyze sequencing data from
homozygous (e.g., inbred mouse strains) and heterozygous
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(e.g. human) genomes and includes analysis for Single Nu-
cleotide Polymorphisms (SNPs) as well as short Insertion-
Deletions (InDels). Because MMARGE generates genomes
for each individual in the VCF file, the investigator can map
their sequencing data to the genome with all genetic varia-
tions by using user-defined mapping software (e.g. bowtie2
(28) or STAR (29)) (Figure 1C). MMARGE shifts posi-
tions of individual sequence to their corresponding refer-
ence coordinates for motif analysis and visualization (Fig-
ure 1D–G). It offers de-novo motif analysis for individual-
ized genomes (Figure 1G), as well as a new algorithm to
identify transcription factor binding motifs associated with
allele-specific transcription factor binding or open chro-
matin (Figure 1H). Each step of the MMARGE pipeline
is discussed below.

Merge, filter and pre-process VCF files

The initial step of the MMARGE pipeline is to generate a
set of high-confidence sequence differences between the al-
leles of interest (Figure 1A). MMARGE allows some basic
filtering of VCF files by quality scores, however VCFtools
(27) provides more sophisticated tools for this purpose. For
some sequencing projects like the mouse genome project
(30), SNPs and InDels are annotated in separate files,
whereas other projects like the 1000 Genome project (31)
provides one large file with SNPs and InDels. When SNPs
and InDels are provided separately, MMARGE merges
them as a first step. If a combined file is provided then the
first processing step is skipped. In cases where SNPs over-
lap deletions or insertions within one genomic background
the SNP is filtered out and the longer mutation is kept.
MMARGE also simplifies the annotation of the variants
per genotype (Figure 2A). In cases where more than one
possible mutation occurs in a particular genomic location
(e.g. two different genotypes have two different mutations
in comparison to the reference genome), the mutation is not
always annotated as the shortest mutation per genotype. As
shown in Figure 2A the genetic variant for genotype2 is an-
notated as GTT → GTTGTT. MMARGE processes each
genotype separately and therefore calculates the shortest ge-
netic variation for each genotype (in this case T → TGTT).

Generating individualized genomes

MMARGE produces individualized genomes by inserting
the alleles from the VCF file into the reference genome and
generating fasta files, which then can be used to make in-
dices for mapping software. For homozygous data, only one
genomic sequence is generated. Generation of individual-
ized genomes and interpretation of allele-specific mapping
for heterozygous data requires an additional step. Specif-
ically, alleles at heterozygous sites need to be assigned on
the same chromosome as neighboring heterozygous alleles.
In genetics, this is called knowing the phase of the geno-
types. Phase is especially important for MMARGE when
variants are in close proximity, because most sequencing
reads are between 50 and 200 bp in length. When mul-
tiple SNPs reside in the same read, the correct combina-
tion of alleles in the genomic index is essential for accurate
mapping and downstream interpretation. MMARGE in-
herently assumes that all heterozygous data is phased. There

are good resources for phasing genotypes in human popu-
lations. For example, phasing can be achieved using BEA-
GLE (32) or SHAPEIT (33) in conjunction with known
haplotype structure of large reference populations such as
the 1000 Genomes Project. In cases were phasing is not eas-
ily possible (e.g. F2 generation of inbred mice) loci where
mutations overlap within the read length should be excluded
from the analysis.

Mapping data to individualized genomes

Mapping of sequencing experiments to the individualized
genome provides better results and decreases the possibility
of incorrect mapping due to technical bias (Figure 1C) (34–
37). This is especially true in datasets with a large number
of differences to the reference. In these cases, mapping to
the reference can introduce bias and in the case of datasets
containing heterozygous genotypes can lead to overestima-
tion of allele-specific expression or binding (36–38). To as-
sess the effect of individualized genomes on mapping, we
used a ChIP-seq dataset from inbred strains of mice. This
provided a simplified situation since their genomes are en-
tirely homozygous and all sequence reads originated from
a genome of known sequence. Specifically, we used a PU.1
ChIP-seq dataset from three strains of mice (C57BL/6J,
NOD/ShiLtJ, and SPRET/EiJ) (21). C57BL/6J (C57)
is the commonly used reference genome and differs to
NOD/ShiLtJ (NOD) in about 5 million genetic variants
(89% SNPs, 11% InDels), whereas SPRET/EiJ (SPRET)
provides about 43 million variants (89% SNPs, 11% InDels).
Mapping of the ChIP-seq data to their respective genomes
affected the overall mappability of the reads (Figure 2B)
and the percentage of uniquely mapped reads (Figure 2C).
The difference in mapping is directly correlated to the num-
ber of differences between the genomes. After removing all
reads that map to multiple locations, peaks were called on
all datasets separately and compared. Peaks from the C57
ChIP-Seq mapped to C57 and NOD genomes show only
small differences (Figure 2D) (about 1% of peaks are unique
to either genotype), but increasing the number of variation
between the genotypes lead to many peaks uniquely called
in one of the mapped datasets (up to 12%). Also when com-
paring a PU.1 ChIP-seq dataset in human lymphoblastoid
cell lines (25) mapped to the reference versus the individual
genomes only ∼90% of reads where mapped to the same
loci (Supplementary Figure S1A). The number of differ-
ences between the hg19 reference genome and the individu-
alized genomes is smaller than for the mouse data, but still
up to 4% of peaks were uniquely called on either the dataset
mapped to the reference or the individual genome (Supple-
mentary Figure S1B). Therefore, mapping the data to the
correct individualized genome increases the mapping accu-
racy substantially, leading to a more precise downstream
analysis.

