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Abstract of the Dissertation

Geometry of Calabi-Yau Moduli

by

Changyong Yin

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Kefeng Liu, Chair

In this thesis, we study the geometry of the moduli space and the Teichmüller space of

Calabi-Yau manifolds, which mainly involves the following two aspects: the (locally, globally)

Hermitian symmetric property of the Teichmüller space and the first Chern form of the

moduli space with the Weil-Petersson and Hodge metrics.

In the first part, we define the notation of quantum correction for the Teichmüller space T of

Calabi-Yau manifolds. Under the assumption of vanishing of weak quantum correction, we

prove that the Teichmüller space T , with the Weil-Petersson metric, is a locally symmetric

space. For Calabi-Yau threefolds, we show that the vanishing of strong quantum correction

is equivalent to that the image Φ(T ) of the Teichmüller space T under the period map Φ is

an open submanifold of a globally Hermitian symmetric space W of the same dimension as

T . Finally, for Hyperkähler manifolds of dimension 2n ≥ 4, we find globally defined families

of (2, 0) and (2n, 0)-classes over the Teichmüller space of polarized Hyperkähler manifolds.

In the second part, we prove that the first Chern form of the moduli space of polarized

Calabi-Yau manifolds, with the Hodge metric or the Weil-Petersson metric, represents the

first Chern class of the canonical extensions of the tangent bundle to the compactification

of the moduli space with normal crossing divisors.
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CHAPTER 1

Introduction

Moduli spaces of general polarized algebraic varieties are studied exrensively by algebraic

geometers. However, there are two classes of moduli spaces where the methods of differential

geometry are equally powerful. These are the moduli spaces of curves and the moduli space

of polarized Calabi-Yau manifolds. The Weil-Petersson metric and Hodge metric are the

main tools to investigate the geometry of such moduli spaces, under which these moduli

spaces are Kählerian.

In this thesis, we study the Teichmüller space of polarized and marked Calabi-Yau manifolds

and the moduli spaces of polarized Calabi-Yau manifolfds with level m structure with m ≥ 3.

Recall that a compact projective manifold X of complex dimension n with n ≥ 3 is called

a Calabi-Yau manifold, if it has a trivial canonical bundle and satisfies H i(X,OX) = 0 for

0 < i < n. A polarized and marked Calabi-Yau manifold is a triple (X,L, γ) of a Calabi-Yau

manifold X, an ample line bundle L over X and a basis γ of the integral middle homology

group modulo torsion, Hn(X,Z)/Tor. And, a level m structure of a Calabi-Yau manifold X

with m ≥ 3 is a basis of the quotient space (Hn(X,M)/Tor)/m(Hn(X,Z)/Tor).

For the moduli space of polarized Calabi-Yau manifolds with level m structure, we have the

following theorem, which is a reformulation of [Szedröi99, Theorem 2.2]. One can also refer

to [Popp77] and [Viehweg95] for more details about the construction of the moduli space of

Calabi-Yau manifolds.

Theorem 1.0.1. Let (X,L) be a polarized Calabi-Yau manifold with level m structure with

m ≥ 3, then there exists a quasi-projective complex manifold Mm with a versal family of
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Calabi-Yau maniflods,

XMm −→Mm, (1.1)

which contains X as a fiber, and polarized by an ample line bundle LMm on the versal family

XMm.

The Teichmüller space T of polarized and marked Calabi-Yau manifolds is actually the

universal cover of the smooth moduli space Mm of polarized Calabi-Yau manifolds with

level m structure with m ≥ 3. We denote by U → T the pull-back of the family 1.1 via the

covering map πm : T →Mm, then we have

Proposition 1.0.2. The Teichmüller space T is a simply connected smooth complex mani-

fold, and the family

U −→ T (1.2)

containing X as a fiber, is local Kuranishi at each point of the Teichmüller space T .

Our result mainly involves the following two aspects: the (locally, globally) Hermitian sym-

metric property of the Teichmüller space T of polarized and marked Calabi-Yau manifolds

and the first Chern forms of the moduli space Mm of polarized Calabi-Yau manifolds with

level m structure with m ≥ 3.

In the first part, we define the notation of quantum correction for the Teichmüller space

T of polarized and marked Calabi-Yau manifolds. Under the assumption of vanishing of

weak quantum correction, we prove that the Teichmüller space T , with the Weil-Petersson

metric, is a locally Hermitian symmetric space. For Calabi-Yau threefolds, we show that

the vanishing of strong quantum correction is equivalent to that the image Φ(T ) of the

Teichmüller space T under the period map Φ is an open submanifold of a globally Hermitian

symmetric space W of the same dimension as T . Finally, for Hyperkähler manifold of

dimension 2n ≥ 4, we find globally defined families of (2, 0) and (2n, 0)-classes over the

Teichmüller space of polarized Hyperkähler manifolds.

Fix p ∈ T , let X be the corresponding Calabi-Yau manifold in the versal family U → T

and {ϕ1, · · · , ϕN} ∈ H0,1(X,T 1,0X) be an orthonormal basis with respect to the Calabi-Yau
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metric over X. Then we can construct the following smooth family of Betrami differentials

Φ(t) =
∑
|I|≥1

tIϕI , ϕI ∈ A0,1(X,T 1,0X),

which describes the deformation of complex structures in a neighbourhood of p ∈ T .

Our essential idea is to consider the strong quantum correction at any point p ∈ T , which

comes from the quantum correction of Yukawa coupling in the Kodaira-Spencer theory de-

veloped in [Bershadshy-Cecotti-Ooguri-Vafa94, Chapter 5]. It can be simply described as

the following identity of cohomology classes,

[Ξ(t)] = [Ωc(t)]−

[
exp(

N∑
i=1

tiϕi)yΩ

]
,

where Ω is a holomorphic (n, 0)-form over X and Ωc(t) is the canonical family of holomorphic

(n, 0)-forms eΦ(t)yΩ in a neighborhood of p ∈ T . And the weak quantum correction at p ∈ T

is defined as the lowest order expansion of the strong quantum correction [Ξ(t)] with respect

to t, i.e.,

[Ξ(t)]1 =
N∑

i,j,k=1

titjtk[ϕiyϕjkyΩ].

When n = 3, i.e., for Calabi-Yau threefolds, vanishing of strong quantum correction implies

vanishing of quantum correction of the Yukawa coupling in physics literatures, the reader

can refer to [Bershadshy-Cecotti-Ooguri-Vafa94] for details about the quantum correction of

the Yukawa coupling in the Kodaira-Spencer theory.

We first have the following result which characterizes the Teichmüller space T of Calabi-Yau

manifolds when the weak quantum correction vanishies at any point p ∈ T .

Theorem 1.0.3. Let T be the Teichmüller space of polarized and marked Calabi-Yau man-

ifolds. Vanishing of weak quantum correction at any point p ∈ T , i.e., [Ξ(t)]1 = 0, implies

that T , with the Weil-Petersson metric, is a locally Hermitian symmetric space.

Here, a locally Hermitian symmetric space is a smooth manifold satisfying ∇R = 0, i.e., its

curvature tensor is parallel, which is not necessarily complete. Moreover, for polarized and
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marked Calabi-Yau threefolds, we found the following equivalent condition for the vanishing

of strong quantum correction at any point p ∈ T .

Theorem 1.0.4. Let T be the Teichmüller space of polarized and marked Calabi-Yau three-

folds and Φ : T → D be the period map. Then the following are equivalent:

1. The strong quantum correction vanishes at any point p ∈ T ;

2. With respect to the Hodge metric, the image Φ(T ) is an open submanifold of a globally

Hermitian symmetric space W of the same dimension as T , which is also a totally

geodesic submanifold of the period domain D.

In Section 3.4, we study Hyperkähler manifolds. Let T be the Teichmüller space of polarized

Hyperkähler manifolds. A (irreducible) Hyperkähler manifold is a compact and simply-

connected Kähler manifold of complex dimension 2n ≥ 4 such that there exists a non-zero

holomorphic non-degenerate (2, 0)-form Ω2,0 on X.

Fix p ∈ T , let X be the corresponding Hyperkähler manifold in the versal family U → T ,

with dimCX = 2n, and Ω2,0 be a nowhere vanishing (2, 0)-form over X. By explicitly

computing the Taylor expansions of the canonical families [H(eΦ(t)yΩ2,0)] and [eΦ(t)y ∧n

Ω2,0], we show that the strong quantum correction vanishes at any point p ∈ T . Therefore

the Teichmüller spaces of polarized Hyperkähler manifolds are locally Hermitian symmetric

with the Weil-Petersson metric, which is affirmed without using the Torelli theorem for

Hyperkähler manifolds. Then, we show that these local expansions are actually global defined

on the Teichmüller spaces.

Theorem 1.0.5. Fix p ∈ T , let X be the corresponding Hyperkähler manifold in the versal

family U → T and Ω2,0 be a nowhere vanishing (2, 0)-form over X, then, in a neighborhood

U of p, there exist local families of (2, 0) and (2n, 0)-classes defined by the canonical families

[H(eΦ(t)yΩ2,0)] and [eΦ(t)y∧nΩ2,0]. Furthermore their expansions are actually globally defined
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over the Teichmüller space T , i.e.,

[Ω2,0] +
N∑
i=1

[ϕiyΩ2,0]ti +
1

2

N∑
i=1

[ϕiyϕjyΩ2,0]titj ∈ H2,0(Xt),

[
∧nΩ2,0

]
+

N∑
i=1

[
ϕiy ∧n Ω2,0

]
ti

+
1

k!

2n∑
k=1

( ∑
1≤i1≤...≤ik≤N

[ϕi1y...yϕiky ∧n Ω2,0]ti1ti2 · · · tik

)
∈ H2n,0(Xt)

are globally defined over T .

In the second part, we study the moduli space Mm of polarized Calabi-Yau manifolds with

level m structure with m ≥ 3, which is called the Calabi-Yau moduli in this paper for sim-

plicity. We prove that the first Chern form of the Calabi-Yau moduli, with the Hodge metric

or the Weil-Petersson metric, represents the first Chern class of the canonical extensions of

the tangent bundle to the compactification of the Calabi-Yau moduli with normal crossing

divisors.

Over the Calabi-Yau moduli Mm, we construct various Hodge bundles. The holomorphic

bundle Hn overMm, whose fiber is the primitive cohomology group Hn
pr(Xp,C) at each point

p ∈ Mm, carries a polarized Hodge structure of weight n. Then the holomorphic bundle

End(Hn)→Mm defines a variation of polarized Hodge structure overMm, which is defined

over Z. Then, with the Hodge metric, we have the following useful observation,

Theorem 1.0.6. Let Mm be the moduli space of polarized Calabi-Yau manifolds with level

m structure with m ≥ 3. Then the holomorphic vector bundle End(Hn) defines a variation

of polarized Hodge structure over Mm, which is defined over Z. Moreover, with the natural

Hodge metric over the Calabi-Yau moduli Mm, the tangent bundle

TMm ↪→ End(Hn), (1.3)

is a holomorphic subbundle of End(Hn)→Mm with the induced Hodge metric.

Then, by the important results for the integrability of Chern forms of subbundles and quo-

tient bundles of a variation of polarized Hodge structure over a quasi-projective manifold as
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given by [Cattani-Kaplan-Schimid86] and [Kollár85], see Theorem 4.1.2 and Theorem 4.1.3,

we can get that the first Chern form of the Calabi-Yau moduli are integrable with the in-

duced Hodge metric. More precisely, as a subbundle of the Hodge bundle End(Hn)→Mm,

the tangent bundle TMm can be canonically extended, denoted by T̃Mm −→ Mm. And,

the same canonical extension was used by [Lu-Sun06], the reader can refer to [Lu-Sun06,

Remark 4.3].

Here, we want to emphasize that the canonical extension T̃Mm → Mm of the tangent

bundle is not the tangent bundle of the compactification of the moduli space, TMm →Mm.

By using the canonical extension T̃Mm →Mm, we have,

Theorem 1.0.7. The first Chern form of the Calabi-Yau moduliMm with the induced Hodge

metric define currents over the compactificationMm with normal crossing boundary divisors.

Moreover, let RH be the curvature form of TMm with the induced Hodge metric, then we

have (
−1

2πi

)N ∫
TMm

(trRH)N = c1(T̃Mm)N

where N = dimCMm and T̃Mm the canonical extension of the tangent bundle TMm.

Another direct and easy consequence is that the other Chern forms of the Hodge bundles on

the Calabi-Yau moduli with the induced Hodge metrics are all integrable.

In this thesis, we focus on Calabi-Yau manifolds. Actually our method only needs the

fact that the moduli space of the manifolds with certain structures are smooth and quasi-

projective and the period map is locally injective (the local Torelli theorem). So our results

can be easily extended to more general projective manifolds, including Calabi-Yau manifolds,

Hyperkähler manifolds, many hypersurfaces and complete intersections in projective spaces.

Here, we only summarize the results into the following theorem:

Theorem 1.0.8. Let M be the moduli space of polarized projective manifolds with certain

structure. Assume that M is smooth and quasi-projective. If the period map from M to

the period domain is locally injective, then the first Chern form of the moduli space M with

6



the induced Hodge metric defines currents over the compactificationM with normal crossing

boundary divisors. Moreover, the first Chern form represents the first Chern class of the

corresponding canonical extension T̃M−→M of the tangent bundle.

By a similar argument, one can show that the Chern forms of the moduli spaceM with the

Weil-Petersson metric define currents over the compactification M of the moduli space M,

and the first Chern form also represents the first Chern class of the corresponding canonical

extension of the tangent bundle.

This thesis is organized as follows. In Chapter 2, we review some necessary concepts and

results for the study of the moduli space and Teichmüller space of Calabi-Yau manifodls.

In Section 2.1, we briefly review the construction of the moduli space and the Teichmüller

space of Calabi-Yau manifolds, the local deformation theory of Calabi-Yau manifolds and

the construction of the canonical family of (n, 0)-forms. In Section 2.2, we recall the formal

variation of Hodge structure and local period map for a variation of Hodge structure over

a connected and simply connected parametrized space. In Section 2.3, we summarize the

Weil-Petersson metric and Hodge metric over the moduli space and Teichmüller space, which

will be used to investigate the differential geometry of the Calabi-Yau moduli.

