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General Relativistic Shock Waves that Induce Cosmic Acceleration

Abstract

This thesis concerns the construction and analysis of a new family of exact general relativistic shock

waves. The construction resolves the open problem of determining the expanding waves created

behind a shock-wave explosion into a static isothermal spacetime with an inverse square density

and pressure profile. The construction involves matching two self-similar families of solutions to the

perfect fluid Einstein field equations across a spherical shock surface. The matching is accomplished

in Schwarzschild coordinates where the shock waves appear one derivative less regular than they

actually are. Separately, both families contain singularities, but as matched shock-wave solutions,

they are singularity free. There was no guarantee ahead of time that the matching of the two

families could be achieved within the regions where both families are nonsingular. Indeed, for

pure radiation equations of state, the matching occurs very near the singular point of the interior

expanding wave, and this makes the analysis quite delicate, both numerically and formally. It is

for this reason the construction is accompanied by a novel existence proof in the pure radiation

case. The analysis is extended to demonstrate Lax stability in the pure radiation case and provide

a criterion for stability in all other cases. These shock-wave solutions represent an intriguing new

mechanism in General Relativity for exhibiting accelerations in perturbed Friedmann spacetimes,

analogous to the accelerations modelled by the cosmological constant in the Standard Model of

Cosmology. However, unlike in the Standard Model of Cosmology, these shock-wave solutions solve

the Einstein field equations in the absence of a cosmological constant, opening up the question

of whether a purely mathematical mechanism could account for the cosmic acceleration observed

today, rather than dark energy.

Keywords: General Relativity, Shock Wave, Cosmology, Dark Energy
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CHAPTER 1

Introduction

The fields of General Relativity and Conservation Law Theory connect very naturally. This is

probably not too surprising given the fact that one of the most well studied source terms of the

Einstein field equations is that of a perfect fluid. The perfect fluid source term, which takes the

form of a stress-energy-momentum tensor, is specifically crafted so that equating its divergence to

zero yields the classical Euler equations in the limit of small fluid velocities and weak gravitational

fields. It is within the study of the classical Euler equations, and its viscous sibling, the Navier-

Stokes equations, that consideration of shock-wave formation is most extensive. It is only right

then to apply such consideration to the generalised setting of curved spacetimes. This hosts two

major advantages. The first is the accuracy gained in modelling self-gravitating fluids, especially

compressible fluids, where the fluid pressure both influences and is influenced by the fluid mass. This

advantage becomes most apparent when modelling fluids in strong gravitational fields. The second

advantage is the extension of possible shock-wave solutions to classical conservation laws. In regard

to the the classical Euler equations, in particular the shock tube problem, certain hydrodynamic

variables must be balanced on each side of the shock surface to ensure stability of the shock, but

this inflexibility in the hydrodynamic variables can be traded for an inflexibility in the geometry of

spacetime when considered in the full generality of curved spacetimes.

This thesis focusses on the analysis of spherically symmetric self-similar perfect fluid spacetimes, an

area that was first brought into focus by Cahill and Taub in 1971 [3]. In this analysis, solutions of

the perfect fluid Einstein field equations are assumed to be spherically symmetric and self-similar

in the variable ξ = r/t. These two assumptions reduce the Einstein field equations, a system of

nonlinear partial differential equations, to a system of nonlinear ordinary differential equations in

the single variable ξ. It is in this setting that Cahill and Taub establish criteria for the uniqueness
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of solutions, along with a method to form shock waves. The flat Friedmann-Lemâıtre-Robertson-

Walker (FLRW) and Tolman-Oppenheimer-Volkoff (TOV) spacetimes are explicit solutions to these

equations when admitting barotropic equations of state. The former spacetimes are central to the

Standard Model of Cosmology and the latter are static models for the interior of a star. In fact,

the TOV spacetimes form the unique family of static spherically symmetric perfect fluid spacetimes

that are self-similar in ξ and play a central role in the construction of the general relativistic shock

waves considered in this thesis.

The first Friedmann-static shock wave was constructed by Cahill and Taub by matching a pure

radiation FLRW spacetime to a certain TOV spacetime across a spherical shock surface. Cahill

and Taub claimed the existence of a two-parameter family of self-similar pure radiation spacetimes

that could be matched to a TOV spacetime to form a shock wave in a subsequent paper that was

not published and possibly never completed. Thus the construction of this two-parameter family

of shock waves remains an open problem.

Friedmann-static shock waves were considered again by Smoller and Temple in 1994 [17], where

they proved a number of theorems concerning the regularity of spherically symmetric shock waves.

A year later, Smoller and Temple [18] generalised Cahill and Taub’s shock wave to a one-parameter

family of Friedmann-static shock waves, with the parameter corresponding to one of the equations

of state either side of the shock. They also introduced a criteria for determining the Lax stability

of these shock waves, that is, stability in the gas dynamical sense. Furthermore, Smoller and

Temple in 2009 [22] derived a one-parameter family of exact self-similar perturbations of the FLRW

spacetimes, opening up the possibility of forming new Friedmann-static shock waves from these

perturbed spacetimes.

Unbeknown to Smoller and Temple, Carr and Yahil [9] were aware of the asymptotic form of

these self-similar perturbations as early as 1990 and classified them as asymptotically Friedmann

spacetimes. The complete classification of spherically symmetric self-similar in ξ solutions to the

perfect fluid Einstein field equations was then completed by Carr and Coley in 2000 [6]. In addition

to determining the number of free parameters present in each family of solutions, Carr and Coley

provided a detailed discussion of the physical relevance of each of these families.
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Friedmann-static shock waves model a general relativistic explosion within a static isothermal

spacetime with an inverse square density and pressure profile. These static isothermal spheres may

model the interior of a star, or possibly the early Universe, with the explosion then analogous

to a supernova or big bang respectively. In either case, Friedmann-static shock waves offer the

simplest dual-state model that incorporates conservation of mass-energy and momentum across the

shock surface. The one-parameter family of asymptotically Friedmann spacetimes are of particular

interest as they exhibit an accelerated expansion similar to the accelerated expansion found in the

Standard Model of Cosmology, but solve the Einstein field equations in the absence of a cosmological

constant. Temple conjectures that a Friedmann-static shock wave, constructed by matching an

asymptotically Friedmann spacetime to a TOV spacetime, is a possible candidate for a cosmological

model with an accelerated expansion but without a cosmological constant, and thus, without dark

energy.

The objective of this thesis is the construction of these Friedmann-static shock waves, and in doing

so, the determination of the expanding waves created behind a shock-wave explosion within a static

isothermal sphere. These Friedmann-static shock waves form a two-parameter generalisation of the

one-parameter family of Friedmann-static shock waves constructed by Smoller and Temple in 1995,

noting that the equation of state parameter is included in this count. The additional parameter

corresponds to the magnitude of perturbation, which in turn corresponds to the magnitude of

accelerated expansion. For an interior pure radiation equation of state, these shock waves form a

one-parameter subset of the two-parameter family of shock waves sought by Cahill and Taub, thus

partially resolving their open problem.

Chapter 2 outlines the process of constructing a spherically symmetric shock-wave solution to the

Einstein field equations and is based on Smoller and Temple’s 1994 and 1995 papers. Unlike in

classical shock-wave theory, the construction of a general relativistic shock wave requires the joining

of two spacetime metrics and this requires finding a common set of coordinates for which the two

metrics match Lipschitz continuously at the shock surface. If the two metrics can be matched, then

consideration of the conservation of mass-energy and momentum across the shock surface can be

made, which places a single constraint on the free parameters present in the two spacetimes. If there
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is sufficient parameter freedom then the resulting matched spacetime forms a shock-wave solution

of the Einstein field equations. An analysis of the regularity and Lax stability of the shock wave

can then be conducted. The first three sections of Chapter 2 outline this shock-wave construction

process in full generality, with the remaining sections dedicated to an explicit example.

Chapter 3 considers spherically symmetric self-similar solutions of the perfect fluid Einstein field

equations and closely follows the parts of Cahill and Taub’s 1971 paper pertaining to barotropic

equations of state. This chapter begins by deriving the system of ODE representing the spherically

symmetric self-similar in ξ perfect fluid Einstein field equations in comoving coordinates. This

system is used to establish the uniqueness of self-similar solutions, as well as to determine the

compatibility of matching self-similar solutions with non-self-similar solutions across a spherical

surface. The assumptions of spherical symmetry and self-similarity in ξ are shown to restrict the

types of static solutions that can be found, as well as restricting the types of barotropic equations

of state that can be modelled. A consideration of self-similar shock-wave solutions is then made,

with the chapter concluding with the construction of an explicit self-similar shock-wave solution.

Chapter 4 analyses the asymptotic form of solutions to the system of ODE derived in Chapter 3

and closely follows Carr and Coley’s 2000 paper. In this chapter, the method of solving the perfect

fluid Einstein field equations by assuming spherical symmetry and self-similarity in the variable

ξ is refined, making it easier to find solutions other than those with a pure radiation equation of

state. This refinement is then used to provide a complete classification of the different asymptotic

behaviours of spherically symmetric self-similar solutions at small, large and finite values of ξ.

Chapter 5 returns to Smoller and Temple’s work by considering the asymptotically Friedmann

spacetimes derived in their 2012 paper [21], which provides the details to their previous 2009 paper.

Similar to Chapter 3, this chapter begins with the derivation of a system of ODE representing the

spherically symmetric self-similar in ξ perfect fluid Einstein field equations. However, this is not the

same system of ODE as derived in Chapter 3, since this new system is derived using Schwarzschild

coordinates. There are advantages to both approaches, but the Schwarzschild coordinate approach

is better suited to the construction of shock-wave solutions. Furthermore, unlike the ODE derived

using comoving coordinates, the ODE derived using Schwarzschild coordinates are autonomous.
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With this new system of ODE in place, the TOV, FLRW and asymptotically FLRW solutions

are then derived in self-similar Schwarzschild coordinates. The chapter concludes by following

Smoller and Temple’s analysis of the asymptotically FLRW spacetimes, which exhibit an accelerated

expansion similar to the accelerated expansion found in the Standard Model of Cosmology.

Chapter 6 brings together the methods considered in all previous chapters to construct a new

family of Friedmann-static shock waves and resolve, or partially resolve, the open problems posed

by Smoller and Temple and Cahill and Taub. This chapter begins with an alternative construction

of the explicit one-parameter family of Friedmann-static shock waves originally derived by Smoller

and Temple in 1995. This warm-up derivation introduces Lemma 6.1.2, which is central to the

construction of the more general two-parameter family of Friedmann-static shock waves, noting that

one of these parameters is an equation of state parameter. Since the asymptotically Friedmann

spacetimes are not known explicitly, numerical approximations are used to construct the two-

parameter family of Friedmann-static shock waves. This construction is followed by Lemma 6.2.1,

which generalises the Lax characteristic conditions to an even broader family of general relativistic

shock waves. An analysis of the Rankine-Hugoniot jump conditions then results in Theorem 6.2.3,

which establishes the Lax stability of this broad family of shock waves. Chapter 6 concludes with

Theorem 6.3.1, the main result of the thesis, which provides a rigorous proof of existence for the

Friedmann-static pure radiation shock wave, that is, the unique Friedmann-static shock wave that

models a perfect fluid with a pure radiation equation of state each side of the shock.

The conclusion introduces a conjecture regarding the existence of the full two-parameter family of

Friedmann-static shock waves, along with a brief discussion of the possible future directions of this

research.
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CHAPTER 2

General Relativistic Shock Waves

This chapter summarises and extends the 1995 paper Astrophysical Shock-Wave Solutions to Ein-

stein’s Equations by Smoller and Temple [18]. The extension comes in two forms, the first of which

is the inclusion of relevant exposition from the proceeding 1994 paper Shock-Wave Solutions of

the Einstein Equations: The Oppenheimer-Snyder Model of Gravitational Collapse Extended to the

Case of Non-Zero Pressure by Smoller and Temple [17]. The second form of extension comes from

introducing new notation, all of the definitions, Proposition 2.1.4, Proposition 2.1.5 and Lemma

2.6.3, the latter of which provides an explicit example of the regularity results of Section 2.2.

2.1. Shock-Wave Construction

Consider first the Einstein field equations:

G = κT(2.1)

where G is the Einstein curvature tensor, T is the stress-energy-momentum tensor and κ is the

constant:

κ =
8πG
c4

Here, c is the speed of light and G is the gravitational constant. When modelling a perfect fluid,

the stress-energy-momentum tensor takes the form:

T =
(
ρ+

p

c2

)
u⊗ u + pg(2.2)

where g is the metric tensor, ρ is the fluid density, p is the fluid pressure and u is the fluid four-

velocity. To simplify the algebraic calculations throughout this thesis, natural units will be used,
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with the exception of Chapter 3. In all chapters other than Chapter 3, this means that:

c = G = 1

and distances, times, energies and masses are all measured in units of mass, with all speeds di-

mensionless and less than one. All spacetimes considered throughout this thesis will be solutions

to the perfect fluid Einstein field equations, with the terms solution and spacetime being used

interchangeably. Furthermore, all spacetimes will be spherically symmetric, so that the metric line

element takes the general form:

ds2 = −e2ϕ(t,r)dt2 + 2D(t, r)dtdr + e2ψ(t,r)dr2 + R2(t, r)r2
(
dθ2 + sin2(θ)dφ2

)
Since it is always possible to eliminate the dtdr term with an appropriate change in the t and r

coordinates, we do not lose any generality in restricting to the following diagonal form:

ds2 = −e2ϕ(t,r)dt2 + e2ψ(t,r)dr2 + R2(t, r)r2dΩ2(2.3)

where dΩ2 is the standard metric on the two-sphere:

dΩ2 = dθ2 + sin2(θ)dφ2

Comoving coordinates are a common choice of coordinates in which to solve the perfect fluid

Einstein field equations. The advantage of comoving coordinates is that the fluid four-velocity

reduces to the form:

u = (u0, 0, 0, 0)

which for a diagonal metric means:

u0 =
1√
−g00

=
√
−g00

The latter condition follows from the four-velocity normalisation requirement:

g(u,u) = −1(2.4)
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Another common choice of coordinates are Schwarzschild coordinates. The advantage of using

Schwarzschild coordinates is that the metric reduces to the form:

ds2 = −B(t, r)dt2 +
1

A(t, r)
dr2 + r2dΩ2(2.5)

where A and B are strictly positive and the radial coordinate, r, corresponds to the radial distance

in Minkowski spacetime. The use of B and A−1 as the respective coefficients of dt2 and dr2 follows

the convention used by Smoller and Temple. In Schwarzschild coordinates the fluid four-velocity

may be written without loss of generality as:

u = (u0, u1, 0, 0)

and under the normalisation requirement (2.4), has only one independent component. This means

that the fluid four-velocity can be fully specified through a single variable.

Definition 2.1.1. The Schwarzschild coordinate velocity is defined by:

v =
1√
AB

u1

u0
(2.6)

Together with A, B, ρ and p, the Schwarzschild coordinate velocity v is one of five unknown vari-

ables that completely specify a spherically symmetric perfect fluid solution. Similarly in comoving

coordinates, these variables are the three metric components ϕ, ψ and R along with ρ and p. As

there are only four independent components of the spherically symmetric perfect fluid Einstein

field equations, an equation of state is required to close the system. Throughout this thesis, we will

assume that solutions have a barotropic equation of state, that is, one of the form:

p = p(ρ)(2.7)

The coordinate invariant nature of the spherically symmetric perfect fluid Einstein field equations

means that any barotropic equation of state will close the system in any choice of coordinates. Both

comoving and Schwarzschild coordinates reduce the complexity of the Einstein field equations by

eliminating one of the variables to solve for. In the Schwarzschild case, this variable is R, whereas

in the comoving case this variable is u or v. In general, comoving coordinates are more useful
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for solving the perfect fluid Einstein field equations, whereas Schwarzschild coordinates make the

process of matching metrics much simpler, as will be seen. In Section 3.6, an elegant method for

transforming a general spherically symmetric metric into Schwarzschild form will be given.

Suppose that we have two spherically symmetric solutions to the perfect fluid Einstein field equa-

tions. Let us denote these solutions by the triples (g, ρ,u) and (ḡ, ρ̄, v̄) and assume also that these

solutions have equations of state p = p(ρ) and p̄ = p̄(ρ̄) respectively. Since we are assuming spher-

ical symmetry, when specifying a set of coordinates (t, r, θ, φ), it is sufficient to only consider the

coordinates (t, r). In this light, let metrics g and ḡ be given in Schwarzschild coordinates (t, r) and

(t̄, r̄) respectively as so:

ds2 = −B(t, r)dt2 +
1

A(t, r)
dr2 + r2dΩ2

ds̄2 = −B̄(t̄, r̄)dt̄2 +
1

Ā(t̄, r̄)
dr̄2 + r̄2dΩ2

where the coordinate variables (θ, φ) and (θ̄, φ̄) have been identified.

Definition 2.1.2. We say that two metrics can be matched on a spherical surface r̃ = Φ(t̃) if

there exists a common set of coordinates (t̃, r̃) such that the coefficients of the metrics agree on

this surface when written in these coordinates.

It is not required that the metrics be given in Schwarzschild coordinates in order to be matched, but

it does provide a convenient set of coordinates from which the metrics can be compared. For metrics

g and ḡ, we may simply take (t, r) as our common set of coordinates and ask which transformation

of the form:

t̄ = t̄(t, r)

r̄ = r̄(t, r)

is required in order to match these metrics. The reason Schwarzschild coordinates are so useful

is because we automatically match the dΩ2 coefficients through the identification r̄ = r. This

identification means that in order to avoid introducing dtdr terms, the most general transformation

that can be applied takes the form t̄ = t̄(t). Thus for two metrics given in Schwarzschild coordinates,
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the process of matching these metrics reduces to the existence of a spherical surface r = Φ(t) and

a coordinate transformation t̄ = t̄(t) that satisfy the following algebraic-differential equations:

B(t,Φ(t)) = B̄(t̄(t),Φ(t))[t̄′(t)]2(2.8)

A(t,Φ(t)) = Ā(t̄(t),Φ(t))(2.9)

If these equations can be solved, then metrics g and ḡ can be matched along the surface r = Φ(t).

However, such a matching does not automatically imply that mass-energy and momentum are

conserved across the surface. With this in mind, let us assume that there exists a set of coordinates

(t, r) for which the metrics match on the spherical surface r = Φ(t) and define:

Σ = {(t, r, θ, φ) : r = Φ(t), t > 0}

Note that even though this surface exists in four-dimensional spacetime, due to spherical symmetry

we may refer to a point on this surface by its (t, r) coordinates only.

Definition 2.1.3. We say that the spacetime given by the matched metric g ∪ ḡ, along with the

associated hydrodynamic variables, forms a shock-wave solution of the perfect fluid Einstein field

equations if the Rankine-Hugoniot jump conditions hold across the surface Σ. Furthermore, the

spherical surface Σ is known as the shock surface or simply the shock.

As like in classical shock-wave theory, the Rankine-Hugoniot jump conditions express the weak

form of the conservation of mass-energy and momentum across the shock-surface.

Proposition 2.1.4. Let p ∈ Σ and U be a neighbourhood of p, then the weak form of the conser-

vation of mass-energy and momentum across Σ ∩ U is given by:∫
U
Tµν∇νϕ dx = 0 ∀ ϕ ∈ C∞c (U)(2.10)

or equivalently: ∫
U
Gµν∇νϕ dx = 0 ∀ ϕ ∈ C∞c (U)(2.11)
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Proof. If each component of the stress-energy-momentum tensor T is differentiable in U , then

the conservation of mass-energy and momentum in U is given by:

∇νTµν = 0

These conditions are equivalent to:∫
U
ϕ∇νTµν dx = 0 ∀ ϕ ∈ C∞c (U)

and by using the identity:

ϕ∇νTµν = ∇ν(ϕTµν)− Tµν∇νϕ

are then equivalent to:∫
U
∇ν(ϕTµν) dx−

∫
U
Tµν∇νϕ dx = 0 ∀ ϕ ∈ C∞c (U)

Now since ϕ is compactly supported within U , the divergence theorem implies:∫
U
∇ν(ϕTµν) dx =

∫
∂U
ϕTµνnν dy = 0 ∀ ϕ ∈ C∞c (U)

where n denotes the outward normal vector to Σ. Thus (2.10) yields the weak form of the conser-

vation of mass-energy and momentum across Σ ∩ U . Conditions (2.11) then follow from equation

(2.1). �

The following proposition specifies the general relativistic form of the Rankine-Hugoniot jump

conditions.

Proposition 2.1.5. The Rankine-Hugoniot jump conditions are given by:

[Gµν ]nν = 0

where:

[Gµν ]nν := Gµν(g)nν −Gµν(ḡ)nν
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Proof. Let U = U1 ∪ U2 where ∂U1 ∩ ∂U2 = Σ ∩ U and assume that g and ḡ are sufficiently

regular on their respective side of Σ, then:∫
U
Gµν∇νϕ dx =

∫
U1

Gµν(g)∇νϕ dx +

∫
U2

Gµν(ḡ)∇̄νϕ dx̄

=

∫
U1

∇ν(ϕGµν(g)) dx−
∫
U1

ϕ∇νGµν(g) dx

+

∫
U2

∇̄ν(ϕGµν(ḡ)) dx̄−
∫
U2

ϕ∇̄νGµν(ḡ) dx̄

=

∫
∂U1

ϕGµν(g)nν dy −
∫
∂U2

ϕGµν(ḡ)n̄ν dȳ

=

∫
Σ
ϕGµν(g)nν dy −

∫
Σ
ϕGµν(ḡ)n̄ν dȳ

=

∫
Σ
ϕ[Gµν ]nν dy ∀ ϕ ∈ C∞c (U)

Thus:

[Gµν ]nν = 0 ⇐⇒
∫
U
Gµν∇νϕ dx = 0 ∀ ϕ ∈ C∞c (U)

�

2.2. Regularity

As like in the previous section, consider the solution triples (g, ρ,u) and (ḡ, ρ̄, v̄). Assume that

these solutions can be matched Lipschitz continuously along a spherical surface Σ with a spacelike

normal vector n to form the matched metric g ∪ ḡ. Furthermore, let g ∪ ḡ satisfy the Rankine-

Hugoniot jump condition across Σ so that g ∪ ḡ forms a shock-wave solution. For the rest of this

section, the matched metric is to be referred to simply as the metric.

It is reasonable to be concerned with the regularity of such a solution, since a Lipschitz continu-

ous shock wave has discontinuities in the first-order derivatives of the metric and delta function

sources in the second-order derivatives. The Einstein tensor comprises second-order derivatives of

the metric, so this too is expected to harbour delta function sources. On the other side of the

Einstein field equations, the hydrodynamic variables ρ, p and u, along with the metric, form the
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stress-energy-momentum tensor, and since the hydrodynamic variables are expected to be at worst

discontinuous at the shock, so too is the stress-energy-momentum tensor. This is problematic, since

the Einstein field equations cannot have different levels of regularity on the left and right hand sides

of the equation. However, it turns out that even though delta function sources may appear in the

second-order derivatives of the metric at the shock, with such being coordinate dependent, the

Einstein tensor does not have any delta function sources, that is, the delta function sources cancel

in the Einstein tensor. This result is summarised in the following theorem from [18].

Theorem 2.2.1. Let Σ denote a smooth, three-dimensional surface with a spacelike normal vector

n. Assume that the components of the metric are continuous on each side of Σ and Lipschitz

continuous across Σ in some fixed coordinate system. Then the following statements are equivalent:

(1) [K] = 0 at each point of Σ, where K is the second fundamental form of the metric.

(2) The Riemann curvature and Einstein tensors, viewed as second-order operators on the

metric components, produce no delta function sources on Σ.

(3) For each point p ∈ Σ there exists a C1,1 coordinate transformation defined in a neighbour-

hood of p such that in the new coordinates, which can be taken to be the Gaussian normal

coordinates for the surface, the metric components are C1,1 functions of these coordinates.

(4) For each point p ∈ Σ there exists a coordinate frame that is locally Lorentzian at p and

can be reached from the original coordinates by a C1,1 coordinate transformation.

Moreover, if any one of these statements hold, then the Rankine-Hugoniot jump conditions:

[Gµν ]nν = 0

hold at each point of Σ.

This theorem provides a criterion for the removal of the delta function sources and also a coordinate

system for which the shock-wave solution can achieve optimal regularity, that is, when the metric

has a Lipschitz continuous derivative at the shock. The following theorem, also from [18], provides

convenient criteria for satisfying one of the equivalent statements of Theorem 2.2.1.
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Theorem 2.2.2. Assume the following:

(1) That g and ḡ are two spherically symmetric metrics that match across a three-dimensional

surface Σ to form the matched metric g ∪ ḡ.

(2) The matched metric is Lipschitz continuous cross Σ.

(3) The normal n to Σ is non-null.

Then the following are equivalent:

(1) [Gµν ]nν = 0

(2) [Gµν ]nµnν = 0

(3) [K] = 0 at each point of Σ, where K is the second fundamental form of the metric.

(4) The components of the matched metric in any Gaussian-normal coordinate system are C1,1

functions of these coordinates across Σ.

If the conditions of Theorem 2.2.2 are satisfied, then it is clear that the weak form of mass-energy

and momentum conservation across the shock surface is equivalent to the single condition:

[Tµν ]nµnν = 0

Thus the Rankine-Hugoniot jump conditions reduce to the single equivalent condition:

[Gµν ]nµnν = 0

Therefore a shock-wave solution, which satisfies the Rankine-Hugoniot jump conditions by defini-

tion, only requires the metric to be continuous on each side of Σ and Lipschitz continuous across

Σ to satisfy the equivalent statements of Theorems 2.2.1 and 2.2.2. The proofs of these theorems

can be found in [17].

2.3. Lax Stability

The Lax stability of general relativistic shock waves will now be considered. This stability is

determined in the gas dynamical sense, that is, a shock is considered Lax stable when characteristics
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in the same family as the shock impinge on the shock from both sides, see for example [13] and [16].

The conditions required for this, known as the Lax characteristic conditions, are derived in the same

manner as done by [18]. Note that the Lax characteristic conditions lead to the time irreversibility

of solutions, since characteristics impinge on the shock, entropy increases and information is lost.

In classical gas dynamics, the density and pressure are always larger behind stable shock waves,

which means spherically symmetric shock waves with a greater pressure and density on the interior

are expected to expand.

Consider again the solution triples (g, ρ, û) and (ḡ, ρ̄, v̂) with equations of state p = p(ρ) and

p̄ = p̄(ρ̄) respectively, and assume that these solutions form the shock-wave solution g ∪ ḡ. As a

spherical surface has an interior and exterior, let g represent the interior metric, which is given in

comoving coordinates (t̂, r̂) as so:

dŝ2 = −e2ϕdt̂2 + e2ψdr̂2 + R2r̂2dΩ2

Finally, let ḡ represent the exterior metric, with the associated comoving coordinates denoted by

(t̄, r̄). The objective is to determine the Lax characteristic conditions at the shock surface.

Lemma 2.3.1. The shock speed relative to the interior fluid is given by:

eψ−ϕΦ̇(2.12)

where r̂ = Φ(t̂) is the position of the shock in coordinates comoving with the interior fluid.

Proof. This proof largely follows an analogous proof provided by [18]. To begin, recall that the

speed of a shock is a coordinate dependent quantity that can be interpreted in a special relativistic

sense at a point p in coordinate systems for which:

ds̃2 = −dt̃2 + dr̃2 + r̃2
0dΩ2(2.13)

where r̃0 is the value of r̃ at p. In a locally Minkowskian coordinate frame, a speed at p transforms

according to the special relativistic velocity transformation law when a Lorentz transformation is

performed. The shock speed at a point p on the shock in a locally Minkowskian frame that is
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comoving with the interior fluid will now be determined. To this end, let r̂ = Φ(t̂) be the position

of the shock in (t̂, r̂) coordinates and let (t̃, r̃) coordinates correspond to a locally Minkowskian

system at p obtained from (t̂, r̂) by a transformation of the form:

t̃ = t̃(t̂)

r̃ = r̃(r̂)

so that, in (t̃, r̃) coordinates:

ds̃2 = −e2ϕ

(
dt̂

dt̃

)2

dt̃2 + e2ψ

(
dr̂

dr̃

)2

dr̃2 + R2r̂2dΩ2

Choose (t̃, r̃) so that:

dt̃

dt̂
= eϕ

dr̃

dr̂
= eψ

Then in (t̃, r̃) coordinates at p the metric takes the form of (2.13). The (t̃, r̃) coordinates represent

the class of locally Minkowskian coordinate frames that are fixed relative to the fluid particles of

the interior spacetime at the point p, that is, any two members of this class of coordinate frames

differ only by higher order terms that do not affect the calculation of radial velocities at p. Thus

the speed ˙̃r of a particle in (t̃, r̃) coordinates gives the value of the speed of the particle relative to

the interior fluid in the special relativistic sense. If the speed of a particle in (t̂, r̂) coordinates is

˙̂r, then its geometric speed relative to observers fixed with the interior fluid, and hence also fixed

relative to the radial coordinate r̂ of the metric g because the fluid is comoving, is equal to:

eψ−ϕ ˙̂r

since:

dr̂

dt̂
=
dr̂

dr̃

dt̃

dt̂

dr̃

dt̃
= eϕ−ψ

dr̃

dt̃
(2.14)

Now considering the shock wave moves with speed Φ̇, therefore by (2.14) the speed of the shock

relative to the interior fluid particles must be given by (2.12), which completes the proof. �
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Let λ̃+
Int and λ̃−Int denote the speeds of the interior characteristics in (t̃, r̃) coordinates. Since the

characteristic speeds on the interior side of the shock equal the sound speeds in locally Minkowskian

coordinates, we have:

λ̃±Int = ±

√
dp

dρ

The -,+ characteristics refer to the 1,2-characteristic families respectively. In the 1+1 dimensional

theory of conservation laws, the Lax characteristic conditions state that the characteristic curves

in the family of the shock impinge upon the shock from both sides. Since we are considering

shocks that are outward moving with respect to r̂ and r̄, it follows that on the interior side,

only the 2-characteristic can impinge on the shock, and thus the shock must be identified as a

2-shock. For more details on n-shocks, see [16]. Let λ̃+
Ext and λ̃−Ext denote the speeds of the

exterior characteristics in (t̃, r̃) coordinates. Since the shock has been identified as a 2-shock, the

Lax characteristic conditions are given as the following inequalities:

λ̃+
Ext < s < λ̃+

Int(2.15)

where s is the speed of the shock in (t̃, r̃) coordinates.

Proposition 2.3.2. For an expanding shock wave, the Lax characteristic conditions are given as

the following inequalities:

w̃ +
√

dp̄
dρ̄

1 + w̃
√

dp̄
dρ̄

< eψ−ϕΦ̇ <

√
dp

dρ
(2.16)

where:

w̃ = eψ−ϕ
∂r̂

∂t̄

(
∂t̂

∂t̄

)−1

Proof. This proof largely follows an analogous proof provided by [18]. Since the shock wave is

expanding, it is a 2-shock, so the Lax characteristic conditions are given by (2.15), and by Lemma

2.3.1, s is given by (2.12). As we are working in (t̃, r̃) coordinates, λ̃+
Int is already known, so it

remains to determine λ̃+
Ext. Let v̂, v̄ and ṽ denote the exterior fluid four-velocity given in interior
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comoving, exterior comoving and interior locally Minkowskian coordinates respectively. Since the

aim is to compute the characteristic speed, which is a ratio of two vector components, a tangent

vector of any length is sufficient. By writing x̂ = (t̂, r̂) and x̄ = (t̄, r̄), then:

v̂µ =
∂x̂µ

∂x̄ν
v̄ν =

∂x̂µ

∂x̄0
v̄0 =

∂x̂µ

∂x̄0

In light of this, the speed of the exterior fluid as measured in the interior coordinates (t̂, r̂) is given

by:

ŵ =
v̂1

v̂0
=
∂x̂1

∂x̄0

(
∂x̂0

∂x̄0

)−1

=
∂r̂

∂t̄

(
∂t̂

∂t̄

)−1

and so, by (2.14):

w̃ = eψ−ϕŵ

This gives the exterior fluid speed in (t̃, r̃) coordinates, and since the sound speed in the exterior

spacetime is given by: √
dp̄

dρ̄

the relativistic addition of velocities formula yields:

λ̃+
Ext =

w̃ +
√

dp̄
dρ̄

1 + w̃
√

dp̄
dρ̄

which completes the proof. �

2.4. FLRW Spacetimes

Now that the appropriate theory has been discussed regarding the construction of general relativistic

shock waves, it is time to consider an explicit example. For this example, two well known spherically

symmetric spacetimes will be matched to form a shock-wave solution of the perfect fluid Einstein

field equations. This section will discuss the interior spacetime, which will be an FLRW spacetime.

Note that in [17] and [18], the FLRW spacetimes are referred to as FRW spacetimes. These
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spatially homogeneous spacetimes have been studied in great detail and are the simplest examples

of spacetimes that are expanding or contracting. The general form of an FLRW metric is given in

comoving coordinates as so:

ds2 = −dt2 +R2(t)

(
1

1− kr2
dr2 + r2dΩ2

)
(2.17)

where k takes the value of 0, 1 or −1 depending on whether the spacetime is flat, closed or open

respectively. What makes an FLRW spacetime particularly simple is the fact that in comoving

coordinates, the scale factor R and density ρ are both functions of time alone. This means that

substituting (2.17) into the perfect fluid Einstein field equations yields a system of ODE in the

single variable t, as so:

−3R̈

R
− 1

2

(
6RR̈+ 6Ṙ2 + 6k

R2

)
(−1) = 8πGρ

RR̈+ 2Ṙ2 + 2k

1− kr2
− 1

2

(
6RR̈+ 6Ṙ2 + 6k

R2

)(
R2

1− kr2

)
=

8πGpR2

1− kr2

and these equations can be simplified to:

3R̈ = −4πG(ρ+ 3p)R(2.18)

RR̈+ 2Ṙ2 + 2k = 4πG(ρ− p)R2(2.19)

Substituting equation (2.18) into (2.19) yields:

Ṙ2 + k =
8πG

3
ρR2(2.20)

Proposition 2.4.1. Local conservation of mass-energy and momentum implies:

p = −ρ− Rρ̇

3Ṙ
(2.21)
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Proof.

∇νTµν = 0 ⇐⇒ gµν∇νp+∇ν [(ρ+ p)uµuν ] = 0

⇐⇒ gµν∂νp+ ∂ν [(ρ+ p)uµuν ] + Γµνσ(ρ+ p)uσuν + Γσνσ(ρ+ p)uµuν = 0

⇐⇒ − d

dt
p+

d

dt
(ρ+ p) + 3

Ṙ

R
(ρ+ p) = 0

⇐⇒ p = −ρ− Rρ̇

3Ṙ

�

Since the divergence-free nature of the stress-energy-momentum tensor follows from the Einstein

field equations, equation (2.21) is implied by equations (2.18) and (2.19). With the introduction of

a barotropic equation of state, that is (2.7), then (2.21) and (2.20) are two equations for the two

remaining unknowns R and ρ. Note that it can be seen from (2.21) that ρ̇Ṙ < 0 and thus (R(t), ρ(t))

is a solution of (2.21) and (2.20) if and only if (R(−t), ρ(−t)) is, therefore every expanding solution

has a corresponding contracting solution and vice versa. For all the shock waves with FLRW

interiors constructed in this thesis, the only choice of k that will be considered is the k = 0 case,

making the interior FLRW metric conformally flat. With k = 0, equation (2.20) can be rewritten

as:

Ṙ = ±R
√

8πGρ
3

(2.22)

and substituting (2.22) into (2.21) yields:

p = −ρ∓ ρ̇√
24πGρ

(2.23)

When p = p(ρ) is assigned, equation (2.23) is independent of R and can thus be integrated explicitly

to obtain:

t− t0 = ∓
∫ ρ

ρ0

1

(p(ξ) + ξ)
√

24πGξ
dξ(2.24)

20



Formula (2.24) gives t as a function of ρ, this can be used along with (2.21) to obtain a closed form

expression for R as a function of ρ. It follows from (2.23) that:

Ṙ =
dρ

dt

dR

dρ
= ∓(ρ+ p)

√
24πGρdR

dρ

and combining this result with (2.21) yields:

1

R

dR

dρ
= − 1

3(ρ+ p)
(2.25)

Finally, (2.25) can be solved explicitly to give:

R = R0 exp

(
−
∫ ρ

ρ0

1

3(p(ξ) + ξ)
dξ

)
(2.26)

Notice that the only assumptions required to construct an explicit solution of the FLRW type are

that k = 0 and the equation of state is barotropic.

2.5. TOV Spacetimes

As like in the previous section, we now consider another well known spherically symmetric space-

time, with this spacetime being placed on the exterior of the shock surface. This spacetime is a

TOV spacetime, which are characterised by the property of being static. Note that in [17] and [18],

the TOV spacetimes are referred to as OT spacetimes. Everything in a spherically symmetric static

scenario in General Relativity scales with the total mass of the system, so if we double the total

mass of the system all lengths and time scales will also be doubled for example. The static nature

of a TOV metric also means that it can be given in both Schwarzschild coordinates and comoving

coordinates simultaneously. In such coordinates, a TOV metric takes the following form:

ds̄2 = −B(r̄)dt̄2 +
1

A(r̄)
dr̄2 + r̄2dΩ2(2.27)

As like for the FLRW spacetimes, the TOV spacetimes are simple in the respect that, in comoving

coordinates, their density ρ̄ and metric coefficients are functions of radius alone. Once again,

substituting (2.27) into the perfect fluid Einstein field equations yields a system of ODE, but this

time of the single variable r. Instead of substituting (2.27) into the Einstein field equations given
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by:

Rµν −
1

2
Rgµν = κTµν(2.28)

the metric will be substituted into the following alternative form of the Einstein field equations,

given by:

Rµν = κ

(
Tµν −

1

2
Tgµν

)
(2.29)

This alternative form is found by taking the trace of (2.28) so that R is equated to −κT , which

in turn is substituted back into (2.28) and rearranged to obtain (2.29). In this light, substituting

(2.27) into (2.29) yields the following equations for A, B, ρ and p:

AB′′

2
+
A′B′

4
− A(B′)2

4B
+
AB′

r̄
= 4πG(ρ̄+ 3p̄)B(2.30)

−AB
′′

2
− A′B′

4
+
A(B′)2

4B
− A′B

r̄
= 4πG(ρ̄− p̄)B(2.31)

B

r̄2
− AB

r̄2
− AB′

2r̄
− A′B

2r̄
= 4πG(ρ̄− p̄)B(2.32)

Some of the following calculations are taken from [23]. To find an explicit expression for A, add

(2.31) and two times (2.32) to (2.30) to obtain the following equation after simplification:

1

r̄2
− A

r̄2
− A′

r̄
= 8πGρ̄(2.33)

Requiring that A(0) be finite, this boundary condition can be used to solve (2.33) to obtain:

A = 1− 2GM
r̄

(2.34)

where:

M ′ = 4πr̄2ρ̄(2.35)

Proposition 2.5.1. Local conservation of mass-energy and momentum implies:

B′

B
= − 2p̄′

p̄+ ρ̄
(2.36)
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Proof.