Additional processing for heterozygous data

Many studies in mice use hybrid mouse strains (F1) generat-
ing heterozygous mice from two homozygous parents (Fig-
ure 1D). Furthermore, all human genomes are heterozy-
gous in many loci and due to the advantages in sequencing
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technology, have become more realistic to study genome-
wide. To improve mapping for heterozygous data, statistical
methods have been developed (e.g. WASP (39), AlleleSeq
(40)). Unfortunately, all of these methods have some down-
sides. WASP can only handle SNPs, whereas AlleleSeq is
able to integrate all kinds of variation, but only reports het-
erozygous sites with allele-specific binding after processing.
For MMARGE to correctly calculate the association of a
motif with binding, however, information about homozy-
gous, as well as not allele-specific bound heterozygous sites
is required. In order to analyze heterozygous data with In-
Dels and run MMARGE’s downstream analysis, we map
our data to two reference genomes corresponding to alter-
native parental alleles. To effectively analyze heterozygous
data, allele-specific expression or binding needs to be calcu-
lated. For this step, MMARGE filters all reads with perfect
alignment followed by filtering of all reads spanning a vari-
ant between the two parental strains (Figure 2E). If the het-
erozygous data is not phased, all regions that contain more
than one mutation within the length of one read should
be excluded from the analysis. This procedure makes sure
that it is possible to confidently identify the allele of origin.
To assign allele-specific reads correctly, all loci without any
variation are annotated with half of the perfectly aligned
reads, because half of the reads that are sequenced originate
from allele 1 and the other half from allele 2. For loci with
allele-specific sequences, the ratio of reads per allele is calcu-
lated based on the reads spanning variations. Then the loci
are annotated with the corresponding ratio of all perfectly
aligned reads mapped to this locus. MMARGE does not use
a statistical method to assign allele-specific reads. AlleleSeq
uses a sophisticated model for this. It is therefore possible to
map the data with AlleleSeq and get all allele-specific het-
erozygous variants. From this data, the user can generate a
HOMER peak file, which contains all allele-specific as well
as non allele-specific bound heterozygous sites, as well as
all homozygous sites. It is important to keep in mind that
AlleleSeq uses a statistical model and some allele-specific
binding sites might not reach significance. This might influ-
ence the MMARGE results. Furthermore, it is important to
make sure that the genome used for AlleleSeq corresponds
exactly with the MMARGE shifting vectors to get accurate
results.

Shifting to reference coordinates

A major challenge of mapping data to individual genomes is
that the experiments cannot be easily compared because of
insertions and deletions (Figure 1E). For example, the chro-
mosomal locations between individuals (and across homol-
ogous chromosomes within heterozygous individuals) do
not correspond to each other anymore. Therefore, to be able
to use external analysis software and to visualize the data in
the UCSC genome browser (41), we designed MMARGE
to shift mapped data back to reference coordinates (Fig-
ure 2F). To accomplish this, MMARGE generates shifting
vectors for each genome (or haploid genome in the case of
human/heterozygous data). Motifs can overlap insertions
(M2) and deletions (M1) in the reference genome (Figure
2F). The M2 motif consists of 6 bases, but after shifting
the length shrank to 3 bases due to the deletion. Therefore,

positional shifting has the potential to introduce problems.
For example, InDels can cause potential TF binding motifs
to disappear or appear, which is of interest because these
cases likely have functional consequence. Another compli-
cation of shifting coordinates occurs in the identification of
ChIP-seq peaks from variable chromosomal sequences (i.e.
shifting can cause a loss of peaks). This is because ChIP-
seq peak calling tools often require a minimum length in
order to identify peaks and this might not be reached af-
ter shifting. To check how frequently a peak was lost, each
PU.1 ChIP-Seq dataset performed in human lymphoblas-
toid cell lines (25) was mapped to its individual genome and
peaks were called with HOMER both before and after shift-
ing (MMARGE documentation for more details). There are
up to 2 million genetic differences between the reference
genome (hg19) and the allele-specific genomes per individ-
uals, but only up to 11 peaks are lost after shifting (which
corresponds to <0.1% of all peaks) (Figure 2G, Supplemen-
tary Table S1). Also when repeating this procedure for di-
verse mouse strains (with >40 million genetic differences)
only ∼0.8% of all peaks were lost (Supplementary Table
S2). These peaks show weaker binding than the peaks that
are present before and after shifting according to the ChIP-
seq signal (Supplementary Figure S1C). Therefore, despite
an opportunity for difference to emerge in peak calling, we
conclude that this phenomenon is very rare and does not
offset the advantages from more accurate mapping.

Data visualization

Tools like the Integrative Genomics Viewer (IGV) (42,43)
allow visualization of individual genomes, but require the
user to install the software locally, which is not prefer-
able for data sharing. Furthermore, MMARGE is based on
HOMER, which mainly uses the UCSC genome browser
(38) as visualization software. To build on the powerful
tools HOMER already provides, to allow easy sharing of
ChIP-seq, RNA-seq and natural genetic variation data, and
to take advantage of the many additional resources the
UCSC genome browser provides, MMARGE offers some
software to directly visualize the data in the UCSC genome
browser. Although a powerful tool, the browser does not
allow the usage of other genomes than the references. To
account for this, after shifting the genomic coordinates
from the individualized genomes to the reference genome,
MMARGE can generate UCSC genome browser files (e.g.
bedGraphs and bigWig files) that take into account individ-
ual genomic features (Figure 1F). In addition, it can gener-
ate BED (Browser Extensible Data) (44) files with all alter-
nate alleles relative to the reference coordinates for upload
to the genome browser (Figure 2H). We also provide ba-
sic tools to interact with the different individual genomes.
For example, we make it possible to directly compare the
number of polymorphisms between different datasets in a
table format for either all variants (Table 1) or for all pri-
vate variants (those which can only be found in a particular
individual compared to all others) (Table 2). More impor-
tantly however, MMARGE can align nucleotide sequences
from different individuals or chromosome sequences such
as nucleotides or protein sequences. This application inte-
grates RefSeq (45) or common gene name information to
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Table 1. Overview of all natural genetic variation found in all strain-wise
comparisons