In Chapter 3, we study the (locally, globally) Hermitian symmetric property of the Te-

ichmüller space of polarized and marked Calabi-Yau manifolds. In Section 3.1, the definition

and criteria of Hermitian symmetric space are introduced. Also, we define the quantum

correction of the Teichmüller space T , which originally comes from physics literatures. In

Section 3.2, we review the Weil-Petersson geometry of the Teichmüller space T , and derive

a local formula for the covariant derivatives of the curvature tensor ∇R in terms of the

flat affine coordinate t. Under the assumption of no weak quantum correction at any point

p ∈ T , we prove that the Teichmüller space T is a locally Hermitian symmetric space with

the Weil-Petersson metric. We remark that the results in Sections 2.1.2 to 3.2 actually all

hold for both Calabi-Yau and Hyperkähler manifolds. In Section 3.3, for Calabi-Yau three-

folds, we show that vanishing of the strong quantum correction is equivalent to, with the

Hodge metric, that the image Φ(T ) of the Teichmüller space T under the period map Φ is

7



an open submanifold of a globally Hermitian symmetric space W with the same dimension

as T . In Section 3.4, we construct a globally defined families of (2, 0) and (2n, 0)-classes over

the Teichmüller space T of polarized Hyperkähler manifolds with dimCX = 2n.

In Chapter 4, we study the first Chern form of the Calabi-Yau moduli, with the Weil-

Petersson metric and Hodge metric. In Section 4.1, we review the essential estimates for

the degeneration of the Hodge metric of a variation of polarized Hodge structure near a

normal crossing divisor , which was used to derive the integrability of the Chern forms of

subbundles and quotient bundles of the variation of polarized Hodge structure over a quasi-

projective manifold. In Section 4.2, we construct various Hodge bundles over the Calabi-Yau

moduliMm. Then, by a key observation that the tangent bundle of Calabi-Yau moduli is a

subbundle of the variation of polarized Hodge structure End(Hn)→Mm, we prove that the

first Chern form of the Calabi-Yau moduliMm are integrable, with the Hodge metric, which

represents the first Chern class of the canonical extension T̃Mm → Mm of the tangent

bundle. In Section 4.3, By the isomorphism TMm
∼= (F n)∗ ⊗ F n−1/F n with the Weil-

Petersson metric over Mm, we show that the Chern forms of the Calabi-Yau moduli Mm

are integrable, equipped with the Weil-Petersson metric. Moreover, the first Chern form

represent the first Chern class of the quotient bundle ˜(F n)∗ ⊗ F n−1/ ˜(F n)∗ ⊗ F n → Mm,

where ˜(F n)∗ ⊗ F n−1 → Mm and ˜(F n)∗ ⊗ F n → Mm are the canonical extensions of the

Hodge bundles (F n)∗ ⊗ F n−1 →Mm and (F n)∗ ⊗ F n →Mm respectively.

8



CHAPTER 2

Calabi-Yau Moduli and Hodge Structure

In this chapter, we review some necessary concepts and results for the study of the moduli

space and Teichmüller space of Calabi-Yau manifodls, including the construction of moduli

spaces, the variation of Hodge structure, the period domain, the period map, the Weil-

Petersson metric and the Hodge metric.

2.1 Locally Geometric Structure of the Moduli Space

In Section 2.1.1, we review the construction of the moduli space and the Teichmülller space

of Calabi–Yau manifolds based on the works of Popp [Popp77], Viehweg [Viehweg95] and

Szendröi [Szedröi99]. In Section 2.1.2 and Section 2.1.3, the smooth family of Betrami

differentials Φ(t) and the canonical family of (n, 0)-forms eΦ(t)yΩ over the deformation space

of Calabi-Yau manifolds are introduced. The results in Section 2.1.2 and Section 2.1.3 also

hold for polarized Hyperkähler manifolds.

2.1.1 The Construction of the Teichmüller Space

In this section, we briefly review the construction of the moduli space and Teichmüller space

of polarized Calabi-Yau manifolds. A pair (X,L) consisting of a Calabi-Yau manifold X of

complex dimension n with n ≥ 3 and an ample line bundle L → X is called a polarized

Calabi-Yau manifold. By abuse of notation, the Chern class of L will be also denoted by L

and thus L ∈ H2(X,Z). Let {γ1, · · · , γN} be a basis of the integral homology group modulo

torsion, Hn(X,Z)/Tor, with dim(Hn(X,Z)/Tor) = N .
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Definition 2.1.1. Let the pair (X,L) be a polarized Calabi-Yau manifold, we call the triple

(X,L, {γ1, · · · , γN}) a polarized and marked Calabi-Yau manifold.

We first recall the concept of Kuranishi family of compact complex manifolds, we refer to

[Shimizu-Ueno02, Pages 8-10], [Popp77, Page 94] or [Viehweg95, Page 19] for equivalent

definitions and more details. A family of compact manifolds π :W → B is versal at a point

p ∈ B if it is satisfies the following conditions:

1. Given a complex analytic family ι : V → S of compact complex manifolds with a

point s ∈ S and a biholomorphic map f0 : Vs = ι−1(s) → Up = π−1(p), then there

exists a holomorphic map g from a neighbourhood N ⊂ S of the point s ∈ S and

a holomorphic map f : ι−1(N) → W with ι−1(N) ⊂ V such that they satisfy that

g(s) = p and f |ι−1(s) = f0 with the following commutative diagram

ι−1(N)

ι

��

f //W
π

��
N

g // B.

2. For all g satisfying the above condition, the tangent map (dg)s is uniquely determined.

If a family π : W → B is versal at every point p ∈ B, then it is a versal family on B. If a

complex analytic family satisfies the above condition 1, then the family is call complete at

p ∈ B. If a complex analytic family π : X → S of compact complex manifolds is complete

at each point of S and versal at the point 0 ∈ S, then the family π : X → S is called

the Kuranishi family of the complex maniflod X = π−1(0). The base space S is called the

Kuranishi space. If the family is complete at each point of a neighbourhood of 0 ∈ S and

versal at 0, then this family is called a local Kuranishi family at 0 ∈ S. In particular, by

definition, if the family is versal at each point of S, then it is local Kuranishi at each point

of S.

Let (X,L) be a polarized Calabi-Yau manifold. A level m structure with m ≥ 3 of a Calabi-

Yau manifold X is a basis of the quotient space (Hn(X,Z)/Tor)/m(Hn(X,Z)/Tor). For
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deformation of polarized Calabi-Yau manifolds with level m structure, we have the following

theorem, which is a reformulation of [Szedröi99, Theorem 2.2]. One can also refer [Popp77]

and [Viehweg95] for more details about the construction of the moduli space of Calabi-Yau

manifolds.

Theorem 2.1.2. Let (X,L) be a polarized Calabi-Yau manifold with level m structure with

m ≥ 3, then there exists a quasi-projective complex manifold Mm with a versal family of

Calabi-Yau maniflods,

XMm −→Mm, (2.1)

which contains X as a fiber, and polarized by an ample line bundle LMm on the versal family

XMm.

The Teichmülller space is the moduli space of equivalent classes of polarized and marked

Calabi-Yau manifolds. More precisely, a polarized and marked Calabi-Yau manifold is a

triple (X,L, γ), where X is a Calabi-Yau manifold, L is a polarization on X and γ is a

basis of Hn(X,Z)/Tor. Two triples (X,L, γ) and (X
′
, L
′
, γ
′
) are equivalent if there exists a

bihomorphic map f : X → X
′

with

f ∗L
′

= L,

f∗γ = γ
′
,

then [X,L, γ] = [X
′
, L
′
, γ
′
] is an element of the Teichmüller space T . Because a basis γ

of Hn(X,Z)/Tor naturally induces a basis of (Hn(X,Z)/Tor)/m(Hn(X,Z)/Tor), we have

a natural map πm : T → Mm, where T is the Teichmüller space of polarized and marked

Calabi-Yau manifolds.

By the definition, it is not hard to show that the Teichmüller space is precisely the universal

cover of Mm with the covering map πm : T → Mm. In fact, as the same construction

in [Szedröi99, Section 2], we can also realize that the Teichmüller space T as a quotient

space of the universal cover of the Hilbert scheme of Calabi-Yau manifolds by special linear

group SL(N + 1,C). Here the dimension is given by N + 1 = p(k) where p is the Hilbert

11



polynomial of each fiber (X,L) and k satisfies that for any polarized algebraic variety (X̃, L̃)

with Hilbert polynomial p, the line bundle L̃⊗k is very ample. Under this construction, the

Teichmüller space is automoatically simply connected, and there is a natural covering map

πm : T →Mm. On the other hand, in [Chen-Guan-Liu12, Theorem 2.5 and Corollary 2.8],

the authors also proved that πm : T → Mm is a universal covering map, and consequently

that T is the universal cover space ofMm for some m. Thus, by the uniqueness of universal

covering space, these two constructions of T are equivalent to each other.

We denote by U → T the pull-back of the family 2.1 via the covering map πm, then we have

Proposition 2.1.3. The Teichmüller space T is a simply connected smooth complex mani-

fold, and the family

U −→ T (2.2)

containing X as a fiber, is local Kuranishi at each point of the Teichmüller space T .

Proof. For the first half, because Mm is a connected and smooth complex manifold, its

universal cover T is thus a connected and simply connected smooth complex manifold. For

the second half, we know that the family 2.1 is a versal family at each point of Mm and

that πm is locally biholomorphic , therefore the pull-back family via πm is also versal at each

point of T . Then by the definition of local Kuranishi family, we get that U → T is local

Kuranishi at each point of T .

Actually, the family U → T is local Kuranishi at each point is essentially due to the local

Torelli theorem for Calabi-Yau manifolds. In fact, the Kodaira-Spencer map of the family

U → T

κ : T 1,0
p T → H0,1(Xp, T

1,0Xp),

is an isomorphism for each point p ∈ T . Then by theorem in [Shimizu-Ueno02, Page 9],

we conclude that U → T is versal at each point p ∈ T . Moreover, the well Bogomolov-

Tian-Todorov Lemma ([Bogomolov78],[Tian87] and [Todorov89] ) implies that dimC T =
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N = hn−1,1. We refer the reader to [Kodaira-Morrow06, Chapter 4] for more details about

deformation of complex structures and the Kodaira-Spencer map.

Note that the Teichmüller space T does not depend on the choice of level m. In fact, let

m1,m2 be two different positive integers, U1 → T1 and U2 → T2 are two versal families

constructed via level m1 and level m2 respectively as above, both of which contain X as a

fiber. By using the fact that T1 and T2 are simply connected and the definition of versal

families, we have a biholomorphic map f : T1 → T2, such that the versal family U1 → T1

is the pull- back of the versal family U2 → T2 by the map f . Thus these two families are

isomorphic to each other.

In this thesis, we call Mm with m ≥ 3 the Calabi-Yau moduli for simplicity and T the

Teichmüller space of Calabi-Yau manifolds.

2.1.2 Local Deformation of Calabi-Yau Manifolds

Fix p ∈ T , let (X,L) be the corresponding polarized Calabi-Yau manifold in the versal family

U → T . Yau’s solution of Calabi conjecture assigns a unique Calabi-Yau metric g on X,

whose imaginary part ω = Im g ∈ L is the corresponding Kähler form. Under the Calabi-Yau

metric g, we have the following lemma which follows from the Calabi-Yau theorem directly,

Lemma 2.1.4. Let Ω be a nowhere vanishing holomorphic (n, 0)-form on X such that

(

√
−1

2
)n(−1)

n(n−1)
2 Ω ∧ Ω = ωn.

Then the map ι : A0,1(X,T 1,0X) → An−1,1(X) given by ι(ϕ) = ϕyΩ is an isometry with

respect to the natural Hermitian inner product on both spaces induced by the Calabi-Yau

metric g. Furthermore, the map ι preserves the Hodge decomposition.

With the Calabi-Yau metric g, we have a precise description of the local deformation of the

polarized Calabi-Yau manifolds. By the Hodge theory, we have the following identification

T 1,0
p T ∼= H0,1(X,T 1,0X),

13



where X is the corresponding fiber over p ∈ T in the versal family U → T . By the Kodaira-

Spencer-Kuranishi theory, we have the following convergent power series expansion of the

Betrami differentials, which is now well-known as the Bogomolov-Tian-Todorov Theorem

[Bogomolov78, Tian87, Todorov89].

Theorem 2.1.5. Let X be a Calabi-Yau manifold and {ϕ1, · · · , ϕN} ∈ H0,1(X,T 1,0X) be a

harmonic basis. Then for any nontrivial holomorphic (n, 0)-form Ω on X, we can construct

a smooth power series of Betrami differentials as follows

Φ(t) =
∑
|I|≥1

tIϕI =
∑

ν1+···+νN≥1,
each νi ≥ 0, i = 1, 2, · · · , N

ϕν1···νN t
ν1
1 · · · t

νN
N ∈ A

0,1(X,T 1,0
X ), (2.3)

where ϕ0···νi···0 = ϕi. This power series has the following properties:

1) ∂Φ(t) = 1
2
[Φ(t),Φ(t)], the integrability condition;

2) ∂
∗
ϕI = 0 for each multi-index I with |I| ≥ 1;

3) ϕIyΩ is ∂-exact for each I with |I| ≥ 2.

4) it converges when |t| < ε.

For more about the convergent radius, the reader can refer to [Liu-Rao-Yang14, Theorem

4.4]. This theorem will be used to define the flat affine coordinates {t1, · · · , tN} around any

point p ∈ T , for a given orthonormal basis {ϕ1, · · · , ϕN} of H0,1(X,T 1,0X) with respect to

the Calabi-Yau metric over X.

2.1.3 Canonical Family of (n, 0)-Classes

Based on the construction of the smooth family Φ(t) of Beltrami differentials in Theorem

2.1.5, we can construct a canonical family of holomorphic (n, 0)-forms on the deformation

spaces of Calabi-Yau manifolds. Here we just list the results we need, the reader can refer

[Liu-Rao-Yang14, Section 5.1] for details.