∇νTµν = 0 ⇐⇒ gµν∇ν p̄+∇ν [(ρ̄+ p̄)uµuν ] = 0

⇐⇒ gµν∂ν p̄+ ∂ν [(ρ̄+ p̄)uµuν ] + Γµνσ(ρ̄+ p̄)uσuν + Γσνσ(ρ̄+ p̄)uµuν = 0

⇐⇒ Ap̄′ +
AB′

2B
(ρ̄+ p̄) = 0

⇐⇒ B′

B
= − 2p̄′

p̄+ ρ̄

�

Finally, substituting (2.34) and (2.36) into (2.32) to eliminate A and B yields the following equation

after non-trivial simplification:

−r̄2p̄′ = GMρ̄

(
1 +

p̄

ρ̄

)(
1 +

4πr̄3p̄

M

)(
1− 2GM

r̄

)−1

(2.37)

Equation (2.37) is known as the Oppenheimer-Volkov equation and Weinberg remarks that it is the

fundamental equation of Newtonian astrophysics, with the last three factors representing general

relativistic corrections. As like in the FLRW case, it is again worth noting that equation (2.36) is

not independent, but is implied by equations (2.30)-(2.32). Also note that if a barotropic equation

of state is supplied, then (2.35) and (2.37) are two equations for the two unknowns M and ρ̄. In

reference to (2.35), M can be realised as the total mass-energy inside radius r̄, that is:

M(r̄) =

∫ r̄

0
4πξ2ρ̄(ξ) dξ(2.38)

Note that the only assumption required to construct an explicit solution of the TOV type is that

the equation of state be barotropic. Tolman was the first to notice that by assuming an equation

of state of the form:

p̄ = σ̄ρ̄(2.39)

for some constant σ̄, and a density of the form:

ρ̄ =
γ

r̄2
(2.40)
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for some constant γ, that an explicit solution to (2.30)-(2.32) can be constructed. Since
√
σ̄ is

the speed of sound in the exterior fluid, we will require that 0 < σ̄ < 1. Given (2.40), the total

mass-energy within radius r̄ will then be:

M = 4πγr̄(2.41)

and substituting (2.39)-(2.41) into (2.37) yields:

γ =
1

2πG

(
σ̄

1 + 6σ̄ + σ̄2

)
(2.42)

Since M has been specified, A is found through (2.34) to be:

A = 1− 8πGγ(2.43)

To determine the TOV metric, it thus remains to solve for B. In this light, solving (2.36) is

equivalent to solving:

1

B

dB

dρ̄

dρ̄

dr̄
= − 2σ̄

(1 + σ̄)ρ̄

dρ̄

dr̄

which simplifies to:

1

B

dB

dρ̄
= − 2σ̄

(1 + σ̄)ρ̄

and has the explicit solution:

B = B0

(
ρ̄

ρ̄0

)− 2σ̄
1+σ̄

= B0

(
r̄

r̄0

) 4σ̄
1+σ̄

(2.44)

By rescaling the time coordinate, B0 = 1 at r̄0 = 1 can be set, in which case B is given by:

B = r̄
4σ̄

1+σ̄(2.45)

The solutions derived in this section are singular at the spatial origin, since p̄ and ρ̄ become infinite

at r̄ = 0 for all time. However, the shock wave constructed in the next section removes this

singularity at r̄ = 0 for t > 0 by placing an expanding FLRW spacetime on the interior of the

shock.
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2.6. FLRW-TOV Shock Waves

In [17], a procedure for constructing a coordinate transformation (t̄, r̄) → (t, r) is described such

that the FLRW metric matches the TOV metric Lipschitz continuously along the shock surface. The

details of this procedure will now be provided. Recall that the FLRW metric is given in comoving

coordinates by (2.17) and the TOV metric is given in comoving Schwarzschild coordinates by (2.27).

In order for the dΩ2 coefficients to be identified, we require:

r̄ = R(t)r

This identification provides a way of dynamically matching the radial coordinates on each side of

the shock. The transformation t̄ → t̄(t, r) is less simple to construct but an explicit construction

will not be required, instead we will simply demonstrate the existence of this transformation. This

forms an important step in proving that the matching is Lipschitz continuous, as we will see. In

this light, applying the exterior derivative to r̄ yields:

dr̄ = Rdr + Ṙrdt

so that:

dr =
1

R
dr̄ − Ṙ

R
rdt

and in particular:

dr2 =

(
1

R
dr̄ − Ṙr

R
dt

)
⊗

(
1

R
dr̄ − Ṙr

R
dt

)
=

1

R2
dr̄2 +

Ṙ2r2

R2
dt2 − 2

Ṙr

R2
dtdr̄

Thus the FLRW metric (2.17) is given in (t, r̄) coordinates by:

ds2 = −

(
1− Ṙ2r̄2

R2 − kr̄2

)
dt2 +

R2

R2 − kr̄2
dr̄2 − 2RṘr̄

R2 − kr̄2
dtdr̄ + r̄2dΩ2

and this can be simplified with the use of (2.20) to become:

ds2 =
1

R2 − kr̄2

(
−R2

[
1− 8πG

3
ρR2r2

]
dt2 +R2dr̄2 − 2RṘr̄dtdr̄

)
+ r̄2dΩ2(2.46)
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Now we need the transformation t = t(t̄, r̄) to eliminate the dtdr̄ term in (2.46). Let us first consider

such a transformation on a general metric of the form:

ds̃2 = −C(t, r̄)dt2 +D(t, r̄)dr̄2 + 2E(t, r̄)dtdr̄(2.47)

It is not difficult to show that if Ψ = Ψ(t, r̄) is chosen to satisfy:

∂

∂r̄
(ΨC) = − ∂

∂t
(ΨE)(2.48)

then:

dt̄ = Ψ (Cdt− Edr̄)(2.49)

is an exact differential and the (t̄, r̄) line element for (2.47) becomes:

ds̄2 = − 1

Ψ2C
dt̄2 +

(
D +

E2

C

)
dr̄2(2.50)

Thus applying this general procedure to (2.46) yields:

C = R2

(
1− 8πG

3
ρr̄2

)
(2.51)

D = R2(2.52)

E = −RṘr̄(2.53)

By transforming the FLRW metric into (t̄, r̄) coordinates and equating the dr̄2 coefficients with the

TOV metric, the shock surface Σ can be given implicitly by the equation:

1

A
=

1

R2 − kr̄2

[
R2 +

R2Ṙ2r̄2

R2
(
1− 8πG

3 ρr̄2
)]

and we can simplify this using equation (2.20) to obtain:

M(r̄(t)) =
4π

3
ρ(t)r̄3(t)(2.54)

Equation (2.54) defines the radial coordinate r̄ of the TOV metric as a function of the time coordi-

nate t of the FLRW metric along the shock surface, that is, (2.54) is an equation parameterising the
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shock position r̄, or equivalently r, in terms of t. Since there is no mention of p or p̄ in (2.54), this

equation holds when any barotropic equation of state p = p(ρ) is assigned to the FLRW spacetime

and any barotropic equation of state p̄ = p̄(ρ̄) is assigned to the TOV spacetime. Equation (2.54)

is also a statement of the global conservation of mass-energy as the shock progresses. We will make

the assumption 1− kr2 > 0 for k > 0 in the calculations that follow and note that this assumption

is equivalent to R2 − kr̄2 > 0 for k > 0.

Returning to the construction of the transformation t = t(t̄, r̄), the next step is to determine the

existence and regularity of Ψ, since this determines the existence and regularity of t̄ through (2.49).

To find Ψ, equation (2.48) must be solved subject to initial data on the shock surface, which

according to [17] is determined through the requirement that the dt̄2 coefficient of the FLRW

metric in (t̄, r̄) coordinates matches the dt̄2 coefficient of the TOV metric. Thus the initial data is

given by:

B =
1

(R2 − kr̄2)Ψ2C
(2.55)

Now equation (2.48) can be rewritten in the form of a first-order linear partial differential equation

as so:

E∂tΨ + C∂r̄Ψ = −(∂tE + ∂r̄C)Ψ(2.56)

with the initial condition (2.55) rewritten as:

Ψ(t, r̄(t)) =
(
B(t, r̄(t))C(t, r̄(t))[R2(t)− kr̄2(t)]

)− 1
2(2.57)

and where all points (t, r̄(t)) are constrained to lie on the shock surface given by (2.54). In solving

a PDE initial value problem with initial data given on a surface, the solution in a neighbourhood

of the surface can be determined by solving a set of ODE along the characteristic curves. If this

surface contains a characteristic curve of the PDE then the initial data may not be freely imposed.

This is because the value of any solution at a point further long the characteristic is determined by

the initial data at that point as well as the initial condition for the corresponding ODE, the latter

of which is specified on the surface.
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If the shock surface given by (2.54) is characteristic with respect to (2.56) at some point p on

the shock surface, then a solution cannot be guaranteed to exist locally about p for arbitrary

compatible initial data. Thus we need to show that the shock surface (2.54) is non-characteristic

with respect to the PDE (2.56). With this in mind, we have that the characteristic curves for (2.56)

are parameterised by:

dr̄

dt
=
C

E

and subject to the initial condition r̄(t0) ∈ Σ. The shock surface Σ is given by the following defining

equation:

Φ(t, r̄) = M(r̄)− 4π

3
ρ(t)r̄3 = 0

and this defining equation is non-characteristic with respect to (2.56) at a point (t0, r̄0) on the

shock surface providing:

(E(t0, r̄0), C(t0, r̄0)) · ∇Φ(t0, r̄0) 6= 0(2.58)

To establish that the shock surface is non-characteristic with respect to (2.56), that is, establish

(2.58), we will need the following proposition.

Proposition 2.6.1. The density is larger on the interior of an expanding FLRW-TOV shock wave.

Proof. Suppose for contradiction that (t0, r̄0) is a point on the shock surface Σ, defined by

equation (2.54), and ρ(t0) ≤ ρ̄(r̄0). Then:

4π

3
ρ(t0)r̄3

0 ≤
4π

3
ρ̄(r̄0)r̄3

0 <

∫ r̄0

0
4πρ̄(ξ)ξ2 dξ = M(r̄0)

which is a contradiction, since the point (t0, r̄0) satisfies equation (2.54). Thus:

[ρ](t0, r̄0) := ρ̄(r̄0)− ρ(t0) < 0

�

In such a case ρ̇ < 0, and since ρ̇Ṙ < 0, then Ṙ > 0 as expected.
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Proposition 2.6.2. The shock surface Σ, defined by equation (2.54), is non-characteristic with

respect to the PDE (2.56) providing:

(1) The shock surface is expanding.

(2) The shock surface remains within the region 1− kr2 > 0 for k > 0.

(3) The shock surface remains within the Schwarzschild radius of (2.46).

Proof. First note from (2.51) that C remains strictly positive when inside the Schwarzschild

radius of (2.46), that is:

1− 8πG
3
ρ(t)r̄2 > 0

After taking the gradient of (2.54), condition (2.58) can be written as:

C(t0, r̄0)

E(t0, r̄0)
6= ρ̇(t0)r̄0

3[ρ](t0, r̄0)
(2.59)

Letting r̄ = r̄(t) and taking the time derivative of (2.54) yields:

˙̄r =
ρ̇r̄

3[ρ]

Thus condition (2.59) reduces, as expected, to:

˙̄r 6= C

E

Therefore, we see by comparing the sign on each side of (2.59) that this condition is satisfied for

an expanding shock surface, since ρ̇ < 0, Ṙ > 0 and, by Proposition 2.6.1, [ρ] < 0. �

Since the requirements of Proposition 2.6.2 are expected to hold for an expanding FLRW-TOV shock

wave, thus making the shock surface non-characteristic, we are now in a position to determine the

existence and regularity of Ψ.

Lemma 2.6.3. Let Σ be non-characteristic with respect to (2.56), E,C ∈ C2,1(M) and f, g, h ∈

C1,1(Y ) where M is a neighbourhood about a point on Σ and Y is an appropriate interval in R.

Then there exists a unique solution Ψ ∈ C1,1(M) to (2.56) with initial data (2.57).
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Proof. The compatibility of the initial data will first be checked. The initial data (2.57) can

be written in the form:

Ψ (f(y), g(y)) = h(y)

where f(y) = y, h(y) is the right hand side of (2.57) in the variable y and g(y) is given implicitly

by:

M(g(y)) =
4π

3
ρ(y)g3(y)

The initial data (2.57) is compatible with the PDE (2.56) if:

E (f(y), g(y)) g′(y)− C (f(y), g(y)) f ′(y) 6= 0

which simplifies to the non-characteristic condition:

g′ 6= C

E

Thus the initial data is compatible whenever the shock surface is non-characteristic. Now the

characteristic equations of (2.56) for initial data (2.57) are given by the following system of first-

order ODE:

dt

dx
= E(t, r̄) t(0; y) = f(y)

dr̄

dx
= C(t, r̄) r̄(0; y) = g(y)

dz

dx
= − [∂tE(t, r̄) + ∂r̄C(t, r̄)] z z(0; y) = h(y)

of which the first two can be written as the system:
v′(x; y) = F (v(x; y))

v(0; y) = v0(y)

(2.60)
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where:

v(x; y) = (t(x; y), r̄(x; y))

F (v) = (E(v), C(v))

v0(y) = (f(y), g(y))

By the Picard-Lindelöf theorem, if F is a Lipschitz continuous function of v on an open neighbour-

hood U of v0, then for some interval X containing 0 there exists a unique solution v ∈ C1,1(X,U)

of the initial value problem (2.60). If E,C ∈ C0,1(U) then F ∈ C0,1(U), thus if E,C ∈ C1,1(U) and

f, g ∈ C1,1(Y ) for some appropriate interval Y in R, then t, r̄ ∈ C1,1(X × Y ). If v ∈ C1,1(X × Y )

and the initial data is compatible, then there exists a point q ∈ X × Y such that (t(q), r̄(q)) ∈ Σ

and the Jacobian of v is invertible at q. Thus by the inverse function theorem, there exists an open

neighbourhood N ⊂ X × Y of q and an open neighbourhood M ⊂ U of v(q) such that:

v−1(t, r̄) = (x(t, r̄), y(t, r̄)) ∈ C1,1(M,N)

The final characteristic equation can then be solved to obtain:

z(x; y) = h(y) exp

(
−
∫ x

0
∂tE(t(s; y), r̄(s; y)) + ∂r̄C(t(s; y), r̄(s; y)) ds

)
and therefore the unique solution to (2.56) with initial data (2.57) is given by:

Ψ(t, r̄) = z(x(t, r̄); y(t, r̄))

Moreover, we see from our regularity assumptions that Ψ ∈ C1,1(M), which completes the proof. �

Corollary 2.6.1. If:

(1) The shock surface Σ is expanding.

(2) The shock surface Σ remains within the region 1− kr2 > 0 for k > 0.

(3) The shock surface Σ remains within the Schwarzschild radius of (2.46).

(4) The FLRW and TOV metrics are smooth on each side of Σ away from the origin.
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Then for each point p ∈ Σ \ {0} there exists a C1,1 coordinate transformation (t̄, r̄)→ (t, r) defined

in a neighbourhood of p such that the FLRW and TOV metrics match Lipschitz continuously across

Σ and the FLRW metric components in (t̄, r̄) coordinates are C1,1.

Proof. This result follows as a consequence of (2.49), Proposition 2.6.2 and Lemma 2.6.3. �

If the FLRW and TOV metrics are at least C0,1 in their native coordinates then C1,1 is the

minimum regularity of a coordinate transformation between such coordinates that matches the

metrics Lipschitz continuously across the shock surface. Since the function formed by the union of

two adjacent Lipschitz continuous functions that agree on their intersection is a Lipschitz continuous

function, then if the FLRW and TOV metrics are both Lipschitz continuous in barred coordinates

and agree on the shock surface, then they match Lipschitz continuously on the shock surface.

Given that the metrics have been matched, we turn our attention to satisfying the Rankine-Hugoniot

jump conditions, which ensure the conservation of mass-energy and momentum across the shock

surface. Note that many of the proceeding points will follow [17] closely. Now if the conditions of

Corollary 2.6.1 are met, then Corollary 2.6.1 implies that the conditions of Theorem 2.2.2 are also

met, allowing the Rankine-Hugoniot jump conditions to be given as the following single condition:

[Tµν ]nµnν = (ρ+ p)n2
0 − (ρ̄+ p̄)

n̄2
0

B
+ (p− p̄)|n|2 = 0(2.61)

We will first determine the components nµ and n̄µ. Writing the shock surface as the scalar:

Φ(t, r) = r − r(t) = 0

then:

dΦ = nµdx
µ = −ṙdt+ dr

and so:

n0 = −ṙ

n1 = 1
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Once again, writing the shock surface as the scalar:

Φ(t̄, r̄) =
r̄

R(t(t̄, r̄))
− r(t(t̄, r̄)) = 0

then:

dΦ = n̄µdx̄
µ =

(
−Ṙr̄
R2

∂t

∂t̄
− ṙ ∂t

∂t̄

)
dt̄+ n̄1dr̄ = −

˙̄r

R

∂t

∂t̄
dt+ n̄1dr̄

and so:

n̄0 = −
˙̄r

R

∂t

∂t̄

Now noting that t = t(t̄, r̄) means:

dt =
∂t

∂t̄
dt̄+

∂t

∂r̄
dr̄

and rearranging (2.49) gives:

∂t

∂t̄
=

1

ΨC

to then yield:

n̄0 = −
˙̄r

RΨC

Because the coefficients of the FLRW and TOV metrics must agree on the shock surface, a number

of relations can be found between these coefficients, but only on the shock surface. In this regard,

on the shock surface defined by (2.54), we have:

C = R2

(
1− 8πG

3
ρr̄2

)
= R2A(2.62)

and using (2.62) along with (2.55) yields:

1

Ψ2C2
=
B

A
(1− kr2)
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and thus:

n̄2
0 =

˙̄r2B

R2A
(1− kr2)

Also note that:

|n|2 = −n2
0 +

1− kr2

R2
n2

1 = −ṙ2 +
1− kr2

R2

Now substituting the components nµ and n̄µ into condition (2.61), we obtain:

[Tµν ]nµnν = (ρ+ p̄)ṙ2 − (ρ̄+ p̄)
˙̄r2

R2A
(1− kr2) + (p− p̄) 1

R2
(1− kr2) = 0(2.63)

where ṙ and ˙̄r denote the shock speeds in (t, r) and (t, r̄) coordinates respectively. In [17], equation

(2.21) is used to eliminate p from (2.63), thereby deriving an autonomous system of ODE in R

and r as a function of t that determines the inner FLRW metric and shock position r(t) in terms

of the TOV metric. Thus for any assignment of equation of state p̄ = p̄(ρ̄) and initial condition

for the TOV metric, this system of ODE determines the FLRW metric, ρ(t) and p(t) that match

the given TOV metric Lipschitz continuously across the shock surface (2.54) such that (2.63) holds

across the surface. However [18] proceeds differently to [17] by solving the aforementioned system

of ODE by using an equivalent form of (2.63). This equivalent form will now be derived. To this

end, differentiating (2.54) with respect to t yields:

ρ̇ =
3 ˙̄r

r̄
(ρ̄− ρ)(2.64)

and solving for ρ̇ in (2.21) gives:

ρ̇ = −3Ṙ

R
(ρ+ p)(2.65)

Combining (2.64) and (2.65) then yields:

˙̄r = Ṙr

(
ρ+ p

ρ− ρ̄

)
(2.66)
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Differentiating r̄ = Rr with respect to t in (2.66) and solving for ṙ gives:

ṙ =
Ṙr

R

(
ρ̄+ p

ρ− ρ̄

)
(2.67)

and by substituting (2.66) and (2.67) into (2.63), we obtain the following equivalent form of (2.63)

as so: (
1

1− kr2

)
(ρ+ p̄)(ρ̄+ p)2 − 1

A
(ρ̄+ p̄)(ρ+ p)2 +

1

Ṙ2r2
(p− p̄)(ρ− ρ̄)2 = 0(2.68)

However, equation (2.68) is not yet the final form as an additional relation that holds only on

the shock surface is required. Multiplying equation (2.20) by r2, introducing M through equation

(2.54) and then applying (2.34) yields this additional relation, which is given as:

Ṙ2r2 = −A+ (1− kr2)

The final equivalent form of (2.63) is then given by:

(ρ+ p̄)(ρ̄+ p)2

(
1− A

1− kr2

)
+ (ρ̄+ p̄)(ρ+ p)2

(
1− 1− kr2

A

)
+ (p− p̄)(ρ− ρ̄)2 = 0(2.69)

What remains is to find FLRW and TOV solutions that satisfy the conservation constraint (2.69)

at the shock interface. We begin this construction by assuming again that the equation of state

for the TOV metric is given by p̄ = σ̄ρ̄, then a TOV solution is determined by (2.40)-(2.42) with

explicit forms for A and B given by (2.43) and (2.45) respectively. We will also assume that k = 0

for the FLRW metric. Solving for ρ in (2.54) then using (2.41) specifies ρ on the shock surface in

terms of ρ̄ as so:

ρ =
3M

4πr̄3
=

3γ

r̄2
= 3ρ̄(2.70)

Given ρ, then p can be determined through the conservation condition (2.69). After substituting

A into (2.69) the resulting equation is homogeneous of degree three in the ρ, ρ̄, p and p̄ variables.

Since p̄ = σ̄ρ̄ and ρ = 3ρ̄ on the shock surface, it is clear from homogeneity that (2.69) can be met

if and only if p = σρ for some constant σ. Substituting p = σρ into (2.69) then yields the following
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constraint between σ and σ̄:

σ̄ = H(σ) :=
1

2

√
9σ2 + 54σ + 49− 3

2
σ − 7

2
(2.71)

Alternatively, this constraint can be written as:

σ =
σ̄(7 + σ̄)

3(1− σ̄)

This means imposing the Rankine-Hugoniot jump condition determines the interior equation of

state when the exterior equation of state is specified and vice versa. But not only that, because ρ̄ is

a known explicit function of r̄ and ρ is purely a function of t, then ρ is completely determined and

in turn determines the full interior FLRW spacetime. Moreover, the constraint (2.71) guarantees

that mass-energy and momentum conservation holds across the shock surface, so by Theorem 2.2.2

the equivalent statements of Theorem 2.2.1 also apply. Before deriving the full FLRW spacetime,

it is worth noting that H(0) = 0 and as σ → 0:

σ̄ = H(σ) ∼ 3

7
σ +O(σ2)

It is also easy to verify that for 0 ≤ σ, we have:

(1) H ′(σ) > 0

(2) σ̄ < 1

(3) σ̄ < σ

as would be expected physically since ρ = 3ρ̄ > ρ̄ at the shock surface. Some cases of note are:

σ =
1

3
=⇒ σ̄ =

√
17− 4 ≈ 0.1231

σ = 1 =⇒ σ̄ =

√
112

2
− 5 ≈ 0.2915

Explicit formulas for ρ(t) and R(t) will now be obtained, along with the shock positions r(t) and

r̄(t) = r(t)R(t). In this light, substituting p = σρ into (2.25) and the derivative of (2.24) yields:

1

R

dR

dρ
= − 1

3(1 + σ)ρ
(2.72)
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and:

dρ

dt
= ∓
√

24πG(1 + σ)ρ
3
2(2.73)

respectively. Differentiating (2.70) yields:

dρ

dr̄
= − 2ρ

3
2

√
3γ

(2.74)

and using (2.73), (2.74) and the chain rule gives:

dr̄

dt
= ±

√
18πGγ(1 + σ)(2.75)

Integrating (2.75) with respect to t then gives the following explicit formula for the shock position:

r̄(t) = ±
√

18πGγ(1 + σ)(t− t0) + r̄0(2.76)

where (t0, r̄0) is the initial spacetime position of the shock wave. For a discussion of the physical

relevance of R0 and (t0, r̄0), see [17]. A positive sign in (2.76) corresponds to an expanding shock

wave and a negative sign corresponds to a contracting one. Since (2.70) gives ρ in terms of r̄, then

(2.76) gives ρ in terms of t as so:

ρ(t) =
3γ

r̄2(t)
=

3γ

(±
√

18πGγ(1 + σ)(t− t0) + r̄0)2
(2.77)

Now that ρ has been established, equation (2.72) can be solved to obtain R and such can be used

to obtain the shock position r as well:

R(t) = R0

(
ρ(t)

ρ0

)− 1
3(1+σ)

= R0

(
r̄(t)

r̄0

) 2
3(1+σ)

(2.78)

r(t) =
r̄(t)

R(t)
=
r̄(t)

R0

(
r̄(t)

r̄0

)− 2
3(1+σ)

=
r̄0

R0

(
r̄(t)

r̄0

) 1+3σ
3(1+σ)

(2.79)
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Differentiating (2.76) and (2.79) with respect to t gives the speed of the shock in (t, r̄) and (t, r)

coordinates respectively. Such speeds are found after some simplification to be:

˙̄r = 3(1 + σ)

√
σ̄

1 + 6σ̄ + σ̄2

ṙ =
1 + 3σ

R

√
σ̄

1 + 6σ̄ + σ̄2
(2.80)

Note that the solutions for (2.76)-(2.79) contain two arbitrary constants, R0 and (t0, r̄0), which

come from the initial value problems (2.22) and (2.23) respectively. From (2.77) it can be seen that

running time backwards in the case of an expanding shock wave produces a singularity at time:

t∗ = t0 −
r̄0√

18πGγ(1 + σ)

As t → t∗ it is clear that r̄, r and R tend to zero and ρ, ρ̄, p and p̄ tend to infinity. Taking

this solution as a cosmological model, then t = t∗ represents an initial big bang singularity in

which a shock wave emerges from r̄ = 0. We conclude this section with following theorem, which

summarises its results.

Theorem 2.6.1. Assume the following:

(1) An equation of state of the form p = σρ for the FLRW metric (2.17).

(2) An equation of state of the form p̄ = σ̄ρ̄ for the TOV metric (2.27).

(3) The constraint (2.71) holds.

(4) k = 0.

Then:

(1) The TOV solution is given by (2.40), (2.41), (2.43) and (2.44) where γ is given by (2.42).

(2) The FLRW solution is given by (2.77) and (2.78).

(3) The TOV metric matches the FLRW metric across the shock surface (2.76) such that the

conservation of mass-energy and momentum holds across this surface.

(4) The coordinate identification (t, r)→ (t̄, r̄) is given by r̄ = Rr together with a C1,1 function

t̄ = t̄(t, r) that exists in a neighbourhood of the shock surface.
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Note that because the conditions of Theorem 2.2.2 are satisfied for this shock wave, all of the

equivalent statements of Theorem 2.2.1 also hold. From this point onwards, the FLRW spacetime

with curvature constant k and equation of state p = σρ will be denoted by FLRW(k, σ, 1) and

the TOV spacetime with equation of state p̄ = σ̄ρ̄ will be denoted by TOV(σ̄). The one in the

third argument of FLRW(k, σ, 1) denotes the fact that this spacetime has not been perturbed, the

nature of which will be discussed in Chapter 5. We have shown that when σ̄ = H(σ), can these

two spacetimes be matched to form an FLRW(0, σ, 1)-TOV(σ̄) shock-wave solution of the perfect

fluid Einstein field equations.

2.7. Properties

Now that we have constructed an FLRW(0, σ, 1)-TOV(σ̄) shock-wave solution of the perfect fluid

Einstein field equations, what remains is an analysis of its properties, including an analysis of the

Lax stability of the shock wave. Physically, such solutions model the general relativistic version of

an explosion within a static, singular, isothermal sphere. The singular property stems from the fact

that the TOV(σ̄) density and pressure profiles are inverse square in r̄, so ρ and p tend to infinity as

r̄ → 0. The isothermal property comes from the barotropic equation of state for both interior and

exterior fluids, which in our case models the fluids with constant sound speeds and temperatures.

The larger sound speed in the FLRW(0, σ, 1) spacetime, compared to the smaller sound speed in

the TOV(σ̄) spacetime, can be interpreted as modelling an isothermal equation of state at a higher

temperature. Smoller and Temple remark that this is consistent with the expected behaviour that

shock waves should heat the fluid as they pass through it. They also remark that FLRW(0, σ, 1)-

TOV(σ̄) shock-wave solutions are toy models for the scenario whereby the Big Bang begins with a

shock-wave explosion. Such solutions can also be thought of as toy models for supernovae, which

in the limit σ → 0 recover the Newtonian case of low velocities and weak gravitational fields.

We will now determine the values of σ for which the Lax characteristic conditions hold, in addition

to determining which values yield subluminal shock speeds, that is, shock speeds slower than the

speed of light. An expanding FLRW(0, σ, 1)-TOV(σ̄) shock wave corresponds to taking the plus

sign in (2.22) and the corresponding minus signs in equations (2.23) and (2.24). The objective of
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this section is to show that, in the case of an expanding FLRW(0, σ, 1)-TOV(σ̄) shock wave, there

exist values 0 < σ1 < σ2 < 1 such that the Lax characteristic conditions hold at the shock if and

only if 0 < σ < σ1 and that the shock speed is subluminal if and only if 0 < σ < σ2.

Corollary 2.7.1 (Corollary of Lemma 2.3.1). For 0 < σ < 1, the shock speed relative to the

FLRW fluid particles is given by:

s = (1 + 3σ)

√
σ̄

1 + 6σ̄ + σ̄2
(2.81)

Proof. This result immediately follows from Lemma 2.3.1 and (2.80). �

Note that from constraint (2.71), we can give s purely as a function of σ. The graph of s(σ) is then

given by Figure 2.1.
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Figure 2.1. A plot of s(σ).

Recall that through our choice of natural units, the speed of light is equal to unity.

Theorem 2.7.1. For 0 < σ < 1, the shock speed is subluminal if and only if σ < σ2, where:

σ2 =

√
5

3
≈ 0.745
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Proof. This result follows from Lemma 2.3.1, equation (2.80) and direct numerical calculation

since 1 − s(σ) is monotone for 0 < σ and negative for σ > σ2. Alternatively, this calculation can

be seen from Figure 2.2. �
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Figure 2.2. A plot of 1− s(σ).

We now consider the values of σ for which the Lax characteristic conditions hold. We know that

the Lax characteristic conditions are given by (2.15), which can be written as:

λ̃+
TOV < s < λ̃+

FLRW

where:

λ̃±FLRW = ±

√
dp

dρ
= ±
√
σ

Lemma 2.7.1. If 0 < σ < 1 then the following inequalities hold:

λ̃−TOV < λ̃+
TOV < 0

Lemma 2.7.1 is key to the following theorems and its proof will be given towards the end of this

section.
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Theorem 2.7.2. For 0 < σ < 1, the Lax characteristic conditions hold across the shock if and only

if σ < σ1, where:

σ1 =
1 +
√

10

9
≈ 0.462

Proof. By defining:

∆(σ) = λ̃+
FLRW (σ)− s(σ)

then by (2.81), the right side inequality of the Lax characteristic conditions is equivalent to:

∆(σ) = λ̃+
FLRW (σ)− s(σ) =

√
σ − (1 + 3σ)

√
H(σ)

1 + 6H(σ) +H2(σ)
> 0

The graph of ∆(σ), given by Figure 2.3, shows that ∆(σ) changes from positive to negative at

the point σ = σ1. Since s(σ) > 0 for σ > 0 then the left side inequality of the Lax characteristic

conditions follows from Lemma 2.7.1. �
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Figure 2.3. A plot of ∆(σ).

Theorem 2.7.3. If σ1 < σ < σ2, then the following inequalities hold:

λ̃−FLRW < λ̃+
FLRW < s(2.82)

λ̃−TOV < λ̃+
TOV < s(2.83)
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Proof. Inequalities (2.82) immediately follow from Theorem 2.7.2 and inequalities (2.83) from

Lemma 2.7.1. �

Note that for σ1 < σ < σ2, (2.82) and (2.83) describe a different type of shock wave in which

the 1 and 2 characteristics both cross the shock. This is because the shock speed exceeds the

characteristic speeds on both sides of the shock and occurs even though the sound speeds and

shock speed all remain less than the speed of light. Put another way, Theorem 2.7.3 states that in

general relativity a fluid sound speed of
√
σ ≈
√

0.744 is capable of driving the shock speed all the

way to speed of light. It is also worth noting that:

(1) σ̄1 = H(σ1) ≈ 0.161

(2) σ̄2 = H(σ2) ≈ 0.236

Proof of Lemma 2.7.1. By Proposition 2.3.2 we have that:

λ̃+
TOV =

w̃ +
√

dp̄
dρ̄

1 + w̃
√

dp̄
dρ̄

=
w̃ +
√
σ̄

1 + w̃
√
σ̄

(2.84)

where:

w̃ = eψ−ϕw =
1

R

∂r

∂t̄

(
∂t

∂t̄

)−1

that is, the (t̂, r̂) coordinates are taken to be (t, r) coordinates. Now since:

∂t

∂t̄
(t̄, r̄) =

(
∂t̄

∂t
(t, r̄)

)−1

then:

w =
∂r

∂t̄
(t̄, r̄)

∂t̄

∂t
(t, r̄) =

∂r

∂t
(t, r̄)

and given that:

r(t, r̄) =
r̄

R(t)
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then in a neighbourhood of the shock surface we have:

w =
∂r

∂t
(t, r̄) =

∂

∂t

r̄(t)

R(t)
= −Ṙ(t)r̄

R2(t)

By (2.78):

Ṙ(t) =
2

r(t)

√
σ̄

1 + 6σ̄ + σ̄2

so:

w = −Ṙ(t)r̄

R2(t)
= − 2

R(t)

√
σ̄

1 + 6σ̄ + σ̄2

and thus:

w̃ = −2

√
σ̄

1 + 6σ̄ + σ̄2
(2.85)

Now by (2.85), (2.84) can be written as:

λ̃+
TOV = −

√
σ̄
(

2−
√

1 + 6σ̄ + σ̄2
)

√
1 + 6σ̄ + σ̄2 − 2σ̄

and graphed by Figure 2.4. Because λ̃−TOV < λ̃+
TOV and we see that λ̃+

TOV (σ) < 0 for 0 < σ < 1,

then the proof is complete. �
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Figure 2.4. A plot of λ̃+
TOV (σ̄).
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The fluid sound speed is constrained by the speed of light, however, it remains to say whether

the shock speed is also constrained in the same way. We know that sound speeds of
√
σ <

√
σ2

can drive shocks to the speed of light but the time reversal and stability properties of such shocks

remain to be investigated. Smoller and Temple remark that for 0 < σ < σ1 many solutions will

decay time-asymptotically to the same shock wave, thus in contrast to an FLRW(0, σ, 1) solution,

an FLRW(0, σ, 1)-TOV(σ̄) shock wave will not have a unique time reversal all the way back to

the initial Big Bang singularity. Because the TOV(σ̄) solution is singular at r̄ = 0, the solution

is interpreted as being unstable since it requires an infinite pressure at r̄ = 0 to hold it up. An

FLRW(0, σ, 1)-TOV(σ̄) shock wave removes this singularity at r̄ = 0 for strictly positive time and

thus supplies the pressure required to stabilise a TOV(σ̄) solution. As a final note, for σ1 < σ < σ2

the FLRW(0, σ, 1)-TOV(σ̄) shock-wave solutions represent a new type of fluid dynamical shock

wave, that is, the shock speed exceeds all of the characteristic speeds both sides of the shock, since

both the fast and slow characteristics cross the shock surface from the exterior side to the interior

side.
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CHAPTER 3

General Relativistic Self-Similar Waves

This chapter summarises, and in some parts extends, the majority of the 1971 paper Spherically

Symmetric Similarity Solutions of the Einstein Field Equations for a Perfect Fluid by Cahill and

Taub [3]. What is meant by the majority is that this summary only considers the barotropic

equation of state results, rather than the results that apply to more general caloric equations of

state. This restriction reduces the complexity of many results and arguably makes the paper both

more readable and approachable. The last section on dust solutions has also been omitted. The

extension comes in the form of short proofs to results that benefit from additional justification.

One of the major advantages to including such a summary as part of this thesis, is the ability to

unify the variables, notation and metric sign convention to match those of the other chapters, since

the differences would otherwise be quite significant. Moreover, all of the results given in Cahill and

Taub’s paper have been put into proposition form, with definitions added for clarity.

3.1. Spherically Symmetric Einstein Field Equations

Chapter 2 considered generic spherically symmetric shock-wave solutions of the perfect fluid Ein-

stein field equations and concluded with an explicit construction of an FLRW(0, σ, 1)-TOV(σ̄) shock

wave. This chapter will also consider spherically symmetric solutions of the perfect fluid Einstein

field equations, except we will now make the additional assumption of self-similarity. It will be

seen later in this chapter and in particular in Chapter 6, that this additional assumption makes the

shock-wave construction process much simpler. As like in Chapter 2, this chapter will consider the

generic construction of spherically symmetric self-similar shock waves before providing a specific

example.
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We know that a self-similar variable is a combination of independent variables, which in the spher-

ically symmetric case will be the time coordinate t and the radial coordinate r.

Definition 3.1.1. Solutions of conservation laws for which the self-similar variable takes the form:

ξ =
r

r0

(
t

t0

)−n
for strictly positive constants t0, r0 and n, are called similarity solutions or progressive waves. For

n = 1, such solutions are referred to as similarity solutions of the first kind.