Strain comparison #SNPs #InDels

C57BL/6J versus
NOD/ShiLtJ

4 734 324 272 463

C57BL/6J versus
SPRET/EiJ

40 757 582 2 206 269

NOD/ShiLtJ versus
SPRET/EiJ

41 033 145 2 302 767

Table 2. Overview of all private genetic variation found in in this strain
versus all other strains

Private variation per
strain #SNPs #InDels

NOD/ShiLtJ 2 474 126 160 882
SPRET/EiJ 38 490 407 2 101 665

provide alignment for genes of interest, but is also able to
extract the sequence for every genomic location of interest.
This provides a fast and easy way to check for differences
in genes or non-coding regions for different genetic back-
grounds. It also simplifies the design of primers or other
constructs, because differences can be checked by simple
alignments of VCF files. To enable some more user-specific
analysis, MMARGE annotates files containing genomic co-
ordinates with all genetic variants and generates files with
genotype-specific sequences.

De novo motif analysis

One of the first steps in downstream analysis of ChIP-seq
data is motif analysis. The de novo motif analysis software
from HOMER (1) was adapted to allow the integration of
the individual genomes (Figure 1G). We extended the de
novo motif finding algorithm (1) with a function to extract
the sequences of the different genotypes as inputs to make
sure that the motif finding algorithm is applied to the cor-
rect sequences and finds the motifs enriched in the sequence
of the genotype not of the reference. It is possible to use dif-
ferent genotypes for the foreground sequences and the back-
ground sequences when unique peaks in two different geno-
types are compared as foreground and background. These
extensions make MMARGE a powerful tool in comparing
enriched motifs in two different genotypes.

Motif mutation analysis

MMARGE was primarily developed to determine impor-
tance of various nearby transcription factor motifs on the
binding of a given transcription factor (Figure 1H). It
can analyze transcription factor binding profiles for two
genomes in a pairwise fashion, but is also able to analyze the
binding profiles of many different genomes together (Fig-
ure 3). The first case is preferable when two datasets have
many genetic differences (e.g. two diverse mouse strains),
as it may be more cost effective experimentally (pairwise
comparison). For the analysis of human samples, however,
it may be preferable to have more individuals, as the number
of differences between two human genomes is fewer. In this
scenario, a larger sample size may be required to achieve

statistical power (all-versus-all comparison). MMARGE
uses a list of hand-curated motifs from the JASPAR mo-
tif database (46) as default, but also allows user-defined
input. Previous studies (21,35,47) showed that this and
similar strategies allow the identification of transcription
factor binding motifs associated with binding. However,
MMARGE is the first tool available to implement this anal-
ysis. Furthermore, it is the first tool to allow comparison of
more than two individuals.

Pairwise comparison. For the pairwise comparisons, peak
files of both genotype alignments are merged and annotated
with read counts (Figure 3A). To account for differences
between the alleles, the individual genome sequence is ex-
tracted and scanned with the motif-scanning algorithm pro-
vided by HOMER. Each motif is analyzed separately. Peaks
without the motif that is currently scanned for are excluded
from the analysis of this particular motif, but are considered
for other motifs. Therefore, the analysis of every transcrip-
tion factor motif is done on a different number of peaks.
The fold change of the normalized read counts between the
two alleles is calculated. Finally, the distribution of the fold
change is calculated for all peaks, all peaks with a mutation
in the motif of interest in allele1 and all peaks with a muta-
tion in the motif of interest in allele2. To ensure that a mo-
tif is not just considered allele-specific because its log-odds
score was slightly below the arbitrarily defined threshold in
one of the alleles, MMARGE extracts the sequence of the
potential motif from each allele and calculates the log-odds
score based on the provided position weight matrix (PWM).
By default a motif is considered missing when the log-odds
score is smaller or equal to zero, but the user can change this
value to whatever seems suitable. MMARGE also provides
the possibility to define a motif as missing when its log-odds
score in one allele is <n% of the log-odds score in the other
allele. To determine the significance of every motif a Stu-
dent’s t-test is performed between the general fold change
distribution and the fold change distribution of allele1 and
allele2, respectively.

Furthermore, the p-value between the distributions of the
two alleles is calculated. This procedure is repeated for all
transcription factors of interest. All p-values are multiplied
by the number of comparisons to correct for multiple test-
ing.

Allele-specific binding can be observed due to the loss of
the binding site for the collaborative factors or the mea-
sured transcription factor itself. In addition to analyzing
every peak with the motif of interest, MMARGE can an-
alyze only peaks where all loci with differences in the motif
of the measured TF between genotypes are filtered out. A
Student’s t-test is performed on the remaining distributions
and the p-values are multiplied by the number of compar-
isons. MMARGE outputs a motif mutation plot showing
the distribution of mutations in relation to the fold change
for each transcription factor (bottom Figure 3A, Supple-
mentary Figure S2A). It further outputs a density distribu-
tion plot for the fold change distribution of all peaks with
changes in the motif in allele1, allele2 and the background
(Supplementary Figure S2B).
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All-versus-all comparison. In order to perform an all-
versus-all comparison on more than two genotypes, peaks
are called for all genotypes individually (Figure 3B) and
annotated with read counts. In case of heterozygous geno-
types, peaks should be called on alleles separately and also
be annotated with allele-specific reads (Figure 2E). Both al-
leles are then analyzed as if they were independent geno-
types. Therefore, when comparing for example three het-
erozygous genotypes, MMARGE actually analyzes 6 inde-
pendent samples. All sequences of all genotypes are scanned
for the motifs of interest. To model the impact of the mo-
tif on the binding of the measured factor a Linear Mixed
Model (LMM) is used. The binding of the measured factor
is modeled as the fixed effect motif existence or motif score
(defined by the user) with random effects locus and geno-
type (Formula 1) with the lme4 package (48) in R (49).