Let X be an n-dimensional Calabi-Yau manifold and {ϕ1, · · · , ϕN} ∈ H0,1(X,T 1,0X) a har-

monic basis where N = dimH0,1(X,T 1,0X). As constructed in Theorem 2.1.5, there exists

14



a smooth family of Beltrami differentials in the following form

Φ(t) =
N∑
i=1

ϕiti +
∑
|I|≥2

ϕIt
I =

∑
ν1+···+νN≥1

ϕν1···νN t
ν1
1 · · · t

νN
N ∈ A

0,1(X,T 1,0
X )

for t ∈ CN with |t| < ε. It is easy to check that the map

eΦ(t)y : A0(X,KX)→ A0(Xt, KXt) (2.4)

is a well-defined linear isomorphism. We can write down this map explicitly in the local

coordinate systems. Let {zα}nα=1 and {wα}nα=1 be local holomorphic coordinate systems on

X and Xt respectively. For the Beltrami differential Φ(t), we write it locally as

Φ(t) = (Φ(t))α
β
dzβ ⊗ ∂

∂zα
= Φα

β
dzβ ⊗ ∂

∂zα
.

If σ = f(z)dz1 ∧ · · · ∧ dzn ∈ A0(X,KX), the isomorphism is defined as

eΦ(t)yσ = f(z)(dz1 + Φ(dz1)) ∧ · · · ∧ (dzn + Φ(dzn)). (2.5)

This map is well-defined, in fact, we need to verify that (I) this map does not depend on the

coordinate system {zα}nα=1, and also (II) eΦ(t)yσ is a section of An,0(Xt, Lt). (I) is obvious.

For (II), since

dwα =
∂wα

∂zβ
dzβ +

∂wα

∂zγ
dzγ =

∂wα

∂zβ
(
dzβ + Φ(dzβ)

)
,

we can write eΦ(t)yσ as

eΦ(t)yσ =
f(z)

det
(
∂wα

∂zβ

)dw1 ∧ · · · ∧ dwn. (2.6)

By the natural diffeomorphism Gt = (w1, · · · , wn) : X0 → Xt, we can regard f as a function

(G−1
t )∗(f) on Xt. Now it is obvious that eΦ(t)yσ is a well-defined section of An,0(Xt, Lt).

Proposition 2.1.6. For any smooth (n, 0)-form Ω ∈ An,0(X), the section eΦ(t)yΩ ∈ An,0(Xt)

is holomorphic with respect to the complex structure JΦ(t) induced by Φ(t) on Xt if and only

if

∂Ω + ∂(Φ(t)yΩ) = 0. (2.7)
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Proof. This is a direct consequence of the following formula, which is [Liu-Rao-Yang14,

Corollary 3.5],

e−Φ(t)yd (eΦ(t)yΩ) = ∂Ω + ∂(Φ(t)yΩ).

In fact, the operator d can be decomposed as d = ∂t + ∂t, where ∂t and ∂t denote the (0, 1)-

part and (1, 0)-part of d, with respect to the complex structure JΦ(t) induced by Φ(t) on Xt.

Note that eΦ(t)yΩ ∈ An,0(Xt) and so

∂t(e
Φ(t)yΩ) = 0.

Hence,

e−Φ(t)y∂t (eΦ(t)yΩ) = ∂Ω + ∂(Φ(t)yΩ),

which implies the assertion.

Theorem 2.1.7. Let Ω be a nontrivial holomorphic (n, 0)-form on the Calabi-Yau manifold

X and Xt = (Xt, JΦ(t)) be the deformation of X induced by the smooth family Φ(t) of Beltrami

differentials on X as constructed in Theorem 2.1.5. Then, for |t| < ε,

Ωc(t) := eΦ(t)yΩ (2.8)

defines a canonical family of holomorphic (n, 0)-forms on Xt which depends on t holomor-

phically.

Proof. Since Ω is holomorphic, and Φ(t) is smooth, by Proposition 2.1.6, we only need to

show that

∂(Φ(t)yΩ) = 0

in the distribution sense. In fact, for any test form η on X,

(Φ(t)yΩ, ∂∗η) = lim
k→∞

∑
|I|≤k

ϕIt
I

yΩ, ∂∗η

 = lim
k→∞

 N∑
i=1

tiϕiyΩ +
∑

2≤|I|≤k

tI∂ψI , η

 = 0,

as ϕiyΩ, 1 ≤ i ≤ N are harmonic and ϕIyΩ = ∂ψI are ∂-exact for |I| ≥ 2 by Theorem

2.1.5.

16



Corollary 2.1.8. Let Ωc(t) := eΦ(t)yΩ be the canonical family of holomorphic (n, 0)-forms

as constructed in Theorem 2.1.7. Then for |t| < ε, there holds the following expansion of

[Ωc(t)] in cohomology classes,

[Ωc(t)] = [Ω] +
N∑
i=1

[ϕiyΩ]ti +O(|t|2), (2.9)

where O(|t|2) denotes the terms in
n⊕
j=2

Hn−j,j(X) of order at least 2 in t.

2.2 Variation of Hodge Structure and Period Map

In this section, we review the definition of formal variation of Hodge structure and the period

domain. Then we proceed to the study of local period map Φ : S → D, for a variation of

Hodge structure parametrised by a simply connected base S. This map associates to s ∈ S

the Hodge filtration over s ∈ S. For more details, the reader can refer to [Voisin02].

2.2.1 Definition of Variation of Hodge Structure

Let HR be a real vector space with a Z-structure defined by a lattice HZ ⊂ HR, and let HC

be the complexification of HR. A Hodge structure of weight n on HC is a decomposition

HC =
n⊕
k=0

Hk,n−k, with Hn−k,k = Hk,n−k.

The integers hk,n−k = dimCH
k,n−k are called the Hodge numbers. To each Hodge structure

of weight n on HC, one assigns the Hodge filtration:

HC = F 0 ⊃ · · · ⊃ F n, (2.10)

with F k = Hn,0⊕· · ·⊕Hk,n−k and fk = dimC F
k =

∑n
i=k h

i,n−i. This filtration satisfies that

HC = F k ⊕ F n−k+1, for 0 ≤ k ≤ n. (2.11)

Conversely, every decreasing filtration (2.10), with the property (2.11) and fixed dimensions

dimC F
k = fk, determines a Hodge structure {Hk,n−k}nk=0 with

Hk,n−k = F k ∩ F n−k.
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A polarization for a Hodge structure of weight n consists of the data of a Hodge-Riemann

bilinear form Q over Z, which is symmetric for even n, skew symetric for odd n, such that

Q(Hk,n−k, Hr,n−r) = 0 unless k = n− r, (2.12)

i2k−nQ(v, v) > 0 if v ∈ Hk,n−k, v 6= 0. (2.13)

In terms of the Hodge filtration HC = F 0 ⊇ F 1 ⊇ · · · ⊇ F n, the relations (2.12) and (2.13)

can be written as

Q
(
F k, F n−k+1

)
= 0, (2.14)

Q (Cv, v) > 0 if v 6= 0, (2.15)

where C is the Weil operator given by Cv = i2k−nv when v ∈ Hk,n−k = F k ∩ F n−k.

Definition 2.2.1. Let S be a connected complex manifold, a variation of polarized Hodge

structure of weight n over S consists of a polarized local system HZ of Z-modules and a

filtration of the associated holomorphic vector bundle H:

· · · ⊇ F k−1 ⊇ F k ⊇ · · · (2.16)

by holomorphic subbundles F k which satisfy:

1. Hk,n−k = F k ⊕ F n−k+1 as C∞ bundles, where the conjugation is taking relative to the

local system of real vectorspace HR := HZ ⊗ R.

2. ∇(F k) ⊆ Ω1
S ⊗ F k−1, where ∇ denotes the flat connection on H.

We refer to the holomorphic subbundles F k as the Hodge bundles of the variation of polarized

Hodge structure. And for each s ∈ S, we have the Hodge decomposition:

Hs =
n⊕
k=0

Hk,n−k
s ; Hk,n−k

s = Hn−k,k
s (2.17)

where Hk,n−k is the C∞ subbundle of H defined by:

Hk,n−k = F k ∩ F n−k.
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2.2.2 Definition of Period Map

In this section, we defines the local period map for the variation of Hodge structure. Starting

from a variation of polarized Hodge structure of weight n parametrised by a simply connected

complex manifold S, we can construct the period domain D and its dual Ď by fixing a point

s ∈ S as reference point.

The classifying space or the period domain D for polarized Hodge structures with Hodge

numbers {hk,n−k}nk=0 is the space of all such Hodge filtrations

D =
{
F n ⊂ · · · ⊂ F 0 = HC | dimF k = fk, (3.15) and (3.16) hold

}
.

The compact dual Ď of D is

Ď =
{
F n ⊂ · · · ⊂ F 0 = HC | dimF k = fk and (3.15) hold

}
.

It’s easy to see that the classifying space or the period domain D ⊂ Ď is an open subset of

the compact dual Ď. Now, we can define the local period map ϕ : S → D for the variation

of Hodge structure.

Definition 2.2.2. The period map

ϕ : S → D

is the map which to s ∈ S associates the subspace

· · · ⊇ F k−1
s ⊇ F k

s ⊇ · · · ,

i.e., the filtration of fibers of the Hodge bundles over s ∈ S.

2.3 Weil-Petersson and Hodge Metric over Calabi-Yau Moduli

There are various metrics over the moduli space and Teichmüller space of Calabi-Yau man-

ifolds, among which the Weil-Petersson metric and Hodge metric are the main tools to

investingate the geometry of such moduli spaces. In this section, we review the definitions

of Weil-Petersson metric and Hodge metric over the moduli space and Teichmüller space.
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2.3.1 The Weil-Petersson Geometry

The local Kuranishi family of polarized Calabi-Yau manifolds π : X → S is smooth by

the Bogomolov-Tian-Todorov theorem [Tian87, Todorov89]. One can assign the unique

Ricci-flat or Calabi-Yau metric g(s) on the fiber X := Xs in the polarization Kähler class

[Yau78]. Then, on the fiber X, the Kodaira-Spencer theory gives rise to an injective map

ρ : TsS −→ H1(X,T 1,0X) ∼= H0,1(X,T 1,0X), the space of harmonic representatives. The

metric g(s) induces a metric on A0,1(X,T 1,0X). The reader may also refer to [Wang03] for

the discussion. For v, w ∈ TsS, one then defines the Weil-Petersson metric on S by

gWP (v, w) :=

∫
X

〈ρ(v), ρ(w)〉g(s)dvolg(s). (2.18)

Let dimX = n, by the fact that the global holomorphic (n, 0)-form Ω := Ω(s) is flat with

respect to g(s), it can be shown [Tian87] that

gWP (v, w) = −Q̃(i(v)Ω, i(w)Ω)

Q̃(Ω,Ω)
. (2.19)

Here, for convenience, we write Q̃(·, ·) = (
√
−1)nQ(·, ·), where Q is the intersection product.

Therefore, Q̃ has alternating signs in the successive primitive cohomology groups Hp,q
pr ⊂

Hp,q, p+ q = n.

The formula (4.5) implies that the natural map H1(X,T 1,0X) −→ Hom(Hn,0, Hn−1,1) via

the interior product v 7→ vyΩ is an isometry from the tangent space TsS to (Hn,0)∗⊗Hn−1,1.

So the Weil-Petersson metric is precisely the metric induced from the first piece of the Hodge

metric on the horizontal tangent bundle over the period domain. Let F n denote the Hodge

bundle induced by Hn,0. A simple calculation in formal Hodge theory shows that

ωWP = Ric(F n) = −∂∂ log Q̃(Ω,Ω) = −Q̃(∂iΩ, ∂jΩ)

Q̃(Ω,Ω)
+
Q̃(∂iΩ,Ω) Q̃(Ω, ∂jΩ)

Q̃(Ω,Ω)2
, (2.20)

where ωWP is the 2-form associated to gWP . In particular, gWP is Kähler and is independent

of the choice of Ω. In fact, gWP is also independent of the choice of the polarization. Next,

we define

Ki = −∂i log Q̃(Ω,Ω) = −Q̃(∂iΩ,Ω)

Q̃(Ω,Ω)
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and

DiΩ = ∂iΩ +KiΩ

for 1 ≤ i ≤ N . And it is easy to check that DiΩ is the projection of ∂iΩ into Hn−1,1

with respect to the quadratic form Q̃(·, ·). And if we denote the Christoffel symbol of the

Weil-Petersson metric by Γkij, it is easy to check that

DjDiΩ = ∂jDiΩ− ΓkijDkΩ +KjDiΩ,

is the projection of ∂jDjΩ into Hn−2,2. The reader can refer to [Lu-Sun04] for details of

these notations.

2.3.2 Period Map and the Hodge Metric on Calabi-Yau Moduli

For any point p ∈ T , let (Xp, Lp) be the corresponding fiber in the versal family U → T ,

which is a polarized and marked Calabi–Yau manifold. Since the Teichmüller space is simply

connected and we have fixed the basis of the middle homology group modulo torsions, we

identify the basis of Hn(X,Z)/Tor to a lattice ∧ as in [Szedröi99]. This gives us a canonical

identification of the middle dimensional cohomology of Xp to that of the background manifold

M , that is, Hn(M) ' Hn(Xp). Therefore, we can use this to identify Hn(Xp) for all fibers

over T . Thus we get a canonically trivial bundle Hn(M)× T .

The period map from T to D is defined by assigning to each point p ∈ T the Hodge structure

on Xp, that is

Φ : T → D, p 7→ Φ(p) = {F n(Xp) ⊂ · · · ⊂ F 0(Xp)}

The period map has several good properties, and one may refer to [Voisin02, Chapeter 10]

for details. Among them, one of the most important is the following Griffiths transversality:

the period map Φ is a holomorphic map and its tangent map satisfies that

Φ∗(v) ∈
n⊕
k=1

Hom(F k
p /F

k+1
p , F p−1

p /F k
p ) for any p ∈ T and v ∈ T 1,0

p T ,
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with F n+1 = 0, or equivalently, Φ∗(v) ∈
⊕n

k=1 Hom(F k
p , F

k−1
p ).

For the Calabi-Yau moduli Mm, we have the following period map:

Φm :Mm −→ D/Γ, (2.21)

where Γ denotes the global monodromy group which acts properly and discontinuously on

the period domain D. By going to finite covers of Mm and D/Γ, we may also assume D/Γ

is smooth without loss of generality.