The analysis of this chapter will be restricted to similarity solutions of the first kind and for which

the perfect fluid is modelled by a barotropic equation of state of the form:

p = p(ρ)(3.1)

where p is the fluid pressure and ρ is the fluid density. For convenience, the gravitational constant

G and speed of light c will be scaled so that:

4πG = c = 1(3.2)

As like in Chapter 2, the speed of sound in the fluid,
√
σ, is given by:

σ =
dp

dρ
(3.3)

Before constructing shock-wave solutions, it will be most convenient to use comoving coordinates

for the spacetime metric, which will take the form:

ds2 = −e2ϕdt2 + e2ψdr2 + r̄2dΩ2(3.4)

where ϕ, ψ and r̄ are functions of t and r. The perfect fluid Einstein field equations may be written

in the form:

Gµν = κTµν = κ [(ρ+ p)uµuν + pδµν ](3.5)
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where u is the fluid four-velocity and by our choice of scaling:

κ =
8πG
c4

= 2

Now substituting (3.4) into (3.5) yields four PDE:

eϕ+ψ + eψ−ϕ

[(
∂r̄

∂t

)2

+ 2r̄
∂r̄

∂t

∂ψ

∂t

]
− eϕ−ψ

[
2r̄
∂2r̄

∂r2
+

(
∂r̄

∂r

)2

− 2r̄
∂r̄

∂r

∂ψ

∂r

]
= κρr̄2eϕ+ψ(3.6)

eϕ+ψ + eψ−ϕ

[
2r̄
∂2r̄

∂t2
+

(
∂r̄

∂t

)2

− 2r̄
∂r̄

∂t

∂ϕ

∂t

]
− eϕ−ψ

[(
∂r̄

∂r

)2

+ 2r̄
∂r̄

∂r

∂ϕ

∂r

]
= −κpr̄2eϕ+ψ(3.7)

eψ−ϕ

[
1

r̄

∂2r̄

∂t2
+
∂2ψ

∂t2
+

(
∂ψ

∂t

)2

+
1

r̄

∂r̄

∂t

∂ψ

∂t
− 1

r̄

∂r̄

∂t

∂ϕ

∂t
− ∂ψ

∂t

∂ϕ

∂t

]
−

eϕ−ψ

[
1

r̄

∂2r̄

∂r2
+
∂2ϕ

∂r2
+

(
∂ϕ

∂r

)2

+
1

r̄

∂r̄

∂r

∂ϕ

∂r
− 1

r̄

∂r̄

∂r

∂ψ

∂r
− ∂ϕ

∂r

∂ψ

∂r

]
= −κpeϕ+ψ(3.8)

∂2r̄

∂t∂r
− ∂r̄

∂t

∂ϕ

∂r
− ∂r̄

∂r

∂ψ

∂t
= 0(3.9)

the latter of which is equivalent to the statement that the coordinate system is comoving with the

fluid, that is:

uµ = e−ϕδµ0

The Bianchi identities give us two simplifications, namely:

∂ϕ

∂r
= − 1

ρ+ p

∂p

∂r
(3.10)

∂ψ

∂t
= − 1

ρ+ p

∂ρ

∂t
− 2

r̄

∂r̄

∂t
(3.11)

We can integrate (3.10) and (3.11) to yield:

eϕ =
g0(t)η

ρ+ p
(3.12)

eψ =
f0(r)

r̄2η
(3.13)

48



where f0 and g0 are arbitrary functions of their arguments and:

dη

dρ
=

η

ρ+ p
(3.14)

Now substituting (3.10) and (3.11) into (3.9) yields:

(ρ+ p)r̄2 ∂
2r̄

∂t∂r
+ r̄2∂r̄

∂t

∂p

∂r
+ r̄2∂r̄

∂r

∂ρ

∂t
+ 2(ρ+ p)r̄

∂r̄

∂r

∂r̄

∂t
= 0

and we may write this equation as:

∂

∂t

(
ρr̄2∂r̄

∂r

)
+

∂

∂r

(
pr̄2∂r̄

∂t

)
= 0

Hence there exists a function m(t, r) such that:

∂m

∂r
=
κ

2
ρr̄2∂r̄

∂r
(3.15)

∂m

∂t
= −κ

2
pr̄2∂r̄

∂t
(3.16)

We next turn to (3.6) and (3.7), which may be written as:

∂

∂r

[
r̄ + r̄e−2ϕ

(
∂r̄

∂t

)2

− r̄e−2ψ

(
∂r̄

∂r

)2
]

= κρr̄2∂r̄

∂r
= 2

∂m

∂r
(3.17)

∂

∂t

[
r̄ + r̄e−2ϕ

(
∂r̄

∂t

)2

− r̄e−2ψ

(
∂r̄

∂r

)2
]

= −κpr̄2∂r̄

∂t
= 2

∂m

∂t
(3.18)

and equations (3.17) and (3.18) may be immediately integrated to give:

2m = r̄

[
1 + e−2ϕ

(
∂r̄

∂t

)2

− e−2ψ

(
∂r̄

∂r

)2
]

(3.19)

The function m(t, r) satisfies (3.15) and (3.16) and hence is determined up to an additive constant

of integration. Finally, note that (3.7) and (3.6) can be written as:

e−ϕ
∂U

∂t
= e−ψΓ

∂ϕ

∂r
− κ

2
pr̄ − m

r̄2
(3.20)

e−ψ
∂Γ

∂r
= e−ϕU

∂ψ

∂t
− κ

2
ρr̄ +

m

r̄2
(3.21)
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respectively, where:

U = e−ϕ
∂r̄

∂t
(3.22)

Γ = e−ψ
∂r̄

∂r
(3.23)

From now onwards, we will apply our choice of scaling, that is, we will set κ = 2.

3.2. Compatible Equations of State

A spherically symmetric similarity solution admits a conformal Killing vector field Ξ satisfying:

∇νΞµ +∇µΞν = 2gµν(3.24)

This means admitting the following conformal transformation:

ĝµν = gστ
∂xσ

∂x̂µ
∂xτ

∂x̂ν
=

1

Ω2
gµν

where:

t̂ = Ωt

r̂ = Ωr

θ̂ = θ

φ̂ = φ

for some constant Ω. In the case that the stress-energy-momentum tensor models a perfect fluid,

a consequence of (3.24) and the transformation properties of the Einstein tensor is that the fluid

four-velocity u is conformally invariant, that is:

Ξν∇νuµ − uν∇νΞµ = −uµ(3.25)

Now with spherical symmetry we may write:

Ξµ = αδµ0 + βδµ1(3.26)
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Equation (3.24) then becomes:

α
∂r̄

∂t
+ β

∂r̄

∂r
= r̄(3.27)

α
∂ϕ

∂t
+ β

∂ϕ

∂r
+
∂α

∂t
= 1(3.28)

α
∂ψ

∂t
+ β

∂ψ

∂r
+
∂β

∂r
= 1(3.29)

e2ϕ∂α

∂r
− e2ψ ∂β

∂t
= 0(3.30)

Equation (3.25) reduces to two equations, one of these is (3.28), the other is:

∂β

∂t
= 0(3.31)

It then follows from (3.30) that:

∂α

∂r
= 0(3.32)

If we define new independent variables t̃ and r̃ by the equations:

∂t̃

∂t
=

t̃

α

∂r̃

∂r
=
r̃

β

and new dependent variables:

ϕ̃ = ϕ+ logα− log t̃

ψ̃ = ψ + log β − log r̃

then (3.27)-(3.29) become:

t̃
∂r̄

∂t̃
+ r̃

∂r̄

∂r̃
= r̄

t̃
∂ϕ

∂t̃
+ r̃

∂ϕ

∂r̃
= 0(3.33)

t̃
∂ψ

∂t̃
+ r̃

∂ψ

∂r̃
= 0
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and we may thus write:

ϕ̃ = ϕ̃(ξ)

ψ̃ = ψ̃(ξ)(3.34)

˜̄r = r̃R(ξ)

where:

ξ =
r̃

t̃
(3.35)

This means the metric can now be written as:

ds̃2 = −e2ϕ̃dt̃2 + e2ψ̃dr̃2 + R2r̃2dΩ2

where t̃ and r̃ are also comoving coordinates. More importantly, we have shown there exists a set

of comoving coordinates for which the components of the metric are self-similar. We will drop the

tilde from here onwards and assume that ϕ, ψ and r̄ are of the form given by (3.34). It follows

from (3.34) and (3.15)-(3.19) that the variables m, p and ρ take the form:

m = rM (ξ)

p =
1

r2
P(ξ)(3.36)

ρ =
1

r2
W (ξ)

Furthermore, (3.22) and (3.23) then imply:

U = U(ξ)

Γ = Γ(ξ)
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and we can introduce the the following quantities, which are functions of ξ alone:

M =
m

r̄
=

M

R

P = pr̄2 = PR2(3.37)

W = ρr̄2 = W R2

Note that the scale factor R is the self-similar analogue of R from Chapter 2. We conclude this

section with a rather surprising proposition.

Proposition 3.2.1. The only barotropic equation of state consistent with a spherically symmetric

similarity solution of the Einstein field equations is:

p = σρ(3.38)

for some constant σ.

Proof. This result is an immediate consequence of (3.36) and balancing the variable r on

either side of p = p(ρ). �

3.3. Spherically Symmetric Self-Similar Einstein Field Equations

We now show that the perfect fluid Einstein field equations reduce to a system of ODE when the

spacetime is assumed to be spherically symmetric and self-similar. The full equations will first be

rewritten in terms of M , P and W , which will be considered as functions of ξ and r, rather than t

and r. In this light, for any function f = f(t, r), we may write:

∂f

∂t
(t, r) = −1

t
ξ
∂f

∂ξ
(ξ, r)

∂f

∂r
(t, r) =

1

t

∂f

∂ξ
(ξ, r) +

∂f

∂r
(ξ, r)

53



and hence:

t
∂f

∂t
(t, r) = −ḟ

r
∂f

∂r
(t, r) = ḟ + f̃

where:

ḟ = ξ
∂f

∂ξ
(ξ, r)

f̃ = r
∂f

∂r
(ξ, r)

Using this notation, we have that:

∂r̄

∂t
(t, r) = −ξṘ(ξ, r)(3.39)

∂r̄

∂r
(t, r) = R(ξ, r) + Ṙ(ξ, r) + R̃(ξ, r)(3.40)

and so (3.19) may now be written as:

2M = 1 + ξ2e−2ϕṘ2 − e−2ψ(R + Ṙ + R̃)2(3.41)

Furthermore, (3.15) and (3.16) may now be written as:

RṀ + (P +M)Ṙ = 0(3.42)

M −W − (W + P )
Ṙ

R
= (W −M)

R̃

R
− M̃(3.43)

The integrability condition of (3.42) and (3.43) for determining M(ξ, r) is equivalent to (3.9), and

this condition takes the following equivalent form:

R̈ + Ṙ − (R + Ṙ + R̃)ψ̇ − Ṙϕ̇ = Ṙϕ̃− ˙̃R(3.44)
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We can also obtain the following equation by subtracting (3.7) from (3.6):

(3.45) (R + R̃)ϕ̇− ξ2e2ψ−2ϕ(R + R̃)ψ̇ − e2ψR−2(W + P ) =

˜̃R +
˙̃R + R̃ − ψ̃(R + Ṙ + R̃)− (R + R̃)ϕ̃− ξ2e2ψ−2ϕ(

˙̃R − ϕ̃Ṙ)

Finally, equations (3.10) and (3.11) may be written as:

ϕ̇+
Ṗ

P +W
− 2P

P +W

(
R + Ṙ

R

)
=

1

P +W

(
2P

R̃

R
− P̃

)
− ϕ̃(3.46)

ψ̇ +
Ẇ

P +W
+

2P

P +W

(
Ṙ

R

)
= 0(3.47)

In light of the recent derivations, we know that if ϕ, ψ, R, M , P and W are functions of ξ alone,

as is the case for a similarity solution, then (3.41)-(3.46) reduce to the following system of ordinary

differential equations:

1 + ξ2e−2ϕṘ2 − e−2ψ(R + Ṙ)2 = 2M(3.48)

RṀ + (P +M)Ṙ = 0(3.49)

W + (W + P )
Ṙ

R
= M(3.50)

R̈ + Ṙ − (R + Ṙ)ψ̇ − Ṙϕ̇ = 0(3.51)

e−2ψϕ̇− ξ2e−2ϕψ̇ − (W + P )
1

R2
= 0(3.52)

2P

W + P

(
R + Ṙ

R

)
− Ṗ

W + P
+ = ϕ̇(3.53)

3.4. Essential and Inessential Parameters

We now consider the number and type of parameters that spherically symmetric similarity solutions

depend on.

Proposition 3.4.1. Solutions of (3.47)-(3.53) that are modelled by a barotropic equation of state

depend on three parameters.
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Proof. We can eliminate M from (3.47)-(3.53) to yield six equations in the eleven dependent

variables ϕ, ϕ̇, ψ, ψ̇, R, Ṙ, R̈, P , Ṗ , W and Ẇ . This leaves us with five integration constants

to specify, although it turns out that we can reduce this to three. The assumption of a barotropic

equation of state reduces the number of integration constants by one, since by Proposition 3.2.1

the barotropic equation of state must take the form:

P = σW

for some constant σ, that is, the variables P and Ṗ are eliminated but the parameter σ is introduced.

The other reduction in integration constants comes from combining equations (3.48) and (3.50),

which yields:

F (ξ) := 1 + e−2ϕξ2Ṙ2 − e2ψ(R + Ṙ)2 − 2

(
W + (W + P )

Ṙ

R

)
= 0

Since F (ξ) ≡ 0, then it must also be the case that Ḟ (ξ) ≡ 0, and this introduces an additional

constraint on the integration constants and parameter σ. Taking the dot derivative on any of the

other equations would result in additional dependent variables, such as ϕ̈, so this would not yield

any further constraints on the integration constants. As a result, solutions of (3.47)-(3.53) that

are modelled by a barotropic equation of state are determined by two constants of integration in

addition to the parameter σ. �

We will now discuss essential and inessential parameters.

Definition 3.4.2. The transformation:

t = T0t̂(3.54)

r = R0r̂(3.55)

where T0 and R0 are constants, will be referred to as a scale transformation.

Recall that the metric can be written as:

ds2 = −e2ϕdt2 + e2ψdr2 + r2R2dΩ2
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where ϕ, ψ and R are functions of ξ alone. Under a scale transformation the metric becomes:

dŝ2 = −e2ϕ̂dt̂2 + e2ψ̂dr̂2 + r̂2R̂2dΩ2

where ϕ̂, ψ̂ and R̂ are functions of the variable:

ξ̂ =
T0

R0
ξ(3.56)

and defined by:

eϕ̂(ξ̂) = T0e
ϕ
(
R0
T0
ξ̂
)

= T0e
ϕ(ξ)

eψ̂(ξ̂) = R0e
ψ
(
R0
T0
ξ̂
)

= R0e
ψ(ξ)(3.57)

R̂(ξ̂) = R0R

(
R0

T0
ξ̂

)
= R0R(ξ)

Definition 3.4.3. Quantities whose transformation law under a scale transformation involves the

coefficients of this transformation explicitly, will be said to be scale covariants. Quantities for which

their functional form and value are unaltered by a scale transformation will be referred to as scale

invariants.

Quantities such as ϕ, ψ and R are scale covariants. The constants of integration which enter

into the expression of two scale covariants may be transformed to any desired value by a scale

transformation.

Definition 3.4.4. The constants of integration which enter into an expression of two scale covari-

ants will be referred to as inessential parameters. Otherwise the parameters will be referred to as

essential parameters.

The differential equations describing a similarity solution may be decomposed into two sets, one

involving scale covariants and one involving scale invariants. Examples of scale invariants are:

V = ξeψ−ϕ(3.58)

I = V e−ψR(3.59)
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since it may readily be verified as a consequence of (3.56) and (3.57) that:

V̂ = ξ̂eψ̂−ϕ̂ = ξeψ−ϕ = V

Î = V̂ e−ψ̂R̂ = V e−ψR = I

If f(ξ) is any scalar function, then:

ḟ = ξ
df

dξ
= ξ̂

df̂

dξ̂

is a scale invariant. Do not confuse scalar functions with scalar valued functions representing tensor

coefficients, such as ϕ, ψ or R, which are defined as functions of the metric coefficients.

Proposition 3.4.5. Solutions of (3.47)-(3.53) that are modelled by a barotropic equation of state

depend on three essential parameters.

Proof. We know from Proposition 3.4.1 that the number of parameters is three, so what

remains to be shown is that these three parameters are all essential. We know from (3.57) that ϕ,

ψ and R are all scale covariants, however, the quantities ϕ̇, ψ̇ and R−1Ṙ are scale invariant, since:

˙̂ϕeϕ̂ = ξ̂
d

dξ̂
eϕ̂ = ξ

d

dξ
(T0e

ϕ) = T0ϕ̇e
ϕ = ϕ̇eϕ̂

˙̂
ψeψ̂ = ξ̂

d

dξ̂
eψ̂ = ξ

d

dξ
(R0e

ψ) = R0ψ̇e
ψ = ψ̇eψ̂

˙̂
R

R̂
= ξ̂

dR̂

dξ̂

1

R̂
= ξ

d

dξ
(R0R)

1

R0R
=

Ṙ

R

Because these quantities are scale invariant, equations (3.48) and (3.50) tell us that M , P and W

must also be scale invariants. We then see that equations (3.47)-(3.53) consist of only scale invari-

ant quantities, that is, after minor manipulation. This means the three parameters are essential

parameters by definition. �

The surface ξ = ξ0 has the equation:

r − ξ0t = 0
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and so its future oriented normal vector has components:

nµ = −ξ0δ
0
µ + δ1

µ

In a coordinate frame comoving with the fluid, it can be checked that:

V = − uµnµ√
(uµnµ)2 + nµnµ

(3.60)

Physically, V represents the normal velocity of the moving sphere of radius ξ0t relative to the fluid.

Similarly, the scale invariant:

tanhω = eψ−ϕ
∂r̄

∂t

(
∂r̄

∂r

)−1

= − V Ṙ

R + Ṙ
(3.61)

represents the normal velocity of the fluid relative to the sphere r = r(t) obtained by solving the

equation:

r̄(t, r) = r̄0

In this case, the normal has components:

nµ =
∂r̄

∂t
δ0
µ +

∂r̄

∂r
δ1
µ

Furthermore, it may be checked from equations (3.48) and (3.50) that:

tanhω =
V (W −M)

M + P
(3.62)

I2 =
(1− 2M)(W + P )2V 2

(P +M)2 − (W −M)2V 2
(3.63)

Note that if the quantities M , P and V are given on a surface ξ = ξ0, then the corresponding

similarity solution is known. Consider an observer with the world-line:

r = ξ0t

θ = θ0

φ = φ0
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with θ0, φ0 and ξ0 constant. When ξ0 > 0 the observer moves outward through the fluid toward

higher values of r. When ξ0 < 0 the observer moves inward. When ξ0 = 0 the world line coincides

with that of the fluid element at r = 0. On the other hand, consider now an observer with the

world-line:

r̄(t, r) = r̄0

θ = θ0

φ = φ0

with θ0, φ0 and ξ0 constant. This observer has their velocity relative to the fluid determined by

tanhω. We know from (3.62) that when V > 0 and W > M , then tanhω > 0, that is, even though

the material is falling behind the first observer, when t > 0 it can be moving outward relative to

the second observer.

3.5. Initial Data

Cahill and Taub remark that for a spherically symmetric similarity solution on the interior of an

expanding or contracting shock wave, that the shock surface must be defined by the surface:

ξ = ξ1

and the region in which the similarity solution holds must be given by:

ξ0 ≤ ξ ≤ ξ1

for some constants ξ0 and ξ1. By considering the initial data on such a surface, we can determine

the existence and uniqueness of the solution in this region. In this light, for a barotropic equation

of state, equations (3.12) and (3.13) can be written as:

eϕ =
g0(t)η

ρ+ p
(3.64)

eψ =
f1(r)

R2η
(3.65)
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respectively. By means of equation (3.14):

ϕ̇ = − ġ0

g0
− σ η̇

η
(3.66)

ϕ̃ =
ġ0

g0
− σ η̃

η
(3.67)

ψ̇ = − η̇
η
− 2Ṙ

R
(3.68)

ψ̃ = − η̃
η
− 2R̃

R
− f̃1

f1
(3.69)

where:

σ =
dp

dρ
= σ(η)(3.70)

It can be checked that if (3.66)-(3.69) are substituted into (3.44)-(3.45), these equations and:

Ẏ 1 = Y 2(3.71)

Ẏ 3 = Ỹ 2(3.72)

can be written in the form:

Ẏ i = F i(Y j ; Ỹ j ; ξ, r)(3.73)

for i, j ∈ {1, . . . , 4}, where:

Y 1 = R

Y 2 = Ṙ

Y 3 = R̃

Y 4 = η

The Cauchy-Kowaleski theorem can be applied to this system of equations, and from it, we find

that if:

(R + R̃)(V 2 − σ) 6= 0(3.74)
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on the initial surface ξ = ξ1, then the equations have a unique and analytic solution in the neigh-

bourhood of this surface. The quantities Y i and Ỹ i form the initial data of the problem. If they

are constrained so that (3.43) holds, then a solution of the perfect fluid Einstein field equations is

obtained, with these equations taking the form:

Z(Y i; Ỹ i; ξ, r) = 0(3.75)

for i ∈ {1, . . . , 4}. Since M , P and W can be given in terms of Y i and Ỹ i, (3.42) follows from

(3.43)-(3.45) and the definition of M . The surfaces defined by:

V 2 − σ = 0

are the hydrodynamical characteristic surfaces, that is, they describe the moving wavefronts of

sound waves. These surfaces are referred to as sonic surfaces in Chapter 4. The surfaces defined

by:

R + R̃ = 0

satisfy:

1− 2M = (1− V 2)e−2ψṘ2

Notice that if condition (3.74) is satisfied in the neighbourhood of an initial surface ξ = ξ1, and if

on this surface the Ỹ i vanish, then a solution of the Einstein field equations must be a similarity

solution. Because the solution is unique, then the only solution of the perfect fluid Einstein field

equations which takes on constant values on a surface ξ = ξ1 is a similarity solution. The variables

being constant on the surface specifies the functions f1(r) and g0(t) in terms of the initial values

of R and η(ξ, r). For such a solution, (3.75) are of the form:

Ẏ i = Zi(Y j ; ξ)(3.76)

Note that if p is not proportional to ρ, the solution determined by such data is not a similarity

solution. We know this from Proposition 3.2.1, since other equations of state are not admissible.
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3.6. Self-Similar Shock Waves

In this section we consider the conditions which relate the metric coefficients and hydrodynamic

variables on each side of a spherical surface representing a shock wave. This surface will be assumed

to separate spacetime into two regions, an interior region and an exterior region. In this light, the

relation defining such a shock is given by:

r = Φ(t)(3.77)

If this shock is a surface ξ = ξ1 in self-similar comoving coordinates, then we have:

Φ(t) = ξ1t(3.78)

where ξ1 is a constant. We will now consider Schwarzschild coordinates, in particular, self-similar

Schwarzschild coordinates, that is, those in which the metric (3.4) takes the form:

ds2 = −e2µdt̄2 + e2νdr̄2 + r̄2dΩ2(3.79)

where variables µ and ν are functions of a single self-similar variable. Note that the following

proposition does not require either the comoving or Schwarzschild coordinates to be self-similar.

Proposition 3.6.1. The Schwarzschild coordinates t̄ and r̄ are related to the comoving coordinates

t and r by the following equations:

dt̄ = e−µ(eϕ coshωdt+ eψ sinhωdr)(3.80)

dr̄ = e−ν(eϕ sinhωdt+ eψ coshωdr)(3.81)

where:

tanhω = eψ−ϕ
∂r̄

∂t

(
∂r̄

∂r

)−1

(3.82)

e−2ν = e−2ψ

(
∂r̄

∂r

)2

− e−2ϕ

(
∂r̄

∂t

)2

= 1− 2m

r̄
(3.83)

and µ is such that the right hand side of (3.80) is a perfect differential.
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Proof. First note that:

ds2 = −e2µdt̄2 + e2νdr̄2 + r̄2dΩ2

= −(eϕ coshωdt+ eψ sinhωdr)2 + (eϕ sinhωdt+ eψ coshωdr)2 + r̄2dΩ2

= −e2ϕdt2 + e2ψdr2 + r̄2dΩ2

and so it remains to show:

∂t̄

∂t
= eϕ−µ coshω

∂t̄

∂r
= eψ−µ sinhω

∂r̄

∂t
= eϕ−ν sinhω

∂r̄

∂r
= eψ−ν coshω

The expression for tanhω comes from the fact that:

dr̄ =
∂r̄

∂t
dt+

∂r̄

∂r
dr

which yields:

cosh2 ω =

[
1− e2ψ−2ϕ

(
∂r̄

∂t

)2(∂r̄
∂r

)−2
]−1

= e2ν−2ψ

(
∂r̄

∂r

)2

sinh2 ω =

[
1− e2ψ−2ϕ

(
∂r̄

∂t

)2(∂r̄
∂r

)−2
]−1

− 1 = e2ν−2ψ

(
∂r̄

∂r

)2

− 1 = e2ν−2ϕ

(
∂r̄

∂t

)2

and thus demonstrates the last two equalities. The first two equalities follow from the fact that t̄

is indirectly specified by µ, which itself is determined by:

∂

∂r
(eϕ−µ coshω) =

∂

∂t
(eψ−µ sinhω)

�
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In Schwarzschild coordinates the four-velocity is given by:

ūµ = uσ
∂x̄µ

∂xσ
= e−ϕ

∂x̄µ

∂t

that is, ū2 = ū3 = 0 and:

ū0 = e−µ coshω

ū1 = e−ν sinhω

This means ω is related to the proper velocity associated with an element of the fluid when measured

in Schwarzschild coordinates. In these coordinates, the surface described by (3.78) takes the form:

r̄ = Φ̄(t̄)(3.84)

and its unit normal has components n̄2 = n̄3 = 0 and:

n̄0 = −eµ sinhχ

n̄1 = eν coshχ

where:

tanhχ = eν−µ
∂Φ̄

∂t̄
(3.85)

This means χ is related to the proper velocity of the shock front in Schwarzschild coordinates. The

quantities χ and ω together yield an interesting coordinate invariant:

ūµn̄µ = − sinh(χ− ω) = uµnµ(3.86)

where nµ is the unit normal to the shock surface in comoving coordinates. The normal components

in comoving coordinates are given by n2 = n3 = 0 and:

n0 = −eϕ sinh(χ− ω)

n1 = eψ cosh(χ− ω)
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with:

tanh(χ− ω) = eψ−ϕ
∂Φ

∂t
(3.87)

The quantity χ − ω thus measures the velocity of the shock surface relative to the fluid flow. Let

us now introduce the notation:

f± = lim
ε→0

f(t̄, Φ̄(t̄)± ε)

and:

[f ] = f− − f+

where f is any function of r̄ and t̄. Similarly, in comoving coordinates we define:

f± = lim
ε→0

f(t,Φ(t)± ε)

Thus f− and f+ are the values of the function f on the interior and exterior sides of the shock

respectively, with [f ] denoting the jump in f across the shock. The values of f+ and f− depend on

the position of the shock and can be considered as functions of t̄ and r̄ or t and r.

Proposition 3.6.2. It may be assumed without loss of generality that:

χ+ = χ−(3.88)

Proof. The fundamental assumption is that a solution can be found that contains a shock,

this means that the spacetimes both sides of the shock must agree on the position and thus the

proper velocity of the shock. It then remains to show that this assumption yields (3.88) without

loss of generality. Since the variable χ is determined by the velocity of the shock in Schwarzschild

coordinates by (3.85), then let (t̄, r̄) and (t̃, r̃) represent the Schwarzschild coordinates of the in-

terior and exterior spacetimes about the shock surface respectively. Because both coordinates

are Schwarzschild coordinates then r̄ = r̃ and this implies t̄ and t̃ can only differ by a temporal
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transformation of the form t̃ = t̃(t̄), thus:

tanhχ− = eν−µ
∂Φ̄

∂t̄
=
∂r̃

∂r̄

∂t̄

∂t̃
eν̃−µ̃

∂t̃

∂t̄

∂Φ̃

∂t̃
= eν̃−µ̃

∂Φ̃

∂t̃
= tanhχ+

and therefore (3.88) holds in any Schwarzschild coordinate system either side of the shock. �

Proposition 3.6.3. If the induced metric on the surface r̄ = Φ̄(t̄) is continuous, then the following

quantities are continuous across the shock, that is:

µ+(t̄, r̄) = µ−(t̄, r̄)(3.89)

ν+(t̄, r̄) = ν−(t̄, r̄)(3.90)

r̄+(t, r) = r̄−(t, r)(3.91) (
e2ϕ − e2ψ

(
∂Φ

∂t

)2
)

+

=

(
e2ϕ − e2ψ

(
∂Φ

∂t

)2
)
−

(3.92)

Proof. The continuity of µ and ν follows from (3.85) and the continuity of the induced metric

on the surface r̄ = Φ̄(t̄). In the comoving coordinate system, (3.91) follows similarly, with (3.92)

following from the continuity of ν, (3.77) and (3.83). �

Substituting (3.87) into (3.92) whilst noting the continuity of χ and the time derivative of Φ across

the shock yields:

e−ϕ+ cosh(χ− ω+) = e−ϕ− cosh(χ− ω−)(3.93)

e−ψ+ sinh(χ− ω+) = e−ψ− sinh(χ− ω−)(3.94)

So in comoving coordinates the metric is discontinuous since ϕ and ψ are discontinuous, with the

discontinuities constrained by (3.93) and (3.94). We will see that such discontinuities can also be

expressed in terms of the discontinuity of the hydrodynamic variables.

Proposition 3.6.4. The function m is continuous across the shock.

Proof. This follows immediately from the continuity of r̄ and ν and equation (3.83). However,

this proposition may also be proved from (3.82), (3.87), (3.91), (3.93) and (3.94), as will now be
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shown. We have by differentiating (3.91) that:

∂r̄+

∂r

(
∂Φ

∂t
+
∂r̄+

∂t

(
∂r̄+

∂r

)−1
)

=
∂r̄−
∂r

(
∂Φ

∂t
+
∂r̄−
∂t

(
∂r̄−
∂r

)−1
)

and on using (3.82) and (3.87) we may write this as:[
∂r̄

∂r
eϕ−ψ (tanh(χ− ω) + tanhω)

]
= 0

It then follows from (3.82), (3.91), (3.93) and (3.94) that:[
e−2ψ

(
∂r̄

∂r

)2

− e−2ϕ

(
∂r̄

∂t

)2
]

= 0

In view of the definition of m and the continuity of r̄ it follows that m is continuous. �

The jump in the hydrodynamic variables is described by the Rankine-Hugoniot conditions, which

we first introduced in Section 2.1. These conditions are given in Schwarzschild coordinates as so:

[(ρ+ p)ūµūν + pgµν ]n̄ν = 0(3.95)

Proposition 3.6.5. By defining:

ū = −ūµn̄µ = −uµnµ = sinh(χ− ω)

the Rankine-Hugoniot conditions may be written as:

ū2
+(ρ+ + p+) + p+ = ū2

−(ρ− + p−) + p−(3.96)

ū2
+(ρ+ + p+)2 − ū2

−(ρ− + p−)2 = (p+ − p−)
(
ū2

+(ρ+ + p+) + ū2
−(ρ− + p−)

)
(3.97)

Proof. Condition (3.96) directly follows from contracting the Rankine-Hugoniot conditions

with n̄µ, noting that n̄ is a normalised four-vector, so gµν n̄µn̄ν = −1. For (3.97), the Rankine-

Hugoniot conditions will first need to be given in component form as so:

[ū(ρ+ p) coshω − p sinhχ] = 0

[ū(ρ+ p) sinhω − p coshχ] = 0
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noting that the continuity of µ and ν means that they have been factored out of these equations.

Subtracting the square of the second equation from the square of the first yields:

0 = [(ū(ρ+ p) coshω − p sinhχ)2 − (ū(ρ+ p) sinhω − p coshχ)2]

= [ū2(ρ+ p)2 + 2ū(ρ+ p)p(sinhω coshχ− coshω sinhχ)− p2]

= [ū2(ρ+ p)2 − 2ū(ρ+ p)p sinh(χ− ω)− p2]

= [ū2(ρ+ p)2 − 2ū2(ρ+ p)p− p2]

which can then be written as:

ū2
+(ρ+ + p+)2 − ū2

−(ρ− + p−)2 = 2ū2
+(ρ+ + p+)p+ + p2

+ − 2ū2
−(ρ− + p−)p− − p2

−

Finally, applying (3.96) yields:

ū2
+(ρ+ + p+)2 − ū2

−(ρ− + p−)2 = 2ū2
+(ρ+ + p+)p+ + p+

(
ū2
−(ρ− + p−) + p− − ū2

+(ρ+ + p+)
)

− 2ū2
−(ρ− + p−)p− − p−

(
ū2

+(ρ+ + p+) + p+ − ū2
−(ρ− + p−)

)
= (p+ − p−)

(
ū2

+(ρ+ + p+) + ū2
−(ρ− + p−)

)
�

Conditions (3.96) and (3.97) may be written as:

ū2
− =

(p− − p+)(ρ+ + p−)

(ρ− + p−)(ρ− − ρ+ + p+ − p−)
(3.98)

ū2
+ =

(p− − p+)(ρ− + p+)

(ρ+ + p+)(ρ− − ρ+ + p+ − p−)
(3.99)

noting that:

ū2
+

ū2
−

=
(ρ− + p+)(ρ− + p−)

(ρ+ + p−)(ρ+ + p+)
(3.100)

It then follows that:

V 2 =
ū2

1 + ū2
= tanh2(χ− ω) = e2ψ−2ϕ

(
∂Φ

∂t

)2

(3.101)
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and:

V 2
+ =

(p− − p+)(ρ− + p+)

(ρ− − ρ+)(ρ+ + p−)
(3.102)

V 2
− =

(p− − p+)(ρ+ + p−)

(ρ− − ρ+)(ρ− + p+)
(3.103)

Hence:

tanh(ω− − ω+) =
V+ − V−
1− V−V+

=

√
(p− − p+)(ρ− − ρ+)

(ρ+ + p−)(ρ− + p+)
= L(3.104)

and:

tanhω− =
L+ tanhω+

1 + L tanhω+
(3.105)

Equations (3.93) and (3.94) may be written as:

eϕ−−ϕ+ =

√
(ρ− + p+)(ρ+ + p+)

(ρ+ + p−)(ρ− + p−)
(3.106)

eψ−−ψ+ =

√
(ρ+ + p−)(ρ+ + p+)

(ρ− + p+)(ρ− + p−)
(3.107)

respectively. The continuity of the function m(t, r) across the shock surface implies that:

[m(t,Φ(t))] = 0

and this means we have that: [
∂m

∂r

∂Φ

∂t
+
∂m

∂t

]
= 0

or through use of equations (3.15), (3.16) and (3.91):[
ρ
∂r̄

∂r

∂Φ

∂t
− p∂r̄

∂t

]
= 0(3.108)
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It follows from the continuity of m and r̄ across the shock surface that (3.102) and (3.103) can be

written as:

V 2
− =

(P− − P+)(W+ + P−)

(W− −W+)(W− + P+)
(3.109)

V 2
+ =

(P− − P+)(W− + P+)

(W− −W+)(W+ + P−)
(3.110)

respectively, in addition to:

M− = M+(3.111)

If the shock is a surface ξ = ξ1 which separates two similarity solutions each described by a function

p(ρ), where p+(ρ) may differ from p−(ρ), the above equations relate the scale invariants M , P and

V on each side of the shock. Since the values of these quantities on a surface ξ = ξ0 determine the

surface and a similarity solution, we see that a similarity solution on one side of a shock, and the

position of the shock, that is, the value of ξ1, determine the similarity solution on the other side of

the shock consistent with the value of ξ1. Equations (3.106) and (3.107) relate ϕ− to ϕ+ and ψ−

to ψ+ across the shock when the same coordinates t and r are used on both sides. Suppose instead

that the coordinates on one side are scaled according to (3.54) and (3.55) but those on the other

side are left unchanged. We would then have:

t− = t+ = T0t̂+

r− = r+ = R0r̂+

In light of (3.57) it follows that:

t−

t̂+
eϕ−−ϕ̂+ = eϕ−−ϕ+

r−
r̂+
eψ−−ψ̂+ = eψ−−ψ+
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Therefore, when t− 6= t+ and r− 6= r+, because different scales are used on each side of the shock,

(3.106) and (3.107) may be written as:

t−
t+
eϕ−−ϕ+ =

√
(W− + P+)(W+ + P+)

(W+ + P−)(W− + P+)
(3.112)

r−
r+
eψ−−ψ+ =

√
(W+ + P+)(W+ + P−)

(W− + P−)(W− + P+)
(3.113)

3.7. Compatibility

We will now consider solutions compatible with similarity solutions. The generalised Rankine-

Hugoniot conditions given by (3.98)-(3.105) and the conditions on the metric tensor given by

(3.106) and (3.107) together with the continuity of the functions m(t, r) and r̄(t, r), can be thought

of as either determining the variables behind the shock in terms of those ahead of it or vice versa.

Because r̄ is continuous across the shock, it is possible to replace the variables p and ρ in (3.98)-

(3.107) by P and W respectively. In this light, define:

α =
P+

W+
=
p+

ρ+

β =
P−
W+

=
p−
ρ+

(3.114)

γ =
W−
P−

=
ρ−
p−

Definition 3.7.1. If a solution ahead of a spherical shock is such that the variables so determined

are the values that these variables take on in a similarity solution, then the solution ahead of the

shock is said to be compatible with a similarity solution.

Proposition 3.7.2. If a spacetime behind a spherical shock is a similarity solution and the space-

time ahead of the shock is compatible with a similarity solution with its fluid characterised by an

equation of state of the form p+ = p+(ρ+), then the spacetime ahead of the shock must also be a

similarity solution.