bindingi = α + β ∗ moti f existencei

+ γlocusi + δgenotypei + εi

or

bindingi = α + β ∗ moti f scorei

+ γlocusi + δgenotypei + εi

with

γlocusi ∼ N
(
0, σ 2

locus

)

δgenotypei ∼ N
(
0, σ 2

genotype

)

εi ∼ N
(
0, σ 2)

To calculate significance for each motif, the drop1 com-
mand is used. It compares a model including motif score
(motif existence, respectively) with a model without motif
score (motif existence, respectively) and reports the Akaike
information criterion (AIC) (50) for the difference. To keep
the run time reasonable, MMARGE implements threading
for this procedure.
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Figure 3. Schematic showing the algorithm for the motif mutation analysis for pairwise comparisons or comparisons of a big group of individuals. (A)
Pairwise comparison: Data is mapped to individual genomes and shifted to reference coordinates. Peaks are called per genotype and are subsequentially
merged and annotated with the tag counts from the tag directories with HOMER. The merged file is iteratively scanned for the TF binding motifs of interest.
For all peaks containing the current TF motif of interest (marked in green) the binding difference between the two genotypes is calculated (fold change).
For each TF the fold change distribution of all peaks is plotted (more information Supplementary Figure S2A) and a Student’s t-test is performed on the
fold change distribution of all peaks versus all peaks containing a mutation in genotype1 (red) (genotype2 (blue), respectively). Further a t-test is performed
comparing the fold change distribution of all peaks missing the motif of interest in genotype1 versus genotype2 (purple) and corrected for multiple testing.
(B) Motif mutation analysis on more than two genotypes: Data is mapped to the individual genomes, shifted back to the reference coordinates and peaks
are called on each genotype separately and subsequentially merged and annotated. Heterozygous data should be annotated with MMARGE’s annotation
function. The merged file is iteratively scanned for the TF motif of interest (marked in green). Per TF an output file is generated containing the locus, the
binary existence of a motif, the motif score and the read counts. This output file is then inserted into a linear mixed model (LMM) implemented in R with
the package lme4 modeling the binding as dependency of the motif score (or motif existence) with random factors Strain and Locus. A p-value is generated
using the R command drop1 and corrected for multiple testing.
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Data mapping

All data was mapped using bowtie2 (28) with default pa-
rameters. The data for the different inbred strain of mice
and the human data were mapped to the individualized
genomes. The individualized genomes were generated us-
ing bowtie2-build with default parameters. The data for
C57 was mapped to the mm10 reference genome from the
UCSC genome browser (41). The human reference genome
was hg19. Uniquely mapped reads are all reads that were
mapped to only one unique region of the genome.

To analyze the impact of the genome on the accuracy of
the mapping, all mouse ChIP-seq data sets in LPMs (21)
were mapped to the three strain genomes C57, NOD, and
SPRET. For the human data (25), all data was mapped
against the individualized genome for allele 1, allele 2 and
the hg19 reference genome. To assess the impact of the map-
ping on peak calling all reads that were mapped to more
than one region of the genome were removed.

ChIP-seq analysis

All ChIP-seq data sets were analyzed with HOMER after
being shifted to reference coordinates. Peaks were called
using findPeaks with default parameters and –style factor.
For the LPM data set inputs were used for the peak calling.
In case of the liver data and the human data no input was
available and peaks were called without inputs. After run-
ning MMARGE on the data, the list of significant motifs
was reduced and summarized using HOMER’s compare-
Motifs.pl. To compare the binding strength of peaks before
and after shifting, tag directories were made with the shifted
and unshifted data. Peaks then were called and the peaks
from the unshifted data set were shifted towards the refer-
ence. After that, peaks were merged and annotated with the
shifted tag counts.

Simulation of a data set

MMARGE is based on the model of collaborative bind-
ing for TFs and important collaborative TF binding motifs
therefore should be identified as significant. According to
this model a TF can only bind if the collaborative factor
can bind, too. Applying this idea to two different genotypes
means that if the motif is missing in genotype1 the bind-
ing of the measured factor should be lost in genotype1 and
be not affected in genotype2 (genotype-specific binding). It
further means if the motif is found in both genotypes bind-
ing should be similar between them (genotype-similar bind-
ing).

For the synthetic dataset, ten motifs were randomly cho-
sen and defined as important collaborative TF for PU.1
(Tead3, Ventx and Zic1), somewhat collaborative (Rora,
Znf354c and Plag1) and not collaborative (Pax6, Nr4a2,
Lin54 and Bhlha15) (Figure 4A). The genomes from three
mouse strains (C57BL/6J (C57), BALB/cJ (BALB), and
SPRET/EiJ (SPRET)) were scanned for the occurrence of
all motifs (including PU.1). Next a peak file was generated
for all genomic locations where the motif of interest was
within 200 bp of the PU.1 motif. These files were merged be-
tween two strains (C57 and BALB, C57 and SPRET, BALB
and SPRET). To model genotype-specific binding, the fold

change was randomly chosen to be between 2- and 10-fold.
For genotype-similar binding the fold change between the
strains was within 1.5-fold. In all cases the read counts were
randomly chosen between 0 and 500. To include biological
noise in this dataset 85% of peaks with genotype-specific
TF binding motifs follow the genotype-specific binding
for highly collaborative motifs. For somewhat collabora-
tive motifs 50% follow this pattern, whereas in the case of
not collaborative motifs only 10% of peaks with genotype-
specific TF motifs also show genotype-specific binding. To
model genotype-similar binding for all highly collaborative
motifs 85% of all peaks with the same motif show genotype-
similar binding, for somewhat collaborative motifs 50% of
the peaks have genotype-similar binding, whereas for not
collaborative motifs only 10% show genotype-similar bind-
ing. The rest of the peaks show genotype-specific binding
randomly assigned to one of the two strains.