In [Griffiths-Schmid69], Griffiths and Schmid studied the so-called Hodge metric on the

period domain D which is the natural homogeneous metric on D. We denote it by h. In

particular, this Hodge metric is a complete homogeneous metric. By local Torelli theorem

for Calabi–Yau manifolds, we know that ΦT ,Φ are both locally injective. Thus the pull-

backs of h by ΦT and Φ on T andMm respectively are both well-defined Kähler metrics by

[Griffiths-Schmid69] and [Lu99]. By abuse of notation, we still call these pull-back metrics

the Hodge metrics. For explicit formula of the Hodge metric over moduli space of polarized

Calabi-Yau manifolds, especially for threefolds, the reader can refer to [Lu99], [Lu01-1] and

[Lu01-2] for details.
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CHAPTER 3

Quantum Correction and Moduli Space of Calabi-Yau

manifolds

In this chapter, we define quantum correction for the Teichmüller space T of Calabi-Yau

manifolds. Under the assumption of vanishing of weak quantum correction, we prove that

the Teichmüller space T , with the Weil-Petersson metric, is a locally Hermitian symmetric

space. For Calabi-Yau threefolds, we show that the vanishing of strong quantum correction

is equivalent to that the image Φ(T ) of the Teichmüller space T under the period map Φ is

an open submanifold of a globally Hermitian symmetric space W of the same dimension as

T . Finally, for Hyperkähler manifold of dimension 2n ≥ 4, we find globally defined families

of (2, 0) and (2n, 0)-classes over the Teichmüller space of polarized Hyperkähler manifolds.

3.1 Hermitian Symmetric Space and Quantum Correction

In this section, we review the concepts of (globally, locally) Hermitian Symmetric spaces

and define the notation of quantum correction for the Teichmüller spaces. In Section 3.1.1,

we review the definitions of locally Hermitian symmetric spaces and globally Hermitian

symmetric spaces. In Section 3.1.2, we define the notation of quantum correction for the

Teichmüller space of polarized and marked Calabi-Yau manifolds, which originally comes

from the quantum correction of Yukawa coupling in the Kodaira-Spencer theory developed

in [Bershadshy-Cecotti-Ooguri-Vafa94]. The definition of quantum correction also applies to

the Teichmüller space of polarized Hyperkähler manifolds.
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3.1.1 Hermitian Symmetric Space

First let us review some basic definitions of symmetric spaces, the reader can refer to

[Kobayashi-Nomizu69, Chapter 11] or [Zheng00, Chapter 3] for details. Let N be a Rie-

mannian manifold, p ∈ N , and rp > 0 the injective radius at the point p. Consider the

diffeomorphism sp from the geodesic ball Brp(p) onto N defined by

sp(expp(X)) = expp(−X), ∀X ∈ Brp(0) ⊂ TpN. (3.1)

The map sp is called the geodesic symmetry at p. It has p as an isolated fixed point, and

(sp)∗p = −id. In general, it is not an isometry.

Definition 3.1.1. A Riemannian manifold N is called a locally Riemannian symmetric

space, if for any point p ∈ N , the geodesic symmetry sp is an isometry on Brp(p). N

is called a globally Riemannian symmetric space if, for any point p ∈ N , there exists an

isometry in its isometry group I(N) whose restriction on Brp(p) is sp.

Clearly, globally Riemannian symmetric spaces are locally Riemannian symmetric spaces.

Applying the theorem of Cartan-Ambrose-Hicks [Cartan46, Ambrose56, Hicks59, Hicks66]

to the map sp and the isometry I = −id at TpN , we immediately get the following lemma

Lemma 3.1.2. A Riemannian manifold N is a locally Riemannian symmetric space if and

only if 5R = 0, i.e., the curvature tensor is parallel. Also, if a locally Riemannian sym-

metric space is complete and simply-connected, then it is a globally Riemannian symmetric

space. Two locally Riemannian symmetric spaces are locally isometric if they have the same

curvature at one point.

Now, let us consider the complex case,

Definition 3.1.3. A Hermitian manifold N is a locally Hermitian symmetric space if, for

any point p ∈ N , sp : expp(X) → expp(−X),∀X ∈ TpN is a local automorphism around p

of N , i.e., sp leaves the Levi-Civita connection ∇ and complex structure J invariant. It is

called a globally Hermitian symmetric space if it is connected and for any point p ∈ N there

exists an involutive automorphism sp of N with p as an isolated fixed point.
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Similarly, in terms of the curvature tensor, we have the following characterization of locally

Hermitian symmetric spaces.

Theorem 3.1.4. A Hermitian manifold is a locally Hermitian symmetric space if and only

if

∇R = 0 = ∇J. (3.2)

where ∇ is the Levi-Civita connection associated to the underlying Riemannian metric.

Corollary 3.1.5. Let N be a Kähler manifold , if N is a locally Riemannian symmetric

space, then N is a locally Hermitian symmetric space.

For the Riemannican curvature tensor, Nomizu and Ozeki [Nomizu-Ozeki62] and later No-

mizu, without assuming completeness, proved the following proposition.

Proposition 3.1.6. (Nomizu and Ozeki [Nomizu-Ozeki62], Nomizu) For a Riemannian

manifold (N, g), if ∇kR = 0 for some k ≥ 1, then ∇R = 0.

3.1.2 Quantum Correction

In this section, we will define the notation of quantum correction for the Teichmüller space of

polarized and marked Calabi-Yau manifolds. Our motivation for quantum correction comes

from the Kodaira-Spencer theory developed in [Bershadshy-Cecotti-Ooguri-Vafa94, Chapter

5].

The physical fields of the Kodaira-Spencer theory are differential forms of type (0, 1) on X

with coefficients (1, 0)-vectors, i.e., sections ψ ∈ C∞(X,T ∗0,1X ⊗ T 1,0X) with

∂(ψyΩ) = 0,

where Ω is a nowhere vanishing (n, 0)-form normalized as in Lemma 2.1.4. Then the Kodaira-

Spencer action is given as follows

λ2S(ψ, ϕ|p) =
1

2

∫
X

ψyΩ ∧ 1

∂
∂(ψyΩ) +

1

6

∫
X

((ψ + ϕ) ∧ (ψ + ϕ))yΩ ∧ (ψ + ϕ)yΩ,
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where λ is the coupling constant. The Euler-Lagrange equation of this action is

∂(ϕyΩ) +
1

2
∂((ψ + ϕ) ∧ (ψ + ϕ))yΩ = 0.

They also concluded that the Kodaira-Spencer action is a closed string theory action at least

up to cubic order. In a properly regularized Kodaira-Spencer theory, the partition function

should satisfy

eW (λ,ϕ|t,t) =

∫
DψeS(λ,ϕ|t,t). (3.3)

The effective actionW (λ, ϕ|t, t) is physically computed in [Bershadshy-Cecotti-Ooguri-Vafa94]

in the flat affine coordinate t = (t1, t2, · · · , tN). The term W0(λ, ϕ|t, t) in front of λ−2 satisfies

W0(λ, ϕ|t, t) = λ2S0(ϕ, ψ|t, t), (3.4)

where ψ(t) and W0(λ, ϕ|t, t) satisfy

∂ψ(t)

∂ti
|t=0 = ϕi, ∂(ψyΩ) +

1

2
((ϕ+ ψ(t)) ∧ (ϕ+ ψ(t)))yΩ = 0 (3.5)

and

∂3W0(ϕ|t, t)
∂ti∂tj∂tk

= Cijk(t1, t2, · · · , tN). (3.6)

Here W0(ϕ|t, t) may be viewed as the effective action for the massless modes from which

the massive modes will be integrated out. It is quite amazing that integrating the massive

modes has only the effectivity of taking derivatives of the Yukawa coupling. For example

the four point function give rise to ∇lCijk, the five point function to ∇s∇lCijk and the six

point function to ∇r∇s∇lCijk. Thus all the discussion suggests us to define the quantum

correction of the Yukawa coupling as
∞∑

s1+···+sN=1

Cijk,s1,··· ,sN t
s1
1 · · · t

sN
N . (3.7)

On the other hand, besides the canonical family of holomorphic (n, 0)-forms, we can define

the classic canonical family as

Ωcc(t) = exp(
N∑
i=1

tiϕi)yΩ ∈ An(X). (3.8)
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Proposition 3.1.7. Let T be the Teichmüller space of polarized and marked Calabi-Yau

threefolds. Fix p ∈ T , let X be the corresponding fiber in the versal family U → T , Ω

be a nontrivial holomorphic (n, 0)-form over X and {ϕi}Ni=1 be an orthonormal basis of

H0,1(X,T 1,0X) with respect to the Calabi-Yau metric. If the cohomology class

[Ξ(t)] = [Ωc(t)]− [Ωcc(t)] = [Ωc(t)]− [exp(
N∑
i=1

tiϕi)yΩ] = 0,

then the quantum correction of the Yukawa coupling vanishes, i.e.,

∞∑
s1+···+sN=1

Cijk,s1,··· ,sN t
s1
1 · · · t

sN
N = 0.

Moreover,
N∑

i,j,k=1

titjtk[ϕiyϕjkyΩ] = 0 if and only if the first order quantum correction of the

Yukawa coupling vanishes, i.e.,∑
s1+···+sN=1

Cijk,s1,··· ,sN t
s1
1 · · · t

sN
N = 0.

Proof. From the definition of Yukawa coupling, with the flat affine coordinate t = (t1, · · · , tN),

we have

Cijk(t1, t2, · · · , tN) =

∫
X

Ωc(t) ∧ ∂3Ωc(t)

∂ti∂tj∂tk

=

∫
X

Ωc(t) ∧ ∂3

∂ti∂tj∂tk

(
exp(

N∑
i=1

tiϕi)yΩ + Ξ(t)

)
,

where Ξ(t) = Ωc(t)− exp(
N∑
i=1

tiϕi)yΩ. Direct computation shows that

∂3

∂ti∂tj∂tk

(
exp(

N∑
i=1

tiϕi)yΩ

)
= ϕiyϕjyϕkyΩ,

thus the term ∫
X

Ωc(t) ∧ ∂3

∂ti∂tj∂tk

(
exp(

N∑
i=1

tiϕi)yΩ

)
has order zero with respect to t. Thus the quantum correction of Yukawa coupling satisfies

∞∑
s1+···+sN=1

Cijk,s1,··· ,sN t
s1
1 · · · t

sN
N =

∫
X

Ωc(t) ∧ Ξ(t).
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Therefore, [Ξ(t)] = 0 implies that the quantum correction of the Yukawa coupling vanishes.

Moreover, we have

∑
s1+···+sN=1

Cijk,s1,··· ,sN t
s1
1 · · · t

sN
N = 0;

⇐⇒
∫
X

Ω ∧ ϕiyϕjyϕIyΩ +

∫
X

ϕiyΩ ∧ ϕjyϕIyΩ = 0 for any 1 ≤ i, j ≤ N and |I| = 2;

⇐⇒
∫
X

ϕiyΩ ∧ ϕjyϕIyΩ = 0, for any 1 ≤ i, j ≤ N and |I| = 2;

(as ϕiyΩ ∧ ϕjyϕIyΩ = Ω ∧ ϕiyϕjyϕIyΩ) ;

⇐⇒ H(ϕjyϕIyΩ) = 0, for any 1 ≤ j ≤ N and |I| = 2;(
as {[ϕiyΩ]}Ni=1 is a basis of H2,1(X)

)
;

⇐⇒
N∑

i,j,k=1

titjtk[ϕiyϕjkyΩ] = 0.

Lemma 3.1.8. Under the conditions as Proposition 3.1.7, the form Ξ(t) are identically zero,

i.e., Ξ(t) = 0 if and only if [ϕi, ϕj] = 0 for all 1 ≤ i, j ≤ N . And, for |t| < ε, there holds the

following expansion of [Ξ(t)] in cohomology classes,

[Ξ(t)] =
N∑

i,j,k=1

titjtk[ϕiyϕjkyΩ] +O(|t|4). (3.9)

where O(|t|4) denotes the terms of order at least 4 in t.

Proof. From the construction of the smooth family 2.3 of Beltrami differentials, see [Morrow-Kodaira71,

page 162] or [Todorov89], we have

ϕK = −1

2
∂
∗
G(

∑
I+J=K

[ϕI , ϕJ ]) for |K| ≥ 2. (3.10)
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Thus we have

Ξ(t) = 0 ⇐⇒

exp

∑
|I|≥1

ϕIt
I

− exp

(
N∑
i=1

ϕiti

)yΩ = 0

⇐⇒
∑
|I|≥1

ϕIt
I =

N∑
i=1

ϕiti

⇐⇒ ϕI = 0 for |I| ≥ 2

⇐⇒ [ϕi, ϕj] = 0 for 1 ≤ i, j ≤ N by Formula (3.10).

Moreover, by the property that ϕIyΩ = ∂ψI for |I| ≥ 2 by Theorem 2.1.5, the cohomology

class of the quantum correction satisfies

[Ξ(t)] =

exp

∑
|I|≥1

ϕIt
I

− exp

(
N∑
i=1

ϕiti

)yΩ


=

[
N∑

i,j=1

(ϕijyΩ)titj +
N∑

i,j,k=1

(ϕiyϕjkyΩ + ϕijkyΩ)titjtk +O(|t|4)

]

=
N∑

i,j,k=1

titjtk[ϕiyϕjkyΩ] +O(|t|4).

Thus the lowest order quantum correction has the form
∑N

i,j,k=1 titjtk[ϕiyϕjkyΩ], so we have

the following definitions,

Definition 3.1.9. We define the cohomology class [Ξ(t)] to be the strong quantum correction

for the Teichmüller space T at p ∈ T and the cohomology class

[Ξ(t)]1 =
N∑

i,j,k=1

titjtk[ϕiyϕjkyΩ],

to be the weak quantum correction for the Teichmüller space T at p ∈ T .

Remark 3.1.10. For Calabi-Yau threefolds, by Proposition 3.1.7, vanishing of strong quan-

tum correction at any point p ∈ T implies that the quantum correction of Yukawa coupling

vanishes at p ∈ T . Moreover, vanishing of weak quantum correction at p ∈ T is equivalent

to that the first order quantum correction of Yukawa coupling vanishes at p ∈ T .
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3.2 Quantum Correction and the Weil-Petersson Metric

In Section 3.2.1, we derive a local formula for ∇R in the flat affine coordinate of the Te-

ichmüller space with the Weil-Petersson metric. In Section 3.2.2, under the assumption of

vanishing of weak quantum correction at any point p ∈ T , we prove that T is a locally Her-

mitian symmetric space with the Weil-Petersson metric by using the formula of ∇R. The

results in this section also hold for the Teichmüller space of polarized Hyperkähler manifolds.