Proof. Since the variables P−, W−, ϕ−, ψ−, R− and V− are to describe a similarity solution,

they are constant, that is, independent of r on the shock. Because we know that p+ = p+(ρ+), then
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equation (3.103) implies β and α are both constant, which is equivalent to both W+ and P+ being

constant. From this, equations (3.102), (3.106) and (3.107) then imply that V+, ϕ+ and ψ+ are

constant. Because r̄+ = r̄−(ξ1, r) = rR−(ξ1) then R̃+ vanishes. We also have that Ṙ+ is constant

from (3.82) and (3.104), so R+ is also constant. Hence if the region behind the shock is described

by a similarity solution, then the Ỹ i of (3.75) vanish. Therefore, the unique solution of equations

(3.75) subject to the initial conditions derived from the jump relations is given by a similarity

solution. Note that all of this is subject to the assumption that the shock satisfies (3.74). �

Proposition 3.7.3. If a spacetime behind a spherical shock is a similarity solution and the space-

time ahead of the shock is compatible with a similarity solution with one of the quantities: α, β,

ϕ+ or ψ+ constant along the shock, then each of these quantities is independent of r.

Proof. This is an immediate consequence of (3.103), (3.106) and (3.107). �

3.8. Pure Radiation Solutions

In this section we consider spherically symmetric similarity perfect fluid solutions with a specific

equation of state.

Definition 3.8.1. If the source of the gravitational field is a perfect fluid with equation of state:

p =
c2

3
ρ(3.115)

then this state of matter is referred to as pure radiation.

A pure radiation equation of state is special for two reasons. The first is that the trace of the

stress-energy-momentum tensor is null, that is:

T = gµνT
µν = gµν(ρ+ p)uµuν + gµνpg

µν = −(ρ+ p) + 4p = 0

where the speed of light constant has again been set to unity. The second is that the Stefan-

Boltzmann radiation law implies this equation state corresponds physically to a purely radiative

state of matter, such as a photon gas. This equation of state also models the extreme relativistic
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limit of free particles. Since this equation of state is applicable to the Radiation Dominated Epoch

after the Big Bang, it is reasonable to expect it to hold in the region behind a shock wave emanating

from such an event. We will assume that such a medium constitutes the interior of a self-similar

shock-wave solution, that is:

P− =
1

3
W−(3.116)

This means that (3.102)-(3.107) become:

V 2
+ =

(β − α)(3β + α)

(3β − 1)(1 + β)
= ξ2

1e
2ψ+−2ϕ+(3.117)

V 2
− =

(β − α)(1 + β)

(3β − 1)(3β + α)
= ξ2

1e
2ψ−−2ϕ−(3.118)

L2 =
(β − α)(3β − 1)

(1 + β)(3β + α)
(3.119)

−ξ
2
1e
ψ−−ϕ+R′1

R1 + ξ1R′1
=

L+ tanhω+

1 + L tanhω+
(3.120)

e2ϕ−−2ϕ+ =
(3β + α)(1 + α)

4β(1 + β)
(3.121)

e2ψ−−2ψ+ =
(1 + β)(1 + α)

4β(3β + α)
(3.122)

respectively, where α and β are given by (3.114). Now from (3.115) and (3.118):

V 2
− − σ− = V 2

− −
1

3
= −6(β − β1)(β − β2)

(3β − 1)(9β + α)

where:

2β1 = 1− α+

√
(1− α)2 − 4

3
α

2β2 = 1− α−
√

(1− α)2 − 4

3
α ≤ 2β1

Note that for α = 1
3 or α = 3 then:

β1 = β2 =
1− α

2
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It is reasonable to expect the outer fluid to be no hotter than the inner fluid, that is:

α ≤ 1

3

which is equivalent to:

ρ+ − 3p+ ≥ 0

and implies that both β1 and β2 are real. Now from (3.115) and (3.117) we have:

V 2
+ − 1 =

(1 + α)(1− α− 2β)

(3β − 1)(1 + β)
≤ 0

where the inequality comes from the fact that the speed of the shock relative to the material ahead

of it is less than the speed of light in the fluid. This means that β must be restricted so that:

1− α− 2β

3β − 1
≤ 0

Note that:

ρ− ≥ ρ+ =⇒ β ≥ 1

3

Now if we require:

β > β1

then:

V 2
− − σ− < 0

V 2
+ − 1 < 0

and the perfect fluid Einstein field equations reduce to:

R̈ + Ṙ +

(
Ṙ

2R
− ẋ

x

)(
3R + 4Ṙ

)
= 0(3.123)

1

2
R4 +

2ξx4Ṙ

R
− ẋ

x

(
3ξx4 −R4

)
= 4x2C0(3.124)
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where:

eϕ = ξ
1
2x

e−ψ =
R2

x3
(3.125)

W =
3C0R2

x4

with C0 being constant. Note that (3.125) is presented the way it is for comparison with an

analogous set of relations that will be given in Chapter 4. Equations (3.123) and (3.124) have a

first integral given by:

2C0R2

x4

(
3 +

4Ṙ

R

)
= 1 +

ξṘ2

x2
− R4

x6

(
R + Ṙ

)2
(3.126)

and this is obtained by equating (3.48) and (3.50). Consider now a solution to (3.123) and (3.124)

given by:

x = x0ξ
− 1

2

R = R0ξ
− 1

2

where x0 and R0 are related by:

x2
0 = 23C0

R6
0 = 211C3

0

The metric and density of this solution are then given by:

ds2 = −x2
0dt

2 +
R2

0

ξ

(
1

4
dr2 + r2dΩ2

)
(3.127)

ρ =
3C0ξ

2

x4
0r

2
(3.128)
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which under the scale transformation:

t̂ = x0t

r̂ = R2
0x
−1
0 r

becomes:

dŝ2 = −dt̂2 +
1

ξ̂

(
1

4
dr̂2 + r̂2dΩ2

)
ρ =

3ξ̂2

8r̂2

Alternatively, under the transformation:

t̂ = x0t

r̂ = R0x
− 1

2
0 r

1
2

the metric and density take the form:

dŝ2 = −dt̂2 +R2(t̂)(dr̂2 + r̂2dΩ2)

ρ =
3

8t̂2

where:

R(t̂) = t̂
1
2

This solution is the familiar FLRW(0, 1
3 , 1) solution given in Chapter 2. This means that FLRW(0, 1

3 , 1)

is in fact a similarity solution. Note that the density is given differently than in Chapter 2 be-

cause we are assuming a scaling which implies κ = 2, whereas the scaling of all other chapters,

including Chapter 2, implies κ = 8π. As a final note, and for use later, it follows from (3.48) that

FLRW(0, 1
3 , 1) satisfies the following relations:

P = M(3.129)

V 2 = 2M(3.130)

77



3.9. Static Solutions

In this section we consider spherically symmetric similarity perfect fluid solutions which are static.

Proposition 3.9.1. Spherically symmetric similarity solutions of the perfect fluid Einstein field

equations are static if and only if the following conditions hold in comoving coordinates:

∂r̄

∂t
= 0

∂ρ

∂t
= 0(3.131)

∂p

∂t
= 0

Proof. Since these conditions apply to the metric:

ds2 = −e2ϕdt2 + e2ψdr2 + r̄2dΩ2

that is, a diagonal metric, then to prove this statement it is sufficient to show that there exists a

temporal transformation for which ϕ, ψ and r̄ are independent of t. We obtain time independence

of r̄ for free, and coupled with the time independence of p and ρ, (3.11) implies that we also

immediately obtain time independence of ψ. We can also use (3.10) to obtain:

ϕ =

∫
− 1

ρ+ p

∂p

∂r
dr + g(t) = f2(r) + g1(t)

where f2 and g1 are arbitrary functions of their arguments. This means that:

eϕ = ef2(r)+g1(t) = ef2(r)eg1(t)

and thus this metric component can be made time independent through the temporal transforma-

tion:

t̂ = t̂(t)

r̂ = r
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where:

∂t̂

∂t
= eg1(t)

�

Proposition 3.9.2. There is a single one-parameter family of static spherically symmetric simi-

larity perfect fluid solutions.

Proof. For a static solution we have r̄ = r̄(r) and this implies:

r̄ = rR(ξ) = rR1

that is, R must be constant. From (3.16) we obtain that m = m(r) and thus (3.37) yields:

m = M1r̄ = rM1R1

for some constant M1. Thus, from (3.19) we see that ψ must be constant and given by:

e2ψ =
R2

1

1− 2M1

In addition, (3.15) then yields:

ρ =
M1

R2
1r

2
(3.132)

Since we already know from Proposition 3.2.1 that the most general barotropic equation of state

for a spherically symmetric similarity solution takes the form p = σρ, for some constant σ, then we

also obtain:

p =
σM1

R2
1r

2

Finally, from (3.10):

∂ϕ

∂r
= − 1

ρ+ p

∂p

∂r
=

2σ

(1 + σ)r
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and thus:

eϕ = g1(t)r
2σ

1+σ(3.133)

From this, (3.20) then specifies the constant M1 as a function of σ, which is given by:

M1(σ) =
2σ

1 + 6σ + σ2

The resulting static solution is then given as:

ds2 = −C2
1ξ

2n(σ)dt2 +
R2

1

1− 2M1(σ)
dr2 + R2

1r
2dΩ2(3.134)

ρ =
M1(σ)

R2
1r

2
(3.135)

where C1 is an inessential parameter and:

n(σ) =
2σ

1 + σ

�

Since any purely temporal transformation, that is, a transformation of the form t̄ = t̄(t), will keep

the fluid in a comoving coordinate frame, we can express the resulting static solution as:

ds2 = −C2
1r

2n(σ)dt2 +
R2

1

1− 2M1(σ)
dr2 + R2

1r
2dΩ2

ρ =
M1(σ)

R2
1r

2

Removing C1 and R1 by a scale transformation yields a solution which is familiar to us from

Chapter 2:

ds2 = −r2n(σ)dt2 +
1

1− 2M1(σ)
dr2 + r2dΩ2

ρ =
M1(σ)

r2

That is, by requiring a spherically symmetric similarity solution to be static, we obtain the TOV

solution. Since the only essential parameter in this solution is σ, the TOV solution is thus the
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unique spherically symmetric similarity solution that is static. To explicitly see TOV(σ) as a

similarity solution, another purely temporal transformation puts TOV(σ) in self-similar comoving

coordinates as so:

ds̄2 = −ξ̄2n(σ)dt̄2 +
1

1− 2M1(σ)
dr̄2 + r̄2dΩ2

ρ =
M1(σ)

r̄2

Now given that M1(σ) and e2ψ must be positive, then:

0 ≤ 2M1(σ) ≤ 1

and σ will be real valued only when:

0 < 4M1(σ) ≤ 1(3.136)

Because σ represents the square of the sound speed in the fluid and the speed of light has been set

to unity, it must be the case that:

σ ≤ 1

Furthermore, if we further restrict σ so that:

σ ≤ 1

3

then we have:

0 ≤ 14M1(σ) ≤ 3(3.137)

3.10. Shock-Wave Solutions

The FLRW metric (3.127) can be matched to a compatible TOV metric (3.134) for a particular

value of M1, or equivalently a particular value of σ. That is, we may construct a solution of the
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field equations such that for the region behind the shock:

0 ≤ ξ ≤ ξ1

we have the FLRW metric and for the region ahead of the shock:

ξ1 ≤ ξ

we have the TOV metric. Such a construction was completed in Chapter 2, except this time

we restrict to the pure radiation FLRW and have the advantage of using self-similar Schwarzschild

coordinates. The shock-wave solution that will be constructed will be nonsingular everywhere away

from the shock and the spatial and temporal origins. In this light, we must show that (3.117)-(3.118)

and (3.121)-(3.122) can be satisfied. Recall that for the FLRW(0, 1
3 , 1) we have:

P− = M− =
1

2
V 2
− =

1

3
W−

and that the continuity of M implies:

M− = M+ ≡M1(σ)

For TOV(σ) we have:

W+ = M1(σ)

P+ = σM1(σ)

and when these equations are applied, (3.118) becomes an equation for M1, that is:

2M1 =
M1 − P+(M1)

3M1 + P+(M1)
= V 2

−(3.138)

where:

P+(M1) = σ(M1)M1
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Equivalently, we have:

M1(2M1 − 1)(8M2
1 + 6M1 − 1) = 0(3.139)

The only value of M1 that satisfies (3.139) and is consistent with inequalities (3.137) is:

M1 =

√
17− 3

8
(3.140)

Hence:

V 2
− =

√
17− 3

4

and we can use (3.117) to compute:

V 2
+ =

(M1 − P+(M1))(3M1 + P+(M1))

4M2
1

≈ 0.685

since it follows from (3.140) that:

P+ ≈ 0.0173

If the scaling is set so that (3.128) and (3.135) hold, then from (3.129) we can compute the value

of ξ1 from:

2−
7
3 ξ1 = M− = M1 =

√
17− 3

8

The continuity of r̄ requires that:

R1 =
R0√
ξ1

and (3.121) allows us to relate C1 and x0 as so:

x0

C1ξ
n(σ)
1

=

√
(3M1 + P+)(M1 + P+)

8M2
1
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Equation (3.122) is satisfied as a consequence of (3.139) and the above equations, thus yielding a

shock-wave solution. As a final note, equation (3.109) may be written as:

V 2
− =

(P− − P+(M−))(M− + P−)

(W− −M−)(W− + P+(M−))
(3.141)

and since V− is determined as a function of P− andM− from the equations characterising a similarity

solution, (3.141) imposes another condition on the similarity solutions that may be fitted to a static

one. Cahill and Taub claim that there is a two-parameter family of pure radiation spacetimes that

can be matched to TOV(σ) to form a shock-wave solution. Since the paper they claimed this result

would appear in was never published, and possibly never completed, this claim remains an open

problem. We will see in Chapter 6 that this open problem will be partially resolved.
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CHAPTER 4

Classification of General Relativistic Self-Similar Waves

Having seen that the FLRW and TOV solutions are both self-similar from Chapter 3, it begs the

question of whether other self-similar perfect fluid solutions can be found and matched to form

shock-wave solutions. In this chapter we summarise the 2000 paper Complete Classification of

Spherically Symmetric Self-Similar Perfect Fluid Solutions by Carr and Coley [6]. This summary

closely follows Carr and Coley’s paper, although not necessarily in the same order, with some parts

rewritten, some parts omitted and some parts slightly extended, with definitions added for clarity.

Moreover, the variables, notation and metric sign convention have been changed to match those

of the other chapters. In Chapter 6, we will form shock-wave solutions from one of the families of

solutions considered in this chapter, making the physical insights provided in this chapter all the

more relevant.

4.1. Overview

The aim of this chapter will be to completely classify all solutions of the perfect fluid Einstein field

equations with the following properties:

(1) Spherical symmetry.

(2) Self-similarity of the first kind (ξ = r/t).

(3) A barotropic equation of state (p = σρ from Proposition 3.2.1).

(4) A positive sound velocity (σ > 0).

(5) A causal sound velocity (|σ| ≤ 1).

(6) Positive mass (ρ > 0).

(7) Shock free.
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Note however that a few solutions will be considered for which some of points four to six do not

hold. Now for a given value of σ, the complete classification of solutions can be described with

two additional parameters, those being β and γ. Carr and Coley use α to denote the equation of

state parameter, however we will follow Smoller and Temple’s convention by using σ. The solutions

will be classified by their asymptotic behaviour at large and small distances from the origin. This

corresponds to large and small values of |ξ| in most cases, but since ξ = r/t, it may also correspond

to finite ξ. The classification is based on [5], another paper by Carr and Coley which proves that

all similarity solutions must be asymptotic to solutions which depend on either powers of ξ at large

and small |ξ| or powers of ln |ξ| at finite ξ. We will follow [6] in showing that there are only three

similarity solutions which have an explicit power-law dependence on ξ, those being:

(1) The flat Friedmann solution, denoted by FLRW(0, σ, 1).

(2) A Kantowski-Sachs solution, denoted by KS(σ).

(3) A static solution, denoted by TOV(σ).

However, the Kantowski-Sachs solution is only physical for −1 < σ < −1
3 , at least according to the

definition given in the next section. At large values of |ξ|, we will show for each σ there is:

(1) A one-parameter family of asymptotically Friedmann solutions.

(2) A one-parameter family of asymptotically Kantowski-Sachs solutions.

(3) A two-parameter family of asymptotically quasi-static solutions.

At large values of r, and for each σ > 1
5 , we will show there is:

(1) A one-parameter family of solutions asymptotic to the Minkowski solution as |ξ| → ∞.

(2) A two-parameter family of solutions asymptotic to the Minkowski solution at finite ξ.

Note that due to our assumptions, neither family of asymptotically Minkowski solutions contain

the Minkowski solution itself. The asymptotic behaviours close to the origin depend on whether

the solutions pass through the sonic surface.
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(1) Solutions that are supersonic everywhere correspond to black holes or naked singularities.

Their small |ξ| behaviour is uniquely determined by their large |ξ| behaviour. Not all of

these solutions can be extended to ξ = 0 by passing through the sonic surface, the ones

that cannot either encounter a shock or become unphysical.

(2) Solutions that enter the subsonic region by passing through the sonic surface may become

discontinuous there. Solutions that do not become discontinuous or unphysical will then

reach ξ = 0.

At small values of |ξ|, we will show for each σ there is:

(1) A one-parameter family of asymptotically Friedmann solutions.

(2) A one-parameter family of asymptotically Kantowski-Sachs solutions.

(3) No asymptotically static solutions besides TOV(σ).

The full family of solutions can then be found by combining the possible large and small distance

behaviours. This chapter will also discuss the physical significance of the solutions given in it.

We know from Chapter 3 that the assumptions of spherical symmetry and self-similarity signifi-

cantly reduce the complexity of the perfect fluid Einstein field equations, by reducing them to a

system of ODE. We also know that self-similarity of the first kind corresponds geometrically to

the existence of a conformal Killing vector. Carr and Coley remark that geometric self-similarity,

a property of the metric, and physical self-similarity, a property of the fluid, coincide for a perfect

fluid but that this need not be the case in general. Carr and Coley go on to state that the solutions

classified in this chapter are good physical models for the long-time behaviour of explosions into

homogeneous backgrounds, since initial fluctuations can become spherically symmetric and self-

similar as time progresses, even in expanding backgrounds. Furthermore, the evolution of cosmic

voids and gravitationally bound clouds collapsing from an initially static configuration may also

be described by self-similar solutions at late times. According to Carr, he proposed the similarity

hypothesis, which postulates that under certain circumstances, spherically symmetric solutions may

naturally evolve to a self-similar form, even if they start out more complicated.
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A complete classification of similarity dust solutions, that is, where σ = 0, has already been

completed by Carr [4], but these will not be discussed in this chapter. Carr and Coley remark

that unlike in the case of dust, similarity solutions with non-zero pressure tend to have a shock

or pass through the sonic surface. Carr and Coley’s classification only considers solutions which

are regular at the sonic point, in the sense that they have a finite pressure gradient and can be

continued beyond there. Some of these solutions will turn out to be unphysical, in the sense that

they encounter either another irregular sonic point or a domain where the mass is negative.

As remarked previously, we will show that there are four possible behaviours at large distances

from the origin, these are:

(1) Asymptotically Friedmann.

(2) Asymptotically Kantowski-Sachs.

(3) Asymptotically quasi-static.

(4) Asymptotically Minkowski.

with the last family being subdivided into two families, one of which corresponds to finite ξ. The

possible behaviours at small distances are:

(1) Asymptotically Friedmann.

(2) Asymptotically Kantowski-Sachs.

(3) Exactly static, that is, TOV(σ).

(4) Singular, in the form of a black hole or naked singularity.

with the latter solutions being the ones that do not pass through a sonic point. If the solutions

are required to be analytic at the sonic point, then they are determined uniquely by the large

|ξ| behaviour. However, if the solutions are only required to be C1, then the small and large |ξ|

behaviours must be specified independently. The complete family of solutions is found by combining

the four types of large distance behaviours with the four types of small-distance behaviours. Since

Kantowski-Sachs type solutions can only link to each other, there are a total of ten different types

of solution under these restrictions. A qualitative summary of each type of solution will now be

given.
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(1) Asymptotically Friedmann at large |ξ|:

(a) For each σ there is a one-parameter family of solutions.

(b) Solutions with ξ > 0 can be regarded as inhomogeneous big bang models which

expand from an initial singularity at ξ = ∞ and then either expand indefinitely or

recollapse to a black hole as ξ decreases.

(c) The ever-expanding solutions can be interpreted as density fluctuations in a flat Fried-

mann model which grow at the same rate as the Universe and are asymptotically

Friedmann for small |ξ|.

(d) The transonic solutions can be either underdense or overdense relative to FLRW(0, σ, 1).

(e) There is a continuum of regular underdense solutions and these may be relevant to

the existence of large-scale cosmic voids.

(f) Regular overdense solutions may only occur in very narrow bands of σ and have the

characteristic that they are all approximately static near the sonic point, although

they depart from TOV(σ) and exhibit oscillations as they approach the origin.

(2) Asymptotically Kantowski-Sachs at large |ξ|:

(a) For each σ there is a unique KS(σ) solution.

(b) For each σ there exists a one-parameter family of solutions asymptotic to KS(σ) at

both large and small values of |ξ|.

(c) Solutions with −1
3 < σ < 1 are unphysical because the mass is negative and are also

tachyonic for 0 < σ < 1.

(d) Solutions with −1 < σ < −1
3 are not tachyonic and have positive mass.

(e) Equations of state with negative values of σ violate the strong energy condition,

although they could well arise in the early Universe due to inflation or particle pro-

duction effects. Such solutions may be related to the growth of positive pressure

bubbles formed at a phase transition in a negative pressure cosmological background.

(3) Asymptotically static at large |ξ|:

(a) For each σ > 0 there is a unique TOV(σ) solution.

(b) For each σ there exists a one-parameter family of solutions asymptotic to TOV(σ).
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(c) There is a two-parameter family of solutions which are asymptotically quasi-static

in the sense that they have an isothermal density profile at large values of |ξ|. Such

solutions also exist in the dust case, although there is no exactly static dust solution.

(d) The two-parameter solutions may span both positive and negative values of ξ, whereas

each solution of the other types is confined to either positive or negative ξ.

(e) The two-parameter solutions can be regarded as inhomogeneous big bang models in

which the initial or final singularity occurs at a finite, rather than an infinite, value

of ξ.

(f) Some of the two-parameter solutions expand or collapse monotonically, these nec-

essarily pass through the sonic surface and may be attached to an asymptotically

Friedmann solution in the subsonic domain. Others expand and then recollapse,

these remain supersonic everywhere and contain two singularities at finite ξ, one of

which may be naked.

(g) Asymptotically quasi-static solutions have been associated with the occurrence of

naked singularities and the transonic ones are also associated with critical phenomena

for σ < 0.28.

(4) Asymptotically Minkowski at large r:

(a) These solutions only exist for σ > 1
5 .

(b) There are two families of solutions.

(c) Members of the first family are described by one parameter and are asymptotically

Minkowski as |ξ| → ∞.

(d) Members of the second family are described by two parameters and are asymptotically

Minkowski as ξ tends to some finite value, though this corresponds to an infinite

physical distance unless σ = 1.

(e) As with the asymptotically Friedmann and asymptotically quasi-static solutions, these

solutions may be either supersonic everywhere, in which case they contain a black hole

or a naked singularity, or attached to ξ = 0 via a sonic point, in which case they are

asymptotically Friedmann or exactly static at small |ξ|.

(f) The transonic solutions are associated with critical phenomena for σ < 0.28.
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Note that the Kantowski Sachs solutions are the only ones for which negative values of σ will be

considered. The next section will begin by providing a concise revision to the derivation of the

spherically symmetric self-similar in ξ Einstein field equations, first completed by Cahill and Taub

and summarised previously in Chapter 3. The subsequent sections will then address the derivations

of each of the aforementioned families.

4.2. Revisiting the Spherically Symmetric Self-Similar Einstein Field Equations

Recall that a general spherically symmetric metric in comoving coordinates can be written as:

ds2 = −e2ϕdt2 + e2ψdr2 + r̄2dΩ2(4.1)

where ϕ, ψ and r̄ are functions of t and r. We will return to using natural units, so:

c = G = 1

and with this choice of scaling the perfect fluid Einstein field equations are given by:

Gµν = 8π [(ρ+ p)uµuν + pgµν ](4.2)

where ρ, p and u denote the fluid density, pressure and velocity four-vector respectively. As derived

in Chapter 3, a first integral of (4.2) is given by:

m(t, r) =
1

2
r̄

[
1 + e−2ϕ

(
∂r̄

∂t

)2

− e−2ψ

(
∂r̄

∂r

)2
]

(4.3)

where m(t, r) can be interpreted as the mass within radius r at time t:

m(t, r) = 4π

∫ r

0
ρr̄2 ∂r̄

∂r′
dr′(4.4)

Carr and Coley note that unless p = 0, the mass m(t, r) decreases with increasing t because of the

work done by the pressure. We can also write m(t, r) as:

m(t, r) = 4π

∫ t

0
ρr̄2 ∂r̄

∂t′
dt′(4.5)
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and this will be useful for when there is no spatial origin, as will be the case for the Kantowski-Sachs

solution. Equation (4.3) can be written as an equation for the energy per unit mass of the spherical

shell with coordinate r, as so:

E =
1

2
U2 − m

r̄
(4.6)

where:

U = e−ϕ
∂r̄

∂t

We also know from Chapter 3 that a spherically symmetric similarity solution can be put into a

form in which all quantities such as ϕ, ψ, E and:

R =
r̄

r
(4.7)

M =
m

r̄
(4.8)

P = pr̄2(4.9)

W = ρr̄2(4.10)

are functions only of the variable ξ = r/t. Changing the variables from t and r to ξ and r means

that:

∂

∂t
= −ξ

2

r

d

dξ
(4.11)

∂

∂r
=
ξ

r

d

dξ
(4.12)

and such reduces the perfect fluid Einstein field equations to a set of ODE in the variable ξ. One

quantity of particular importance is the function:

V (ξ) = ξeψ−ϕ(4.13)

which represents the velocity of the surfaces of constant ξ relative to the fluid. These surfaces have

the equation r = ξ0t, for some constant ξ0, and therefore represent a family of spheres moving

through the fluid. Recall from Section 3.4 that the spheres contract relative to the fluid for ξ < 0
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and expand for ξ > 0. On the other hand, the velocity of the spheres of constant r̄ relative to the

fluid is given by:

VR = −eψ−ϕ∂r̄
∂t

(
∂r̄

∂r

)−1

(4.14)

This quantity is positive if the fluid is collapsing and negative if it is expanding. Carr and Coley

note that the value of ξ for which |V (ξ)| = 1 corresponds to a Cauchy horizon, such as a black hole

or cosmological particle horizon, and the value of ξ for which |VR(ξ)| = 1 corresponds to either

a black hole or cosmological apparent horizon. We know from Proposition 2.1.4 that the only

barotropic equation of state compatible with similarity solutions is one of the form:

p = σρ

Now the following analysis is guided by the work of Carr and Yahil [9]. In light of Proposition

2.1.4, it is convenient to use the function x(ξ) defined by:

x(ξ) =
(
4πρr2

)− σ
1+σ(4.15)

This function is useful because the conservation equations:

∇νTµν = 0

can be integrated to give:

eϕ = βξ
2σ

1+σ x(4.16)

e−ψ = γx−
1
σR2(4.17)
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where β and γ are constants of integration. The remaining perfect fluid Einstein field equations

reduce to the following system of ODE in the variables x and R:

R̈ + Ṙ +

(
2

1 + σ

Ṙ

R
− 1

σ

ẋ

x

)(
R + (1 + σ)Ṙ

)
= 0(4.18)

2σγ2

1 + σ
R4 +

2

β2
ξ

2−2σ
1+σ x

2−2σ
σ

Ṙ

R
− γ2R4 ẋ

x

(
V 2

σ
− 1

)
= (1 + σ)x

1−σ
σ(4.19)

x−
1+σ
σ R2

(
1 + (1 + σ)

Ṙ

R

)
= M(4.20)

1

2
+

1

2β2
ξ

2−2σ
1+σ x−2Ṙ2 − 1

2
γ2x−

2
σR6

(
1 +

Ṙ

R

)2

= M(4.21)

with the dot representing the operator:

ξ
d

dξ

In the variables x and R, the velocity functions may be written as:

V =
1

βγ
ξ

1−σ
1+σ x

1−σ
σ R−2(4.22)

VR =
V Ṙ

R + Ṙ
(4.23)

and the energy function can be written as:

E =
1

2
γ2x−

2
σR6

(
1 +

Ṙ

R

)2

− 1

2
(4.24)

noting that:

E ≥ −1

2

Given the rewriting of the energy and velocity functions, (4.21) can be written as:

M =
1

2
+

(
E +

1

2

)(
V 2
R − 1

)
(4.25)
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noting that:

M =
1

2
⇐⇒ |VR| = 1

Now it is possible to visualise the solutions of (4.18)-(4.21) by working in (x,R, Ṙ) space. Indeed

a similar approach inspired some of the new results in Chapter 6. For fixed σ and for any point in

this space, (4.20) and (4.21) give the value of ξ, (4.19) then gives the value of ẋ, unless |V | =
√
σ,

and (4.18) gives the value of R̈. That is, equations (4.18)-(4.21) generate the vector field (ẋ, Ṙ, R̈)

and this specifies a trajectory at each point of the space. Each trajectory is parameterised by ξ and

represents a solution. The space of solutions is thus a three-parameter space, given by parameters

σ, β and γ.

Definition 4.2.1. The condition V =
√
σ is known as the sonic condition, or in (x,R, Ṙ) space,

the sonic surface. Furthermore, the point on the trajectory of a solution in (x,R, Ṙ) space that

intersects the sonic surface will be known as a sonic point.

The sonic condition specifies a two-dimensional sonic surface because equations (4.20)-(4.22) allow

ξ to be expressed in terms of x, R and Ṙ. Note that the same surface is generated from the

condition V = −
√
σ. Equation (4.19) does not uniquely determine ẋ where a trajectory intersects

the sonic surface, so there can be a number of different solutions passing through the same point.

However, solution trajectories intersect the sonic surface in a physically reasonable manner only if:

2σγ2

1 + σ
R4 +

2

β2
ξ

2−2σ
1+σ x

2−2σ
σ

Ṙ

R
= (1 + σ)x

1−σ
σ(4.26)

since otherwise the value of ẋ, and hence the density, pressure and velocity, will diverge there. Note

that (4.26) follows directly from (4.19). Just like the sonic condition, (4.26) corresponds to another

two-dimensional surface in (x,R, Ṙ) space.

Definition 4.2.2. The line in (x,R, Ṙ) space for which the (4.26) surface and sonic surface inter-

sect is known as the sonic line. Furthermore, solution trajectories which hit the sonic surface on

the sonic line are called regular.
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Trajectories that do not hit the sonic surface on the sonic line will have to contain shock waves in

order to be extended. Not all combinations of the parameters σ, β and γ will correspond to solutions

that cross the sonic surface on the sonic line, some combinations will correspond to solutions that

do not meet the sonic surface at all, this is how some families of solutions have less than two free

parameters. From each point on the sonic line there will be regular trajectories with decreasing

and increasing ξ. Any member of the first type can be joined to any member of the second type

to extend the solution through the sonic surface. Physical solutions require a finite value of ẍ at

the sonic surface, so the equations permit only two values of ẋ at each point on the sonic line,

corresponding to two values of V̇ , which we will denote by V̇1 and V̇2. There are various cases for

the values of V̇1 and V̇2.

(1) If the values of V̇1 and V̇2 are complex, this corresponds to a focal point and such solutions

will spiral around the sonic point and be unphysical.

(2) If the values of V̇1 and V̇2 are real, at least one of the values must be positive. If both values

are positive, this corresponds to a nodal point and the smaller value is associated with

a one-parameter family of solutions, while the larger value is associated with an isolated

solution.

(3) If one of the values of V̇1 and V̇2 is negative, this corresponds to a saddle point and both

values are associated with isolated solutions.

We are now in a position to provide the following working definition. Note however that this

definition was not given in [6].

Definition 4.2.3. We say that a spherically symmetric similarity solution is physical if:

|σ| ≤ 1

M ≥ 0

and if passing through the sonic surface:

V̇1, V̇2 ∈ R
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In practice the assumption |σ| < 1 will be made. Carr and Coley state that there is a one-parameter

family of regular solutions only in two intervals of |ξ|, with the intervals for positive ξ denoted by

(ξ1, ξ2) and (ξ3,∞). They also state that there is a saddle point and a focal point in the intervals

(0, ξ1) and (ξ2, ξ3) respectively. The values of ξ1, ξ2 and ξ3 can be expressed in terms of σ but the

expressions are complicated, so they were not given in [6], and consequently, will not be given here.

If the FLRW(0, σ, 1) and TOV(σ) sonic points are denoted by ξF and ξS repetitively, then we have

that:

σ =
1

3
=⇒


ξ2 = ξS

ξ3 = ξF

and in general:

ξ2 < ξS < ξ3 < ξF

where:

ξF =

(
3

1
2 (2σ)

1
2

1 + 3σ

) 3+3σ
1+3σ

(4.27)

ξS =

(
3

5σ−1
2σ−2 (2σ)

3
2

(1 + 3σ) (1 + 6σ + σ2)

) 1+σ
1+3σ

(4.28)

It turns out that one-parameter solutions must hit the sonic line in the nodal intervals, with these

solutions being physical only for certain bands of parameter values.

Definition 4.2.4. The region |V | <
√
σ in (x,R, Ṙ) space is known as the subsonic region and

the region |V | >
√
σ is known as the supersonic region. Furthermore, solution trajectories in the

subsonic region are called subsonic, trajectories in the supersonic region are called supersonic and

trajectories spanning both regions are called transonic.

On each side of a node, V̇ may take either of its two possible values. The association of these values

is directly tied to the regularity of the transonic solution.
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(1) If the values are different, there will be a discontinuity in the pressure gradient, so the

solution will only be C0.

(2) If the values are the same, there may still be a discontinuity in the second derivative of V ,

in which case the solution will be C1.

(3) If the values are the same, the isolated solution and at most a single member of the

one-parameter family will be analytic.

Two-parameter solutions at large |ξ| can also hit the sonic line in the saddle range and such solutions

are analytic at the sonic point but may become unphysical in the subsonic region. Carr and Coley

remark that in the case of a shock, V would be discontinuous.

4.3. Explicit Power-Law Solutions

Before considering asymptotic power-law solutions, we will first derive the explicit power-law so-

lutions. We already know from Chapter 3 that FLRW(0, σ, 1) and TOV(σ) are both power-law

solutions, so we expect to find these, but we do not yet know if these are the only explicit power-

law solutions that can be found. In this light, let us consider the power-law ansatz:

x = x0ξ
a(4.29)

R = R0ξ
b(4.30)

where x0, R0, a and b are constants. Note that:

ẋ

x
= a

Ṙ

R
= b

and that all four of these additional constants will depend at most on σ, β and γ, due to all solutions

depending on at most three parameters. Now (4.18) implies:

a =
bσ[3(b+ 1) + σ(3b+ 1)]

(1 + σ)[1 + (1 + σ)b]
(4.31)
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with (4.20) and (4.21) requiring the denominator to be non-zero. Substituting our ansatz into

(4.19) yields an equation of the form:

Aξp +Bξq + C = 0(4.32)

where:

A =
b[(σ − 1) + (1 + σ)(2σ − 1)b]

β2(1 + σ)[1 + (1 + σ)b]
x

2−2σ
σ

0 R−4
0(4.33)

B = −(1 + σ)x
1−σ
σ

0 R−4
0(4.34)

C =
σγ2(b+ 1)[2 + 3b(1 + σ)]

(1 + σ)[1 + (1 + σ)b]
(4.35)

p = 2a

(
1− σ
σ

)
− 4b+ 2

(
1− σ
1 + σ

)
(4.36)

q = a

(
1− σ
σ

)
− 4b(4.37)

With our practical assumption of |σ| < 1, B cannot be zero and this implies that there are three

ways in which (4.32) holds to leading order as ξ → 0 or ξ → ∞. The three cases are summarised

as so:

Case 1: p = q and A+B = 0

Case 2: q = 0 and B + C = 0

Case 3: p = 0 and A+ C = 0

Beginning with Case 1, we have:

p = q =⇒ a = − 2σ

1 + σ
(4.38)

A+B = 0 =⇒ x
1−σ
σ

0 =
1

2
β2

(
(1 + σ)2

b(1 + σ) + 1

)
(4.39)

meaning that (4.31) requires:

b = −1 or b = − 2

3(1 + σ)
(4.40)
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with both values implying C = 0 from (4.33)-(4.35). Since (4.32) holds exactly in Case 1, there

are no approximate solutions for C 6= 0. For the second choice of b in (4.40), equations (4.20) and

(4.21) imply:

x
σ−1
σ

0 =
2

3β2(1 + σ)2
(4.41)

γ2x
− 2
σ

0 R6
0 =

9(1 + σ)2

(1 + 3σ)2
(4.42)

and we can set x0 = R0 = 1 if the r and t coordinates are scaled so that:

β =

√
2√

3(1 + σ)
(4.43)

γ =
3(1 + σ)

1 + 3σ
(4.44)

This scaling yields:

x = ξ−
2σ

1+σ(4.45)

R = ξ−
2

3+3σ(4.46)

and the resulting metric is:

ds2 = −β2dt2 + γ−2ξ−
4

3+3σ dr2 + ξ−
4

3+3σ r2dΩ2(4.47)

where β and γ are given in terms of σ as above, that is, this is an explicit one-parameter solution.

Furthermore, the density, velocity and mass functions are given by:

ρ =
ξ2

4πr2
(4.48)

V =
1√
6

(1 + 3σ)ξ
1+3σ
3+3σ(4.49)

M =
1

3
ξ

2+6σ
3+3σ(4.50)
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We can put (4.47) in a more familiar form by making the coordinate transformation:

t̂ = βt(4.51)

r̂ = β−
2

3+3σ r
1+3σ
3+3σ(4.52)

and this yields:

dŝ2 = −dt̂2 + t̂
4

3+3σ
(
dr̂2 + r̂2dΩ2

)
(4.53)

ρ =
β2

4πt2
(4.54)

which we are familiar with as being FLRW(0, σ, 1). Solutions that are asymptotic to FLRW(0, σ, 1)

will be discussed in the next section.