RESULTS

MMARGE recognizes collaborative motifs in synthetic
dataset

To test the accuracy of the method, a synthetic dataset
was generated simulating a ChIP-seq experiment using an
antibody against PU.1 (for more details see Material and
Methods, Figure 4A). Ten motifs were randomly chosen
and defined as important collaborative TF for PU.1 (Tead3,
Ventx and Zic1), somewhat collaborative (Rora, Znf354c
and Plag1) and not collaborative (Pax6, Nr4a2, Lin54 and
Bhlha15) (Figure 4A). Data was simulated for three differ-
ent homozygous mouse strains (C57, BALB, and SPRET).
Comparing one representative of the different motif cat-
egories shows that the algorithm is able to detect very
high significance for Tead3 (defined as highly collaborative),
medium significant for Plag1 (defined as somewhat collab-
orative) and no significance for Nr4a2 (defined as not col-
laborative) (Figure 4B, Supplementary Figure S2A). In all
three comparisons ∼50% of all peaks had the motif of in-
terest, so the significance is not dependent on the percent-
age of peaks having the motif. The algorithm is able to de-
tect significance for all motifs that were collaborative and
showed lower or no significance for all non-collaborative
motifs (Figure 4C). PU.1 was almost always recognized as a
significant motif, which is expected as the peaks were mod-
eled according to a PU.1 ChIP-seq experiment.

MMARGE analysis output

In order to learn more about important position in the mo-
tif of the candidate transcription factor, MMARGE offers
a motif mutation position analysis (Figure 4D, Supplemen-
tary Figure S3A). Figure 4D shows an example for muta-
tions within the PU.1 motif for the comparison C57 versus
BALB on the simulated data set for Ventx. Mutations with
significant effects on binding are marked by dots, whereas
stars mark mutations with non-significant effects. Each base
is colored differently, so it is not only possible to see which
positions are mutated (significantly and non-significantly),
but also to which other base. In the simulated dataset, even
highly conserved residues in the motif can have mutations
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Figure 4. Analysis of a simulated dataset (A) Motifs were defined as important collaborative TF (Tead3, Ventx, Zic1), somewhat collaborative (Rora,
Znf354a, Plag1) and not collaborative (Pax6, Nr4a2, lin54, Bhlha15). Peak files were generated for all loci where PU.1 and one of the TF are within 200bp
to each other for three mouse strains (C57, BALB, and SPRET) and consecutively merged between two strains. For highly collaborative TF 85% of the
strain specific peaks show strain specific binding (somewhat collaborative: 50%, not collaborative: 10%). Fold change was randomly chosen to be between
2- and 10-fold for differently and to be between 1- and 1.5-fold for similarly bound peaks. Read counts were randomly chosen to be between 0 and 500.
(B) MMARGE correctly identifies the association between motif and binding data. Motif mutation distribution plot (Supplementary Figure S2A) for one
collaborative motif (Tead3) shows a highly significant association between motif mutation and binding data (medium significance for Plag1 (somewhat
collaborative), no significant for Nr4a2 (not collaborative)). (C) Summary heat map for all analysis on the simulated datasets. MMARGE showed high
significance for the collaborative TF and less or no significance for non-collaborative TF binding motifs. (D) Motif mutation position plot for Tead3,
showing which positions are mutated and associated with different binding (more information Supplementary Figure S3A). It furthermore shows that
in most cases InDels and multiple SNPs cause significant change in binding. (E) TF binding motif distribution of PU.1 and Ventx. Motifs for Ventx are
closely distributed around the PU.1 binding site (more information Supplementary Figure S3B).
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without an effect on binding (e.g. Figure 4D, the highly con-
served guanine at position 8 has 21 mutations from G→A
that are significant but also 5 mutations from G→A with no
effect). In the simulated data this was inherently part of it
due to the modeling of biological noise (15% of genotype-
specific peaks did show genotype-similar binding). It also
should be noted that most differences that could be found
were InDels (63 significant versus 10 not significant) or mul-
tiple SNPs within one motif (27 significant versus 3 not sig-
nificant). MMARGE also provides a plot that shows the
distribution of the Ventx motif around the anchor transcrip-
tion factor motif PU.1 (Figure 4E, Supplementary Figure
S3B) to see if the motif overlaps the anchor TF motif or if
it is only randomly distributed within the peak. This plot
allows the user to explore how the motifs of interest are dis-
tributed around the center of the peak to get a better un-
derstanding of the effect of this motif on the binding of the
anchor TF.

Pairwise analysis of mouse data

To show that the method also works on real data we
analyzed data previously published in (21) and (51). We
assessed PU.1 (a macrophage LDTF) binding in large
peritoneal macrophages (LPM) in three different inbred
mouse strains C57BL/6J (C57), NOD/ShiLtJ (NOD), and
SPRET/EiJ (SPRET). These strains differ substantially in
mutations to each other (Table 1). To show the correctness
of the method we generated a list of motifs that were pre-
viously discovered (21) to be involved in the establishment
of PU.1 binding in macrophage (PU.1, PU.1-IRF, ETS1,
SpiB, CEBP, AP-1, Arid3a). Additionally, we chose some
transcription factors not expressed in LPMs or with known
binding patterns different from PU.1 in macrophages. We
chose the motifs of Bcl6 (not expressed in LPM, with a
known function in B cells (52)), NeuroD1 (not expressed
in LPM, associated with neurons (53) and diabetes (54)),
RORgt (not expressed in LPM and mainly associated with
thymocytes (55,56)), and Gfi1b (not expressed in LPM and
associated mainly with neutrophil differentiation (57)).