3.2.1 Property of the Curvature Tensor

To simplify the notation, we abstract the discussion by considering a variations of polarized

Hodge structure H → S of weight n with hn,0 = 1 and a smooth base S. Also, we always

assume that it is effectively parametrized in the sense that the infinitesimal period map

Φ∗,s : TsS −→ Hom(Hn,0, Hn−1,1)⊕ Hom(Hn−1,1, Hn−2,2)⊕ · · · (3.11)

is injective in the first piece. Then the Weil-Petersson metric gWP on S is defined by formula

(4.5). In our abstract setting, instead of using Hp,q
pr in the geometric case, we will write Hp,q

directly for simplicity.

Theorem 3.2.1. For a given effectively parametrized ploarized variation of Hodge structure

H → S of weight n with hn,0 = 1 and smooth S, the Riemannian curvature of the Weil-

Petersson metric gWP on S satisfies:

1. Its Riemannian curvature tensor is

Rijkl = gijgkl + gilgkj −
Q̃(DkDiΩ

c(t), DlDjΩc(t))

Q̃(Ωc(t),Ωc(t))
.

2. The covariant derivative of the Riemannian curvature tensor is

∇rRijkl =
Q̃(∇r∇k∇iΩ

c(t), DlDjΩc(t))

Q̃(Ωc(t),Ωc(t))
;

∇rRijkl =
Q̃(DkDiΩ

c(t),∇r∇l∇jΩc(t))

Q̃(Ωc(t),Ωc(t))
.
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The main idea of the proof is that, when we use the canonical family [Ωc(t)] of (n, 0)-classes

constructed in Corollary 2.1.8 to express the Weil-Petersson metric, the flat affine coordinate

t = (t1, · · · , tN) is normal at the point t = 0. Since the problem is local, we may assume

that S is a disk in CN , where N = dim Hn−1,1, around t = 0. The first part of the above

theorem for the curvature formula of the Weil-Petersson metric is due to Strominger. See

[Wang03] and [Lu-Sun04].

Proof. Let Ωc(t) be the canonical family of holomorphic (n, 0)-forms constructed in Theorem

2.1.7, so we have

Ωc(t) = Ω +
N∑
i=1

tiϕiyΩ +
∑
|I|≥2

tI ϕIyΩ +
∑
k≥2

∧kΦ(t)yΩ

= Ω +
N∑
i=1

tiϕiyΩ +
1

2!

N∑
i,j=1

titj(ϕiyϕjyΩ + ϕijyΩ)

+
1

3!

∑
i,j<k

titjtk(ϕiyϕjyϕkyΩ + ϕiyϕjkyΩ + ϕijkyΩ) +O(| t |4)

= a0 +
N∑
i=1

aiti + · · ·+
∑
|I|=k

aIt
I + · · · .

And the coefficients satisfy Q̃(a0, a0) = 1, Q̃(ai, aj) = −δij and Q̃(a0, ai) = Q̃(a0, aI) =

Q̃(ai, aI) = 0 for |I| ≥ 2. For multi-indices I and J , we set qI,J := Q̃(aI , aJ). Then we have

q(t) : = Q̃(Ωc(t),Ωc(t))

= 1−
∑
i

titi +
∑
i,j,k,l

1

2!2!
qik,jltitktjtl

+
∑
i,j,k,l,r

1

2!3!
qik,jlrtitktjtltr +

∑
i,j,k,l,r

1

2!3!
qikr,jltitktrtjtk +O(t6),

where

qik,jl = Q̃(ϕiyϕkyΩ, ϕjyϕlyΩ),

qik,jlr =
1

3
Q̃(ϕiyϕkyΩ, ϕjyϕlryΩ + ϕlyϕjryΩ + ϕryϕjlyΩ),

qikr,jl =
1

3
Q̃(ϕiyϕkryΩ + ϕkyϕiryΩ + ϕryϕikyΩ, ϕjyϕlyΩ).
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Thus, the Weil-Petersson metric can be expressed as

gkl = −∂k∂l log q = q−2(∂kq∂lq − q∂k∂lq)

= (1 + 2
∑
i

titi + · · · )[tltk − (1−
∑
i

titi)(−δkl +
∑
i,j

qik,jltitj

+
∑
i,j,r

qik,jlrtitjtr +
∑
i,j,r

qikr,jltitrtl + · · · )]

= δkl + δkl
∑
i

titi + tltk −
∑
i,j

qik,jltitj +
∑
i,j,r

qik,jlrtitjtr +
∑
i,j,r

qikr,jltitrtl + · · · .

As a result, the Weil-Petersson metric g is already in its geodesic normal form at t = 0, so

the Christoffel symbols at the point t = 0 are zero, i.e. Γkij(0) = 0 for any 1 ≤ i, j, k ≤ N .

So the full curvature tensor at t = 0 is given by

Rijkl(0) =
∂2gkl
∂ti∂tj

(0) = δijδkl + δilδkj + qik,jl.

Rewrite this in its tensor form then gives the formula in the theorem.

By using the well-known formula:

5rRijkl =
∂

∂tr
Rijkl − ΓqriRqjkl − ΓqrkRijql,

5rRijkl =
∂

∂tr
Rijkl − ΓqrjRiqkl − ΓqrlRijkq,

at the point t = 0, we have

5rRijkl(0) =
∂

∂tr
Rijkl(0); 5r Rijkl(0) =

∂

∂tr
Rijkl(0).

as Γkij(0) = 0 for any 1 ≤ i, j, k ≤ N . And, from the formula of Riemannian curvature for

Kähler manifold

Rijkl =
∂2gij
∂tk∂tl

− gpq ∂giq
∂tk

∂gjk
∂tl

, (3.12)

each term of ∇rRijkl or ∇rRijkl includes first derivative of gkl as a factor, except
∂3gkl

∂ti∂tj∂tr
,

∂3gkl
∂ti∂tj∂tr

, thus it is zero at t = 0 from the expression of gkl. So we have

∇rRijkl(0) =
∂3gkl

∂ti∂tj∂tr
(0) = qikr,jl,

∇rRijkl(0) =
∂3gkl

∂ti∂tj∂tr
(0) = qik,jlr.

Rewrite this in its tensor form, we get the formula.
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3.2.2 Quantum Correction and the Weil-Petersson Metric

In this section, we consider the locally Hermitian symmetric property of the Teichmüller

space T of polarized and marked Calabi-Yau manifolds.

Theorem 3.2.2. Let T be the Teichmüller space of polarized and marked Calabi-Yau man-

ifolds. Vanishing of weak quantum correction at any point p ∈ T , i.e., [Ξ(t)]1 = 0, implies

that T , with the Weil-Petersson metric, is a locally Hermitian symmetric space.

Proof. Fix p ∈ T , let X be the corresponding fiber in the versal family U → T . If the weak

quantum correction vanishes at point p ∈ T , i.e.,

[Ξ(t)]1 =
N∑

i,j,k=1

titjtk[ϕiyϕjkyΩ] = 0,

then [ϕiyϕjkyΩ] + [ϕjyϕikyΩ] + [ϕkyϕijyΩ] = 0 for any 1 ≤ i, j, k ≤ N . So, from Theorem

3.2.1, we have

∇rRijkl(p) =
∂3gkl

∂ti∂tj∂tr
(p) = qikr,jl =

1

3
Q̃(ϕiyϕkryΩ + ϕkyϕiryΩ + ϕryϕikyΩ, ϕjyϕlyΩ) = 0,

∇rRijkl(p) =
∂3gkl

∂ti∂tj∂tr
(p) = qik,jlr =

1

3
Q̃(ϕiyϕkyΩ, ϕjyϕlryΩ + ϕlyϕjryΩ + ϕryϕjlyΩ) = 0,

i.e., ∇R = 0. So T is a locally Hermitian symmetric space by Lemma 3.1.2.

On the other hand, by the definition of locally Hermitian symmetric spaces, the following

condition can also guarantee the locally Hermitian symmetric property for the Teichmüller

space T .

Theorem 3.2.3. Let T be the Teichmüller space of polarized and marked Calabi-Yau man-

ifolds and Ωc(t) be the canonical family of holomorphic (n, 0)-forms constructed in Theorem

2.1.7. If the Weil-Petersson potential Q̃(Ωc
t ,Ω

c
t) only has finite terms, i.e., a polynormial

in terms of the flat affine coordinate t, then T , with the Weil-Petersson metric, is a locally

Hermitian symmetric space. Furthermore, if T is complete, then T , with the Weil-Petersson

metric, is a globally Hermitian symmetric space.
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Proof. Because of Proposition 3.1.6, to prove a Kähler manifold is a locally Hermitian sym-

metric space, we only need to show its curvature tensor satisfies ∇mR = 0 for some positive

integer m. If the Weil-Petersson potential Q̃(Ωc(t),Ωc(t)) only has finite terms, i.e., it is a

polynomial of the flat affine coordinate t = (t1, t2, · · · , tN). Then, in the flat affine coordinate

t, the coefficients of the Weil-Petersson metric and its curvature tensor

gkl = −∂k∂l log Q̃(Ωc(t),Ωc(t))

Rijkl =
∂2gij
∂tk∂tl

− gpq ∂giq
∂tk

∂gpj
∂tl

.

is a polynomial of variable (t1, t2, · · · , tN , t1, t2, · · · , tN).

On the other hand, from the proof of Theorem 3.2.1, the flat affine coordinate t is a normal

coordinate at the point t = 0. So we know that the Christoffel symbols vanish at the point

t = 0, i.e., Γkij(0) = 0 for any 1 ≤ i, j, k ≤ N . Thus, at the point t = 0, the covariant

derivative ∇pT = ∂pT for any (0,m)-tensor T . Therefore, for a large enough integer m, we

have ∇mR(0) = 0. Thus the Teichmüller space T is a locally Hermitian symmetric space

with the Weil-Petersson metric.

In particular, we have the following corollary,

Corollary 3.2.4. If the canonical family of (n, 0)-classes [Ωc(t)] constructed in Corollary

2.1.8 has finite terms, i.e., a polynormial in terms of the flat affine coordinate t, then T ,

with the Weil-Petersson metric, is a locally Hermitian symmetric space.

Proof. The proof follows directly from Theorem 3.2.3.

3.3 Quantum Correction and Calabi-Yau Threefolds

In Section 3.3.1, we review some basic properties of the period domain from Lie group and

Lie algebra point of view. In Section 3.3.2, for Calabi-Yau threefolds, we show that vanishing

of strong quantum correction is equivalent to that the image Φ(T ) of the Teichmüller space
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T under the period map Φ is an open submanifold of a globally Hermitian symmetric space

W with the same dimension as T .

3.3.1 Period Domain

Let us briefly recall some properties of the period domain from Lie group and Lie algebra

point of view. All results in this section are well-known to the experts in the subject. One

may either skip this section or refer to [Griffiths-Schmid69] and [Schmid73] for most of the

details, here we use the summary in [Chen-Guan-Liu13, Section 3.1] to fix notations.

A pair (X,L) consisting of a Calabi–Yau manifold X of complex dimension n with n ≥ 3

and an ample line bundle L over X is called a polarized Calabi–Yau manifold. By abuse

of notation, the Chern class of L will also be denoted by L and thus L ∈ H2(X,Z). The

Poincaré bilinear form Q on Hn
pr(X,Q) is defined by

Q(u, v) = (−1)
n(n−1)

2

∫
X

u ∧ v

for any d-closed n-forms u, v on X. Furthermore, Q is nondegenerate and can be extended to

Hn
pr(X,C) bilinearly. Let fk =

∑n
i=k h

i,n−i and F k = F k(X) = Hn,0
pr (X)⊕ · · · ⊕Hk,n−k

pr (X),

from which we have the decreasing filtration Hn
pr(X,C) = F 0 ⊃ · · · ⊃ F n. We know that

dimC F
k = fk, (3.13)

Hn
pr(X,C) = F k ⊕ F n−k+1, and Hk,n−k

pr (X) = F k ∩ F n−k. (3.14)

In terms of the Hodge filtration, then the Hodge-Riemann relations are

Q
(
F k, F n−k+1

)
= 0, and (3.15)

Q (Cv, v) > 0 if v 6= 0, (3.16)

where C is the Weil operator given by Cv =
(√
−1
)2k−n

v for v ∈ Hk,n−k
pr (X). The period

domain D for polarized Hodge structures with data (3.13) is the space of all such Hodge

filtrations

D =
{
Hn
pr(X,C) = F 0 ⊇ · · · ⊇ F n | (3.13), (3.15) and (3.16) hold

}
.
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The compact dual Ď of D is

Ď =
{
Hn
pr(X,C) = F 0 ⊇ · · · ⊇ F n | (3.13) and (3.15) hold

}
.

The period domain D ⊆ Ď is an open subset. Let us introduce the notion of an adapted

basis for the given Hodge decomposition or Hodge filtration. For any p ∈ T and fk = dimF k
p

for any 0 ≤ k ≤ n, We call a basis

ζ = {ζ0, ζ1, · · · , ζN , · · · , ζfk+1 , · · · , ζfk−1, · · · , ζf2 , · · · , ζf1−0, ζf0−1}

of Hn(X) an adapted basis for the given filtration

F 0 ⊇ · · · ⊇ F n−1 ⊇ F n,

if it satisfies F k = SpanC{ζ0, · · · , ζfk−1} with dimCF
k = fk.

The orthogonal group of the bilinear form Q in the definition of Hodge structure is a linear

algebraic group, defined over Q. Let us simply denote H = Hn(X) and HR = Hn(X,R).

The group of the C-rational points is

GC = {g ∈ GL(H)| Q(gu, gv) = Q(u, v) for all u, v ∈ H},

which acts on Ď transitively. The group of real points in GC is

GR = {g ∈ GL(HR)| Q(gu, gv) = Q(u, v) for all u, v ∈ HR},

which acts transitively on D as well.

Consider the period map Φ : T → D. Fix p ∈ T and the image O := Φ(p) = {F n
p ⊂ · · · ⊂

F 0
p } ∈ D may be referred as the base points or the reference point. A linear transformation

g ∈ GC preserves the base point if and only if gF k
p = F k

p for each k. Thus it gives the

identification

Ď ' GC/B with B = {g ∈ GC| gF k
p = F k

p , for any k}.

Similarly, one obtains an analogous identification

D ' GR/V ↪→ Ď with V = GR ∩B,
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where the embedding corresponds to the inclusion GR/V = GR/GR ∩ B ⊆ GC/B. The Lie

algebra g of the complex Lie group GC can be described as

g = {X ∈ End(H)| Q(Xu, v) +Q(u,Xv) = 0, for all u, v ∈ H}.