Now for the first choice of b in (4.40), then (4.39) requires:

β2 = − 2σ

(1 + σ)2
x

1−σ
σ

0(4.55)

with equations (4.20) and (4.21) implying:

x
− 1+σ

σ
0 R2

0 =
2σ

(1 + σ)2 − 4σ2
(4.56)

This shows that x0 = R0 = 1 cannot be set in this case. However, if β and γ are set by (4.43) and

(4.44) for σ < 0 and i times those for σ > 0, then we get the same scaling as used for FLRW(0, σ, 1).

From this, (4.55) and (4.56) give:

x0 = (3|σ|)−
σ

1−σ(4.57)

R2
0 =

2σ(3|σ|)−
1+σ
1−σ

(1 + 3σ)(1− σ)
(4.58)

Irrespective of this scaling, the power-law ansatz yields:

x = x0ξ
− 2σ

1+σ(4.59)

R = R0ξ
−1(4.60)
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and the resulting metric is:

ds2 = −β2x2
0dt

2 + γ−2x
2
σ
0 R−4

0 ξ
4σ

1+σ dr2 + R2
0ξ
−2r2dΩ2(4.61)

The t coordinate is spacelike and the r coordinate is timelike for σ > 0 because of the i factors in

β and γ. This is not the case for −1
3 < σ < 0, however from (4.57) and (4.58) the circumferential

coordinate is timelike as R0 is imaginary in this case. The metric (4.61) can be put in a more

standard form by making the coordinate transformation:

t̃ = βx0t(4.62)

r̃ = γ−1(βx0)
2σ

1+σ x
1
σ
0 R−2

0 r
1+3σ
1+σ(4.63)

which yields:

ds̃2 = −dt̃2 + t̃−
4σ

1+σ dr̃2 + β−2x−2
0 R2

0 t̃
2dΩ2(4.64)

and where it is worth noting that:

β−2x−2
0 R2

0 = − (1 + σ)2

(1 + σ)2 − 4σ2

This explicit spherically symmetric similarity solution is one that we have not encountered yet, but

for those that are familiar with such a solution, they will know that it is the self-similar Kantowski-

Sachs solution, which we will denote the by KS(σ). The density, velocity and mass functions of

KS(σ) are given by:

ρ =
(3|σ|)

1+σ
1−σ ξ2

4πr2
(4.65)

V = −(1− σ)(1 + 3σ)2(3|σ|)
2σ

1−σ
√

24σ
ξ

1+3σ
1+σ(4.66)

M = − 2σ2

(1− σ)(1 + 3σ)
(4.67)

and we will define:

MKS(σ) =
2σ2

(σ − 1)(1 + 3σ)
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The function V is negative for 0 < σ < 1, corresponding to tachyonic solutions, while M is negative

for −1
3 < σ < 1, corresponding to negative mass solutions. By our definition, only solutions with

−1 < σ < −1
3 are physical. Carr and Coley note that (4.4) does not apply for −1 < σ < −1

3 as

there is no well-defined origin. Moreover, everything is on a shell, since (4.59) and (4.60) imply

that r̄ is independent of r. Carr and Coley go on to state that the value of m must instead be

interpreted as the mass of the whole Universe at time t, as indicated by (4.5). Furthermore, this

solution corresponds to the special case E = −1
2 , as VR diverges and M 6= 1

2 . Solutions that are

asymptotic to KS(σ) will be discussed in Section 4.5.

For Case 2, (4.31), (4.36) and (4.37) imply that the only solution for σ > 0 and V > 0 is given by:

a = b = 0(4.68)

that is, x and R must be constant. Carr and Coley note that the condition q = 0 allows for another

value of b other than the value given by (4.68) but this implies C < 0 for σ > 0, so the condition

B+C = 0 cannot be satisfied. Condition (4.68) implies A = 0 and so (4.32) is satisfied identically,

hence there are no approximate solutions with A 6= 0. In this light, and for σ > 0, B + C = 0

means:

R2
0 =

1 + 3σ√
18σ

x
1−σ
2σ

0(4.69)

and the resulting metric is given by:

ds2 = −β2x2
0ξ

4σ
1+σ dt2 + γ−2x

2
σ
0 R−4

0 dr2 + R2
0r

2dΩ2(4.70)

Furthermore, the density, velocity and mass functions of this solution are given by:

ρ =
1

4πr2
x
− 1+σ

σ
0(4.71)

V =
√

3σx
1−σ
2σ

0 ξ
1−σ
1+σ(4.72)

M =
2σ

1 + 6σ + σ2
(4.73)
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We can put (4.70) in a more familiar form by making the coordinate transformation:

t̄ =
1 + σ

1− σ
βx0R

− 2σ
1+σ

0 t
1−σ
1+σ(4.74)

r̄ = R0r(4.75)

which yields:

ds̄2 = −r̄
4σ

1+σ dt̄2 + γ−2x
2
σ
0 R−6

0 dr̄2 + r̄2dΩ2(4.76)

ρ =
R2

0

4πr2
x
− 1+σ

σ
0(4.77)

That is, this solution is the familiar TOV(σ) metric. We can again set β and γ by (4.43) and (4.44)

so that we have the same scaling as used for FLRW(0, σ, 1). In such a case, (4.20), (4.21) and (4.69)

imply that x0 and R0 are given by:

x0 =

(
(1 + 3σ)

(
1 + 6σ + σ2

)
3(2σ)

3
2

) 2σ
1+3σ

(4.78)

R0 =

(1 + 3σ)1+σ
(
1 + 6σ + σ2

) 1−σ
2

31+σ(2σ)

 1
1+3σ

(4.79)

Thus there is only one TOV solution for each equation of state parameter σ, as expected. Note

that we also have VR = 0 from (4.23), also as expected. Carr and Coley remark that there are

no static solutions in the dust case, essentially because the σ−1ẋ term in (4.18) cannot be null

for σ = 0. Solutions asymptotic to TOV(σ) will be discussed in Section 4.6. Before considering

the asymptotic solutions of Case 2, the following proposition highlights an interesting connection

between the TOV(σ) and KS(σ) solutions.

Proposition 4.3.1. By interchanging the t and r coordinates in the TOV(σ) metric (4.70) and

changing the equation of state parameter to:

σ′ = − σ

1 + 2σ
(4.80)

then we obtain the KS(σ′) metric (4.61).
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Proof. The proof is a direct consequence of the results derived in this section. �

Note that by (4.80) if 0 < σ < 1, then −1
3 < σ′ < 0 and σ = σ′ only for σ = 0 and σ = −1.

However, KS(σ′) is only physical for −1 < σ′ < −1
3 , which by (4.80) corresponds to |σ| > 1 and

so does not give physical TOV(σ) solutions. Carr and Coley remark that the mass of both the

TOV(σ) and KS(σ) solutions tends to zero as σ does, even though both solutions do not exist in

the limit σ = 0.

At the start of Case 2, we assumed V > 0. If instead we assume V < 0, with β2 and γ2 changing

their sign as was seen for KS(σ), then another solution can be obtain in the limits ξ → ∞. This

asymptotic solution satisfies:

a =
4σ
(
1 + 6σ + σ2

)
(1 + 7σ) (1− σ2)

(4.81)

b = −
(
1 + 6σ + σ2

)
(1 + 7σ)(1 + σ)

(4.82)

for:

R2
0 = x

1−σ
2σ

0

(
(1 + 7σ)(1− σ)

18σ

) 1
2

(4.83)

and the mass and velocity functions satisfy:

V ∼ ξ−
(1+3σ)2

(1+7σ)(1+σ)(4.84)

M ∼ ξ
(2+6σ)(1+6σ+σ2)

(1+7σ)(1−σ2)(4.85)

These asymptotic solutions will be revisited in Section 4.5.

In Case 3, p = 0 implies:

b =
1

2

(
1− σ
σ

)
a+

1

2

(
1− σ
1 + σ

)
(4.86)

and (4.22) implies V tend to the finite value:

V∗ = β−1γ−1x
1−σ
σ

0 R−2
0(4.87)

105



The condition A+ C = 0 now leads to:

a =
V 2
∗ (1− σ) + 2σ

(V 2
∗ − 1) (1 + σ)

(4.88)

b =
(1− σ)

(
V 2
∗ + σ

)
2σ(1 + σ) (V 2

∗ − 1)
(4.89)

with (4.36) and (4.37) yielding:

q =
(1− σ)V 2

∗
σ (1− V 2

∗ )
(4.90)

Since B 6= 0 from (4.34), an exact solution to (4.32) cannot be obtained in Case 3. In this light,

condition (4.90) is only a consistent solution of (4.32) for large ξ if V 2
∗ > 1 and for small ξ if V 2

∗ < 1.

Equation (4.20) gives negative values of M , and hence unphysical solutions, unless V 2
∗ < σ and this

last condition will also turn out to be inconsistent, so focus will be on the V 2
∗ > 1 case. Equation

(4.20) yields:

M ∼ V 2 − σ
V 2 − 1

ξ
−V

2
∗ (1−σ)+1+3σ

(V 2∗ −1)(1+σ)(4.91)

and this tends to zero as ξ →∞. Carr and Coley include the coefficient of M to demonstrate that

the mass is negative for σ < V 2
∗ < 1. Equation (4.21) implies:

M ∼ 1

2
+
[
b2(V 2

∗ − 1)− 2b− 1
]
ξ
−V

2
∗ (1−σ)−σ(1+3σ)

(V 2∗ −1)σ(1+σ)(4.92)

and if the exponent of ξ is positive, M → 0 as ξ → ∞ only if the term in square brackets is zero

and this means:

b =
1

V∗ − 1

Conditions (4.88) and (4.89) give a quadratic equation for V∗:

(1− σ)V 2
∗ − 2σ(1 + σ)V∗ − σ(1 + 3σ) = 0(4.93)

with the real positive solution given by:

V∗ =
σ(1 + σ) +

√
σ (1 + 3σ − σ2 + σ3)

1− σ
(4.94)
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Continuing to follow [6] closely, we note that (4.93) implies that the exponent of ξ in (4.92) is

positive, matching our assumption. In addition, V∗ decreases from ∞ to
√
σ as σ decreases from 1

to 0, which prevents V∗ <
√
σ, so there are no subsonic solutions of this type as ξ → 0. The value

of V∗ given by (4.94) exceeds one, as required, only for σ > 1
5 , so these solutions do not exist in the

dust case. Putting this all together, we have that the metric takes following asymptotic form:

ds2 ∼ −ξ
2V 2
∗

V 2∗ −1dt2 + ξ
2

V 2∗ −1dr2 + ξ
2

V∗−1 r2dΩ2(4.95)

and this can be put in Minkowski form by a change of coordinates. Because (4.87) and (4.94)

impose a constraint on x0 and R0, these solutions depend on a single parameter.

4.4. Asymptotically Friedmann Solutions

In this section we follow the work of Carr and Yahil [9] by considering solutions which are asymp-

totically FLRW(0, σ, 1) for large and small values of ξ. We will refer to these solutions as being

asymptotically Friedmann and they will play an important role in Chapters 5 and 6. To start, we

introduce functions X(ξ) and Y (ξ) defined by:

x = ξ−
2σ

1+σ eX(4.96)

R = ξ−
2

3+3σ eY(4.97)

Then FLRW(0, σ, 1) is given by:

X ≡ Y ≡ 0

It will be assumed that ξ > 0, otherwise ξ will need to be replaced with |ξ| in what follows. The

analysis is trivially extended to the ξ < 0 case since r is always taken to be positive so the ξ < 0

solutions are just the time-reverse of the ξ > 0 ones, making the solutions symmetric in ξ. We will

first consider solutions that are asymptotically Friedmann as ξ → ∞, that is, as r → ∞ for fixed

t or as t → 0 for fixed r. By substituting (4.96) and (4.97) into (4.18)-(4.21), the system of ODE

in x and R now become ODE in X and Y . We can find the leading order solutions by linearising
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these ODE in the limit ξ →∞. In this light, equations (4.18) and (4.19) give us:

Ÿ =
1

3σ
Ẋ − 1 + 3σ

1 + σ
Ẏ(4.98)

Ẏ =
1

2σ
Ẋ − σ − 1

3σ(1 + σ)
X(4.99)

Differentiating (4.99) and eliminating Ẏ and Ÿ gives us a single second-order ODE for X as so:

Ẍ +
9σ − 1

3 + 3σ
Ẋ +

2(1 + 3σ)(1− σ)

3(1 + σ)2
X = 0(4.100)

Equation (4.100) has two solutions and these are given by:

X ∼ ξ−
2+6σ
3+3σ(4.101)

X ∼ ξ
1−σ
1+σ(4.102)

Solution (4.102) can be discarded as X would diverge to infinity as ξ →∞ for any σ < 1. Thus we

take the first solution and this yields:

X = −σ(1 + 3σ)

1 + σ
C0ξ

− 2+6σ
3+3σ(4.103)

Y = Y∞ − C0ξ
− 2+6σ

3+3σ(4.104)

where:

Y∞ = lim
ξ→∞

Y (ξ)

and C0 are integration constants. Note that in [6] the constant k is used in place of C0, however

this may be slightly misleading as it could imply that the solution is asymptotic to FLRW(k, σ, 1),

which it is not. Equations (4.20) and (4.21) constrain C0 and Y∞ through:

C0 =
3(1 + σ)(e−2Y∞ − e4Y∞)

2(1 + 3σ)(5 + 3σ)
(4.105)

thus making these asymptotic solutions a one-parameter family for each fixed σ. From (4.24):

E = E +O
(
ξ−

4+12σ
3+3σ

)
(4.106)
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where the asymptotic energy E is given by:

E =
1

2

(
e6Y∞ − 1

)
It is clear that FLRW(0, σ, 1) corresponds to the value Y∞ = 0. From (4.105), (4.103) and (4.15),

we can interpret Y∞ as being a perturbation of the density, with Y∞ < 0 corresponding to an

overdense perturbation and Y∞ > 0 corresponding to an underdense perturbation. Carr and Coley

note that there is a one-parameter continuum of regular underdense solutions but the overdense

solutions only lie in discrete bands. Through a numerical analysis, the behaviour of these solutions

can be summarised as so:

(1) If Y∞ lies in the interval (−∞, Y crit
∞ ) for some Y crit

∞ < 0, then as ξ decreases, V reaches

a minimum value Vmin >
√
σ before rising again to infinity. The value of ξ for which

V = Vmin corresponds to a singularity. These solutions are thus supersonic and contain

black holes which grow as fast as the Universe.

(2) If Y∞ lies in the subinterval (Y ∗∞, Y
crit
∞ ), for some Y ∗∞ < Y crit

∞ , then Vmin < 1 and there is

an event and particle horizon.

(3) If Y∞ lies in the subinterval (−∞, Y ∗∞), then Vmin > 1 and the whole universe is inside a

black hole.

(4) If Y∞ lies in the interval (Y crit
∞ ,∞), then the solutions hit the sonic surface. The solutions

will be regular only if they hit the sonic line.

We will now consider solutions that are asymptotically Friedmann as ξ → 0, that is, as t → ∞

for fixed r or as r → 0 for fixed t. Goliath, Nilsson and Uggla [10] describe solutions that are

asymptotically Friedmann in the limit ξ → 0 as solutions that have a regular centre. This description

is consistent with the regularity assumption made by Smoller and Temple [21], as we will see in

Chapter 5. Since we need R →∞ and V → 0 in the limit t→∞, then X and Y need to be finite

at ξ = 0, so:

Ẋ(0) = Ẏ (0) = 0(4.107)
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Carr and Coley note that m/r = MR must be finite in the limit r → 0, so we must have M(0) = 0.

This distinguishes these solutions from the static case where m/r →∞. Now from equation (4.21):

X(0) = 3σY (0)(4.108)

so as like in the ξ → ∞ case, these solutions form a one-parameter family. Also similar to the

ξ → ∞ case, the constant X(0), which we will denote by the parameter X0, determines whether

the asymptotic solution is underdense or overdense compared to FLRW(0, σ, 1). We see this from

(4.15), (4.96) and (4.97), as this gives:

X0 =
σ

1 + σ
ln

(
ρF (0)

ρ(0)

)
(4.109)

where ρF denotes the density of FLRW(0, σ, 1). So as like for Y∞, we have that X0 > 0 and X0 < 0

correspond to underdense and overdense perturbations respectively. We now discuss Carr and

Coley’s numerical analysis of the ξ → 0 solutions, noting that this will be of particular relevance

to a similar analysis conducted in Chapter 6.

(1) For some range of values of X0, the solutions must hit the sonic surface since the solution

with X0 = 0 does, with regular solutions hitting the surface on the sonic line. The point

of intersection will be denoted by ξAFS .

(2) As X0 decreases from positive values to some value Xcrit
0 < 0, we have that ξAFS decreases

continuously to ξ1. Solutions with ξAFS > ξ3 are regular at the sonic point, whereas those

with ξ1 < ξAFS < ξ3 are not.

(3) As X0 decreases below Xcrit
0 , the V (ξ) curves develop an inflection and ξAFS now increases

to the value ξ2. This is not a continuous increase, as not every value of ξAFS between ξ1

and ξ2 is attained. There is a small band of values within (ξ1, ξ2) for which the solutions

are C1.

(4) As X0 decreases further, ξAFS increases and decreases within (ξ1, ξ2) and the V (ξ) curves

increasingly oscillate. These solutions can be grouped according to the number of oscilla-

tions, with each group containing a small band of solutions that are C1, with one of these

being analytic.
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Carr and Coley remark that the oscillating groups also arise in the Newtonian case, as investigated

by Whitworth and Summers [24]. They also mention that the non-analytic solutions may all be

unstable to what is termed the kink instability and form shocks. They refer the reader to Amos and

Pirin [15] for further details. It is also interesting to note that all overdense solutions are nearly

static close to the sonic point, with this approximation worsening closer to the origin. However,

the greater the number of oscillations, the better the approximation is closer to the origin.

Now if we denote the ξ value of intersection with the sonic surface in the ξ → ∞ case by ξAFL,

then we can construct sound waves, that is, transonic solutions, providing ξ1 < ξAFS = ξAFL < ξ2

or ξAFS = ξAFL > ξ3. We would also expect the value of Ẋ, which corresponds to the density and

velocity gradient, to be continuous at the sonic point. Carr and Coley interpret such solutions as

density perturbations that grow at the same rate as the Universe. Note that for ξAFL = ξS , there

exists a supersonic asymptotically Friedmann solution that can be attached to TOV(σ) on the sonic

surface for each σ. The same can be done for a subsonic asymptotically Friedmann solution.

Carr and Coley remark that attention originally focussed on solutions containing black holes because

there was interest in whether black holes could grow at the same rate as the particle horizon. Carr

and Hawking [7] have shown that such solutions exist in the case of pure radiation and dust but

only if the Universe is asymptotically rather than exactly Friedmann, that is, there is no solution

that can be formed by attaching a black hole to FLRW(0, σ, 1) by a sound wave. Carr and Coley

go on to state that this has the important implication that black holes formed through purely local

processes cannot grow as fast as the Universe. Carr in his PhD Thesis, and Bicknell and Henriksen

in [1], extended the aforementioned result to a general 0 < σ < 1, while Lin et al. [14], and Bicknell

and Henriksen [2], considered the case of a stiff perfect fluid, that is, one for which σ = 1.

4.5. Asymptotically Kantowski-Sachs Solutions

In this section we follow the work of Carr and Koutras [8] by considering solutions which are

asymptotically KS(σ) for large and small values of ξ. We will refer to these solutions as being

asymptotically Kantowski-Sachs and proceed similarly to Section 4.4 by introducing functions X(ξ)
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and Y (ξ) defined by:

x = x0ξ
− 2σ

1+σ eX(4.110)

R = R0ξ
−1eY(4.111)

where x0 and R0 are given by (4.57) and (4.58). As like in Section 4.4, we will also assume ξ > 0.

We begin by substituting (4.110) and (4.111) into equations (4.18)-(4.21) to form ODE in the

variables X and Y . Unlike in Section 4.4, we find the leading order solutions by linearising these

ODE in the limit |V | → ∞. We will then do the same in the limit |V | → 0. These solutions will

be referred to as the supersonic and subsonic solutions respectively. In this light, the linearisation

of equations (4.18) and (4.19) in the limit |V | → ∞ are given by:

Ÿ = −Ẋ +
1 + 3σ

1 + σ
Ẏ(4.112)

Ẏ =
1

2σ
Ẋ +

1− σ
1 + σ

X(4.113)

Differentiating (4.113) and eliminating Ẏ and Ÿ gives us a single second-order ODE for X as so:

Ẍ +
σ − 1

σ + 1
Ẋ − 2σ(1 + 3σ)(1− σ)

(1 + σ)2
= 0(4.114)

Equation (4.114) has two solutions and these are given by:

X ∝ ξ−p+

X ∝ ξ−p−

where:

p± =
−1 + σ ±

√
(1− σ) (1 + 7σ + 24σ2)

2(1 + σ)
(4.115)

Thus the general solution takes the form:

X = X∞ξ
−p±(4.116)

Y = X∞

(
1

2σ
−
(

1− σ
1 + σ

)
1

p±

)
ξ−p±(4.117)
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where X∞ is a constant of integration. Equations (4.20) and (4.21) fix the integration constant

of Y in (4.117) to be zero, thus these asymptotically Kantowski-Sachs solutions are at most a

one-parameter family. The sign of p is determined by σ as the following cases demonstrate.

(1) For −1 < σ < −1
3 , KS(σ) has |V | → ∞ as ξ → 0, so the negative root p− must be chosen.

(2) For −1
3 < σ < 0, KS(σ) has |V | → ∞ as ξ →∞ but both p+ and p− are negative, so there

is no solution as ξ →∞.

(3) For 0 < σ < 1, KS(σ) has |V | → ∞ as ξ →∞, so the positive root p+ must be chosen.

By Proposition 4.3.1, we have that the KS(σ) solutions with −1
3 < σ < 0 correspond to static

solutions with 0 < σ < 1 if t and r (and hence ξ and ξ−1) are interchanged. This corresponds to

the fact that there are no asymptotically static solutions as ξ → 0 for 0 < σ < 1, as we will see in

the next section.

We now consider the limit |V | → 0, which corresponds to ξ → 0 for 0 < σ < 1. In this limit, (4.20),

(4.21) and the condition Ẋ(0) = Ẏ (0) = 0 imply that X and Y tend to constants which are related

by:

e2Y0 =
1

2

[
MKSe

−X0(1+σ)
σ −

(
MKS −

1

2

)
e−2X0

]−1

(4.118)

where MKS is defined by (4.67). Both the supersonic and subsonic solutions only depend on a

single parameter, thus the asymptotically Kantowski-Sachs solutions are a one-parameter family.

As like for the asymptotically Friedmann parameters, X0 and X∞ can be interpreted as density

perturbations. Carr and Coley remark that it is possible to show that there are only isolated

solutions at a sonic point when 0 < σ < 1, so any asymptotically Kantowski-Sachs solution which

hits the sonic surface is unlikely to be regular there. As like for the supersonic solutions, the

behaviour of the subsonic solutions depends on the value of σ, as the following cases consider.

(1) For −1 < σ < −1
3 , we have V → 0 as ξ →∞, so as before, there is a one-parameter family

of solutions.

(2) For −1
3 < σ < 0, there is a two-parameter family of solutions as ξ → 0 related to the

two-parameter family of asymptotically quasi-static solutions with 0 < σ < 1 as ξ →∞.
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(3) For 0 < σ < 1, we will consider this case for the remainder of the section.

We now follow [6] closely in describing the behaviour of the supersonic solutions with V < −
√
σ.

In this case the underdense solutions have X∞ positive. As ξ decreases from infinity, all solutions

cross V = −1 with a smaller value of ξ than KS(σ). These solutions reach a maximum between

V = −
√
σ and V = −1 and so do not hit the sonic point. As ξ continues to decreases they hit

the V = −1 surface again, all with V̇ = 1 and the same value of ξ, with M and ρ tending to zero.

Carr and Coley remark that this behaviour is analogous to that which arises for the solutions which

are asymptotically Minkowski at finite ξ, as we will see in Section 4.7. The overdense supersonic

solutions have X∞ negative and, as ξ decreases, all hit the sonic line with a larger value of ξ than

KS(σ). As X∞ decreases, the point at which these solutions hit the sonic line tends to infinity. All

the supersonic solutions have M < 0 and as ξ → ∞, both X and Y tend to 0, meaning that V

tends to the exact KS(σ) form.

We now consider the behaviour of the subsonic solutions with −
√
σ < V < 0. For the overdense

solutions, X0 is negative and none of the solutions hit the sonic surface. The solutions reach a

minimum as ξ decreases and then asymptotically approach V = 0. Carr and Coley remark that an

interesting feature of these solutions is that M , which is negative at the origin, goes through zero

and becomes positive as ξ increases. As for the underdense solutions, they have X0 positive and

hit the sonic line with a smaller value of ξ than KS(σ).

4.6. Asymptotically Quasi-Static Solutions

In this section we consider solutions which are asymptotically static and asymptotically quasi-static.

We will proceed similarly to Sections 4.4 and 4.5 by introducing functions X(ξ) and Y (ξ) defined

by:

x = x0e
X(4.119)

R = R0e
Y(4.120)
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where x0 and R0 are given by (4.78) and (4.79). We will begin by assuming ξ > 0, but for a full

description of the solutions, we will need to consider the ξ < 0 case as well. As like in the previous

two sections, we begin by substituting (4.110) and (4.111) into equations (4.18)-(4.21) to form ODE

in the variables X and Y . Equations (4.18) and (4.19) become:

Ÿ + 3Ẏ 2 − 1

σ
Ẋ +

σ + 3

σ + 1
Ẏ − 1 + σ

σ
ẊẎ = 0(4.121) (

Ẏ − 1

2σ
Ẋ

)
V 2 +

1

2
Ẋ − σ

1 + σ

(
e−4Y+ 1−σ

σ
X − 1

)
= 0(4.122)

As like in Section 4.5, to find the leading order solution of (4.121) and (4.122) as V →∞, that is,

as ξ →∞, we linearise these equation in this limit to yield:

Ÿ =
1

σ
Ẋ − σ + 3

σ + 1
Ẏ(4.123)

Ẏ =
1

2σ
Ẋ(4.124)

By eliminating Ẋ from (4.123) we obtain a single second-order ODE for Y given by:

Ÿ +
1− σ
1 + σ

Ẏ = 0(4.125)

and we can solve this equation to obtain:

X = X∞ + C1ξ
− 1−σ

1+σ(4.126)

Y = Y∞ +
C1

2σ
ξ−

1−σ
1+σ(4.127)

where X∞, Y∞ and C1 are constants of integration. Equations (4.20) and (4.21) place a single

constraint on these constants, which is given as so:

C1 ∝
(
e2Y∞− 1+σ

σ
X∞ − 1 + 6σ + σ2

4σ
+

(1 + σ)2

4σ
e6Y∞− 2

σ
X∞

) 1
2

eX∞−Y∞(4.128)

where the proportional symbol indicates that we have omitted a coefficient which depends only on σ.

Notice that (4.128) implies C1 = 0 when X∞ and Y∞ are, which corresponds to TOV(σ). Thus these

asymptotically solutions form a two-parameter family. As like for asymptotically Kantowski-Sachs

solutions, the parameter X∞ measures the asymptotic density perturbation relative to TOV(σ),
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with X∞ > 0 corresponding to underdense solutions and X∞ < 0 corresponding to overdense

solutions. The second parameter Y∞ specifies the asymptotic value of the scale factor relative to

its value in TOV(σ). Because relation (4.128) contains a square root with two possible signs, there

will be two solutions for a given value of Y∞. However, for large ξ, (4.23), (4.126) and (4.127)

imply:

VR ≈ −
(1− σ)C1

2σ(1 + σ)
(4.129)

and since TOV(σ) satisfies VR = 0, then this distinguishes C1 = 0 as the one-parameter subset

that most closely approximates TOV(σ).

Definition 4.6.1. The one-parameter subset of solutions corresponding to C1 = 0 define the family

of asymptotically static solutions, whereas the general two-parameter family with C1 6= 0 define the

family of asymptotically quasi-static solutions.

From (4.119) and (4.126) we see that asymptotically quasi-static solutions exhibit an isothermal

density profile at large ξ, that is, ρr2 is constant at large ξ. Carr and Coley remark that the

behaviour of asymptotically quasi-static solutions at large ξ is similar to the behaviour exhibited

in the dust case, where the solutions are also described by two parameters. The first parameter in

the dust case is related to the asymptotic energy E, which we will now specify in terms of X∞ and

Y∞. For large ξ, (4.23), (4.126) and (4.127) imply:

E =
(1 + σ)2

2 (1 + 6σ + σ2)
e6Y∞− 2

σ
X∞

(
1− C1(3− σ)

σ(1 + σ)
ξ−

1−σ
1+σ

)
− 1

2
(4.130)

and so we can deduce that:

E =
(1 + σ)2

2 (1 + 6σ + σ2)
e6Y∞− 2

σ
X∞ − 1

2
(4.131)

This relation provides an explicit correspondence between one of the parameters in the dust case

and the parameters of asymptotic quasi-static solutions. The second parameter in the dust case

corresponds to the value of ξ associated with a big bang or big crunch singularity, that is, D = |ξ|−1,

where the singularity occurs at ξ. Except for TOV(σ), where D = ∞, Carr and Coley note that

D can only be determined numerically when there is pressure, and so this parameter cannot be
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given explicitly in terms of X∞ and Y∞. However, the second parameter in the dust case can be

associated with the asymptotic value of VR, given in terms of C1 by (4.129), although this implicit

relationship is complicated.

We now turn to deriving solutions asymptotic to TOV(σ) as ξ → 0. This corresponds to solutions

for which V → 0 and X and Y are finite at ξ = 0, that is, Ẋ(0) = Ẏ (0) = 0. Now equation (4.23)

implies that these solutions satisfy VR = 0 and this in turn implies Ẋ = Ẏ = 0. However, coupling

this with (4.122) gives:

4Y0 =
1− σ
σ

X0(4.132)

with equations (4.20) and (4.21) then implying X0 = Y0 = 0, which corresponds to the explicit

TOV(σ) solution. This means there are no solutions asymptotic to TOV(σ) as ξ → 0 except the

TOV(σ) solution itself. Carr and Coley note that if solutions are instead considered for which

V → 0 and Ẋ(0) and Ẏ (0) are finite and non-zero, then (4.122) gives:

Ẋ = − 2σ

1 + σ
(4.133)

and substituting (4.133) into (4.121) yields:

(3 + 3σ)Ẏ 2 + (5 + 3σ)Ẏ + 2 = 0(4.134)

The solutions of this quadratic equation are given by:

Ẏ = − 2

3 + 3σ
(4.135)

Ẏ = −1(4.136)

however, these solutions correspond to asymptotic solutions that we have already considered in

Sections 4.4 and 4.5.

We will now describe the physical nature of asymptotically static and quasi-static solutions based

on their parameter values D and E. Note that the asymptotically static solutions can be described

in terms of the single parameter Esym. As briefly mentioned at the beginning of this section, the
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behaviour of these asymptotic solutions necessarily span both positive and negative ξ. All solutions

that are not time reversed correspond to cosmological models which start off expanding from a big

bang singularity at ξ = −D−1, then tend to the asymptotically quasi-static form as ξ → −∞ and

then cross over to ξ =∞.

(1) If E < Ecrit(D) for some Ecrit(D), then these solutions recollapse to another singularity.

(2) If E∗(D) < E < Ecrit(D) for some E∗(D), then there is an event and particle horizon.

(3) If E > Ecrit(D), then these solutions expand forever and hit the sonic surface.

The remaining solutions are the time reverse of these and all collapse to a final big crunch singularity

singularity at ξ = D−1.

(1) If E > E+(D) for some E+(D) > Ecrit(D) then this singularity is a black hole.

(2) If E < E+(D) then this singularity is naked.

These solutions may start off either expanding from a white hole or collapsing from infinity. For

asymptotically static solutions, the second singularity is given by ξ = D−1 and the time reversed

and unreversed solutions coincide. Carr and Coley remark that the ξ < 0 solutions can be obtained

from the ξ > 0 solutions by reflection, that is, the time reversed solutions give complete information

about the unreversed solutions and vice versa. However, it is interesting to note that both sets of

solutions are needed to follow the trajectory of a solution that passes between these sets. Because

of the square root in relation (4.128), there are two trajectories for each asymptotic value of R,

which results in two values of its derivative. In order for a solution to pass from ξ = −∞ to ξ =∞

the derivative must be preserved.

We will now describe the evolution of V (ξ) for the asymptotically static and quasi-static solutions.

We begin with the ever collapsing solutions, for which the evolution of V (ξ) is described by the

following points.

(1) These solutions start with V (0) = 0.

(2) As ξ decreases, V (ξ) passes through the sonic surface V = −
√
σ.

(3) As ξ continues to decrease, V (ξ) passes through the Cauchy horizon V = −1.
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(4) As ξ → −∞, V (ξ) tends to the quasi-static form at ξ = −∞.

(5) The solutions then jump to ξ =∞ and enter the ξ > 0 regime.

(6) As ξ decreases again, V (ξ) reaches a minimum, denoted by Vmin.

(7) If E > E+(D) then Vmin > 1.

(8) If E < E+(D) then Vmin < 1.

(9) If Vmin <
√
σ then the solutions would need to have a second sonic point, however, it is

unlikely that such solutions would be regular at this second point, so these solutions are

not expected to exist.

(10) As ξ → D−1, V (ξ)→∞ as it encounters the big crunch singularity.

The evolution of V (ξ) for the ever-expanding solutions is then just the time reverse of its evolution

for the ever-collapsing ones. We now consider the evolution of V (ξ) for the expanding-recollapsing

solutions, which arise if E < Ecrit. There are two solutions of this kind, the first of which is

described by the following points.

(1) These solutions start with V (ξ) at −∞ when ξ = −D−1.

(2) As ξ increases, V (ξ) reaches a maximum, denoted by Vmax.

(3) If E > E+(D) then Vmax < −1.

(4) If E < E+(D) then Vmax > −1.

(5) As ξ →∞, V (ξ)tends to the quasi-static form at ξ =∞.

(6) The solutions then jump to ξ = −∞ and enter the ξ < 0 regime.

(7) As ξ increases again, V (ξ) reaches a minimum, denoted by Vmin.

(8) If E > E∗(D) then Vmin < 1.

(9) If E < E∗(D) then Vmin > 1.

(10) As ξ → ξs, where ξs denotes the singularity, then V (ξ)→∞.

For reasons indicated previously, it is likely that the maximum is less than −
√
σ and the minimum

is more than
√
σ, in which case these solutions have no sonic points. The second kind of expanding-

recollapsing solution is the time reverse of the first and starts from ξ = −ξs and ends at ξ = D−1.

In such a case there is a naked singularity at ξ = D−1 if E < E+(D).
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4.7. Asymptotically Minkowski Solutions

In this section we consider solutions which are asymptotically Minkowski. In the previous sections

the asymptotic solutions are derived by perturbing an explicitly known self-similar perfect fluid

solution. However, even though we know the Minkowski solution explicitly, it is not a perfect fluid

solution. Instead, the asymptotically Minkowski solutions are found by considering a logarithmic

power-law expansion. If we recall from Section 4.1, a logarithmic power-law expansion is one of the

two possible expansions that completely classify all spherically symmetric self-similar perfect fluid

solutions of the first kind. So in this light, and by analogy with (4.29) and (4.30), solutions will be

sought with the following form:

x = x0|L|a(4.137)

R = R0|L|b(4.138)

where ξ → ξ∗ and:

L = ln

(
ξ

ξ∗

)
The modulus signs are put in (4.137) and (4.138) as L may be negative and have fractional ex-

ponents. Since the circumferential coordinate is given by r̄ = Rr, then ξ = ξ∗ corresponds to

an infinite distance from the origin for b < 0 and corresponds to zero distance for b > 0. Now

substituting (4.137) and (4.138) into equation (4.18) leads to:

b

[
3b− 1−

(
1 + σ

σ

)
a

]
+

[(
3 + σ

1 + σ

)
b− a

σ

]
L = 0(4.139)

with the first term being zero for:

b =
1

3
+

(
1 + σ

3σ

)
a(4.140)

Carr and Coley remark that the second term in (4.139) cannot be zero, meaning that there cannot

be any explicit solutions for our ansatz. There are now two possible cases, which are based on the

asymptotic value of V , these are:
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(1) V → V∗ as ξ → ξ∗.

(2) V →∞ as ξ → ξ∗.

For Case 1, equation (4.19) can be written as:

aL−1 =
2σbV 2

V 2 − σ
L−1 +

2σ2

(1 + σ) (V 2
∗ − σ)

− σ(1 + σ)β2V 2
∗

V 2
∗ − σ

ξ
− 2−2σ

1+σ
∗ (x0|L|a)

σ−1
σ(4.141)

where the first term on the right hand side does not substitute V for V∗ because (V 2 − V 2
∗ )L−1

may become constant in the limit ξ → ξ∗. The only way to obtain a solution from (4.141) is to set:

a =

(
2σV 2

∗
V 2
∗ − σ

)
b(4.142)

and since (4.22) requires:

a =

(
2σ

1− σ

)
b(4.143)

then this implies V 2
∗ = 1. In addition, (4.140) and (4.143) now form two equations for a and b.