MMARGE could reliably detect motifs that are signif-
icantly associated with PU.1 binding, independent of the
number of peaks containing the motif, or the number of mu-
tations in these peaks. For example mutations in CEBP, an
important LDTF in macrophages, were detected as signifi-
cantly associated with PU.1 binding (Figure 5A). The plot
showing the positions of mutations within the motif shows
enrichment for mutations in the conserved bases T (bases
2 and 3) and A (bases 8 and 9) in comparison to the rest
of the bases in the motif (Figure 5B). Most causal muta-
tions are due to multiple SNPs or InDels, not merely one
single SNP. The CEBP motif is distributed closely around
the PU.1 motif (where PU.1 is bound) without any motifs
overlapping the PU.1 binding site (Figure 5C). Although
the peaks are 200 bp with regard to the reference genome,
the sequences analyzed can be longer due to long insertions
in the different strains resulting in peaks with a size of 300
in this case. Figure 5D shows two examples of how SNPs
can influence observed PU.1 binding. In the left panel PU.1
is only bound in SPRET. A SNP in SPRET in comparison
to C57 and NOD adds a PU.1 binding motif adjacent to

an existing CEBP motif resulting in the observed genotype-
specific binding. The right panel shows how loosing a CEBP
binding motif in C57 and SPRET close to a PU.1 binding
motif existing in all three strains can cause PU.1 binding
to be lost. MMARGE could not find any significant asso-
ciation between motif existence and binding for the motifs
chosen to provide negative controls (Figure 5E). Although
the number of mutations between two genotypes correlates
with the significance of the analysis result (due to a bigger
sample size), even with a low number of genetic variations
MMARGE was able to detect almost all significant motifs.
To further test MMARGE, we applied it to ChIP-seq ex-
periments in four different mouse strains (C57BL/6J (C57),
A/J (AJ), CAST/EiJ (CAST) and SPRET/EiJ (SPRET))
for three different factors (CEBPa, FOXA1, and HNF4A)
in whole liver from (51). CEBPa is an important TF in hep-
atocytes (58,59) (which make up ∼70% of all cells in the
liver (60)) and macrophages. FOXA1 plays important roles
for the development and maintenance of the liver, mainly in
hepatocytes (15,61) and HNF4A is an important liver TF
mainly associated with hepatocytes (reviewed in (62)). Fig-
ure 5F shows an example where the TF binding motifs for
all three factors were found, but binding could only be ob-
served in AJ, C57 and CAST. Binding in SPRET was lost
due to the loss of an adjacent RORA motif. After apply-
ing MMARGE to the data, all significant motifs were com-
pared to each other and summarized (compare Materials
and Methods). In almost all pairwise comparisons for the
three different factors the measured factor and the two col-
laborative factors were found as highly significant (Figure
5G). Nuclear receptors, which play important roles in the
liver (reviewed in (63)), were found as significant in all three
comparisons.

All-versus-all analysis of homozygous mouse data

To show the correctness of the all-versus-all analysis, we re-
analyzed the mouse ChIP-seq datasets for CEBPa, FOXA1,
and HNF4A from whole liver (Figure 6A). Almost all mo-
tifs that were found significant in at least one pairwise com-
parison were detected as significant in the all-versus-all
comparisons (compare Figures 5G and 6A). Applying the
motif score or the motif existence in the LMM produced al-
most the same results, with some motifs differing. The motif
existence approach should be used with caution since ad-
justing the threshold that defines a sequence as motif can
have large impacts on the results. Therefore, the all-versus-
all comparison is able to confirm motifs significantly associ-
ated with binding of CEBPa, FOXA1 or HNF4A in whole
mouse liver previously identified by MMARGE’s pairwise
comparisons. To make sure that the all-versus-all compar-
ison is sensitive, we shuffled the strain order and repeated
the analysis (Figure 6B). To assess how much the results are
influenced when very similar strains are shuffled, AJ and
C57 were switched, but CAST and SPRET were kept at
the same position. The further assess robustness of the re-
sults, the more diverse strains were shuffled with the more
similar strains. Furthermore, we used completely different
mouse genomes (NOD/ShiLtJ (NOD), DBA/2J (DBA),
PWK/PhJ (PWK) and WSB/EiJ (WSB)). The color bar
in Figure 6b shows the number of differences between the
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Figure 5. Analysis using MMARGE’s pairwise-comparison (A) Motif mutation plot (Supplementary Figure S2A) for PU.1 data in LPMs analyzing the
impact of mutations in the CEBP binding motif on PU.1 binding. Red ticks show mutations in the CEBP motif in C57 (blue for SPRET). Loss of the CEBP
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Figure 6. Results of all-versus-all analysis. (A) Summary heat map of multiple testing corrected p-values of all-versus-all analysis of CEBP, FOXA1, and
HNF4A ChIP-seq data sets from whole liver in AJ, C57, CAST, and SPRET. The analysis confirms the results from the pairwise analysis performed
in Figure 5G. The same motifs are highly significance with slight variations independent of considering motif score (MS) or motif existence (ME). (B)
Summary heat map of multiple testing corrected p-value of the all-versus-all analysis for CEBP, FOXA1, and HNF4A ChIP-seq data sets with the original
order of the strains and shuffled order of the strains to assess sensitivity of MMARGE. The color of the boxes correlates to the number of mutations (from
0 – white to 50 million – brown). When very similar strains are switched (AJ and C57) the MMARGE results are clustered together. As soon as more
diverse strains are switched or different strains are used, the results cluster as outliers to the original data and almost all motifs lose significance. (C) UCSC
genome browser shot visualizing three human PU.1 datasets. The allele-specific loss of a PRDM1 motif close to an ETS motif causes allele-specific loss
of PU.1 binding. (D) Summary heat map of multiple testing corrected p-values of transcription factor motifs significantly associated with PU.1 binding
in human lymphoblastoid cell. Many TF motifs found to be significantly associated with PU.1 binding are either known to play important roles in B cell
development and maintenance or cancer. By increasing the stringency of peaks included in the analysis (and decreasing the number of observations) the
number of significant motifs decreases. Only PRDM1 is found as significant when using a filter of 16 reads.