It is a simple complex Lie algebra, which contains g0 = {X ∈ g| XHR ⊆ HR} as a real form,

i.e. g = g0 ⊕ ig0. With the inclusion GR ⊆ GC, g0 becomes Lie algebra of GR. One observes

that the reference Hodge structure {Hk,n−k
p }nk=0 of Hn(M) induces a Hodge structure of

weight zero on End(Hn(M)), namely,

g =
⊕
k∈Z

gk,−k with gk,−k = {X ∈ g|XHr,n−r
p ⊆ Hr+k,n−r−k

p }.

Since the Lie algebra b of B consists of those X ∈ g that preserves the reference Hodge

filtration {F n
p ⊂ · · · ⊂ F 0

p }, one thus has

b =
⊕
k≥0

gk,−k.

The Lie algebra v0 of V is v0 = g0∩b = g0∩b∩b = g0∩g0,0. With the above isomorphisms,

the holomorphic tangent space of Ď at the base point is naturally isomorphic to g/b.

Let us consider the nilpotent Lie subalgebra n+ := ⊕k≥1g
−k,k. Then one gets the holomorphic

isomorphism g/b ∼= n+. Since D is an open set in Ď, we have the following relation:

T 1,0
O,hD = T 1,0

O,hĎ
∼= b⊕ g−1,1/b ↪→ g/b ∼= n+. (3.17)

We define the unipotent group N+ = exp(n+).

Remark 3.3.1. With a fixed base point, we can identify N+ with its unipotent orbit in Ď

by identifying an element c ∈ N+ with [c] = cB in Ď; that is, N+ = N+( base point ) ∼=

N+B/B ⊆ Ď. In particular, when the base point O is in D, we have N+ ∩D ⊆ D. We can

also identify a point Φ(p) = {F 0
p ⊇ F 1

p ⊇ · · · ⊇ F n
p } ∈ D with any fixed adapted basis of the

corresponding Hodge filtration, we have matrix representations of elements in the above Lie

groups and Lie algebras. For example, elements in N+ can be realized as nonsingular block

upper triangular matrices with identity blocks in the diagonal; elements in B can be realized

as nonsingular block lower triangular matrices.
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3.3.2 Quantum Correction and Calabi-Yau Threefolds

For any p ∈ T , let (Xp, L) be the corresponding fiber in the versal family X → T , which is

a polarized and marked Calabi–Yau manifold. The period map from T to D is defined by

assigning each point p ∈ T the Hodge structure on Xp, that is

Φ : T → D, p 7→ Φ(p) = {F 0(Xp) ⊇ · · · ⊇ F n(Xp)}.

In [Griffiths-Schmid69], Griffiths and Schmid studied the Hodge metric over the period do-

main D. In particular, this Hodge theory is a complete homogenous metric. Consider the

period map on the Teichmüller space Φ : T → D. By local Torelli theorem for Calabi-

Yau manifolds, we know that the period map Φ is locally injective. Thus it follows from

[Griffiths-Schmid69] that the pull-back of the Hodge metric over D by Φ on T is a well-

defined Kähler metric. We will call the pull-back metric the Hodge metric over Teichmüller

space T , still denoted by h. For explicit formula of the Hodge metric over moduli space

of polarized Calabi-Yau manifolds, especially for threefolds, the reader can refer to [Lu99],

[Lu01-1] and [Lu01-2] for details.

Theorem 3.3.2. Let T be the Teichmüller space of polarized and marked Calabi-Yau three-

folds and Φ : T → D be the period map. Then the following conditions are equivalent:

1. The strong quantum correction vanishes at any point p ∈ T .

2. With respect to the Hodge metric, the image Φ(T ) is an open submanifold of a globally

Hermitian symmetric space W of the same dimension as T , which is also a totally

geodesic submanifold of the period domain D.

This theorem also implies that, under the assumption of vanishing of strong quantum cor-

rection at any point p ∈ T , the Teichmüller space T is a locally Hermitian symmetric space

and its image Φ(T ) under the period map Φ is a totally geodesic submanifold of the period

domain D, both with the natural Hodge metrics. Moreover, assuming the global Torelli the-

orem in [Chen-Guan-Liu13] for Calabi-Yau manifolds, another consequence of this theorem
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is that the period map Φ embed the Teichmüller space T as a Zariski-open subset in the

totally geodesic submanifold W .

Proof. Fix p ∈ T , let X be the corresponding Calabi-Yau threefold in the versal family

U → T and ϕ1, · · · , ϕN ∈ H0,1(X,T 1,0X) be an orthonormal basis with respect to the

Calabi-Yau metric. The orthonormal basis ϕ1, · · · , ϕN will be used to define the flat affine

coordinate t around p ∈ T by Theorem 2.1.5. Also, fix a nowhere vanishing holomorphic

(3, 0)-form Ω over X and ηi = ϕiyΩ ∈ H2,1(X), then [Ω], [η1], · · · , [ηN ], [η1], · · · , [ηN ], [Ω] is

a basis of H3(X) adapted the Hodge filtration of X.

Step 1: we give the expansion for the classic canonical family [Ωcc(t)]. Let’s assume
[ϕiyη1]

...

[ϕiyηN ]

 = Ai


[η1]

...

[ηN ]

 ,
for some N ×N -matrix Ai, then, from the identity [ϕiyηj] = δij[Ω], we have

[ϕiyΩ]

[ϕiyη]

[ϕiyη]

[ϕiyΩ]

 =


0 ei

0N×N Ai

0N×N eTi

0




[Ω]

[η]

[η]

[Ω]

 = Ei


[Ω]

[η]

[η]

[Ω]

 , (3.18)

where ei = (0, · · · , 1, · · · , 0), [η] =
[
[η1], · · · , [ηN ]

]T
, [η] =

[
[η1], · · · , [ηN ]

]T
, [ϕiyη] =[

[ϕiyη1], · · · , [ϕiyηN ]
]T

and [ϕiyη] =
[
[ϕiyη1], · · · , [ϕiyηN ]

]T
.

Moreover, if we define A(t) =
∑N

i=1 tiAi, then it is easy to check that

N∑
i,j=1

titj[ϕiyϕjyΩ] =
N∑
i=1

ti(t1, · · · , tN)


[ϕiyη1]

...

[ϕiyηN ]

 = (t1, · · · , tN)A(t)


[η1]

...

[ηN ]

 .
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And, from the identity [ϕiyηj] = δij[Ω], we know that

1

3!

N∑
i,j,k=1

titjtk[ϕiyϕjyϕkyΩ] =
1

3!

(
N∑
i=1

tiϕi

)
y

(
N∑

j,k=1

tjtk[ϕjyϕkyΩ]

)

=
1

3!
(t1, · · · , tN)A(t)

(
N∑
i=1

tiϕi

)
y


[η1]

...

[ηN ]



=
1

3!
(t1, · · · , tN)A(t)


t1
...

tN

 .
Therefore, the classic canonical family

Ωcc(t) = exp(
N∑
i=1

tiϕi)yΩ = Ω +
N∑
i=1

tiϕiyΩ +
1

2!

N∑
i,j=1

titjϕiyϕjyΩ +
1

3!

N∑
i,j,k=1

titjtkϕiyϕjyϕkyΩ,

has the following expansion

[Ωcc(t)] =
[
1, (t1, · · · , tN), 1

2!
(t1, · · · , tN)A(t), 1

3!
(t1, · · · , tN)A(t)(t1, · · · , tN)T

]


[Ω]

[η]

[η]

[Ω]

 .(3.19)

Step 2: Let’s construct a globally Hermitian symmetric space W ⊂ D with the same

dimension as the Teichmüller space T . Define O := Φ(p) to be the base point or reference

point. If we define Ei := Φ∗(
∂
∂ti

) ∈ g−1,1, then a = spanC{E1, E2, · · · , EN} is an abelian Lie

subalgebra, see [Carlso-Müller-Stach-Peters03, Lemma 5.5.1, Page 173]. So we can define

W := exp(
N∑
i=1

τiEi) ∩D,

which is a totally geodesic submanifold of D and a globally Herimitian symmetric space with

respect to the natural Hodge metric. Let’s define a map ρ : CN → D̆ given by

ρ(τ) = exp(
N∑
i=1

τiEi)
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where τ = (τ1, · · · , τN) is the standard coordinate of CN . Then the Hodge-Riemann bilinear

relations define a bounded domain i ⊂ CN , which is biholomorphic to W via the map ρ. As

the E ′is commute with each other, thus, for any z, w ∈ i, we have

ρ(z)(ρ(w))−1 = exp(
N∑
i=1

ziEi) exp(−
N∑
i=1

wiEi) = exp(
N∑
i=1

(zi − wi)Ei) = I

⇐⇒ zi = wi for 1 ≤ i ≤ N,

i.e., ρ is one-to-one, which means that it defines a global coordinate τ over W .

Step 3: 1 ⇒ 2. First we show that there exists a local coordinate chart Up around p ∈ T

such that Φ(Up) ⊂ W . For any point p̃ ∈ Up with the flat affine coordinate t, there is a

unique upper-triangle matrix σ(t) ∈ N+, i.e., an nonsingular upper triangular block matrices

with identity blocks in the diagonal, such that

σ(t)
[
[Ω], [η], [η], [Ω]

]T
(3.20)

is a basis of H3(Xp̃) adapted to the Hodge filtration at Xp̃.

Also, we know that [Ωc(t)] = [eΦ(t)yΩ] is a basis of F 3(Xp̃), so [ ∂
∂ti

Ωc(t)] ∈ F 2(Xp̃), 1 ≤ i ≤ N

by Griffiths’ transversality. By the assumption of the vanishing of strong quantum correction

at p ∈ T and Formula 3.19, we have

[Ωc(t)] = [Ωcc(t)] =
[
1, (t1, · · · , tN), 1

2!
(t1, · · · , tN)A(t), 1

3!
(t1, · · · , tN)A(t)(t1, · · · , tN)T

]


[Ω]

[η]

[η]

[Ω]

 .

And, for any 1 ≤ i ≤ N , we have

[
∂Ωc(t)

∂ti
] = [ϕiyΩ] +

N∑
j=1

tj[ϕiyϕjyΩ] +
1

2!

N∑
j,k=1

tjtk[ϕiyϕjyϕkyΩ]

= [ηi] + (t1, · · · , tN)


ϕiyη1

...

ϕiyηN

+
1

2
(t1, · · · , tN)A(t)


[ϕiyη1]

...

[ϕiyηN ]

 ,
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which implies that
[∂Ωc(t)
∂t1

]
...

[∂Ωc(t)
∂tN

]

 = [η] + A(t)[η] +
1

2!
(t1, · · · , tN)A(t) [Ω]

=
[
0n×1, In×n, A(t), 1

2
AT (t)(t1, · · · , tN)T

]


[Ω]

[η]

[η]

[Ω]

 .

Thus {[Ωc(t)], [∂Ωc(t)
∂t1

] · · · [∂Ωc(t)
∂tN

]} is a basis of F 2(Xp̃) as they are linearly independent, which

implies that the unique matrix σ(t) ∈ N+ has the form

σ(t) =


I (t1, · · · , tN) 1

2
(t1, · · · , tN)A(t) 1

3!
(t1, · · · , tN)A(t)(t1, · · · , tN)T

I A(t) 1
2
AT (t)(t1, · · · , tN)T

I ∗

I

 ,

where ∗ represents an unknown column vector. Meanwhile, we know σ(t) ∈ GC, i.e.,

σ(T )T


1

−IN×N

IN×N

−1

σ(t) =


1

−IN×N

IN×N

−1

 ,

which implies that

σ(t) =


I (t1, · · · , tN) 1

2
(t1, · · · , tN)A(t) 1

3!
(t1, · · · , tN)A(t)(t1, · · · , tN)T

I A(t) 1
2
AT (t)(t1, · · · , tN)T

I (t1, · · · , tN)T

I

 .
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Direct computation shows that

σ(t) = exp




0 (t1, · · · , tN)

0N×N A

0N×N (t1, · · · , tN)T

0



 , (3.21)

i.e., Φ(p̃) ∈ W for any point p̃ ∈ Up, which implies that Φ(Up) ⊂ W .

Now we prove that Φ(T ) ⊂ W by an open-closed argument. For any point q ∈ T satisfying

Φ(q) ∈ Φ(T ) ∩W , by the same argument for the point q ∈ T , there exists a neighborhood

Uq of q such that Φ(Uq) ⊂ W , i.e., Φ(Uq) ⊂ Φ(T ) ∩W . By the local Torelli theorem for

Calabi-Yau manifolds, Φ(Uq) ⊂ Φ(T ) ∩W is an open neighborhood of Φ(q) as T and W

having the same dimension, thus Φ(T ) ∩ W ⊂ Φ(T ) is an open subset of Φ(T ). On the

other hand, W = exp(
∑N

i=1 τiEi) ∩D ⊂ D is a closed subset of the period domain D. The

closedness of W ⊂ D implies that Φ(T ) ∩W ⊂ Φ(T ) is also a closed subset. Therefore,

Φ(T ) ∩W = Φ(T ), i.e., Φ(T ) ⊂ W as Φ(T ) is connected and Φ(T ) ∩W is not empty.

Step 4: 2⇒ 1. We only need to show that the strong quantum correction vanishes at point

p ∈ T . Assume the flat affine coordinate of p̃ ∈ Up is t where Up is a local coordinate chart

around p ∈ T , then we know the canonical family of (3, 0)-classes is given by

[Ωc(t)] = [eΦ(t)yΩ] ∈ F 3(Xp̃).

Moreover, from the fact that Φ(p̃) ∈ W , there exists τ = (τ1, · · · , τN) ∈ i such that

Φ(p̃) = exp(
N∑
i=1

τiEi)


[Ω]

[η]

[η]

[Ω]]



=


1 (τ1, · · · , τN) 1

2
(τ1, · · · , τN)A(τ) 1

3!
(τ1, · · · , τN)A(τ)(τ1, · · · , τN)T

IN×N A(τ) 1
2
AT (τ)(τ1, · · · , τN)T

IN×N (τ1, · · · , τN)T

1




[Ω]

[η]

[η]

[Ω]]

 ,
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which is a basis adapted to the Hodge filtration over Xp̃. In particular, we know the first

element in the basis

Ap̃(t) = (1, (τ1, · · · , τN),
1

2!
(τ1, · · · , τN)A(τ),

1

3!
(τ1, · · · , τN)A(τ)(τ1, · · · , τN)T )


[Ω]

[η]

[η]

[Ω]


∈ F 3(Xp̃) = H3,0(Xp̃).