Solving these equations and substituting a and b back into our ansatz thus yields:

x ≈ x0|L|
2σ

1−5σ(4.144)

R ≈ R0|L|
1−σ
1−5σ(4.145)

The requirement that V∗ = 1 imposes a constraint on the constants x0,R0 and ξ∗ by virtue of

equation (4.22). This means these solutions form a two-parameter family. With V∗ = 1 then

equation (4.20) implies:

M ∼ 1− σ
5σ − 1

|L|
1−σ
5σ−1(4.146)

The coefficient is included to show that the mass is negative when σ < 1
5 . Thus only solutions

which have σ > 1
5 are physical. Carr and Coley remark that ξ is required to tend to ξ∗ from below

in order to keep the mass positive. Now equation (4.21) can be written as:

M =
1

2
+

1

2
γ2x−

2
σR6

(Ṙ

R

)2 (
V 2 − 1

)
− 2Ṙ

R
− 1

(4.147)
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and since:

x−
2
σR6 ∼ |L|

6σ−2
5σ−1

goes to infinity for σ < 1
3 and zero for σ > 1

3 , then we need the term in square brackets in (4.147)

to go to zero and infinity in these cases respectively. The second term on the right hand side of

(4.147) can be rewritten as:

∼ |L|
σ−1
5σ−1

[
Ṙ

R

(
V 2 − 1

)
− 2− R

Ṙ

]
(4.148)

and since the exponent of |L| is negative, then the term in square brackets is required to go to zero

and scale as:

∼ |L|
1−σ
5σ−1

As a result, we need:

Ṙ

R

(
V 2 − 1

)
→ 2(4.149)

Using the approximation:

V 2

V 2 − σ
≈ 1

1− σ

[
1− σ

1− σ
(
V 2 − 1

)]
(4.150)

equations (4.22) and (4.141) then tell us that:

V̇

V
→ 1− 5σ

1− σ
< 0(4.151)

Because condition (4.149) depends on σ we will need to introduce higher order terms, that is, we

consider:

x ≈ x0|L|a
(

1 + CA|L|k + CCL
)

(4.152)

R ≈ R0|L|b
(

1 + CB|L|k + CDL
)

(4.153)

where a and b are given by (4.144) and (4.145), and k,CA, CB, CC and CD are constants.

122



In this light, (4.146) and (4.147) imply:

O
(
|L|

1−σ
5σ−1

)
= 1 +O

(
|L|

σ−1
5σ−1

)[Ṙ

R

(
V 2 − 1

)
− 2− R

Ṙ

]
(4.154)

and matching the exponents of |L| means:

k =
1− σ
5σ − 1

Now:

(1) For σ > 1
3 , we have k < 1 and so the dominant term in (4.152) and (4.153) is Lk.

(2) For σ < 1
3 , we have k > 1 and so the dominant term in (4.152) and (4.153) is L.

In either case, substituting (4.152) and (4.153) into (4.154) enables us to determine CA, CB, CC

and CD without placing a constraint on x0, R0 and ξ∗. The resulting metric is then given by:

ds2 ∼ |L|
4σ

1−5σ

(
−dt2 + dr2 + |L|

6σ−2
5σ−1 r2dΩ2

)
(4.155)

We now consider Case 2, that is, the case in which V →∞ as ξ → ξ∗. In this limit, equation (4.19)

becomes:

aL−1 = 2σbL−1 − σ(1 + σ)β2ξ
− 2−2σ

1+σ
∗ (x0|L|a)

σ−1
σ(4.156)

In order to satisfy this equation, we will need all terms to scale as L−1, which requires:

a =
σ

1− σ

Relation (4.140) then gives:

b =
2

3− 3σ

and thus:

x ≈ x0|L|
σ

1−σ(4.157)

R ≈ R0|L|
2

3−3σ(4.158)
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Now from equation (4.20) we have:

M ∼ |L|−
2

3−3σ(4.159)

and Carr and Coley note that in order for the mass to be positive, ξ must approach ξ∗ from above.

Since (4.156) gives the same relation between CA, CB and ξ∗ as (4.20) and (4.21), then these

solutions also depend on two parameters. Thus the asymptotically Minkowski solutions form a

two-parameter family and the resulting metric in the V →∞ case is given by:

ds2 ∼ −|L|
2σ

1−σ dt2 + |L|−
2

3−3σ dr2 + |L|
4

3−3σ r2dΩ2(4.160)

We now provide physical insight into the asymptotically Minkowski solutions. Beginning with the

V → V∗ case, Carr and Coley note that the scalar curvature tends to zero as ξ → ξ∗ providing

1
5 < σ < 1, that is, the physical solutions are flat on the surface ξ = ξ∗. This surface is null because

V∗ = 1. It turns out that although r tends to a finite value for finite t, this is just a coordinate

anomaly because (4.144) and (4.145) tell us that the physical distance still diverges. We also note

that (4.144) and (4.145) imply that the scale factor does not diverge at ξ∗ in the limit σ = 1,

although the density still tends to zero.

In the V → ∞ case, the scale factor goes to zero and the density goes to infinity at ξ∗, which

corresponds to a singularity at the physical origin. Carr and Coley note that this is a Schwarzschild-

type singularity in the sense that g00 → 0 and g11 →∞ as ξ → ξ∗.

In both the V → V∗ and V →∞ cases we cannot describe the solutions in terms of the parameter

E, since the energy function diverges, that is, (4.24), (4.88), (4.89), (4.144) and (4.145) imply:

E ∼
∣∣∣∣ln ∣∣∣∣ ξξ∗

∣∣∣∣∣∣∣∣ 4σ
1−5σ

(4.161)

E ∼ ξ
2V∗
V 2∗ −1(4.162)

in the two cases. Note that double modulus signs are used in (4.161) since ξ is now permitted to

be negative.

124



Carr and Coley remark that in both cases, there are solutions which collapse monotonically to a

central singularity and solutions which collapse and then bounce into an expansion phase, with

the latter hitting the sonic surface. As like for the other asymptotic solutions, the ξ < 0 solutions

are simply the time reverse of the ξ > 0 solutions. Although asymptotically Minkowski solutions

represent a large fraction of the complete solution space, Carr and Coley state at the time of writing

that many of their features remain unexplored.
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CHAPTER 5

General Relativistic Self-Similar Waves that Induce Cosmic

Acceleration

This chapter summarises and extends the 2012 paper General Relativistic Self-Similar Waves that

Induce an Anomalous Acceleration into the Standard Model of Cosmology by Smoller and Temple

[21]. One of the extensions is to the derivation of the autonomous spherically symmetric self-

similar in ξ Einstein field equations, which have now been derived for general σ. These equations,

which form an autonomous system of nonlinear ODE, are central to the construction of the general

relativistic shock waves considered in Chapter 6. As for the other extensions, Sections 5.2 and 5.3

have been added and corrections have been supplied to the Taylor expansions of the asymptotically

Friedmann spacetimes in Section 5.4.

5.1. Autonomous Spherically Symmetric Self-Similar Einstein Field Equations

Before deriving the autonomous spherically symmetric self-similar in ξ perfect fluid Einstein field

equations, let us revisit the flat FLRW spacetime, which represents our current Standard Model of

Cosmology. In particular, we will consider this spacetime during the Radiation Dominated Epoch

of the Universe, that is, when the spacetime is modelled with a pure radiation equation of state. We

know from Chapter 2 that the flat FLRW metric takes the following form in comoving coordinates:

ds2 = −dt2 +R2(t)
(
dr2 + r2dΩ2

)
(5.1)

Here, R(t) is the cosmological scale factor and the variable r̄ = R(t)r measures the arc length

distance at fixed time t. We note that for spherically symmetric spacetimes, the coordinate system

is comoving if the radial coordinate is constant along particle paths. Now substituting the metric

(5.1) into the Einstein field equations (2.1) with a perfect fluid source (2.2) yields the following
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system of ODE:

H =
κ

3
ρ(5.2)

ρ̇ = −3(ρ+ p)H(5.3)

where H is the Hubble constant, defined by:

H =
Ṙ

R
(5.4)

Recall from Section 3.8, that during the Radiation Dominated Epoch, the Stefan-Boltzmann radi-

ation law implies the pure radiation equation of state:

p =
c2

3
ρ(5.5)

Explicit solutions of (5.2) and (5.3) are given in the following theorem from [21], which is a corollary

of Theorem 2 from [22].

Theorem 5.1.1. Let (5.1) solve the perfect fluid Einstein field equations with a pure radiation

equation of state and assume an expanding universe, that is, Ṙ > 0. Then the solution of (5.2) and

(5.3) satisfying R(0) = 0 and R(1) = 1 is given by:

ρ(t) =
3

4κt2
(5.6)

R(t) = t
1
2(5.7)

Note that (5.7) implies the Hubble constant is given by:

H(t) =
1

2t
(5.8)

and that H and r̄ are scale independent relative to the scaling law:

r → αr

t→ αt
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for some positive constant α. The following theorem, also from [21], is a specific application of

Proposition 3.6.1 from Section 3.6. However, Smoller and Temple were not aware of Cahill and

Taub’s work at the time.

Theorem 5.1.2. Assume p = 1
3ρ and R(t) =

√
t, then the FLRW metric (5.1) under the change of

coordinates:

t̄ = Ψ0

(
1 +

[
R(t)r

2t

]2
)
t(5.9)

r̄ = R(t)r(5.10)

transforms to the Schwarzschild coordinate metric:

ds̄2 = −B(ξ)dt̄2 +
1

A(ξ)
dr̄2 + r̄2dΩ2(5.11)

where:

ξ =
r̄

t̄
(5.12)

and:

A = 1− v2(5.13)

B =
1

Ψ2
0(1− v2)

(5.14)

v =
1√
AB

ū1

ū0
(5.15)

Furthermore, the Schwarzschild coordinate velocity satisfies:

v =
ζ

2
(5.16)

Ψ0ξ =
2v

1 + v2
(5.17)

where Ψ0 is an inessential parameter and:

ζ =
r̄

t
(5.18)
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Recall that ū0 and ū1 denote the (t̄, r̄) components of the normalised four-velocity u in Schwarzschild

coordinates. Smoller and Temple remark that the constant Ψ0 is included to later account for

the time rescaling freedom in (5.11). The Jacobian and inverse Jacobian corresponding to the

transformation (5.9) and (5.10) are given by:

J ≡ ∂x̄

∂x
=

 Ψ0 Ψ0

√
t ζ2

ζ
2

√
t

(5.19)

J−1 ≡ ∂x

∂x̄
=

1

|J |

 √t −Ψ0

√
t ζ2

− ζ
2 Ψ0

(5.20)

where:

|J | = Ψ0

√
t

(
1− ζ2

4

)
(5.21)

For metrics taking the Schwarzschild form (5.11), we will now show how the Einstein field equations

reduce to a system of three ODE. This is in the same spirit as Cahill and Taub, except the

equations will be derived using Schwarzschild coordinates. The use of Schwarzschild coordinates

yields significant advantages when it comes to forming shock-wave solutions. Furthermore, these

ODE will turn out to be autonomous, paving the way to a new phase space analysis that will be

conducted in Chapter 6. In this light, by putting the Schwarzschild metric ansatz (5.11) into the

Einstein field equations, the following four PDE are obtained:

−r̄ 1

A

∂A

∂r̄
+

1−A
A

= κ
B

A
r̄2T 00(5.22)

r̄
1

A

∂A

∂t̄
= κ

B

A
r̄2T 01(5.23)

r̄
1

B

∂B

∂r̄
− 1−A

A
= κ

1

A2
r̄2T 11(5.24)

− ∂2

∂t̄2

(
1

A

)
+

∂2

∂r̄2
B −Θ = 2κ

B

A
r̄2T 22(5.25)

where:

Θ =
1

2A2B

∂B

∂t̄

∂A

∂t̄
− 1

2A3

(
∂A

∂t̄

)2

− 1

r̄

∂B

∂r̄
− 1

r̄

B

A

∂A

∂r̄
+

1

2B

(
∂B

∂r̄

)2

− 1

2A

∂B

∂r̄

∂A

∂r̄
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The main purpose of this section is to prove the following theorem, which is a modification of

Theorem 4 from [21]. The original theorem is given for a pure radiation equation of state, whereas

this modified theorem generalises the result to equations of state of the form p = σρ. Theorem 5

of [21] demonstrates that FLRW(0, 1
3 , 1) is a particular solution of equations (5.27)-(5.29), however

this theorem is replaced by Proposition 5.3.2 and the proceeding remark given in Section 5.3.

Theorem 5.1.3. Let:

G =
ξ√
AB

(5.26)

and assume that A(ξ), G(ξ) and v(ξ) solve the following ODE:

ξ
dA

dξ
= −(3 + 3σ)(1−A)v

{·}S
(5.27)

ξ
dG

dξ
= −G

[(
1−A
A

)
(3 + 3σ)[(1 + v2)G− 2v]

2{·}S
− 1

]
(5.28)

ξ
dv

dξ
= −

(
1− v2

2{·}D

)[
3σ{·}S +

(
1−A
A

)
(3 + 3σ)2{·}N

4{·}S

]
(5.29)

where:

{·}S = 3(G− v)− 3σv(1−Gv)(5.30)

{·}N = −3(G− v)2 + 3σv2(1−Gv)2(5.31)

{·}D =
3

4
(3 + 3σ)

[
(G− v)2 − σ(1−Gv)2

]
(5.32)

and the density is given by the constraint:

κρr̄2 =
3(1− v2)(1−A)G

{·}S
(5.33)

Then the metric:

ds̄2 = −B(ξ)dt̄2 +
1

A(ξ)
dr̄2 + r̄2dΩ2(5.34)

with Schwarzschild coordinate velocity v and equation of state p = σρ solves the perfect fluid Einstein

field equations.
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Note that under the change of variable:

ξ = es(5.35)

the equations become explicitly autonomous, since:

ξ
d

dξ
=

d

ds
(5.36)

The autonomous nature of these equations distinguish them from the self-similar ODE derived

by Cahill and Taub. It is also worth noting that the variable G is the Schwarzschild coordinate

analogue of the variable V introduced by Cahill and Taub and used throughout Chapters 3 and 4.

Proof of Theorem 5.1.3. In a previous paper by Groah and Temple [12], it was shown for

smooth solutions that (5.22)-(5.25) are equivalent to (5.22)-(5.24) together with ∇µTµ1 = 0, with

the latter equation taking the following Schwarzschild coordinate form:

(5.37)
∂

∂t̄
T 01
M +

∂

∂r̄

(√
ABT 11

M

)
= −1

2

√
AB

(
4

r̄
T 11
M +

1

r̄

1−A
A

(T 00
M − T 11

M ) + 2κr̄
1

A
(T 00
M T 11

M − (T 01
M )2 − 4r̄T 22

M )

)
where the Minkowski stresses TµνM are defined by:

T 00
M = BT 00 = (ρ+ p)

1

1− v2
− p

T 01
M =

√
B

A
T 01 = (ρ+ p)

v

1− v2
(5.38)

T 11
M =

1

A
T 11 = (ρ+ p)

v2

1− v2
+ p

and:

T 22
M = T 22 = σρr̄2(5.39)

In this light, we need to show equations (5.22)-(5.24) and (5.37) close and reduce to equations

(5.27)-(5.29) with constraint (5.33). Smoller and Temple’s strategy is to show that when A(ξ),

G(ξ) and v(ξ) are substituted into (5.22)-(5.24) and (5.37), all terms not depending on ξ can be
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written in the form r̄2TµνM , which are be shown to be of the form ρr̄2 multiplied by functions

of the velocity. We will follow this strategy and start by substituting A(ξ), G(ξ) and v(ξ) into

(5.22)-(5.24). By defining:

Sµν = κr̄2TµνM(5.40)

we can write (5.22)-(5.24) as:

ξ
dA

dξ
= 1−A− S00(5.41)

ξ
dA

dξ
= − 1

G
S01(5.42)

ξ
1

B

dB

dξ
=

1

A
(1−A+ S11)(5.43)

where:

S00 = κρr̄2 1 + σv2

1− v2
= κ

(
ρr̄2

3(1− v2)

)
(3 + 3σv2)(5.44)

S01 = κρr̄2 1 + σ

1− v2
v = κ

(
ρr̄2

3(1− v2)

)
(3 + 3σ)v(5.45)

S11 = κρr̄2σ + v2

1− v2
= κ

(
ρr̄2

3(1− v2)

)
(3σ + 3v2)(5.46)

In addition, for µ, ν ∈ {0, 1} we define:

Sµν = κwV µν(5.47)

S22 =
1

r̄2
κwV 22(5.48)

where:

w =
ρr̄2

3(1− v2)
(5.49)
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and:

V 00 = 3 + 3σv2(5.50)

V 01 = (3 + 3σ)v(5.51)

V 11 = 3σ + 3v2(5.52)

V 22 = 3σ(1− v2)(5.53)

Now equating (5.41) and (5.42) implies:

G(1−A)−GS00 = −S01(5.54)

and substituting (5.44) and (5.45) into (5.54) then yields the constraint (5.33). Furthermore, by

applying (5.49) to (5.33) we obtain the equivalent constraint:

κw =
(1−A)G

{·}S
(5.55)

Using (5.55), κw can be eliminated from (5.47), and thus from (5.41)-(5.43). In this light, substi-

tuting (5.55) into (5.47) yields:

Sµν =
(1−A)G

{·}S
V µν(5.56)

and so (5.44)-(5.46) can be written independent of w and ρr̄2 as so:

S00 =
(1−A)G

{·}S
(3 + 3σv2)(5.57)

S01 =
(1−A)G

{·}S
(3 + 3σ)v(5.58)

S11 =
(1−A)G

{·}S
(3σ + 3v2)(5.59)

By substituting (5.57) into (5.41) we then obtain (5.27). Now differentiating (5.26) we find that:

ξ
dG

dξ
= G

[
1− 1

2

(
ξ

A

dA

dξ
+
ξ

B

dB

dξ

)]
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and using (5.41) and (5.43) we have:

ξ
dG

dξ
= G

[
1−

(
1−A
A

+
S11 − S00

2A

)]
(5.60)

By substituting (5.57) and (5.59) into (5.60) we then obtain (5.28). So far we have shown that if A,

G and v are functions of ξ, then (5.22)-(5.24) are equivalent to (5.27) and (5.28) together with the

constraint (5.33). It remains to show that when A(ξ), G(ξ) and v(ξ) are substituted into (5.37),

the relations (5.57)-(5.59) can be used to obtain (5.29). To start, we multiply (5.37) by r̄3 and use

(5.40) to get:

0 = r̄
∂

∂t̄
S01 + r̄

∂

∂r̄

(√
ABS11

)
− 2
√
ABS11

− 1

2

√
AB

(
4S11 +

1−A
A

(S00 − S11) +
2κ

A

[
S00S11 − (S01)2 − 4r̄2S22

])
Using (5.41) and (5.43) to eliminate S01 and S11 in the two terms quadratic in Sµν , we then obtain:

0 = −ξ2 d

dξ
S01 + ξ

d

dξ

(√
ABS11

)
− 2
√
ABS11

− 1

2

√
AB

(
2ξ2

A
√
AB

dA

dξ
S01 +

(
4− ξ

A

dA

dξ

)
S11 +

ξ

B

dB

dξ
S00 − 4r̄2S22

)
Evaluating the derivative in the second term and cancelling terms of the form:

±1

2
ξ2E

A

dA

dξ
S11

leads to the following expression after multiplying by ξ−1:

0 = −ξ d
dξ
S01 + ξE

d

dξ
S11 +

ξ

A

d

dξ
S01 +

1

2
ξ
E

B

dB

dξ
(S00 + S11)− 2Er̄2S22(5.61)

where:

E =
1

G
=

√
AB

ξ
(5.62)
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From (5.47), the derivatives of S01 and S11 in (5.61) can be given in terms of the derivatives of v

and w, to yield:

0 = (EV 11 − V 01)
ξ

w

dw

dξ
+ (6Ev − 3− 3σ)ξ

dv

dξ
+
ξ

A

dA

dξ
V 01 +

1

2
ξ
E

B

dB

dξ
(V 11 + V 00)− 2EV 22

(5.63)

Before proceeding, we note that:

κw =
1−A

V 00 − EV 01
(5.64)

follows from (5.33) and we will show that:

1

w

dw

dξ
=

(3 + 3σ)E − 6σv

V 00 − EV 01

dv

dξ
+

(3 + 3σ)v

2ξ2E(V 00 − EV 01)

d

dξ
(AB)(5.65)

In this light, differentiating (5.64) yields:

1

w

dw

dξ
=

D

1−A
dw

dξ
= − 1

1−A
dA

dξ
− 1

D

dD

dξ
(5.66)

where:

D = V 00 − EV 01(5.67)

By (5.42), (5.64) and (5.67), we have:

− 1

1−A
dA

dξ
=

(3 + 3σ)vE

ξD
(5.68)

and by (5.62), (5.64) and (5.67), we have:

1

D

dD

dξ
=

6σv − (3 + 3σ)E

D

dv

dξ
+

(3 + 3σ)vE

ξD
− (3 + 3σ)v

2ξ2ED

d

dξ
(AB)(5.69)

Then by substituting (5.68) and (5.69) in (5.66) we thus obtain (5.65). Now that we have (5.65), we

can insert this expression into (5.63), use (5.48) and solve the resulting equation for the derivative
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of v to get:

(5.70) 8ξ
dv

dξ
{·}∗D =

ξ

A

dA

dξ

{
(EV 11 − V 01)EV 01 + 2DV 01

}
A

+ ξ
E

B

dB

dξ

{
(EV 11 − V 01)V 01 +D(V 00 + V 11)

}
B
− 4EDV 22

where:

2{·}∗D = −(EV 11 − V 01)(2E − V ) + (2− 3Ev)D(5.71)

We can then use (5.41)-(5.43) to replace the derivatives of A and B to obtain:

(5.72) 2ξ
dv

dξ
{·}∗D

4AD

(1−A)E
= −(V 01)2

{
(EV 11 − V 01)E + 2D

}
A

+ (D + V 11)
{

(EV 11 − V 01)V 01 +D(V 00 + V 11)
}
B
− 4AD2

1−A
V 22

Given that V 00, V 01 and V 11 only depend on v, then we can see that the {·}A, {·}B and {·}∗D terms

in (5.72) are all quadratic polynomials in E with polynomials in v as coefficients. Such coefficients

will now be found. Beginning with {·}∗D, we have by (5.71) that:

2{·}∗D =

[
1

2
(3 + 3σ)V 00 − 3σV 01v

]
+
[
3σV 11v − 3V 00v

]
E +

[
3V 01v − 1

2
(3 + 3σ)V 11

]
E2

and then by (5.50)-(5.52) we obtain:

2{·}∗D =
1

2
(3 + 3σ)(3− 3σv2) + 3(3σ2v − 3v)E +

1

2
(3 + 3σ)(3v2 − 3σ)E2 = 2E2{·}D(5.73)

where {·}D is given by (5.32). For {·}A, we apply (5.67) to see that:

−(V 01)2{·}A = −(V 01)2
{

(EV 11 − V 01)E + 2V 00 − 2EV 01
}
A

and then by (5.50)-(5.52) we obtain:

−(V 01)2{·}A = −(3 + 3σ)2v2
{

(3σ + 3v2)E2 − 3(3 + 3σ)vE + 2(3 + 3σv2)
}
A

(5.74)
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Similarly, for {·}B we have that:

(D + V 11){·}B = (D + V 11)
{

(EV 11 − V 01)V 01 +D(V 00 + V 11)
}
B

= (V 00 + V 11 − EV 01)
{
V 00(V 00 + V 11)− (V 01)2 − V 00V 01E

}
B

and again by (5.50)-(5.52) we obtain:

(5.75) (D + V 11){·}B = (3 + 3σ)2(1 + v2)(3 + 3σv4)

− 2(3 + 3σ)2v

[
3 +

1

2
(3 + 3σ)v2 + 3σv4

]
E + (3 + 3σ)2(3 + 3σv2)v2E2

Now by adding (5.74) and (5.75) we obtain the following after some simplification:

−(V 01)2{·}A + (D + V 11){·}B = {·}0 + {·}1E + {·}2E2(5.76)

where:

{·}0 = (3 + 3σ)2(1− v2)(3− 3σv4)(5.77)

{·}1 = −2(3 + 3σ)2v(1− v2)(3− 3σv2)(5.78)

{·}2 = (3− 3σ)(3 + 3σ)2v2(1− v2)(5.79)

We can then use (5.76) to see that:

−(V 01)2{·}A + (D + V 11){·}B = −(3 + 3σ)2(1− v2)E2{·}N(5.80)

where {·}N is given by (5.31). Finally, inserting (5.80) into (5.72) and using (5.73) and (5.53) gives

the following equation, which equivalent to (5.37):

2ξ
dv

dξ

ADE

1−A
{·}D = −1

4
(3 + 3σ)2(1− v2)E2{·}N − 3σ(1− v2)

AD2

1−A
(5.81)

By dividing (5.81) by:

ADE

1−A
{·}D
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and using:

D = E
[
(3 + 3σv2)G− (3 + 3σ)v

]
we see that equation (5.81) is equivalent to (5.29), which completes the proof. �

Just as with the ODE derived in comoving coordinates in Chapter 3, we see that the temporal scaling

t̄→ Ψ0t̄ preserves solutions of (5.22)-(5.24) and the constraint (5.37). The following theorem, also

from [21], confirms Ψ0 is indeed an inessential parameter.

Theorem 5.1.4. The replacement t̄→ Ψ0t̄ takes:

A(ξ)→ A

(
ξ

Ψ0

)
G(ξ)→ G

(
ξ

Ψ0

)
v(ξ)→ v

(
ξ

Ψ0

)
and this scaling preserves solutions of (5.22)-(5.24) and (5.37). Moreover, this is the only such

scaling law in the sense that any two solutions of (5.22)-(5.24) and (5.37) that are not related by

this scaling will describe distinct spacetimes.

Proof. Following Smoller and Temple’s proof, we need to show that the only coordinate

transformation that preserves the Schwarzschild coordinate form (5.34) is the time scaling t̄→ αt̄

for constant α. The problem reduces to demonstrating that the only coordinate transformation of

the form (t̄, r̄)→ (t̃, r̃) taking a metric:

ds̄2 = −B(ξ)dt̄2 +
1

A(ξ)
dr̄2 + r̄2dΩ2

to a metric:

ds̃2 = −B̃(ξ̃)dt̃2 +
1

Ã(ξ̃)
dr̃2 + r̃2dΩ2
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where ξ̃ = r̃/t̃, is the time scaling:

r̃ = r̄

t̃ = αt̄

As remarked in Section 2.1, because both metrics are in Schwarzschild form then they must share

the same radial variable. So to avoid introducing dtdr terms into the metric, it must be the case

that:

t̃ = Λ(t̄)

for some function Λ. This means the transformation must meet the condition:

Ã

(
r̄

Λ(t̄)

)
= A

( r̄
t̄

)
Differentiating with respect to r̄ then yields:

Λ(t̄)

t̄
=
Ã′

A′

Since the left hand side of the above is independent of r̄, and the right hand side is not, we must

have that both sides are constant, implying:

Λ(t̄) = αt̄

for some positive constant α, as claimed. �

We conclude this section with the statement of Theorem 8 from [21]. This theorem establishes

the important fact that only the k = 0 FLRW(k, σ, 1) spacetimes are solutions of equations (5.27)-

(5.29), that is, the parameter k is not one of the two parameters, for each fixed σ, specifying

solutions to (5.27)-(5.29).

Theorem 5.1.5. Spacetime metrics defined by solutions of (5.27)-(5.29) are distinct form the k 6= 0

FLRW spacetimes.

139



5.2. Revisiting the TOV Spacetimes

We know from Chapter 2 that the TOV spacetimes are the family of spherically symmetric static

spacetimes. We then found in Chapter 3, that the self-similar subset of these spacetimes with a

barotropic equation of state, form the unique family of spherically symmetric self-similar static

spacetimes, which we denote by TOV(σ). In the context of equations (5.27)-(5.29), the TOV(σ)

spacetimes are distinguished by having a Schwarzschild coordinate velocity that is identically zero.

Proposition 5.2.1. Spherically symmetric self-similar perfect fluid spacetimes are static if and

only if v ≡ 0.

Proof. Since it is known that the family of static spherically symmetric self-similar perfect

fluid spacetimes are unique, it is sufficient to demonstrate that solutions with zero Schwarzschild

coordinate velocity are static. In this light, substituting v ≡ 0 into equation (5.27) implies that

A ≡ A0 for some constant A0. Furthermore, substituting v ≡ 0 into equation (5.29) requires:

9σ − 1

4
(3 + 3σ)2

(
1−A0

A0

)
= 0

to ensure v′ ≡ 0. This means A0 can be given as a function of σ as so:

A0(σ) = 1− 2M(σ)

where:

M(σ) =
2σ

1 + 6σ + σ2

Now substituting both v ≡ 0 and A ≡ A0 into equation (5.28) and solving for G yields:

G(ξ) = C1ξ
1−σ
1+σ

for some positive constant C1. Putting these results together gives us the following metric in

self-similar Schwarzschild coordinates:

ds̄2 = −C2ξ
4σ

1+σ dt̄2 +
1

1− 2M(σ)
dr̄2 + r̄2dΩ2
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for some positive constant C2, with the density given by:

ρ =
2M(σ)

κr̄2

Note that because v ≡ 0, this coordinate frame is also comoving with the fluid. Finally, making

the temporal transformation:

t̃ =
1 + σ

1− σ
t̄

1−σ
1+σ

r̃ = r̄

puts the metric in the following explicitly static form:

ds̃2 = −C2r̃
4σ

1+σ dt̃2 +
1

1− 2M(σ)
dr̃2 + r̃2dΩ2

noting that the density also remains static. �

The TOV(σ) spacetimes are a remarkably convenient and simple set of solutions to the perfect

fluid Einstein field equations, mostly because they can be placed in a coordinate system which is

comoving, explicitly self-similar and in Schwarzschild form simultaneously.

Proposition 5.2.2. The one-parameter family of TOV spacetimes, denoted by TOV(σ), are given

in self-similar comoving Schwarzschild coordinates as:

ds̄2 = −α2ξ
4σ

1+σ dt̄2 +
1

1− 2M(σ)
dr̄2 + r̄2dΩ2

ρ =
2M(σ)

κr̄2

p = σρ

where α is an inessential parameter and:

M(σ) =
2σ

1 + 6σ + σ2

Proof. This follows from the proof of Proposition 5.2.1. �
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5.3. Revisiting the FLRW Spacetimes

We know from Chapter 2 that the flat FLRW spacetimes are the family of spatially homogeneous

spherically symmetric spacetimes. We also know from Chapter 4 that the self-similar subset of

FLRW spacetimes which solve the perfect fluid Einstein field equations with a barotropic equation

of state take the following form in self-similar comoving coordinates:

dŝ2 = −e2ϕdt̂2 + e2ψdr̂2 + R2r̂2dΩ2

ρ =
2ξ̂2

κr̂2

p = σρ

where:

e2ϕ = β2

e2ψ = γ−2ξ̂−
4

3+3σ

R2 = ξ̂−
4

3+3σ

and:

β =

√
6

3 + 3σ

γ =
3 + 3σ

1 + 3σ

Note that the density is independent of r and that the metric can also be put into an explicitly

spatially homogeneous form through the purely radial transformation:

t = t̂

r = r̂
1+3σ
3+3σ

to yield:

ds2 = −β2dt2 + t
4

3+3σ
(
dr2 + r2dΩ2

)
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Proposition 5.3.1. The one-parameter family of self-similar perfect fluid FLRW spacetimes with

barotropic equations of state, denoted by FLRW(0, σ, 1), are given in self-similar Schwarzschild

coordinates as:

ds̄2 = −Ψ−2
0

[
1 +

1

3
(1 + 3σ)ξ̂

2+6σ
3+3σ

]− 1−3σ
1+3σ

[
1− 2

3
ξ̂

2+6σ
3+3σ

]−1

dt̄2 +

[
1− 2

3
ξ̂

2+6σ
3+3σ

]−1

dr̄2 + r̄2dΩ2

v =
2√
6
ξ̂

1+3σ
3+3σ

ρ =
3v2

κr̄2

p = σρ

where Ψ0 is an inessential parameter and:

ξ =
1√
6

Ψ−1
0 (3 + 3σ)ξ̂

1+3σ
3+3σ

[
1 +

1

3
(1 + 3σ)ξ̂

2+6σ
3+3σ

]− 3+3σ
2+6σ

(5.82)

Recall that the zero in the first argument of FLRW(0, σ, 1) corresponds to the flat subset of FLRW

spacetimes, that is, those with k = 0 in reduced circumference Schwarzschild coordinates. The one

in the third argument corresponds to the lack of perturbation, which will be defined in the next

section.

Proof of Proposition 5.3.1. To change FLRW(0, σ, 1) from self-similar comoving coordi-

nates to self-similar Schwarzschild coordinates, we can use the transformation given by Proposition

3.6.1 from Section 3.6:

dt̄ = e−µ
(
eϕ coshω dt̂+ eψ sinhω dr̂

)
(5.83)

dr̄ = e−ν
(
eϕ sinhω dt̂+ eψ coshω dr̂

)
(5.84)

where:

tanhω = eψ−ϕ
∂t̂(Rr̂)

∂r̂(Rr̂)
(5.85)

e−2ν = e−2ψ[∂r̂(Rr̂)]2 − e−2ϕ[∂t̂(Rr̂)]2(5.86)
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and µ is such that dt̄ is a perfect differential. Relations (5.85) and (5.86) come from setting r̄ = Rr̂.

The resulting self-similar Schwarzschild form of the metric is then given by:

ds̄2 = −e2µdt̄2 + e2νdr̄2 + r̄2dΩ2

To begin, the tanhω term is computed as so:

tanhω = eψ−ϕ
∂t̂(Rr̂)

∂r̂(Rr̂)

= β−1γ−1ξ̂−
2

3+3σ
−ξ̂2∂r̂R

R + r̂∂r̂R

= β−1γ−1ξ̂−
2

3+3σ
−ξ̂2(− 2

3+3σ )ξ̂−
2

3+3σ
−1

ξ̂−
2

3+3σ + ξ̂(− 2
3+3σ )ξ̂−

2
3+3σ

−1

= 2(1 + 3σ)−1β−1γ−1ξ̂
1+3σ
3+3σ

and this yields:

coshω = (1− tanh2 ω)−
1
2 =

[
1− 4(1 + 3σ)−2β−2γ−2ξ̂

2+6σ
3+3σ

]− 1
2

sinhω = tanhω(1− tanh2 ω)−
1
2 = 2(1 + 3σ)−1β−1γ−1ξ̂

1+3σ
3+3σ

[
1− 4(1 + 3σ)−2β−2γ−2ξ̂

2+6σ
3+3σ

]− 1
2

The e−2ν term is computed similarly:

e−2ν = e−2ψ[∂r̂(Rr̂)]2 − e−2ϕ[∂t̂(Rr̂)]2

= γ2ξ̂
4

3+3σ

[
ξ̂−

2
3+3σ + ξ̂

(
− 2

3 + 3σ

)
ξ̂−

2
3+3σ

−1

]2

− β−2

[
−ξ̂2

(
− 2

3 + 3σ

)
ξ̂−

2
3+3σ

−1

]2

= (1 + 3σ)2(3 + 3σ)−2γ2
[
1− 4(1 + 3σ)−2β−2γ−2ξ̂

2+6σ
3+3σ

]
and this results in:

dt̄ = βe−µ
[
1− 4(1 + 3σ)−2β−2γ−2ξ̂

2+6σ
3+3σ

]− 1
2
[
dt̂+ 2(1 + 3σ)−1β−2γ−2ξ̂−1ξ̂

2+6σ
3+3σ dr̂

]
dr̄ = 2(3 + 3σ)−1ξ̂

1+3σ
3+3σ

[
dt̂+

1

2
(1 + 3σ)ξ̂−1dr̂

]
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Now given that µ is such that the right hand side of (5.83) is a perfect differential, then:

∂

∂r̂
e−η =

∂

∂t̂

[
2(1 + 3σ)−1β−2γ−2ξ̂−1ξ̂

2+6σ
3+3σ e−η

]
where:

e−η = e−µ
[
1− 4(1 + 3σ)−2β−2γ−2ξ̂

2+6σ
3+3σ

]− 1
2

The equation for η can be solved as so:

∂

∂r̂
e−η =

∂

∂t̂

[
2(1 + 3σ)−1β−2γ−2ξ̂−1ξ̂

2+6σ
3+3σ e−η

]
⇐⇒ 1

t̂

d

dξ̂
e−η = − r̂

t̂2
d

dξ̂

[
2(1 + 3σ)−1β−2γ−2ξ̂−1ξ̂

2+6σ
3+3σ e−η

]
⇐⇒ η′ = 2(1 + 3σ)−1β−2γ−2ξ̂eη

[
−ξ̂−1ξ̂

2+6σ
3+3σ η′e−η + (3σ − 1)(3 + 3σ)−1ξ̂−

4
3+3σ e−η

]
⇐⇒ η′ = 2(1 + 3σ)−1(3σ − 1)(3 + 3σ)−1β−2γ−2ξ̂−1ξ̂

2+6σ
3+3σ

[
1 + 2(1 + 3σ)−1β−2γ−2ξ̂

2+6σ
3+3σ

]−1

⇐⇒ η = (3σ − 1)(2 + 6σ)−1 log
[
1 + 2(1 + 3σ)−1β−2γ−2ξ̂

2+6σ
3+3σ

]
+ C3

where C3 is a constant. This then yields:

e−η = Ψ0

[
1 + 2(1 + 3σ)−1β−2γ−2ξ̂

2+6σ
3+3σ

] 1−3σ
2+6σ

for some positive constant Ψ0, thus:

dt̄ = Ψ0β
[
1 + 2(1 + 3σ)−1β−2γ−2ξ̂

2+6σ
3+3σ

] 1−3σ
2+6σ

[
dt̂+ 2(1 + 3σ)−1β−2γ−2ξ̂−1ξ̂

2+6σ
3+3σ dr̂

]
Because the transformation is taking the metric from one self-similar form to another, let:

t̄ = T (ξ̂)t̂

so that:

∂t̄

∂t̂
= T (ξ̂)− ξ̂T ′(ξ̂) = Ψ0β

[
1 + 2(1 + 3σ)−1β−2γ−2ξ̂

2+6σ
3+3σ

] 1−3σ
2+6σ

∂t̄

∂r̂
= T ′(ξ̂) = 2Ψ0(1 + 3σ)−1β−1γ−2ξ̂−1ξ̂

2+6σ
3+3σ

[
1 + 2(1 + 3σ)−1β−2γ−2ξ̂

2+6σ
3+3σ

] 1−3σ
2+6σ
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Solving these equations yields the same function for T (ξ̂) only when the integration constant is

zero, thus:

T (ξ̂) = Ψ0β
[
1 + 2(1 + 3σ)−1β−2γ−2ξ̂

2+6σ
3+3σ

] 3+3σ
2+6σ

Now the fluid four-velocity u is given in self-similar comoving coordinates as:

u = (û0, û1, û2, û3) = (e−µ, 0, 0, 0) = (β−1, 0, 0, 0)

and in self-similar Schwarzschild coordinates as:

u = (ū0, ū1, ū2, ū3) =

(
û0∂t̄

∂t̂
, û0∂r̄

∂t̂
, 0, 0

)
=

(
β−1∂t̄

∂t̂
, β−1∂r̄

∂t̂
, 0, 0

)
=

(
Ψ0

[
1 + 2(1 + 3σ)−1β−2γ−2ξ̂

2+6σ
3+3σ

] 1−3σ
2+6σ

, 2(3 + 3σ)−1β−1ξ̂
1+3σ
3+3σ , 0, 0

)
Therefore, by Definition 2.1.1:

v = eν−µ
ū1

ū0
= 2(3 + 3σ)−1β−1ξ̂

1+3σ
3+3σ

Finally, by substituting in β and γ and noting that:

ξ =
r̄

t̄
=

R(ξ̂)r̂

T (ξ̂)t̂
=

R(ξ̂)

T (ξ̂)
ξ̂

the rest follows. �

Spacetimes that solve equations (5.27)-(5.29) can be denoted by the triple (A,G, v), which specifies

the metric through A and G, the fluid four-velocity through v and the density through the constraint

(5.33). This notation will be used frequently in Chapter 6.