strains. When two very similar strains were changed (AJ
with C57) the results are almost the same and the data sets
are clustered together. However, as soon as more different
strains are switched, the results changed dramatically. Mo-
tifs that are significant in all comparisons (e.g. NF1) should

be counted as false positive results. This analysis shows that
changing very similar data sets with each other does not af-
fect the results, probably because most of the informative
loci are found between these two strains and the two more
diverse strains.
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All-versus-all analysis of heterozygous human data

To show that MMARGE is also able to analyze data from
several human individuals with a low number of mutations,
34 PU.1 ChIP-seq datasets from Waszak et al. (25) were an-
alyzed (listed in Supplementary Table S1). The VCF files
were downloaded from the 1000 Genomes Project (31) and
the individual MMARGE files and genomes were gener-
ated. A bowtie2 (28) index was created for each genome
(two indices per genotype––one for the complete genome
containing mutations on allele 1 and one for mutations on
allele 2) and the ChIP-seq reads were mapped against both
indices of the corresponding genotype. Only data sets with
an overall mappability of 80% were considered in the down-
stream analysis (22 individuals). Peaks were called on all
perfectly aligned reads and all peaks were merged and an-
notated allele-specific (320,146 peaks). To see how noise in-
fluences the results, MMARGE was applied to an unfiltered
peak file, as well as a peak file only containing reliable peaks
with at least eight reads in at least on individual (16, respec-
tively). The dataset used in this analysis was based on lym-
phoblastoid cell lines, human B cell lines infected with an
Eppstein-Barr virus to immortalize them.

Because the dataset is based on B cells it is not expected
that any macrophage specific LDTFs are significant, in-
stead B cell specific LDTFs (like PRDM1 also known as
BLIMP-1, E2A etc.) would be expected to show a signifi-
cant association with PU.1 binding (64). Figure 6C shows a
UCSC genome browser session for one locus in three dif-
ferent individuals where one SNP that causes a loss of a
PRDM1 motif close to an ETS factor motif is associated
with loss of binding of PU.1. Applying the mutation ap-
proach systematically to all loci in all individuals and then
summarizing the motifs, MMARGE identified the B cell
LDTF PRDM1 as highly significant, as well as a motif be-
longing to the IRF family of transcription factors known
to play a role in B cells (Figure 6D) and an ETS motif, im-
portant for PU.1 binding. DUX4 has been previously asso-
ciated with acute lymphoblastic leukemia (ALL) (65) which
is coherent with the cancer-like cell type used in this exper-
iment. MMARGE was able to identify many other impor-
tant transcription factors for B cells including NUR77 and
a KLF binding motif (associated with B cell development
(66,67)). The more stringent the filtering, the less significant
motifs could be found. Filtering by eight reads, about half
of the significant motifs could be found. But filtering by 16
reads only found PRDM1 as significant. This highlights the
importance of a good quality data set, because a lot of dif-
ference is found in lower bound peaks rather than the top
peaks. Overall, MMARGE was able to find significant mo-
tifs associated with PU.1 binding in human lymphoblastoid
cell lines taking advantage of allele-specific binding in many
individuals.

Memory usage and runtime analysis

MMARGE can run on any system, however, it requires a
substantial amount of memory. All memory and runtime
tests are performed on the data presented in this study. The
two most memory demanding parts of MMARGE are shift-
ing files from strains coordinates to the reference, as well
as to run the pairwise and all-versus-all mutation analysis.

For testing a server system with 56 cores (1 GHz each) and
750GB random-access memory (RAM) was used running
CentOS and a GPFS file system. Runtime was measured
with Linux’s time command and memory usage was moni-
tored using the perl module Memory::Usage. During shift-
ing, the memory consumption is mainly dependent on the
number of variations found in one individual versus the ref-
erence (Supplementary Figure S4A). The size of the file that
is shifted does not influence the memory consumption at
all. When shifting files for SPRET, the mouse strain with
the most variations (42 million), ∼2GB of memory are re-
quired. The same is true for the pairwise MMARGE muta-
tion analysis (Supplementary Figure S4B). When analyzing
SPRET versus CAST (which in sum have 60 million mu-
tations), the memory consumption is about 3GB. To run
the MMARGE all versus all comparison, the memory con-
sumption depends on the number of individuals and there-
fore number of mutations considered. In the analysis pre-
sented in this study, 22 heterozygous human samples were
analyzed, which required 9.3GB of RAM.

In comparison to memory, the runtime for shifting is de-
pendent on the size of the file required to shift (Supplemen-
tary Figure S4C) and ranges from about 5 min for sam files
of 5GB to about 15 minutes to sam files of about 8GB. As
shifting is a linear process, threading is not available for it.
To analyze the runtime for MMARGE’s pairwise mutation
analysis, the motif file provided in the MMARGE package
is used. The runtime can vary greatly by using a smaller or
larger motif file. As MMARGE offers multi threading, the
runtime can be reduced substantially by using more cores
(Supplementary Figure S4D). The runtime is dependent on
the number of cores used, as well as the number of mu-
tations considered. All pairwise analysis presented in this
study took between 10 and 20 min (using 4 cores), or 5
and 15 min (using 8 cores). This makes it possible to run
MMARGE on most modern personal computers.