Thus, by the fact that H3,0(Xp̃) ∼= C and [Ωc(t)] ∈ H3,0(Xp̃), there exists a constant λ ∈ C

such that

Ap̃(t) = λ[Ωc(t))].

Also, we have

PrH3,0(X)(Ap̃(t)) = PrH3,0(X)([Ω
c(t)]) = [Ω],

so Ap̃(t) = [Ωc(t))]. Thus

PrH2,1(X)(Ω
c(t)) = PrH2,1(X)(Ap̃(t)) =

N∑
i=1

τi[ηi], (3.22)

and, from Corollary 2.1.8,

[Ωc(t)] = [Ω] +
N∑
i=1

ti[ηi] + A(t), (3.23)

where A(t) ∈ H1,2(X)⊕H0,3(X). Then, project to H2,1(X), we have

N∑
i=1

ti[ηi] =
N∑
i=1

τi[ηi],

which implies that τi = ti, 1 ≤ i ≤ N as {[ηi]}Ni=1 is a basis of H2,1(X). Therefore,

[Ωc(t)] = (1, (t1, · · · , tN),
1

2!
(t1, · · · , tN)A(t),

1

3!
(t1, · · · , tN)A(t)(t1, · · · , tN)T )


[Ω]

[η]

[η]

[Ω]

 = [Ωcc(t)],

by Formula 3.19, i.e., the strong quantum correction vanishes at p ∈ T .
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3.4 Example: Compact Hyperkähler Manifolds

In Section 3.4.1, we review some preliminary results about Hyperkähler manifolds and the

period domain of weight 2. In Section 3.4.2, we construct the canonical families of (2, 0) and

(2n, 0)-classes by using the canonical families of smooth forms eΦ(t)yΩ2,0 and holomorphic

forms eΦ(t)y ∧n Ω2,0. In Section 3.4.3, we prove the expansions of the canonical families of

(2, 0) and (2n, 0)-classes are actually globally defined over the Teichmüller space T .

3.4.1 Preliminary Results

In this section, we will review some preliminary results about Hyperkähler manifolds and

the period domain. We define Hyperkähler manifolds as follows,

Definition 3.4.1. Let X be a compact and simply-connected Kähler manifold of complex

dimension 2n ≥ 4 such that there exists a non-zero holomorphic non-degenerate (2, 0)-form

Ω2,0 on X, unique up to a constant such that det(Ω2,0) 6= 0 at each point x ∈ X and

H1(X,OX) = 0. Then X is called a Hyperkähler manifold.

The conditions on the holomorphic (2, 0)-form Ω2,0 imply that dimCH
2(X,OX) = 1. A pair

(X,L) consisting of a Hyperkähler manifold X of complex dimension 2n with 2n ≥ 4 and

an ample line bundle L over X is called a polarized Hyperkähler manifold. By abuse of

notation, the Chern class of L will also be denoted by L and thus L ∈ H2(X,Z). Let ω = ωg

correspond to the Calabi-Yau metric in the class L, then

H0,1
L (X,T 1,0X) = {ϕ ∈ H0,1(X,T 1,0X)|[ϕyω] = 0}

And we know that if ϕ ∈ H0,1
L (X,T 1,0X) is harmonic, then ϕyω is a harmonic (0, 2)-form.

Thus we have the identification

H0,1
L (X,T 1,0X) = {ϕ ∈ H0,1(X,T 1,0X)|ϕyω = 0}
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Furthermore, the primitive cohomology groups satisfy:

H1,1
pr (X) ∼= H1,1

pr (X) = {η ∈ H1,1(X)|η ∧ ω2n−1 = 0}

H2
pr(X) = H2,0(X)⊕H1,1

pr (X)⊕H0,2(X)

The primitive cohomology group H2
pr(X) carry a nondegenerate bilinear form, the so-called

Hodge bilinear form

Q(α, β) = −
∫
X

ω2n−2 ∧ α ∧ β, α, β ∈ H2
pr(X), (3.24)

which is evidently defined over Q.

We consider the decreasing Hodge filtration H2
pr(M,C) = F 0 ⊃ F 1 ⊃ F 2 with condition

dimCF
2 = 1, dimCF

1 = b2 − 2, dimCF
0 = b2 − 1. (3.25)

Then the Hodge-Riemann relations are

Q(F k, F 3−k) = 0, (3.26)

Q(Cv, v) > 0 if v 6= 0, (3.27)

where C is the Weil operator given by Cv = (
√
−1)2k−2v for v ∈ Hk,2−k

pr (M) = F k ∩ F 2−k.

The period domain D for polarized Hodge structures with data 3.25 is the space of all such

Hodge filtrations

D = {H2
pr(X,C) = F 0 ⊇ F 1 ⊇ F 2|(3.25), (3.26) and (3.27) hold}.

The compact dual D̆ of D is

D̆ = {H2
pr(X,C) = F 0 ⊇ F 1 ⊇ F 2|(3.25) and (3.26) hold}.

The period domain D ⊆ D̆ is an open subset. We may identify the period space D with the

Grassmannian of positive 2-plans in L⊥, and this gives us

D ∼= SO(b2 − 3, 2)/SO(2)× SO(b2 − 3),
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which implies that the period domain D is a global Hermitian symmetric space.

Let T = TL be the Teichmüller space of the polarized (irreducible) Hyperkähler manifold

(X,L), which is a smooth complex manifold. The reader can refer to [Verbitsky09] or

[Huybrechts04] for the construction of Teichmüller space and moduli space of polarized Hy-

perkähler manifolds. The following result follows from [Verbitsky09] or [Chen-Guan-Liu13,

Chen-Guan-Liu14],

Theorem 3.4.2. The period map

Φ : T → D

is injective.

3.4.2 Local Family of (2, 0)- and (2n, 0)-Classes

In this section, we derive the expansions of the canonical families [H(eΦ(t)yΩ2,0)] and [eΦ(t)y∧n

Ω2,0], where Ω2,0 is a nowhere vanishing holomorphic (2, 0)-form over the Hyperkäher mani-

fold X. First we have the following Bochner’s principle for compact Ricci-flat manifolds:

Proposition 3.4.3. (Bochner’s principle) On a compact Kähler Ricci-flat manifold, any

holomorphic tensor field (covariant or contravariant) is parallel.

The proof rests on the following formula, which follows from a tedious but straightforward

computation [Bochner-Yano53, Page 142]: if τ is any tensor field,

∆(‖τ‖2) = ‖∇τ‖2.

Therefore ∆(‖τ‖2) is nonnegative, hence 0 since its mean value over X is 0 by the Stokes’

formula. It follows that τ is parallel.

Then we consider the canonical family of smooth (2, 0)-forms Ωc;2,0(t) = eΦ(t)yΩ2,0 whose

harmonic projection has the following expansion,
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Theorem 3.4.4. Fix p ∈ T , let (X,L) be the corresponding polarized Hyperkähler manifold,

Ω2,0 be a nonzero holomorphic nondegenerate (2, 0)-form over X and {ϕi}Ni=1 be an orthonor-

mal basis of H0,1
L (X,T 1,0X) with respect to the Calabi-Yau metric. Then, in a neighborhood

U of p, there exists a canonical family of smooth (2, 0)-forms,

Ωc;2,0(t) = eΦ(t)yΩ2,0,

which defines a canonical family of (2, 0)-classes

[H(Ωc;2,0(t))] = [Ω2,0] +
N∑
i=1

[ϕiyΩ2,0]ti +
1

2

N∑
i=1

[
ϕiyϕjyΩ2,0

]
titj. (3.28)

Proof. Let us consider the canonical family of smooth (2, 0)-forms

eΦ(t)yΩ2,0 =
N∑
i=1

ϕiyΩ2,0ti + 1
2

N∑
i,j=1

(ϕiyϕjyΩ2,0 + ϕijyΩ2,0) titj

+
∑
|I|≥3

(
ϕIyΩ2,0 +

∑
J+K=I

ϕJyϕKyΩ2,0

)
.

(3.29)

We claim that

Claim 3.4.5. Suppose, for any multi-index J,K with |J | ≥ 2, the harmonic projection

H (ϕJyϕKyΩ2,0) = c · Ω2,0 for some constant c, then we have

H
(
ϕJyϕKyΩ2,0 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0)

)
= c · ∧nΩ2,0 ∧ ∧nΩ2,0. (3.30)

Proof. By the Hodge decomposition, we have

ϕJyϕKyΩ2,0 = c · Ω2,0 + dα1 + d∗α2.

The proof bases on the following facts:

(∂ϕ)Ap,αBq =
∑
α

∇αϕAp,Bq , (∂∗ϕ)Ap,Bq = (−1)p+1
∑
α,β

gβα∇αϕAp,βBq , (3.31)

and their conjugate, which can be found in [Morrow-Kodaira71]. From the formula

∇(α ∧ β) = ∇α ∧ β + α ∧∇β, (3.32)
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and ∇Ω2,0 = 0, which comes from the Bochner principal 3.4.3, we have

∇(α ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0) = ∇α ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0. (3.33)

From the formulas 3.31 and their conjugate, we have

d(α1 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0) = dα1 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0,

d∗(α2 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0) = d∗α2 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0.

Thus we have

ϕJyϕKyΩ2,0 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0

= c · ∧nΩ2,0 ∧ ∧nΩ2,0 + d(α1 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0) + d∗(α2 ∧ ∧nΩ2,0 ∧ ∧n−1Ω2,0),

which implies our claim.

Direct computations show that(
ϕJyϕKyΩ2,0

)
∧ ∧nΩ2,0 =

(
ϕJyΩ2,0

)
∧
(
ϕKyΩ2,0

)
∧ ∧n−1Ω2,0 (3.34)

as a smooth (2n, 2)-form. Therefore, for any multi-index J,K with |J | ≥ 2, we have∫
X

(ϕJyϕKyΩ2,0) ∧ Ω2,0 ∧ ∧n−1Ω2,0 ∧ ∧n−1Ω2,0

=

∫
X

(ϕJyΩ2,0) ∧ (ϕKyΩ2,0) ∧ ∧n−1Ω2,0 ∧ ∧n−1Ω2,0

=
1

n

∫
X

(ϕJy ∧n Ω2,0) ∧ (ϕKyΩ2,0) ∧ ∧n−1Ω2,0

=
1

n

∫
X

∂ψJ ∧ (ϕKyΩ2,0) ∧ ∧n−1Ω2,0

=
1

n

∫
X

∂(ψJ ∧ (ϕKyΩ2,0) ∧ ∧n−1Ω2,0) (as ϕKyΩ2,0 ∧ ∧n−1Ω2,0 is d-closed).

= 0.

On the other hand, by Claim 3.4.5 and the Stokes’ formula, we have

0 =

∫
X

(ϕJyϕKyΩ2,0) ∧ Ω2,0 ∧ ∧n−1Ω2,0 ∧ ∧n−1Ω2,0 = c ·
∫
X

∧nΩ2,0 ∧ ∧nΩ2,0

So we have c = 0, i.e., H ((ϕJyϕKyΩ2,0)) = 0 for any multiple-index J,K with |J | ≥ 2.

Next, for the (1, 1)-form ϕIyΩ2,0, we claim that
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Claim 3.4.6. 1. ϕiyΩ2,0 is harmonic for 1 ≤ i ≤ N .

2. For any multi-index I with |I| ≥ 2, ϕIyΩ2,0 is ∂-exact, which implies that

H(ϕIyΩ2,0) = 0.

Proof. 1. As ϕi is harmonic and Ω2,0 is parallel with respect to Levi-Civita connection. So,

from the formula 3.31 and

∇(ϕiyΩ2,0) = ∇ϕiyΩ2,0 + ϕiy∇Ω2,0,

we have

d(ϕiyΩ2,0) = dϕiyΩ2,0 = 0,

d∗(ϕiyΩ2,0) = d∗ϕiyΩ2,0 = 0,

i.e., ϕiyΩ2,0 is harmonic for 1 ≤ i ≤ N .

2. As Ω2,0 is a nowhere vanishing holomorphic (2, 0)-form, so we can define Ω∗2,0 ∈ A0(X,∧2T 1,0X)

by requiring 〈Ω2,0,Ω∗2,0〉 = 1 pointwise onX. Actually, in a local coordinate chart {z1, z2, · · · , z2n},

we can assume

Ω2,0 =
2n∑
i,j=1

aijdzi ∧ dzj with aij = −aji

Ω∗2,0 =
2n∑
i,j=1

bij
∂

∂zi
∧ ∂

∂zj
with bij = −bji.

Then, if we define matrices A = (aij) and B = (bij), then det(A) 6= 0 and

〈Ω2,0,Ω∗2,0〉 =
2n∑
i,j=1

aijbij = tr(ABT ) = 1,

so, locally, the matrix B can be defined by

B =
1

2n
(A−1)T .

And it is easy to check that this definition is independent of the local coordinates and

∇Ω∗2,0 = 0 by the Bochner’s principle 3.4.3. Then, by Theorem 2.1.5, we have

ϕIy ∧n Ω2,0 = ∂XψI , |I| ≥ 2,
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which implies that

ϕIyΩ2,0 = ∧n−1Ω∗2,0y(ϕIy ∧n Ω2,0) = ∧n−1Ω∗2,0y∂ψI = ∂(∧n−1Ω∗2,0yψI),

by formulas 3.31 and 3.32.

Thus, the harmonic projection of the family of (2, 0)-forms eΦ(t)yΩ2,0 is given by

H
(
eΦ(t)yΩ2,0

)
= Ω2,0 +

N∑
i=1

ϕiyΩ2,0ti +
1

2

N∑
i=1

H
(
ϕiyϕjyΩ2,0

)
titj.

Theorem 3.4.4 is proved.