Proposition 5.3.2. FLRW(0, σ, 1) is given implicitly by:

A = 1− v2(5.87)

G =
1

2
(3 + 3σ)v

(
1 +

1

2
(1 + 3σ)v2

)−1

(5.88)

v =
2√
6
ξ̂

1+3σ
3+3σ(5.89)
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Proof. First note that (5.89) is immediately obtained from Proposition 5.3.1. Then by defi-

nition:

A = e−2ν = 1− 2

3
ξ̂

2+6σ
3+3σ

G = ξeν−µ =
1√
6

(3 + 3σ)ξ̂
1+3σ
3+3σ

[
1 +

1

3
(1 + 3σ)ξ̂

2+6σ
3+3σ

]−1

which yields (5.87) and (5.88). �

To check that (5.87)-(5.89) satisfies equations (5.27)-(5.29), it is recommended to first show the

following:

ξ
d

dξ
= ξ

dξ̂

dξ

d

dξ̂
=

(3 + 3σ)2

2 + 6σ

v

AG
ξ̂
d

dξ̂

and secondly show:

ξ̂
dA

dξ̂
= −2 + 6σ

3 + 3σ
v2

ξ̂
dG

dξ̂
=

2 + 6σ

(3 + 3σ)2

(
1− 1

2
(1 + 3σ)v2

)
G2

v

ξ̂
dv

dξ̂
=

1 + 3σ

3 + 3σ
v

Then it is not difficult to confirm that (5.87)-(5.89) solves equations (5.27)-(5.29).

Corollary 5.3.1. FLRW(0, 1
3 , 1) is given in self-similar Schwarzschild coordinates as:

ds̄2 =
1

1− v2

(
−Ψ−2

0 dt̄2 + dr̄2
)

+ r̄2dΩ2

v =
1−

√
1−Ψ2

0ξ
2

Ψ0ξ

ρ =
3v2

κr̄2

p = σρ

where Ψ0 is an inessential parameter.
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Proof. From Proposition 5.3.1 in the case σ = 1
3 , relation (5.82) can be inverted to yield v.

The metric then follows from using this inversion and some algebraic manipulation. �

Corollary 5.3.2. FLRW(0, 1
3 , 1) is given implicitly by:

A = 1− v2(5.90)

G =
2v

1 + v2
(5.91)

G = Ψ0ξ(5.92)

Proof. Relations (5.90) and (5.91) follow immediately from Proposition 5.3.2 and relation

(5.92) follows from (5.26) and the identity B = Ψ−2
0 A−1 from Corollary 5.3.1. �

5.4. Self-Similar Perturbations of FLRW Spacetimes

Let (A,G, v) denote a solution of equations (5.27)-(5.29). Since these equations are autonomous,

solutions can be represented by non-intersecting trajectories in (A,G, v) space. The FLRW(0, σ, 1)

spacetimes solve equations (5.27)-(5.29) and constraint (5.33) with the trajectories emanating from

the point:

(A,G, v) = (1, 0, 0)

The nature of equations (5.27)-(5.29) suggests that to analyse this point, it is helpful to rewrite

these equations as functions of v, A and H, where H is defined as the ratio:

H =
G

v

This was completed by Smoller and Temple [21] for σ = 1
3 , however it is not difficult to reproduce

these equations for general σ, especially when working from equations (5.27)-(5.29). Recalling

(5.35) and (5.36), equations (5.27)-(5.33) are given in autonomous form as functions of v, A and

H as so:
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dv

ds
= −v

(
1− v2

2{·}D

)[
3σ{·}∗S +

(
1−A
A

)
(3 + 3σ)2{·}∗N

4{·}∗S

]
(5.93)

dA

ds
= −(3 + 3σ)(1−A)

{·}∗S
(5.94)

dH

ds
= −H

[(
1−A
A

)
(3 + 3σ)[(1 + v2)H − 2]

2{·}∗S
− 1

]
− H

v

dv

ds
(5.95)

with:

κρr̄2 =
3(1− v2)(1−A)H

{·}∗S
(5.96)

and where:

{·}∗S = −(3 + 3σ) + (3 + 3σv2)H

{·}∗N = −(3− 3σ) + 2(3− 3σv2)H − (3− 3σv4)H2

{·}D = −1

4
(3 + 3σ)(3σ − 3v2)− 3

2
(3− 3σ2)Hv2 +

1

4
(3 + 3σ)(3− 3σv2)H2v2

In variables v, A and H, the point of interest is given by:

(v,A,H) =

(
0, 1,

1

2
(3 + 3σ)

)
and it is not difficult to check that this is a fixed point of the system of equations (5.93)-(5.95). Fol-

lowing Smoller and Temple, a linear analysis of this fixed point can be achieved by first representing

equations (5.93)-(5.95) as:

v′ = F1(v,A,H)

A′ = F2(v,A,H)

H ′ = F3(v,A,H)
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and then denoting these equations by:

U ′ = F (U)

where:

U = (v,A,H)T

F = (F1(U), F2(U), F3(U))T

Next, the Jacobian of F at the fixed point is calculated. Note that when Smoller and Temple first

calculated this Jacobian there was a small error, so a brief new derivation will be produced. To

begin, denote the fixed point by U0 and note that:

dF2(U0) =

(
∂F2

∂v
,
∂F2

∂A
,
∂F2

∂H

) ∣∣∣∣
U0

= (0, 2, 0)

Neglecting terms second order in v and second order in terms that vanish at U0 on the right hand

side of (5.93) gives:

dF1(U0) = d

[
−v
(
− 2

3σ(3 + 3σ)

)
[9σH − 3σ(3 + 3σ)]

]
U0

= (1, 0, 0)

and similarly for (5.95) gives:

dF3(U0) = d

[
H −H

(
1−A
A

)
(3 + 3σ)(H − 2)

2[3H − (3 + 3σ)]

]
U0

+ d

[
H

(
− 2

3σ(3 + 3σ)

)[
9σH − 3σ(3 + 3σ) +

(
1−A
A

)
(3 + 3σ)2[(3σ − 3) + 6H − 3H2]

4[3H − (3 + 3σ)]

]]
U0

= d

[
3H − 6H2

3 + 3σ
+

(
1−A
A

)
(3 + 3σ)(1−H)H

6σ

]
U0

=

(
0,

(
− 1

A2

)
(3 + 3σ)(1−H)H

6σ
, 3− 12H

3 + 3σ

) ∣∣∣∣
U0

=

(
0,−(1 + 3σ)(3 + 3σ)2

24σ
,−3

)
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Thus the Jacobian is given by:

dF (U0) =


dF1(U0)

dF2(U0)

dF3(U0)

 =


1 0 0

0 2 0

0 N(σ) −3


where:

N(σ) = −(1 + 3σ)(3 + 3σ)2

24σ

This means U0 is a hyperbolic rest point of the system of equations (5.93)-(5.95) with eigenvalues:

λ1 = 1

λ2 = 2

λ3 = −3

Therefore the solutions:

U(s) = U0 + V (s)

where V (s) solves the linearised equations:

V ′ = dF (U0) · V

lie in the two-dimensional unstable manifold M0 of U0, given by:

M0 =


0

1

1
2(3 + 3σ)

+ Span




1

0

0

 es +


0

1

0

 e2s


In particular:

U(s) =


C4e

s

1 + C5e
2s

1
2(3 + 3σ)


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for arbitrary constants C4 and C5. In the variable ξ, the solutions are given by:

A1(ξ) = 1 + C5ξ
2(5.97)

G1(ξ) =
1

2
(3 + 3σ)C4ξ(5.98)

v1(ξ) = cξ(5.99)

with the subscript denoting the fact that (A1, G1, v1) represents a solution to the linearised version

of equations (5.27)-(5.29). Now for small ξ, functions A, G and v of FLRW(0, σ, 1) are given to

leading order as:

A ≈ 1− 4

(3 + 3σ)2
Ψ2

0ξ
2(5.100)

G ≈ Ψ0ξ(5.101)

v ≈ 2

3 + 3σ
Ψ0ξ(5.102)

Comparing (5.97)-(5.99) to (5.100)-(5.102) suggests setting C4 and C5, without loss of generality,

as so:

C4 =
2

3 + 3σ
Ψ0

C5 = − 4

(3 + 3σ)2
Ψ2

0a
2

where a is an essential parameter. Including σ, we have that (5.97)-(5.99) is a two-parameter

family of solutions originating from the fixed point U0 with the leading order approximations of

FLRW(0, σ, 1) as a one-parameter subset. The FLRW(0, σ, 1) spacetimes correspond to a = 1 and

any other value of a represents a self-similar perturbation from FLRW(0, σ, 1). From this point

onwards the value of Ψ0 will be fixed as:

Ψ0 =
1

4
(3 + 3σ)(5.103)

so as to simplify calculations and match the notation and proceeding definition used by Smoller

and Temple in [21].
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Definition 5.4.1. The asymptotically Friedmann spacetimes, denoted by FLRW(0, σ, a), are de-

fined as the two-parameter family of solutions to (5.27)-(5.33) with the following leading order form

as ξ → 0:

A(ξ) ≈ 1− 1

4
a2ξ2

G(ξ) ≈ 1

4
(3 + 3σ)ξ

v(ξ) ≈ 1

2
ξ

Furthermore, the parameter a is referred to as the acceleration parameter.

The asymptotic form of the FLRW(0, σ, a) spacetimes were first found by [6], although this asymp-

totic form was given in comoving coordinates. The FLRW(0, σ, a) spacetimes are exact solutions

of Einstein’s field equations, even though they are not known explicitly. Despite this, we can still

give a leading order approximation of the FLRW(0, σ, a) solutions local to the centre of expansion.

Proposition 5.4.2. The FLRW(0, σ, a) spacetimes are given in self-similar Schwarzschild coordi-

nates to leading order as ξ → 0 as so:

ds̄2 ≈ − 16

(3 + 3σ)2

(
1 +

1

4
a2ξ2

)
dt̄2 +

(
1 +

1

4
a2ξ2

)
dr̄2 + r̄2dΩ2(5.104)

v ≈ 1

2
ξ

ρ ≈ 3a2ξ2

4κr̄2

p = σρ

Proof. This follows from Proposition 5.3.1 and Definition 5.4.1 by noting that:

B =
ξ2

AG2

�

In the pure radiation case, that is, for σ = 1
3 , Smoller and Temple [21] summarise an extension of

the leading order expansion in their Theorem 10, which is paraphrased as follows.
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Theorem 5.4.1. Let (v,A,H) denote an FLRW(0, 1
3 , a) spacetime and let (v1, A1, H1), with G1 =

H1v1, denote FLRW(0, 1
3 , 1). Then the following estimates hold:

v(ξ) = v1(ξ) +
1− a2

20
ξ3 + |a− 1|O

(
ξ5
)

(5.105)

A(ξ) = 1− a2v1(ξ) +
3a2(a2 − 1)

40
ξ4 + |a− 1|O

(
ξ6
)

(5.106)

H(ξ) = H1(ξ) +
a2 − 1

5
ξ2 + |a− 1|O

(
ξ4
)

(5.107)

=
ξ

v(ξ)
+ |a− 1|O

(
ξ4
)

(5.108)

G(ξ) = ξ − 6− 7a2 + a4

100
ξ5 + |a− 1|O

(
ξ7
)

(5.109)

A(ξ)B(ξ) = 1− 6− 7a2 + a4

50
ξ4 + |a− 1|O

(
ξ6
)

(5.110)

The proof of this theorem will not be given as such expansions can be found without much difficulty

using modern symbolic manipulation software. Note that (5.110) implies:

√
A(ξ)B(ξ) = 1− 6− 7a2 + a4

100
ξ4 + |a− 1|O

(
ξ6
)

(5.111)

The factor
√
AB is what converts the velocity v, measured relative to the speed of light, over to

coordinate velocity:

dr̄

dt̄
=
ū1

ū0
=
√
ABv

Smoller and Temple remark that expansion (5.111) implies that for small ξ and |a − 1|, it could

be difficult to measure the dilation of time between the a 6= 1 FLRW(0, σ, a) spacetimes and the

Standard Model.

Corollary 5.4.1. When a = 1, the density ρ = ρ1 of FLRW(0, σ, a) is given exactly by:

κρ1r̄
2 = Φ1(ξ)(5.112)

Φ1(ξ) =
3(1 + v2

1)v2
1

1− v2
1

(5.113)
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and when a 6= 1 the density satisfies the following expansion:

κρr̄2 = Φ(ξ)(5.114)

Φ(ξ) = Φ1(ξ) +
3

4
(a2 − 1)ξ2 − 3

8
(2− 3a2 + a4)ξ4 + |a− 1|O

(
ξ6
)

(5.115)

We can gain a slightly more intuitive comparison between the FLRW(0, 1
3 , a) spacetimes and the

Standard Model in the Radiation Dominated Epoch, that is, to FLRW(0, 1
3 , 1), by considering

an extension of the coordinate transformation (5.9)-(5.10) to a 6= 1. That is, if we make the

transformation:

t̄ =

(
1 +

a2

4
ζ2

)
t(5.116)

r̄ = t
a
2 r(5.117)

then we find the metric (5.104) can be given by:

ds2 = −dt2 + a(1− a)ζdtdr̄ + ta
(
dr2 + r2dΩ2

)
(5.118)

This metric is close to the FLRW(0, 1
3 , 1) metric in comoving coordinates, that is, metric (5.1) with

R(t) given by (5.7). We see that the difference is a correction to the scale factor, that is, Ra(t) = t
a
2

instead of R(t) = t
1
2 , and an additional dtdr̄ term. Smoller and Temple remark that the constant

time slices t = t0 in (5.118) are all the flat space R3, as they are for FLRW(0, 1
3 , 1). Furthermore,

the r̄ = r̄0 slices agree with the FLRW(0, 1
3 , 1) metric when modified with scale factor Ra(t). It

follows that the t = t0 surfaces given by (5.116) and (5.117) define a foliation of spacetime into

flat three-dimensional spacelike slices, thus when a 6= 1, (5.118) exhibits many of the flat space

properties characteristic of the FLRW(0, 1
3 , 1) spacetime. As a cosmological model, the closer the

acceleration parameter is to one, the more spatially homogeneous the associated universe is, with

homogeneity increasing closer to centre of expansion. Despite this, any FLRW(0, σ, a) spacetime

with a 6= 1 is still inhomogeneous and thus violates the Cosmological Principle. The acceleration

parameter is also responsible for the rate of acceleration of the spacetime, as the next section will

discuss. Observational data suggests that the cosmic acceleration in the Radiation Dominated

Epoch was small, which corresponds to an acceleration parameter only slightly larger than one.
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Thus an FLRW(0, 1
3 , a) universe with a similar acceleration parameter will appear homogeneous

close to the centre of expansion and exhibit a small accelerated expansion similar to the cosmic

acceleration found in the Standard Model of Cosmology during the Radiation Dominated Epoch.

5.5. Cosmic Acceleration

Even though the metric (5.118) is similar to the comoving metric (5.1) with (5.7), it is not comoving

with the velocity v of (5.105), even at the leading order, when a 6= 1. However, because v only

depends on a at third order in ξ, we can use the inverse of the original a = 1 transformation,

given by (5.9) and (5.10), to put (5.104) in approximate comoving coordinates. The advantage

of using the inverse of the a = 1 transformation over the inverse of the a 6= 1 transformation is

that we can compare the Hubble constant and redshift vs luminosity relations for FLRW(0, 1
3 , a) to

the Hubble constant and redshift vs luminosity relations for FLRW(0, 1
3 , 1) in the same coordinate

system. In this light, we will let (t, r) denote the comoving coordinates of FLRW(0, 1
3 , 1) and define

(t̄, r̄) by (5.9) and (5.10), or (5.116) and (5.117) with a = 1. The coordinates (t, r) will thus be

our approximate comoving coordinates for FLRW(0, 1
3 , a). Now from (5.16) and (5.17) we have as

ξ → 0:

ζ = ξ +O(ξ3)(5.119)

and this will be helpful in understanding the following theorem, which gives us the approximate

comoving form of (5.104). Note that this theorem, along with the rest of the results in this section,

all originate from [21] unless stated otherwise.

Theorem 5.5.1. The inverse of the coordinate transformation (5.9) and (5.10) maps (5.104) to

(t, r) coordinates as:

ds2 = F 2
a (ζ)

(
−dt2 + tdr2

)
+ tr2dΩ2(5.120)

where:

F 2
a (ζ) =

1− 1
4ζ

2

1− a2

4 ζ
2

= 1 +
a2 − 1

4
ζ2 + |a− 1|O(ζ4)(5.121)

156



and the Schwarzschild coordinate velocity v, given by (5.105), maps to the approximate comoving

velocity:

w = −a
2 − 1

20
ζ3 + |a− 1|O(ζ4)(5.122)

Furthermore, we have by (5.105) and (5.119) that:

w = v − v1 + |a− 1|O(ζ4)(5.123)

Now Smoller and Temple remark that the variable ζ = r̄/t is a natural dimensionless perturbation

parameter that has a physical interpretation in (t, r) coordinates because, assuming c = 1, ζ

ranges from 0 to 1 as r̄ ranges from zero to the horizon distance in FLRW(0, 1
3 , 1). According to

Weinberg [23], this is approximately the Hubble distance c/H, a measure of the furthest we can

see from r = 0 at time t after the Big Bang, that is:

ζ ≈ Distance

Hubble Length
(5.124)

Thus according to Smoller and Temple in [20], an expansion in ζ is an expansion in the fractional

distance to the Hubble length. We can use this to compare the expansion of FLRW(0, 1
3 , a) to the

expansion of FLRW(0, 1
3 , 1), but first we need the following definition.

Definition 5.5.1. The Hubble constant at parameter value a is defined by:

Ha(t, ζ) =
1

Ra

∂

∂t
Ra

where:

Ra(t, ζ) = Fa(ζ)
√
t

is the square root of the coefficient of dr2 in (5.120).

In this light, we see that:

Ha(t, ζ) =
1

2t

(
1− 3

8
(a2 − 1)ζ2 + |a− 1|O(ζ4)

)
(5.125)

157



and thus the fractional change in the Hubble constant due to the acceleration parameter is given

by:

Ha −H
H

=
3

8
(a2 − 1)ζ2 + |a− 1|O(ζ4)

We now calculate the a 6= 1 corrections to the redshift vs luminosity relation of FLRW(0, 1
3 , 1) up

to third order in ζ. Smoller and Temple remark that this is a purely theoretical relation, since

the Universe was not transparent during the Radiation Dominated Epoch. Our derivation of the

redshift vs luminosity relation for (5.120) will follow Grøn-Hervik [11], page 289. In this light, the

redshift vs luminosity relation for FLRW(0, 1
3 , 1), is given by:

dl = 2ct0z(5.126)

and we will now generalise this result to (5.120). To begin, assume that radiation of frequency νe

is emitted from a source moving at velocity w relative to a comoving observer at (te, re) within a

spacetime described by metric (5.120). Then assume that this radiation is observed at (t0, 0) with

frequency ν0. Furthermore, let ν̄e denote the intermediate frequency of the emitted radiation as

measured by the comoving observer fixed at position (te, re). Now for FLRW(0, 1
3 , 1), w = 0 so

νe = ν̄e, but this is not the case for FLRW(0, 1
3 , 1), since (5.122) tells us w 6= 0 and thus νe 6= ν̄e.

To account for this, first let λe denote the wavelength of the radiation emitted at (te, re) and λ0

the wavelength observed at (t0, 0), that is, at ζ = 0. Then define:

L := Absolute Luminosity =
Energy Emitted by Source

Time
(5.127)

l := Apparent Luminosity =
Power Received

Area
(5.128)

and let:

dl := Luminosity Distance =

(
L

4πl

) 1
2

(5.129)

z := Redshift Factor =
λ0 − λe
λe

(5.130)
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Using the fact that (5.120) is a diagonal metric in comoving coordinates and that the circumferential

coordinate does not depend on a, Smoller and Temple remark that the arguments given in [11],

Section 11.8, can be modified to give the following theorem, which extends the results of [22].

Theorem 5.5.2. The luminosity distance dl, as measured by an observer positioned at the radial

centre of the spacetime described by metric (5.104) with velocity profile (5.105), is given by the

exact formula:

dl = ct0ζ

√
1 + w

1− w
(5.131)

where the approximate comoving velocity w satisfies:

w = −a
2 − 1

20
ζ3 + |a− 1|O(ζ4)(5.132)

and the self similar variable ζ satisfies:

ζ = 2z + (a2 − 1)z2 +
(a2 − 1)(5a2 + 4)

5
z3 + |a− 1|O(z4)(5.133)

Furthermore, putting (5.132) and (5.133) into (5.131) gives:

dl = 2ct0

(
z +

a2 − 1

2
z2 +

(a2 − 1)(5a2 + 4)

10
z3 + |a− 1|O(z4)

)
(5.134)

We see that for a = 1, (5.134) reduces to (5.126), as expected. Moreover, we see that w does not

affect the redshift vs luminosity relation until the fourth order in ζ. Smoller and Temple remark

that (5.134) gives the leading order quadratic and cubic corrections to the redshift vs luminosity

relation when a 6= 1, thereby improving the quadratic estimate (6.5) of [22]. Furthermore, since

the term (a2−1) appears in front of the leading order correction in (5.134), it follows by continuous

dependence of solutions on their parameters, that the leading order part of any anomalous correction

to the redshift vs luminosity relation of the Standard Model, observed at a time after the Radiation

Dominated Epoch, can be accounted for by suitable adjustment of the parameter a. Smoller and

Temple also note that when a > 1, the leading order correction in (5.134) implies a blue-shift of

the radiation relative to the Standard Model.
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We now give the statements of Proposition 5.5.2 and Lemmas 5.5.3 and 5.5.4. As like with Theorems

5.5.1 and 5.5.2, the proofs will not be given, but can instead be found in [21]. In this light, let P

denote the power of radiation received at the mirror of a reflecting telescope of area A, positioned

at the coordinate centre transverse to the radial direction, with the radiation being emitted at a

distant source moving at velocity w at (te, re) and received at (t0, 0). From [11], page 289, we have:

P =
∆Energy

∆τ0
= L · fA ·

ν0

νe
· ∆τe

∆τ0
(5.135)

where:

L =
∆Energy

∆τe

is the absolute luminosity, the energy per time emitted by the source (5.128). Now the ratio of the

frequencies, given by:

ν0

νe
=

1

1 + z

accounts for the energy lost from the red-shifting at the source, whereas the ratio of proper times,

given by:

∆τe
∆τ0

=
1

1 + z

accounts for the proper time change from the receiver to the source. If we define fA to be the fraction

of the emitted radiation received at the mirror A, then for FLRW(0, 1
3 , 1), equation (11.116), page

289 of [11] tells us that:

fA =
A

4πt0r2
e

(5.136)

The following proposition then provides a correction for FLRW(0, 1
3 , a).

Proposition 5.5.2. The value of fA for the family of FLRW(0, 1
3 , a) spacetimes is given by:

fA =
A

4πt0r2
e

Ca(5.137)
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where Ca has the exact expression:

Ca =
1

F 2
a (ζ)

(1 + w)2

1− w2
= 1− a2 − 1

4
ζ2 + |a− 1|O(ζ3)(5.138)

Proposition 5.5.2 solves what Smoller and Temple term the mirror problem, that is, it gives the

ratio Ca of an area A of light received from a distant source at a mirror positioned at the ori-

gin of FLRW(0, 1
3 , a), to the corresponding area when the mirror is positioned at the origin of

FLRW(0, 1
3 , 1), in the limit A → 0. The limit states that the mirror is small in comparison to the

distance to the source. We conclude this section with the following two lemmas.

Lemma 5.5.3. Assume that radiation of frequency νe is emitted by a source moving at velocity w at

(te, re) and observed at frequency ν0 at (t0, 0) within a spacetime described by metric (5.120). Then

re is related to t0 by:

re =
ζ

1 + ζ
2

√
t0(5.139)

where, for this section:

ζ =
re√
te

dl =

(
L

4πl

) 1
2

=
t0(1 + z)ζ(
1 + ζ

2

)√
Ca

(5.140)

1 + z =

(
1 +

ζ

2

)
1

Fa(ζ)

√
1 + w

1− w
(5.141)

Lemma 5.5.4. The following relation holds between the frequency νe emitted by a source moving at

velocity w at (te, re) and the frequency ν̄e as measured in the comoving frame at (te, re):

νe
ν̄e

=

√
1 + w

1− w
(5.142)
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CHAPTER 6

General Relativistic Shock Waves that Induce Cosmic

Acceleration

This chapter combines the techniques employed by Smoller and Temple, Cahill and Taub and

Carr and Coley to construct a new family of general relativistic shock waves with asymptotically

Friedmann interiors. All results in this chapter are either new or offer simpler alternatives to proving

some of the previously stated results. As will be seen, some of the previously stated theorems from

Chapter 2 fall out almost effortlessly from a few lemmas given in the first two sections. This chapter

introduces two new theorems, the first of which addresses the Lax stability of all subluminal general

relativistic shock waves with static exteriors under the assumptions of spherical symmetry and self-

similarity of the first kind. The second theorem formalises the existence of a general relativistic

shock wave with an asymptotically Friedmann interior and a pure radiation equation of state each

side of the shock. The latter theorem introduces a novel dynamical systems method not previously

considered in this field of study.

6.1. Friedmann-Static Shock Waves

The objective of this section is the construction of the family of FLRW(0, σ, a)-TOV(σ̄) shock

waves. As like in Chapter 5, we will use the triple (A,G, v) to denote a solution of the spherically

symmetric self-similar perfect fluid Einstein field equations (5.27)-(5.29).

Definition 6.1.1. A shock-wave solution with an FLRW(0, σ, a) spacetime on the interior and a

TOV(σ̄) spacetime on the exterior will be referred to as a Friedmann-static shock wave and denoted

by FLRW(0, σ, a)-TOV(σ̄).
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Since all Friedmann-static shock waves share a TOV(σ̄) exterior, the following lemma will be of

great utility in their construction.

Lemma 6.1.2. Let (A,G, v) denote a spherically symmetric similarity solution to the perfect fluid

Einstein field equations with equation of state p = σρ. If there exists a ξ0 > 0 such that:

A(ξ0) = 1− 2M(σ̄)(6.1)

then (A,G, v) can be matched to TOV(σ̄) on the surface ξ = ξ0 and the Rankine-Hugoniot jump

condition is given by:

[σ + v2(ξ0)]G(ξ0)− (1 + σ)G2(ξ0)v(ξ0)

[1 + σv2(ξ0)]G(ξ0)− (1 + σ)v(ξ0)
= σ̄(6.2)

Proof. Let the metric of the (A,G, v) solution in self-similar Schwarzschild coordinates be

given by:

ds2 = −B(ξ)dt2 +
1

A(ξ)
dr2 + r2dΩ2

and recall by Proposition 5.2.2 that TOV(σ̄) is given in self-similar comoving Schwarzschild coor-

dinates as:

ds̄2 = −ξ̄
4σ̄

1+σ̄ dt̄2 +
1

1− 2M(σ̄)
dr̄2 + r̄2dΩ2

ρ̄ =
M(σ̄)

4πr̄2

p̄ = σ̄ρ̄

where the inessential parameter has been set to one and:

M(σ̄) =
2σ̄

1 + 6σ̄ + σ̄2

Because both metrics are specified in Schwarzschild coordinates, the dΩ2 components automatically

match under the identification r̄ = r. Matching the dr2 components implies that the shock surface

is defined by ξ = ξ0, with the constant ξ0 given implicitly by (6.1). This also implies that B is
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constant on the surface. A temporal rescaling of the form:

t̄ = αt

implies:

αξ̄ = ξ = ξ0

and matches the dt2 coefficients providing α satisfies:

α2ξ̄
4σ̄

1+σ̄

0 = B(ξ0)(6.3)

With the matching in place, recall from Section 2.1 that the Rankine-Hugoniot jump condition is

equivalent to:

[Tµν ]nµnν = Tµν(g, ρ, p,uFLRW )nµnν − Tµν(g, ρ̄, p̄,uTOV )nµnν = 0

where n is the outward normal to the shock surface. Using this and p = σρ we obtain:

(1 + σ)ρuµFLRWu
ν
FLRWnµnν + σρ|n|2 − (1 + σ̄)ρ̄uµTOV u

ν
TOV nµnν − σ̄ρ̄|n|2 = 0

Now since the surface is defined by ξ = ξ0, which is equivalent to:

r − ξ0t = 0

then the components of the normal satisfy:

nµdx
µ = d(r − ξ0t) = −ξ0dt+ dr

and so:

n0 = −ξ0

n1 = 1
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Noting that the metric components are identified on the surface, the following identities are ob-

tained:

|n|2 = A(ξ0)− ξ2
0B
−1(ξ0)

u0
FLRW = [1− v2(ξ0)]−

1
2B−

1
2 (ξ0)

u1
FLRW = v(ξ0)[1− v2(ξ0)]−

1
2A

1
2 (ξ0)

uµFLRWu
ν
FLRWnµnν = [1− v2(ξ0)]−1

[
v(ξ0)A

1
2 (ξ0)− ξ0B

− 1
2 (ξ0)

]2

uµTOV u
ν
TOV nµnν = ξ2

0B
−1(ξ0)

Applying these identities puts the Rankine-Hugoniot jump condition in the following form:

0 = (1 + σ)[1− v2(ξ0)]−1
[
v(ξ0)A

1
2 (ξ0)− ξ0B

− 1
2 (ξ0)

]2
ρ

− (1 + σ̄)ξ2
0B
−1(ξ0)ρ̄

+
[
A(ξ0)− ξ2

0B
−1(ξ0)

]
(σρ− σ̄ρ̄)

Dividing by A(ξ0) and substituting B(ξ0) for G(ξ0) then yields:

0 = (1 + σ)[1− v2(ξ0)]−1[v(ξ0)−G(ξ0)]2ρ

− (1 + σ̄)G2(ξ0)ρ̄

+ [1−G2(ξ0)](σρ− σ̄ρ̄)

Finally, applying (5.33) and (6.1) gives (6.2), which completes the proof. �

As FLRW(0, σ, 1) is known explicitly, it is possible to construct an explicit FLRW(0, σ, 1)-TOV(σ̄)

shock wave. Such a construction is shown in Chapter 3 in the pure radiation case and in full

generality in Chapter 2. However, the result can instead be derived directly from Lemma 6.1.2.

Theorem 6.1.1. For each 0 < σ < 1, FLRW(0, σ, 1) can be matched to TOV(σ̄) to form a general

relativistic shock wave providing:

σ̄ = H(σ)
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where:

H(σ) =
1

2

√
9σ2 + 54σ + 49− 3

2
σ − 7

2
(6.4)

Proof. The matching follows similarly to the matching completed in the proof of Lemma 6.1.2,

but with (6.1) and (6.3) replaced with:

1− 2

3
ξ̂

2+6σ
3+3σ

0 = 1− 2M(σ̄)

and:

α2ξ̄
4σ̄

1+σ̄

0 =
16

(3 + 3σ)2

[
1 +

1

3
(1 + 3σ)ξ̂

2+6σ
3+3σ

0

]− 2−6σ
2+6σ

[
1− 2

3
ξ̂

2+6σ
3+3σ

0

]−1

respectively, where the inessential parameter is set by (5.103) and ξ̂ is defined implicitly by:

ξ =
4√
6
ξ̂

1+3σ
3+3σ

[
1 +

1

3
(1 + 3σ)ξ̂

2+6σ
3+3σ

]− 3+3σ
2+6σ

Note that this matching is Lipschitz continuous, as any 0 < σ < 1 and 0 < σ̄ < 1 imply that the

components of the interior and exterior metrics are continuous in a neighbourhood of the surface

when given in (t, r) coordinates. Thus it remains to show that the condition σ̄ = H(σ) is equivalent

to the Rankine-Hugoniot jump condition, which we know by Lemma 6.1.2 is given by:

[σ + v2(ξ0)]G(ξ0)− (1 + σ)G2(ξ0)v(ξ0)

[1 + σv2(ξ0)]G(ξ0)− (1 + σ)v(ξ0)
= σ̄

By Proposition 5.3.2, G(ξ0) can be substituted for v(ξ0), which in turn can be substituted for A(ξ0)

to yield:

(3σ + 3[1−A(ξ0)])(2 + (1 + 3σ)[1−A(ξ0)])− (3 + 3σ)2[1−A(ξ0)]

A(ξ0)(2 + (1 + 3σ)[1−A(ξ0)])
= σ̄

Finally, substituting A(ξ0) for 1− 2M(σ̄) yields:

σ =
σ̄(7 + σ̄)

3(1− σ̄)

which is equivalent to σ̄ = H(σ). �
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Definition 6.1.3. The Rankine-Hugoniot curve, denoted by:

v = ΓRH(G;σ, σ̄)

is the curve in (A,G, v) space generated by constraints (6.1) and (6.2).

We are now in a position to extend the family of FLRW(0, σ, 1)-TOV(σ̄) shock waves to the fam-

ily of FLRW(0, σ, a)-TOV(σ̄) shock waves. Even though the FLRW(0, σ, a) spacetimes are exact

solutions, they are not known explicitly away from ξ = 0, so these solutions need to be approxi-

mated numerically. One way of describing FLRW(0, σ, a) solutions is to numerically generate their

trajectories in (A,G, v) space, such as in Figure 6.1.

0.0 0.2 0.4 0.6 0.8 1.0
G

0.2

0.4

0.6

0.8

1.0
v

Figure 6.1. This figure is a side view of (A,G, v) space and depicts the most
important features. The left and right unbroken curves represent the surfaces {·}S =
0 and {·}D = 0 respectively. These surfaces have no dependence on A and so remain
the same in any constant A plane. The Rankine-Hugoniot curve is represented by
the dashed curve and lives in the plane A = 1−2M(σ̄). The dotted curve represents
the explicitly known FLRW(0, 1

3 , 1) trajectory.

The FLRW(0, 1
3 , 1) trajectory obeys the implicit relationship given by Corollary 5.3.2, that is, as

ξ increases from zero, G increases linearly with ξ, v increases according to (5.91) and A decreases

according to (5.90). General FLRW(0, σ, a) trajectories are similar to the FLRW(0, 1
3 , 1) trajectory

for small ξ but differ as ξ increases. One characteristic that remains similar for larger ξ is the
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near linear dependence of G on ξ. Note that because equations (5.27)-(5.29) are autonomous, all

trajectories, the Rankine-Hugoniot curve and surfaces {·}S = 0 and {·}D = 0 are all independent

of ξ. Thus it is often easier to think of G as the independent variable and consider the trajectory

as a function of G.

The TOV(σ̄) trajectories are simple to represent in (A,G, v) solution space as they are the lines

defined by A = 1− 2M(σ̄) and v = 0. Now because:

min
0≤σ̄≤1

{1− 2M(σ̄)} =
1

2
(6.5)

the TOV(σ̄) trajectories span the surface:

1

2
< A < 1

v = 0

The reason considering solutions in (A,G, v) space is so useful, is the immediate implication that

any trajectory that crosses the A = 1− 2M(σ̄) plane Lipschitz continuously can be matched to the

TOV(σ̄) solution. Furthermore, if the solution trajectory crosses the A = 1 − 2M(σ̄) plane and

intersects the Rankin-Hugoniot curve, which lies in this plane, then the solution can be matched

to the TOV(σ̄) solution to form a general relativistic shock wave. In the case of FLRW(0, σ, a)

trajectories, changing the parameters σ and a changes the trajectory, so certain combinations of

σ and a result in an intersection with the Rankine-Hugoniot curve, and thus the formation of

an FLRW(0, σ, a)-TOV(σ̄) shock wave. We already know from Theorem 6.1.1 that for a = 1

the relationship between σ and σ̄ obeys σ̄ = H(σ). For a 6= 1, trajectories can be generated

numerically and the parameters a, σ and σ̄ can be adjusted to achieve the intersection. Since the

intersection imposes a single constraint on the parameters a, σ and σ̄, we conclude that the family

of FLRW(0, σ, a)-TOV(σ̄) shock waves is a one-parameter family for each σ. Fixing σ = 1
3 , the

resulting family partially answers Cahill and Taub’s claim given in Section 3.10 by determining

a subset of the self-similar pure radiation spacetimes that can be matched to TOV(σ̄) to form a

general relativistic shock wave.
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A physically important Friedmann-static shock wave is the one for which the equation of state on

each side of the shock models pure radiation, since these shock waves may have been present during

the Radiation Dominated Epoch. As demonstrated in Figure 6.2 for σ = σ̄ = 1
3 , the value of a can

be varied in order to achieve an intersection and thus form the Friedmann-static pure radiation

shock wave.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
G

0.1

0.2

0.3

0.4

0.5
v

Figure 6.2. This figure depicts the same features as Figure 6.1, except the
FLRW(0, 1

3 , 1) trajectory is replaced by three FLRW(0, 1
3 , a) trajectories with vary-

ing values of a. Unlike in Figure 6.1, the trajectories given in this figure are termi-
nated once they reach the A = 1− 2M(σ̄) plane.