DISCUSSION

We developed a powerful tool to efficiently analyze ChIP-
seq and other NGS data to understand the impact of tran-
scription factor motifs on collaborative binding of tran-
scription factors. MMARGE is the first publicly available
suite of software tools to integrate natural genetic varia-
tion (including InDels) and NGS binding data and provides
complementary algorithms to analyze data from different
genetic backgrounds in a pairwise manner as well as by uti-
lizing a linear mixed model. It further provides many useful
tools to directly look at genetic differences between differ-
ent genetic backgrounds. By simulating a dataset and also
applying MMARGE to real world data, we could show that
the algorithm works correctly in identifying motifs signifi-
cantly associated with the binding of a measured transcrip-
tion factor.

Here, we applied MMARGE to ChIP-seq data, which re-
quires a well-working antibody for the reference transcrip-
tion factor. However, MMARGE can also be applied to
ATAC-seq data or DNase I hypersensitivity data, which
does not require any previous knowledge. In this case, rather
than collaborative binding partners for a reference tran-
scription factor, analysis of open chromatin would be ex-
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pected to recover the dominant collaborative factors needed
to establish open chromatin regions. Therefore, MMARGE
can potentially be applied to identify key regulatory factors
in any cell type as long as parallel datasets from genetically
diverse strains or individuals are available.

The algorithm assumes that the binding of the measured
factor is only affected by local mutations in transcription
factor binding motifs. As a result, sequence changes that
influence binding on a global or long-distance scale in trans
will not be detected and introduce noise to this. Further-
more, MMARGE only analyzes one motif at a time. More
complex relationships between transcription factors (e.g.
the requirement for binding of three factors simultaneously)
are not considered in the analysis. As in every analysis based
on statistical tests, the power of discovery is dependent on
the number of observations. A greater number of genetic
variations between two individuals provides a better analy-
sis result and will detect more significant motifs. For com-
parisons with low numbers of genetic variations MMARGE
offers a linear mixed model to increase the power of de-
tection by merging all genetic variation between all indi-
viduals. This, however, requires substantially more exper-
iments. Furthermore, the software is dependent on a list
of position-weight matrices for the detection of TF bind-
ing sites. It is known that TF can bind to very weak mo-
tifs that cannot be detected by a motif-scanning algorithm
but play important roles in regulating gene expression (68).
However, MMARGE is dependent on finding motifs based
on scanning the DNA for the consensus sequence provided
by the PWM. This limits the sensitivity of MMARGE. Im-
provements in our understanding how to detect motifs in
sequence will therefore improve the power of MMARGE.
Similar to de-novo motif finding, also MMARGE only de-
tects TF motifs. There are sometimes many similar tran-
scription factors capable of binding the same consensus mo-
tif, which MMARGE cannot discriminate. As more TFs
and their motifs are characterized, these types of analysis
will surely improve.

Genome-wide association studies (GWAS) evaluating
common sequence variants associated with diverse pheno-
types consistently demonstrate that the majority of vari-
ants reside in non-coding regions of the genome (20,69,70).
These findings suggest that such variants impose risk by al-
tering promoter and enhancer elements that regulate gene
expression. Interpretation of such variants is currently lim-
ited because the genomic location of the regulatory ele-
ments at which they could potentially exert their effects
varies according to cell type. By identifying important mo-
tif mutations, MMARGE can provide a new and unique
way to analyze transcription factor binding and detect the
major collaborative factors involved in the establishment
of cell-specific enhancer landscapes. With the advances in
sequencing technology and availability of human samples,
MMARGE can facilitate the analysis of datasets that pro-
vide insights into the relationship between non-coding ge-
netic variation and gene expression in humans.

DATA AVAILABILITY

The MMARGE source code and installation pack-
age are freely available on GitHub (https://github.com/

vlink/marge/blob/master/MMARGE v1.0.tar.gz) or Zen-
odo (10.5281/zenodo.1245209)

The mouse LPM dataset from (21) was down-
loaded from the GEO database under acces-
sion number GSE62826. The data is avail-
able at http://genome.ucsc.edu/cgi-bin/hgTracks?
hgS doOtherUser=submit&hgS otherUserName=
vlink&hgS otherUserSessionName=MARGE LPM data.
The mouse liver data set from (51) was downloaded from
ArrayExpress Archive (http://www.ebi.ac.uk/arrayexpress/)
under accession number E-MTAB-1414. The data is
available at http://genome.ucsc.edu/cgi-bin/hgTracks?
hgS doOtherUser=submit&hgS otherUserName=
vlink&hgS otherUserSessionName=MARGE Liver data.
The human data set from (25) was downloaded
from the ArrayExpress Archive under acces-
sion number E-MTAB-3657. The data is acces-
sible at http://genome.ucsc.edu/cgi-bin/hgTracks?
hgS doOtherUser=submit&hgS otherUserName=
vlink&hgS otherUserSessionName=
MARGE human data.

MMARGE is implemented in Perl and R (49). It
has been tested on several UNIX systems, includ-
ing CentOS and Debian with Perl version 5.20 and
higher and R version 3.3 and higher. We provide a
script that installs MMARGE and allows download of
pre-processed mutation data from the mouse genome
project (30) and the genomes from the 1000 Genome
Project used in this manuscript. MMARGE requires
the Perl core modules POSIX, Getopt::Long, Storable
and threads, as well as the modules Set::IntervalTree
(http://search.cpan.org/~benbooth/Set-IntervalTree/),
and Statistics-Basic (http://search.cpan.org/~jettero/
Statistics-Basic-1.6611/). It further requires the R pack-
ages SeqLogo (https://bioconductor.org/packages/
release/bioc/html/seqLogo.html), gridBase (https:
//CRAN.R-project.org/package=gridBase), lme4 (48),
and gplots (https://CRAN.R-project.org/package=gplots).
It also requires an installed version of gzip. For the
motif mutation analysis MMARGE requires HOMER
(1) (http://homer.ucsd.edu/homer/) to be installed and
executable. Without a working installation of HOMER,
MMARGE’s functionality is limited to only visualization
and annotation of the data.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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