In Figure 6.2, the leftmost trajectory overshoots the curve and rightmost trajectory undershoots

it. The leftmost, centre and the rightmost trajectories are generated for:

a = 2.8

a = 2.58

a = 2.4

respectively. Therefore, the value of the acceleration parameter for the Friedmann-static pure

radiation shock wave is approximated by:

a ≈ 2.58
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with the corresponding point of intersection approximated by:

ξ0 ≈ 0.706

We know from Chapter 5 that the FLRW(0, σ, a) spacetimes can exhibit an accelerated expan-

sion similar to the accelerated expansion found in the Standard Model of Cosmology when a ≈ 1.

It is conjectured by Temple that the accelerated expansion observed today is not the result of

dark energy, but instead from being within a vast primordial shock wave with an FLRW(0, σ, a)

interior. By vast, we mean a shock wave with a shock surface that lies beyond the Hubble ra-

dius, that is, not presently observable. What makes this proposal particularly interesting is that

the magnitude of acceleration, parameterised by a, is determined purely mathematically by the

equation of state parameter each side of the shock, assuming a TOV(σ̄) exterior. However, with

a ≈ 2.58, the Friedmann-static pure radiation shock wave exhibits a cosmic acceleration many

orders of magnitude larger than what is observed today, and observational data suggests that

cosmic acceleration has only increased since the Radiation Dominated Epoch. Furthermore, the

Friedmann-static pure radiation shock surface lies within the Hubble radius. Each of these prop-

erties rule out the Friedmann-static pure radiation shock wave as a cosmological model, but does

not rule out a shock-wave cosmological model consisting of an interior FLRW(0, σ, a) spacetime

matched to a non-TOV(σ̄) exterior. For a = 1, one such shock wave was constructed with the

shock surface lying beyond the Hubble radius by Smoller and Temple in [19]. Further details of

this construction were then provided in [20]. This was completed in 2003, before Smoller and Tem-

ple had derived their family of asymptotically Friedmann spacetimes. It remains an open problem

to construct shock waves with a 6= 1 FLRW(0, σ, a) interiors for which the resulting shock surface

lies beyond the Hubble radius.

6.2. Lax Stability of Shock Waves with Static Exteriors

Lemma 6.2.1. Let (A,G, v) denote a spherically symmetric similarity solution to the perfect fluid

Einstein field equations with equation of state p = σρ. If there exists a ξ0 > 0 such that (A,G, v)

can be matched to TOV(σ̄) to form a shock-wave solution, then the Lax characteristic conditions
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are given by:

√
σ̄ − v(ξ0)

1−
√
σ̄v(ξ0)

<
G(ξ0)− v(ξ0)

1−G(ξ0)v(ξ0)
<
√
σ(6.6)

Proof. As a reverse to the coordinate transformation introduced in Proposition 3.6.1, we begin

by transforming a general solution given in self-similar Schwarzchild coordinates, to a solution given

in self-similar comoving coordinates. Noting thatB and u are given implicitly by the triple (A,G, v),

we can write this solution in self-similar Schwarzschild coordinates as so:

ds2 = −B(ξ)dt2 +
1

A(ξ)
dr2 + r2dΩ2

u = (u0, u1, 0, 0)

where p and ρ are determined by p = σρ and (5.33) respectively. In self-similar comoving coordi-

nates, the solution can be written as:

dŝ2 = −e2ϕdt̂2 + e2ψdr̂2 + R2r̂2dΩ2

û = (û0, 0, 0, 0)

To eliminate the radial component of the four-velocity, the transformation from Schwarzschild to

comoving coordinates must satisfy:

û1 = u0∂r̂

∂t
+ u1∂r̂

∂r
= 0

which is equivalent to:

∂r̂

∂t
= −ξv

G

∂r̂

∂r
(6.7)

Now given that:

dt̂ =
∂t̂

∂t
dt+

∂t̂

∂r
dr

dr̂ =
∂r̂

∂t
dt+

∂r̂

∂r
dr
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then:

dt =

(
∂t̂

∂t

∂r̂

∂r
− ∂t̂

∂r

∂r̂

∂t

)−1(
∂r̂

∂r
dt̂− ∂t̂

∂r
dr̂

)

dr =

(
∂t̂

∂t

∂r̂

∂r
− ∂t̂

∂r

∂r̂

∂t

)−1(
−∂r̂
∂t
dt̂+

∂t̂

∂t
dr̂

)
Thus to keep the metric diagonal, the following condition is also needed:

B
∂r̂

∂r

∂t̂

∂r
− 1

A

∂r̂

∂t

∂t̂

∂t
= 0

which by (6.7) is equivalent to:

∂t̂

∂r
= −Gv

ξ

∂t̂

∂t
(6.8)

The most general transformation that preserves self-similarity takes the form:

t̂ = T (ξ)t

r̂ = R(ξ)r

and conditions (6.7) and (6.8) determine the functions T (ξ) and R(ξ). In self-similar Schwarzschild

coordinates the shock speed is given by ξ = ξ0, so in self-similar comoving coordinates the shock

speed is given by ξ̂ = ξ̂0, where:

ξ̂ =
r̂

t̂
=
R(ξ)r

T (ξ)t
=
R(ξ)

T (ξ)
ξ

Thus by Lemma 2.3.1 the shock speed is given in interior locally Minkowskian coordinates by:

eψ−ϕξ̂0

By Proposition 2.3.2, it remains to determine eψ−ϕ and w̃. In this light:

e2ϕ =
1

A

(
∂r̂

∂t

)2

− ξ2

AG2

(
∂r̂

∂r

)2

=
ξ2(1− v2)

AG2

(
∂r̂

∂r

)2
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and:

e2ψ =
1

A

(
∂t̂

∂t

)2

− ξ2

AG2

(
∂t̂

∂r

)2

=
1− v2

A

(
∂t̂

∂t

)2

Now:

∂r̂

∂t
= −ξ2R′(ξ)

∂r̂

∂r
= R(ξ) + ξR′(ξ)

so (6.7) yields:

−ξ2R′ = −ξv
G

(R+ ξR′)

⇐⇒ ξR′ = v

G− v
R

Similarly:

∂t̂

∂t
= T (ξ)− ξT ′(ξ)

∂t̂

∂r
= T ′(ξ)

to which (6.8) yields:

T ′ = −Gv
ξ

(T − ξT ′)

⇐⇒ ξT ′ = − Gv

1−Gv
T

Therefore the shock speed is given in interior locally Minkowskian coordinates by:

eψ−ϕξ̂0 = G(ξ0)
∂t̂

∂t

(
∂r̂

∂r

)−1 R(ξ0)

T (ξ0)

=
G(ξ0)− v(ξ0)

1−G(ξ0)v(ξ0)
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By Proposition 5.2.2, TOV(σ̄) is comoving in Schwarzschild coordinates, and given that TOV(σ̄)

is matched to (A,G, v) in (t, r) coordinates, then the (t̄, r̄) coordinates of Proposition 2.3.2 are

identified with (t, r), so:

w̃ = eψ−ϕ
∂r̂

∂t̄

(
∂t̂

∂t̄

)−1

= eψ−ϕ
∂r̂

∂t

(
∂t̂

∂t

)−1

=
G(ξ0)

ξ0

∂r̂

∂t

(
∂r̂

∂r

)−1

= −v(ξ0)

Finally, substituting eψ−ϕξ̂0, w̃ and the equations of state into (2.16) yields (6.6). �

The following theorem was proved in Chapter 2, but can instead be obtained directly from Lemma

6.2.1. In Smoller and Temple’s original proof, the value of σ1 is approximated, however it is now

possible to obtain an exact value.

Theorem 6.2.1. The FLRW(0, σ, 1)-TOV(σ̄) shock-wave solutions satisfy the Lax characteristic

conditions for:

0 < σ < σ1

where:

σ1 =
1 +
√

10

9
≈ 0.462

Proof. By Lemma 6.1.2 and Proposition 5.3.2 we know that FLRW(0, σ, 1) satisfies (6.2) and:

G(ξ0) =
1

2
(3 + 3σ)v(ξ0)

(
1 +

1

2
(1 + 3σ)v2(ξ0)

)−1

(6.9)

174



at the point of intersection with the shock surface. Solving (6.2) and (6.9) for G(ξ0) and v(ξ0)

yields:

G(ξ0) =
1

2
(3 + σ̄)v(ξ0)(6.10)

v(ξ0) =

√
2(3σ − σ̄)

(1 + 3σ)(3 + σ̄)
(6.11)

Thus using (6.4), (6.10) and (6.11), the left hand inequality of (6.6) is found to be satisfied for

0 < σ < 1 and the right hand inequality is found to be satisfied for for 0 < σ < σ1. �

Lemma 6.2.2. Let (A,G, v) denote a spherically symmetric similarity solution to the perfect fluid

Einstein field equations with equation of state p = σρ. If there exists a ξ0 > 0 such that (A,G, v)

can be matched to TOV(σ̄) to form a shock-wave solution, then the shock speed is subluminal if:

G(ξ0) < 1(6.12)

and in such a case the Lax characteristic conditions reduce to:

G(ξ0) >
√
σ̄(6.13)

{·}D(ξ0) < 0(6.14)

Proof. By Lemma 6.2.1, the shock speed is subluminal if:

G(ξ0)− v(ξ0)

1−G(ξ0)v(ξ0)
< 1

which for 0 < v < 1 is equivalent to (6.12). For G < 1 it is then not difficult to check that the

left hand inequality of (6.6) is equivalent to (6.13). Thus it remains to demonstrate that the right

hand inequality is equivalent to (6.14). In this light, we have:

{·}D =
3

4
(3 + 3σ)

[
(G− v)2 − σ(1−Gv)2

]
=

3

4
(3 + 3σ)

[
G− v +

√
σ(1−Gv)

] [
G− v −

√
σ(1−Gv)

]
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and for 0 < v < G < 1 we see that {·}D = 0 is equivalent to:

G− v
1−Gv

=
√
σ

which completes the proof. �

The following theorem, also proved in Chapter 2, demonstrates that even though FLRW(0, σ, 1)-

TOV(σ̄) shock waves can be constructed mathematically, their physical applicability is limited for

σ > σ2.

Theorem 6.2.2. The FLRW(0, σ, 1)-TOV(σ̄) shock-wave solutions have subluminal shock speeds

for:

0 < σ < σ2

where:

σ2 =

√
5

3
≈ 0.745

Proof. This follows directly from Lemma 6.2.2 and relations (6.4), (6.10) and (6.11). �

The following definition is consistent with the sonic surface definition given in Chapter 4, that is,

the surfaces have the same physical interpretation.

Definition 6.2.3. The singular surface and sonic surface are defined in (A,G, v) space by {·}S = 0

and {·}D = 0 respectively. Moreover, the subsonic region and supersonic region are defined by

{·}D < 0 and {·}D > 0 respectively.

As a consequence of Lemma 6.2.2, the sonic surface serves as a convenient indicator for the Lax

stability of a general relativistic shock wave with a TOV(σ̄) exterior. This is particularly useful

for numerical approximations, since if the intersection with the Rankine-Hugoniot curve is in the

subsonic region and to the right of the G =
√
σ̄ plane, the resulting shock wave is stable in the Lax

sense. For σ 6= σ̄, condition (6.13) is not automatically satisfied, since the Rankine-Hugoniot jump

condition curve does not intersect the v = 0 plane at G =
√
σ, as Figure 6.3 demonstrates.
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Figure 6.3. This figure depicts the singular and sonic surfaces as unbroken curves
and three Rankine-Hugoniot curves by dashed curves, all for σ = 1

3 .

In Figure 6.3, the leftmost, centre and rightmost dashed curves correspond to:

σ < σ̄ =
2

3

σ = σ̄ =
1

3

σ > σ̄ =
1

6

respectively. In the σ < σ̄ case, the Rankine-Hugoniot curve always touches the singular surface at

(G, v) = (0, 0) and (G, v) = (1, 1). In the σ = σ̄ case, the Rankine-Hugoniot curve always touches

the sonic surface at (G, v) = (
√
σ, 0) and (G, v) = (1, 1). In the σ > σ̄ case, the Rankine-Hugoniot

curve also touches the sonic surface at (G, v) = (1, 1) and intersects it at:

G =

√
σ(1 + σ̄) +

√
(σ − σ̄)(1− σσ̄)

1 + σ

v =

√
σ − σ̄
1− σσ̄

Thus for a Friedmann-static shock wave to be unstable in the Lax sense, the solution trajectory

must either hit the Rankine-Hugoniot curve before the G =
√
σ̄ plane or after passing through the
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sonic surface. Since conditions (6.13) and (6.14) are always satisfied for σ = σ̄, then the Friedmann-

static shock waves for which σ = σ̄ are always stable in the Lax sense, as the following theorem

summarises.

Theorem 6.2.3. Let (A,G, v) denote a spherically symmetric similarity solution to the perfect fluid

Einstein field equations with equation of state p = σρ. If there exists a ξ0 > 0 such that (A,G, v)

can be matched to TOV(σ̄) to form a shock-wave solution with a subluminal shock speed, then the

Lax characteristic conditions are satisfied if:

(1) σ = σ̄ or

(2) σ < σ̄ and G(ξ0) >
√
σ̄ or

(3) σ > σ̄ and {·}D(ξ0) < 0.

Proof. This is an immediate consequence of Lemma 6.2.2 and the discussion proceeding Def-

inition 6.2.3. �

6.3. Existence of Friedmann-Static Pure Radiation Shock Waves

Previously in this chapter the Friedmann-static pure radiation shock wave was constructed numer-

ically. This section provides a rigorous proof of this construction. We know from Proposition 5.3.2

that FLRW(0, σ, 1) solutions have a certain structure that allow us to determine if and when the

solution trajectory crosses the singular or sonic surfaces. However, even though FLRW(0, σ, a) solu-

tions can be expected to behave similar to FLRW(0, σ, 1) solutions for a ≈ 1, there is no guarantee

that they remain similar as ξ increases, or for larger perturbations of a. We know from Figure

6.2 that the FLRW(0, 1
3 , 2.4) trajectory differs significantly from the FLRW(0, 1

3 , 1) trajectory, in

particular, the FLRW(0, 1
3 , 2.4) trajectory encounters a singularity in equation (5.29) by hitting the

sonic surface. The following lemma helps to predict the behaviour of FLRW(0, σ, a) trajectories.

Lemma 6.3.1. Let 0 < σ < 1 and a > 0. Then so long as FLRW(0, σ, a) satisfies:

A > 1− 2M(σ)

{·}D < 0
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it also satisfies:

A′ < 0(6.15)

G′ > 0(6.16)

v > 0(6.17)

{·}S > 0(6.18)

Proof. Note from Figure 6.1 that {·}D < 0 implies the trajectory remains to the left of the

sonic surface and {·}S > 0 implies that the trajectory remains below the singular surface. The

monotonicity of A and G implies that the trajectory advances to the right whilst simultaneously

approaching the A = 1 − 2M(σ) surface. Now because the FLRW(0, σ, a) trajectory begins by

satisfying inequalities (6.15)-(6.18), it is sufficient to show that each one of the four inequalities is

implied by the other three. In this light, assume v > 0 and {·}S > 0, then equation (5.27) and the

initial conditions A = 1 and A′ < 0 imply inequality (6.15). For inequality (6.16), assume v > 0

and {·}S > 0 and note that {·}S > 0 and {·}D < 0 imply v < 1. Given these constraints, equation

(5.28) implies:

ξ
dG

dξ
= −G

[(
1−A
A

)
(3 + 3σ)[(1 + v2)G− 2v]

2{·}S
− 1

]
= G

[
1−

(
1−A
A

)
(3 + 3σ)(1 + v2)G− (6 + 6σ)v

(6 + 6σv2)G− (6 + 6σ)v

]
> G

[
1−

(
1−A
A

)]
> 0

with the last line following from (6.5) and the initial condition G′ > 0. Now it is sufficient to

demonstrate inequality (6.17) in the interval 0 < G <
√
σ, since the sonic surface intersects the

v = 0 plane at G =
√
σ and we are assuming that the trajectory stays off the sonic surface. In

this light, assume A′ < 0, G′ > 0 and {·}S > 0 and note that A′ < 0 implies A < 1 and G′ > 0

implies G > 0. By equation (5.29), the sign of v′ on the plane v = 0 in the region bounded by

1− 2M(σ) < A < 1 and 0 < G <
√
σ is strictly positive, since:
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ξ
dv

dξ
= −

(
1− v2

2{·}D

)[
3σ{·}S +

(
1−A
A

)
(3 + 3σ)2{·}N

4{·}S

]
=

(
2G

3(3 + 3σ)(σ −G2)

)[
9σ − (3 + 3σ)2

4

(
1−A
A

)]
> 0

Thus any trajectory that begins above the v = 0 plane remains above the plane. Therefore the

initial condition v′ > 0 then implies inequality (6.17). Note that this result still holds when

1− 2M(σ̄) < A < 1 for 0 < σ̄ ≤ σ < 1, since:

9σ − (3 + 3σ)2

4

(
1−A
A

)
> 9σ − (3 + 3σ)2

4

(
2M(σ̄)

1− 2M(σ̄)

)
= 9σ − 9σ̄(3 + 3σ)2

(3 + 3σ̄)2

= (3 + 3σ)2

(
9σ

(3 + 3σ)2
− 9σ̄

(3 + 3σ̄)2

)
≥ 0

Finally, inequality (6.18) is demonstrated in a similar manner to inequality (6.17) by showing that

trajectories stay away from the surface {·}S = mv for some 0 < m < 3
2 . The upper bound for

m ensures FLRW(0, σ, a) trajectories initially satisfy inequality (6.18). Now assume inequalities

(6.15)-(6.17) and note that the inequalities additionally imply A < 1 and G > 0. Since {·}S = mv

is equivalent to:

G =
(3 + 3σ +m)v

3 + 3σv2
(6.19)
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then by equation (5.28) and (6.19), we have:

qA(v;σ,m) = ξ
d

dξ

(
G− (3 + 3σ +m)v

3 + 3σv2

) ∣∣∣∣
{·}S=mv

=

(
ξ
dG

dξ
− (3 + 3σ +m)(3− 3σv2)

(3 + 3σv2)2
ξ
dv

dξ

) ∣∣∣∣
{·}S=mv

=
(3 + 3σ +m)v

3 + 3σv2

[
1−

(
1−A
A

)
(3 + 3σ)[(3 + 3σ +m)(1 + v2)− 2(3 + 3σv2)]

2m(3 + 3σv2)

]
+

(3 + 3σ +m)(3− 3σv2)

(3 + 3σv2)2

(
1− v2

2{·}D

)[
3σmv +

(
1−A
A

)
(3 + 3σ)2{·}N

4mv

]
=

(3 + 3σ +m)v

(3 + 3σv2)2

[
3 + 3σv2 +

3σm(1− v2)(3− 3σv2)

2{·}D
+

(
1−A
A

)
({·}A + {·}B + {·}C)

]
where:

{·}A =
(3 + 3σ)(3− 3σ −m)(1− v2)

2m

{·}B =
(3 + 3σ)2(1− v2)(3− 3σv2){·}N

8mv2{·}D

{·}C = −(3 + 3σ)v2

The objective for this part is to find an m such that qA(v;σ,m) > 0 for all 0 < σ < 1 and

0 < v < v∗ for arbitrary v∗ < 1. Note that it is always possible to choose an m small enough to

ensure v∗ < vI(σ,m), where vI(σ,m) is the intersection of surfaces (6.19) and {·}D = 0, since:

lim
m→0

vI(σ,m) = 1

Now even though it can be shown that {·}A + {·}B + {·}C > 0 for a certain interval of v, it is easier

to show {·}A + {·}B > 0 for the whole interval 0 < v < vI . This the case since:

{·}A + {·}B =
(3 + 3σ)(1− v2)

2m

[
3− 3σ −m+

(3 + 3σ)(3− 3σv2){·}N
4v2{·}D

]
=

(3 + 3σ)(1− v2)

8m(−{·}D)v2

[
4(3− 3σ −m)(−{·}D)v2 − (3 + 3σ)(3− 3σv2){·}N

]
=

3σ(3 + 3σ)2(1− v2)(3− 3v2 + n)

8(−{·}D)(3 + 3σv2)2

[
3− 3v2 + σ(9 + n)v2 − σ(9 + nσ)v4

]
> 0
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where m = nσ for some 0 < n < 3
2 . With {·}A + {·}B > 0 and {·}C < 0, then for 1

2 < A < 1 we

have: (
1−A
A

)
({·}A + {·}B + {·}C) >

(
1−A
A

)
{·}C > {·}C

Thus for any 0 < σ < 1 and 0 < v < v∗:

lim
m→0

qA(v;σ,m) = lim
n→0

qA(v;σ, nσ)

> lim
n→0

(3 + 3σ + nσ)v

(3 + 3σv2)2

[
3 + 3σv2 +

3nσ2(1− v2)(3− 3σv2)

2{·}D
+ {·}C

]
= lim

n→0

(3 + 3σ + nσ)(1− v2)v

(3 + 3σv2)2

[
3− 2nσ(3 + 3σ)−1(3− 3σv2)(3 + 3σv2)2

(3− 3v2 − nσv2)2 − σv2(3− 3v2 + n)2

]
> 0

Therefore, for any interval 0 < v < v∗ with v∗ < 1, there exists an 0 < n < 3
2 such that the

surface {·}S = nσv cannot be crossed. Now assume for contradiction that a trajectory crosses the

{·}S = 0 surface. Because vI(σ, 0) = 1 and we assume {·}D < 0, the trajectory cannot cross the

surface {·}S = 0 at v = 1, so it must intersect at some point 0 < v∗∗ < 1. Given that FLRW(0, σ, a)

satisfies {·}S > nσv initially for any 0 < n < 3
2 and we can pick a v∗ such that v∗∗ < v∗ < 1, we know

that the surface {·}S = nσv cannot be crossed in the interval 0 < v < v∗, which is a contradiction.

Thus under our assumptions, FLRW(0, σ, a) satisfies inequality (6.18) and completes the proof. �

With Lemma 6.3.1 in place, we are now in a position to prove the main result.

Theorem 6.3.1. There exists an a > 1 such that FLRW(0, 1
3 , a) can be matched to TOV(1

3) to form

a pure radiation general relativistic shock wave that satisfies the Lax characteristic conditions.

Proof. By Lemma 6.1.2 and Definition 6.1.3, for FLRW(0, 1
3 , a) to match with TOV(1

3) to

form a general relativistic shock wave, then FLRW(0, 1
3 , a) must satisfy:

A(ξ0) =
4

7
(6.20)

v(ξ0) = ΓRH

(
G(ξ0);

1

3
,
1

3

)
(6.21)
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for some positive constant ξ0. We know from Theorem 6.1.1 that FLRW(0, 1
3 , 1) cannot form a

general relativistic shock wave with TOV(1
3), since σ = σ̄ = 1

3 is not a solution of σ̄ = H(σ).

Instead, when the FLRW(0, 1
3 , 1) trajectory hits the A = 4

7 plane, then:

v(ξ0) < ΓRH

(
G(ξ0);

1

3
,
1

3

)
That is, the FLRW(0, 1

3 , 1) trajectory passes under the Rankine-Hugoniot curve. Note that the

explicitly known FLRW(0, 1
3 , 1) solution is able to cross the sonic surface without becoming singular

due to the cancellation of {·}D in equation (5.29) when on the sonic surface. General FLRW(0, σ, a)

solutions typically become singular at the sonic point, that is, the point of intersection with the

sonic surface. Now suppose that there exists a b > 1 such that the FLRW(0, 1
3 , b) trajectory hits

the plane A = 4
7 with:

v(ξ0) > ΓRH

(
G(ξ0);

1

3
,
1

3

)
(6.22)

then providing the transition of the FLRW(0, 1
3 , 1) trajectory to the FLRW(0, 1

3 , b) trajectory crosses

the Rankine-Hugoniot curve, there exists an 1 < a < b such that (6.20) and (6.21) are satisfied. An

example of this process is demonstrated numerically in Figure 6.2. Lemma 6.3.1 establishes the fact

that if the FLRW(0, 1
3 , a) trajectory remains in the subsonic region, then it must eventually hit the

A = 4
7 plane. The continuous dependence of FLRW(0, 1

3 , a) on the parameter a means that there is

a continuous transition from FLRW(0, 1
3 , 1) to FLRW(0, 1

3 , b), at least up until the trajectory hits

the A = 4
7 plane or hits the sonic surface. This continuous transition, along with Lemma 6.3.1,

guarantees the crossing of the Rankine-Hugoniot curve in the σ = σ̄ = 1
3 case, since the transition

from hitting the sonic surface to hitting the A = 4
7 plane occurs on the intersection of the sonic

surface with the A = 4
7 plane, which lies under the Rankine-Hugoniot curve. Thus it is sufficient to

rigorously demonstrate the existence of an FLRW(0, 1
3 , b) solution that satisfies (6.20) and (6.22).

We know from Figure 6.2 that a numerical approximation of the FLRW(0, 1
3 ,

14
5 ) trajectory passes

above the Rankine-Hugoniot curve, so existence is considered for b = 14
5 . Because the FLRW(0, 1

3 , a)

trajectories originate from the fixed point of an unstable manifold, the vector field generated by the

system of equations (5.27)-(5.29) points toward the FLRW(0, 1
3 , a) trajectories when moving away

from the fixed point. This fact allows for the construction of a trapping region around the trajectory
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and this is how the FLRW(0, 1
3 ,

14
5 ) trajectory is shown to overshoot the Rankine-Hugoniot curve.

Since Lemma 6.3.1 establishes the monotonicity of G as a function of ξ, A and v can be considered

as functions of G, with equations (5.27)-(5.29) becoming:

dA

dG
= −

(
ξ
dG

dξ

)−1 (3 + 3σ)(1−A)v

{·}S
(6.23)

ξ
dG

dξ
= −G

[(
1−A
A

)
(3 + 3σ)[(1 + v2)G− 2v]

2{·}S
− 1

]
dv

dG
= −

(
ξ
dG

dξ

)−1(1− v2

2{·}D

)[
3σ{·}S +

(
1−A
A

)
(3 + 3σ)2{·}N

4{·}S

]
(6.24)

In this sense, the trajectory of FLRW(0, 1
3 ,

14
5 ) can be represented as (A(G), v(G)), with G param-

eterising the progress of the trajectory towards the A = 4
7 plane. This step provides a considerable

simplification, since the trapping region now only needs to contain A and v. The next step is to

construct a trapping region using the Taylor polynomials of A and v about G = 0. In this light,

define:

P2N+1(G) =

N∑
n=0

A(2n)(0)

(2n)!
G2n

Q2N+1(G) =
N∑
n=0

v(2n+1)(0)

(2n+ 1)!
G2n+1

noting that A and v have even and odd expansions respectively. Furthermore, define:

AM (G) = P2N−1(G) +MAG
2N

Am(G) = P2N−1(G) +mAG
2N

vM (G) = Q2N−1(G) +MvG
2N+1

vm(G) = Q2N−1(G) +mvG
2N+1

where MA, mA, Mv and mv are chosen so that:

mA <
A(2N)(0)

(2N)!
< MA

mv <
v(2N+1)(0)

(2N + 1)!
< Mv
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The functions AM and Am are used to bound A from above and below respectively, with vM and

vm providing analogous bounds for v. The objective is to show:

vm(G0) > ΓRH

(
G0;

1

3
,
1

3

)
(6.25)

where G0 is found implicitly through:

AM (G0) =
4

7
(6.26)

This is so the lowest point of the Taylor trapping region of v remains above the Rankine-Hugoniot

curve for the most conservative value of G, which is given by the intersection of the highest point

of the Taylor trapping region of A with the A = 4
7 plane. For large enough N , it is possible to find

values for MA, mA, Mv and mv such that (6.25) and (6.26) are satisfied and inequalities:

Am(G) < A < AM (G)(6.27)

vm(G) < v < vM (G)(6.28)

hold for 0 < G < G0. This can be done through extensive trial and error, using a numerical

approximation of A and v as a guide. Note that the Taylor expansions of A and v converge quicker

for smaller values of a, but larger values of a allow for (6.25) to be more easily satisfied, this is

why a = 14
5 is chosen, as it provides a good compromise. In this light, and using a numerical

approximation of A and v as a guide, it is found that N = 16 and the following values satisfy

(6.25)-(6.28):

MA = (1 + 2−7)
A(32)(0)

(32)!

mA = 2−1A
(32)(0)

(32)!

Mv = 2−1 v
(33)(0)

(33)!

mv = 25 v
(33)(0)

(33)!

noting that Mv and mv are chosen in the knowledge that v(33)(0) is negative.
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With MA, mA, Mv and mv specified, the Taylor polynomials of A and v can be computed and

AM , Am, vM and vm become known explicitly. The graphs of these bounding functions are given

in Figures 6.4 and 6.5.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
G

0.6

0.7

0.8

0.9

1.0
A

Figure 6.4. This figure depicts AM (G) and Am(G) by the top and bottom dotted
curves respectively. Note that these curves are almost indistinguishable until they
cross the A = 4

7 plane, which is given by the unbroken line at the bottom.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
G

0.1

0.2

0.3

0.4

0.5
v

Figure 6.5. This figure depicts vM (G) and vm(G) by the top and bottom dotted
curves respectively. The Rankine-Hugoniot curve is given by the dashed curve and
the singular and sonic surfaces are given as unbroken curves.
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Even at 33rd order, Figure 6.5 shows that vM and vm noticeably diverge after passing the Rankine-

Hugoniot curve. This is due to the trajectory approaching the sonic surface, where the solution is

likely to become singular, resulting in a slower convergence of the Taylor polynomials. With AM

known explicitly, equation (6.26) can be solved, at least approximately, to yield:

G0 ≈ 0.601

and this results in inequality (6.25) being satisfied, since vm is also known explicitly. The final, and

most difficult step, is to show that inequalities (6.27) and (6.28) hold in the interval 0 < G < G0.

To do this, the structure of equations (6.23) and (6.24) can be exploited, that is, it is possible to

show:

∂

∂v

dA

dG
< 0(6.29)

∂

∂A

dv

dG
> 0(6.30)

within the region given by (6.27) and (6.28). Starting with (6.29), we have:

∂

∂v

dA

dG
= −4(1−A)v

{·}S
∂

∂v

(
ξ
dG

dξ

)−1

−
(
ξ
dG

dξ

)−1 ∂

∂v

4(1−A)v

{·}S

= −4(1−A)G2

{·}3S

(
ξ
dG

dξ

)−2 [
4v2(3− v2)

(
1−A
A

)
+ (3− v2){·}S − 2(1− v2){·}S

(
1−A
A

)]
< 0

which holds in the more general region described by 2
5 < A < 1, v > 0, {·}S > 0 and {·}D < 0. For

(6.30) we have:

∂

∂A

dv

dG
= −

(
1− v2

2{·}D

)[
{·}S + 4

(
1−A
A

)
{·}N
{·}S

]
∂

∂A

(
ξ
dG

dξ

)−1

−
(
ξ
dG

dξ

)−1(1− v2

2{·}D

)
∂

∂A

[
{·}S + 4

(
1−A
A

)
{·}N
{·}S

]
=

G

A2{·}S

(
ξ
dG

dξ

)−2(1− v2

2{·}D

)[
(2(1 + v2)G− 4v){·}S + 4{·}N

]
> 0
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which holds in the region described by v > 0, {·}D < 0 and:

(2(1 + v2)G− 4v){·}S + 4{·}N < 0

This region is slightly smaller than the region described by v > 0, {·}D < 0 and {·}S > 0, but

includes the region given by (6.27) and (6.28) nonetheless. Now by construction, we know that

(6.27) and (6.28) are satisfied in the interval 0 < G < Gε for some small Gε > 0, so to demonstrate

(6.27) and (6.28) in the interval 0 < G < G0, it is sufficient to demonstrate:

d

dG
(AM −A)|A=AM ≥ 0(6.31)

d

dG
(A−Am)|A=Am ≥ 0(6.32)

d

dG
(vM − v)|v=vM ≥ 0(6.33)

d

dG
(v − vm)|v=vm ≥ 0(6.34)

in the interval Gε ≤ G < G0. Note that the left hand sides of (6.31)-(6.34) are functions of A, v

and G, so (6.29) can be used to determine the most conservative value of v in (6.31) and (6.32), and

(6.30) can be used to determine the most conservative value of A in (6.33) and (6.34). In particular,

the most conservative choice out of vM and vm for (6.31) is vm and the most conservative choice

for (6.32) is vM . Likewise, the the most conservative choice out of AM and Am for (6.33) is AM

and the most conservative choice for (6.34) is Am. This can be interpreted as remaining within

the right wall of the trapping region implies remaining below the ceiling, and remaining below the

ceiling implies remaining within the left wall and so on. Such an interpretation can be summarised

as so:

A < AM ⇒ v < vM

⇑ ⇓

v > vm ⇐ A > Am
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Now using these conservative choices, the left hand sides of (6.31)-(6.34) become explicitly known

functions of G and thus the interval for which they remain positive can be calculated, at least

approximately.

0.1 0.2 0.3 0.4 0.5 0.6
G

-0.0005

0.0005

0.0010

0.0015

Figure 6.6. This figure depicts d
dG(AM −A)|A=AM and d

dG(A−Am)|A=Am as un-
broken and dashed curves respectively.

0.1 0.2 0.3 0.4 0.5 0.6
G

-0.0010

-0.0005

0.0005

0.0010

0.0015

0.0020

Figure 6.7. This figure depicts d
dG(vM−v)|v=vM and d

dG(v−vm)|v=vm as unbroken
and dashed curves respectively.
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From Figures 6.6 and 6.7, the intervals for which (6.31)-(6.34) hold are given by:

0 < G < G1

0 < G < G2

0 < G < G3

0 < G < G4

respectively, where:

G1 > GI

G2 ≈ 0.627

G3 > GI

G4 ≈ 0.612

and GI is the value of G for which vm intersects the sonic surface. Since (6.25) has already been

established, then G0 < GI and thus:

G0 < min{G1, G2, G3, G4}

Therefore (6.27) and (6.28) hold in the interval 0 < G < G0 and since the Lax characteristic

conditions follow by Theorem 6.2.3, the proof is complete. �
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CHAPTER 7

Concluding Remarks

Throughout the preceding five chapters, the necessary machinery was introduced, and in some

places developed, to enable the construction of a new family of exact general relativistic shock waves

that induce a cosmic acceleration. This construction partially resolves an open problem posed by

Cahill and Taub in 1970 and fully resolves Smoller and Temple’s open problem of determining the

expanding waves created behind a shock-wave explosion into a static isothermal sphere. We saw in

Chapter 2 that this family of shock waves are one derivative less regular in Schwarzschild coordinates

than they actually are and that any delta function sources are cancelled within the Einstein tensor.

In Chapter 3 we found that the interior and exterior spacetimes are uniquely determined by their

initial data on the shock surface and that spherical symmetry and self-similarity of the first kind

restrict the types of barotropic equations of state that can be modelled. Chapter 4 introduced us

to the different families of spacetimes that we could consider for additional self-similar shock-wave

models and provided a physical insight into the interior of the new family of shock waves. Chapter

5 built the machinery required for a phase space analysis and demonstrated the cosmic acceleration

property inherent in asymptotically Friedmann spacetimes. Chapter 6 brought all this machinery

together and established the existence and Lax stability of this new family of general relativistic

shock waves, and in doing so, provided a mechanism for exhibiting an accelerated expansion whilst

removing the central singularity from the exterior static isothermal sphere.

Given that formal existence has been demonstrated in the pure radiation case, the obvious follow-up

question is whether it is possible to formally demonstrate the existence of the full two-parameter

family. For a certain range of values of σ and σ̄, there is no reason to suspect otherwise.

Conjecture 7.0.1. For 0 < σ̄ ≤ σ ≤ 1
3 , there exists an a > 0 such that FLRW(0, σ, a) can be

matched to TOV(σ̄) to form a general relativistic shock wave.
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The resolution of this conjecture is one avenue of future research. The continuous dependence

of the solution trajectories on the parameters means that formal existence is all but guaranteed

for σ̄, σ ≈ 1
3 and σ̄ ≈ H(σ). Moreover, the existence proof in the pure radiation case is readily

modified to demonstrate the formal existence for any fixed pair 0 < σ̄ ≤ σ ≤ 1
3 . The difficulty arises

when generalising the proof from fixed parameter values to two-dimensional parameter spaces, since

conservative estimates need to be satisfied for all values of σ and σ̄ in such spaces. It is likely to be

possible to construct such a proof by patching together many subproofs demonstrating existence

in small two-dimensional parameter spaces, although this method may be rather tedious.

Another avenue of future research is in regard to the possible cosmological applications of Friedmann-

static shock waves. It is shown in Chapter 6 that the Friedmann-static pure radiation shock wave

yields an acceleration parameter value of a ≈ 2.58. For reference, the acceleration parameter that

would be expected in the Radiation Dominated Epoch, according to Smoller and Temple, would

likely satisfy a ≈ 1. In addition, Smoller and Temple demonstrate in [20] that Friedmann-static

shock waves have shock fronts that would already be observable, as the shock surface would lie

within our current Hubble radius. Just one of these implications rules out Friedmann-static shock

waves as cosmological models in the Radiation Dominated Epoch, but there remains an interesting

modification to these shock waves that keeps Temple’s conjecture open.

Smoller and Temple demonstrate in [20] that it is possible to construct a shock wave, with a shock

surface beyond the Hubble radius, by modelling the entire Universe as a finite mass explosion within

the Schwarzschild radius of a time-reversed black hole. Their shock wave consisted of an FLRW

spacetime on the interior and a modified TOV spacetime on the exterior. This modification was

not known explicitly but incorporated the swapping of the temporal and radial variables in the

metric to account for being within the Schwarzschild radius of a black hole.

The possibility remains to construct modified Friedmann-static shock waves with shock surfaces

beyond the Hubble radius and determine the resulting rate of expansion. If the predicted rate of

expansion lies within current estimates, then such a model offers a mathematically independent

derivation for the cosmic acceleration observed today without dark energy.
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