Corollary 3.4.7. Fix p ∈ T , let (X,L) be the corresponding polarized Hyperkähler mani-

fold, Ω2,0 be a non-zero holomorphic non-degenerate (2, 0)-form over X and {ϕi}Ni=1 be an

orthonormal basis of H0,1
L (X,T 1,0X) with respect to the Calabi-Yau metric. Then, in a

neighborhood U of p, there exists a canonical family of holomorphic (2n, 0)-forms,

Ωc(t) = eΦ(t)y ∧n Ω2,0

which defines a canonical family of (2n, 0)-classes

[Ωc(t)] =
[
∧nΩ2,0

]
+

N∑
i=1

[
ϕiy ∧n Ω2,0

]
ti+

1

k!

2n∑
k=1

( ∑
1≤i1≤...≤ik≤N

[
ϕi1y...yϕiky ∧n Ω2,0

]
ti1ti2 · · · tik

)
.

(3.35)

In particular, the expansion implies that the Teichmüller space T is a locally Hermitian

symmetric space.

Proof. From the Proposition 2.1.7, we have the harmonic projection

H(eΦ(t)y ∧n Ω2,0) ∈ H2n,0(Xt).

And from Theorem 3.4.4, we know that

H(eΦ(t)yΩ2,0) ∈ H2,0(Xt),
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therefore, we have

H[∧nH(eΦ(t)yΩ2,0)] ∈ H2n,0(Xt).

Because of dimC H2n,0(Xt) = 1, there exists λ ∈ C such that

H(eΦ(t)y ∧n Ω2,0) = λH[∧nH(eΦ(t)yΩ2,0)]. (3.36)

On the other hand, we have

PrH2n,0(X)

(
H(eΦ(t)y ∧n Ω2,0)

)
= PrH2n,0(X)

(
H[∧nH(eΦ(t)yΩ2,0)]

)
= ∧nΩ2,0. (3.37)

Thus λ = 1, i.e.,

[Ωc(t)] = [eΦ(t)y ∧n Ω2,0] =

[
∧n
(

Ω2,0 +
N∑
i=1

ϕiyΩ2,0ti +
1

2

N∑
i=1

(
ϕiyϕjyΩ2,0

)
titj

)]

=
[
∧nΩ2,0

]
+

N∑
i=1

[
ϕiy ∧n Ω2,0

]
ti +

1

k!

2n∑
k=1

( ∑
0≤i1≤...≤ik

[
ϕi1y...yϕiky ∧n Ω2,0

]
ti1ti2 · · · tik

)
,

by the formula 3.34. Thus, [Ωc(t)] is a polynomial in terms of the flat affine coordinate

t = (t1, · · · , tN). So, by the Corollary 3.2.4, the Teichmüller space T of polarized Hyperkähler

manifolds is a locally Hermitian symmetric space.

3.4.3 Global Family of (2,0)- and (2n,0)-Classes

In this section, we will show that the flat affine coordinate t is globally defined over the

Teichmüller space T , so do the expansions of the canonical families of (2, 0) and (2n, 0)-

classes.

Fix p ∈ T , let (X,L) be the corresponding polarized Hyperkäher manifold. Fix a nowhere

vanishing holomorphic (2, 0)-form Ω2,0 over X and a basis of harmonic form η1, · · · , ηN ∈

H1,1
pr (X). Then [Ω2,0], [η1], · · · , [ηN ], [Ω2,0] is a basis of H2

pr(X,C). We normalize this basis

such that Q([Ω2,0], [Ω2,0]) = −1 and Q([ηi], [ηj]) = δij. And there exists an orthonormal basis

{ϕi}Ni=1 ⊂ H0,1(X,T 1,0X) such that ϕiyΩ2,0 = ηi for 1 ≤ i ≤ N , which will be used to defined

the flat affine coordinate t around p ∈ T by Theorem 2.1.5.
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Let O = Φ(p) be the base point or reference pint, we can parameterize the period domain

D. Let ei = (0, · · · , 1, · · · , 0) with 1 ≤ i ≤ N be the standard basis of CN . Here we view ei

as a row vector, then we can define

Ei =


0 ei 0

0 0 eTi

0 0 0

 ∈ g−1,1.

It follows that EiEj = 0 if i 6= j and

E2
i =


0 0 1

0 0 0

0 0 0

 ,
which implies that

exp(
N∑
i=1

tiEi) =


1 (τ1, · · · , τN) 1

2

∑N
i=1 τ

2
i

0 IN×N (τ1, · · · , τN)T

0 0 1

 .
Let i ⊂ CN be the domain enclosed by the real hypersurface

1−
N∑
i=1

|τi|2 +
1

4
|
N∑
i=1

τ 2
i | = 0.

Let τ = (τ1, · · · , τN) be the standard coordinates on CN , then the map ρ : i → D given

by ρ(t) = exp(
∑N

i=1 τiEi) is a biholormorphic map. This is the Harish-Chandra realization

[Harish-Chandra56] of the period domain D. Moreover, from the the global Torelli theorem

(cf. [Verbitsky09] and [Chen-Guan-Liu13, Chen-Guan-Liu14]) for Hyperkähler manifolds,

we know that the map

ρ−1 ◦ Φ : T → i, (3.38)

is an injective map. So the coordinate τ = (τ1, · · · , τN) are global coordinates on the

Teichmüller space T . We call it the Harish-Chandra coordinate. We know that, in a neigh-

borhood of p ∈ T , there is another flat affine coordinate t. Actually, these two coordinates

coincide, and we have the following theorem:
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Theorem 3.4.8. Fix p ∈ T , in a neighborhood U of p, the global Harish-Chandra coordinate

τ coincide with the flat affine coordinate t. So the flat affine coordinate t is globally defined

and the expansions of the canonical families of cohomology classes 3.28 and 3.35, i.e.,

[Ω2,0] +
N∑
i=1

[ϕiyΩ2,0]ti +
1

2

N∑
i=1

[ϕiyϕjyΩ2,0]titj ∈ H2,0(Xt),

[
∧nΩ2,0

]
+

N∑
i=1

[
ϕiy ∧n Ω2,0

]
ti

+
1

k!

2n∑
k=1

( ∑
1≤i1≤...≤ik≤N

[ϕi1y...yϕiky ∧n Ω2,0]ti1ti2 · · · tik

)
∈ H2n,0(Xt).

are globally defined over the Teichmüller space T .

Proof. Let t be the flat affine coordinate of q ∈ Up where Up is a local coordinate chart and

τ be the Harish-Chandra coordinate of q ∈ Up. We only need to show that t = τ . From the

definition of τ , we know that

exp(
N∑
i=1

τiEi)



[Ω2,0]

[η1]
...

[ηN ]

[Ω2,0]


=


1 (τ1, · · · , τN) 1

2

∑N
i=1 τ

2
i

0 IN×N (τ1, · · · , τN)T

0 0 1





[Ω2,0]

[η1]
...

[ηN ]

[Ω2,0]


,

is a basis of H2(Xq) adapted to the Hodge filtration of Xq. Consider the first element in the

basis, we have

Bq(t) = [Ω2,0] +
N∑
i=1

τi[ηi] +
1

2

N∑
i=1

τ 2
i [Ω2,0] ∈ H2,0(Xq).

On the other hand, from Theorem 3.4.4, we know that

[H(Ωc;2,0(t))] = [Ω2,0] +
N∑
i=1

[ϕiyΩ2,0]ti +
1

2

N∑
i=1

[
ϕiyϕjyΩ2,0

]
titj

= [Ω2,0] +
N∑
i=1

[ηi]ti +
1

2

N∑
i=1

t2i [Ω
2,0] ∈ H2,0(Xq),
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in the flat affine coordinate t. Thus, by the fact that H2,0(Xq) ∼= C, there exists a constant

λ ∈ C such that

Bq(t) = λ[H(Ωc;2,0(t))].

Moreover, we have

[Ω2,0] = PrH2,0(X)(Bq(t)) = λPrH2,0(X)([H(Ωc;2,0(t)0]) = λ[Ω2,0],

so λ = 1, i.e., Bq(t) = [H(Ωc;2,0(t))]. Thus we know ti = τi, 1 ≤ i ≤ N , as [Ω2,0], [η1], · · · , [ηN ],

[Ω2,0] is a basis of H2(X).
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CHAPTER 4

Remarks on Chern Classes of Calabi-Yau Moduli

In this chapter, we prove that the first Chern form of the Calabi-Yau moduliMm, with the

Hodge metric or the Weil-Petersson metric, represents the first Chern class of the canonical

extensions of the tangent bundle to the compactification of the moduli space with normal

crossing divisors.

4.1 Chern Forms of the Hodge Bundles

In Section 4.1.1, some essential estimates for the degeneration of Hodge metric of a variation

of polarized Hodge structure near a normal crossing divisor was reviewed, which was used to

derive the integrability of the Chern forms of subbundles and quotient bundles of a variation

of polarized Hodge structure over a quasi-projective manifold in Section 4.1.2.

4.1.1 Degeneration of Hodge Structures

In this section, we consider a variation of polarized Hodge structure over S, where S is a

quasi-projective manifold with dimCS = k. For the definition of variation of Hodge structure,

the reader can refer to Section 2.2. Let S be its compactification such that S−S is a divisor

of normal crossings.

Let (U , s) ⊂ S be a special coordinate neighborhood, i.e., a coordinate neighborhood iso-

mophic to the polycylinder ∆k such that

S ∩ U ∼= {s = (s1, · · · , sl, · · · , sk) ∈ ∆k |
l∏

i=1

si 6= 0} = (∆∗)l ×∆k−l}.
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where ∆, ∆∗ are the unit disk and the punctured unit disk in the complex plane, respectively.

Consider the period map

Φ : (∆∗)l ×∆k−l −→ Γ\D,

where Γ is the monodromy group. Let U be the upper half plane of C. Than U l ×∆k−l is

the universal covering space of (∆∗)l ×∆k−l, and we can lift Φ to a mapping

Φ̃ : U l ×∆k−l −→ D.

Let (z1, · · · , zl, sl+1, · · · , sk) be the coordinates of U l×∆k−l such that si = e2πizi for 1 ≤ i ≤ l.

Corresponding to each of the first l variables, we choose a monodromy transformation γi ∈ Γ,

such that

Φ̃(z1, · · · , zi + 1, · · · zl, sl+1, · · · , sk) = γi(Φ̃(z1, · · · , zi, · · · zl, sl+1, · · · , sk))

holds identically for all variables. And the monodromy transformations γi’s commute with

each other. By a theorem of Borel(see [Schmid77], Lemma 4.5 on p. 230), after passing to

a finite cover if necessary, the monodromy transformation γi around the punctures si = 0 is

unipotent, i.e.,


(γi − I)m−1 = 0

[γi, γj] = 0,

for some positive integer m. Therefore, we can define the monodromy logarithm Ni = log γi

by the Taylor’s expansion

Ni = log γi :=
∑
j≥1

(−1)j+1 (γi − 1)j

j
, ∀1 ≤ i ≤ l,

then Ni, 1 ≤ i ≤ l are nilpotent. Let (v.) be a flat multivalued basis of H over U ∩ S. The

formula

(ṽ.)(s) := exp (
−1

2π
√
−1

l∑
i=1

log siNi)(v.)(s)

57



give us a single-valued basis of H. Deligne’s canonical extension H̃ of H over U is generated

by this basis (ṽ.)(cf. [Schmid77]). And we have

Proposition 4.1.1. If the local monodromy is unipotent, then the cononical extension is a

vector bundle, otherwise it is a coherent sheaf.

The construction of H̃ is independent of the choice of the local coordinates s′is and the flat

multivalued basis (v.). For any holomorphic subbundle A of H, Deligne’s canonical extension

of A is defined to be Ã := H̃ ∩ j∗A where j : S → S is the inclusion map. Then we have the

canonical extension of the Hodge filtration:

H̃ = F̃ 0 ⊃ F̃ 1 ⊃ · · · ⊃ F̃ n ⊃ 0,

which is also a filtration of locally free sheaves.

Let N be a linear combination of Ni, 1 ≤ i ≤ l, then N defines a weight flat filtration W•(N)

of H (cf. [Deligne71], [Schmid77]) by

0 ⊂ · · ·Wi−1(N) ⊂ Wi(N) ⊂ Wi+1(N) ⊂ · · · ⊂ H.

Denote by W j
• := W•(

∑j
α=1Nα) for j = 1, · · · , l, we can choose a flat multigrading

H =
∑

β1,··· ,βl

Hβ1,··· ,βl ,

such that
l⋂

j=1

W j
βj

=
∑
kj≤βj

Hk1,··· ,kl .

Let h be the Hodge metric on the variation of polarized Hodge structure H. In the special

neighborhood U , let v be a nonzero local multivalued flat section of a multigrading component

Hk1,··· ,kl , then (ṽ)(s) := exp(
−

∑l
i=1 log siNi
2π
√
−1

)v(s) is a local single-valued section of H̃. And,

there holds a norm estimate (Theorem 5.21 in [Cattani-Kaplan-Schimid86])

‖ ṽ(s) ‖h≤ C1(
− log | s1 |
− log | s2 |

)k1/2(
− log | s2 |
− log | s3 |

)k2/2 · · · (− log | sl |)kl/2, (4.1)
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on the region

Ξ(N1, · · · , Nl) := {(s1, · · · , sl, · · · , sk) ∈ (∆∗)l ×∆k−l || s1 |≤ · · · | sk |≤ ε}

for some small ε > 0, where C1 is a positive constant dependent on the ordering of {N1, N2, · · · , Nl}

and ε. Since the number of ordering of {N1, N2, · · · , Nl} is finite, for any flat multivalued

local section v of H, there exist positive constants C2 and M2 such that

‖ ṽ(s) ‖h≤ C2(
l∏

i=1

− log | si |)M2 , (4.2)

in the domain {(s1, · · · , sl, · · · , sk) | 0 <| si |< ε (i = 1, · · · , l), | sj |< ε (j = l + 1, · · · , k)}.

Moreover, since the dual H∗ is also a variation of polarized Hodge structure, we then know

that, for any flat multivalued local section v of H, there holds

C ′(
l∏

i=1

− log | si |)−M ≤‖ ṽ(s) ‖h≤ C
′′
(
l∏

i=1

− log | si |)M , (4.3)

where C
′

and C
′′

both only depend on ε.

4.1.2 Chern forms of the Hodge bundles

By the norm estimate in Section 4.1.1, E. Cattani, A. Kaplan and W. Schmid get the

following result for the Chern forms of Hodge bundles over the quasi-projective manifold S,

which is Corollary 5.23 in [Cattani-Kaplan-Schimid86].

Theorem 4.1.2. Let S be a smooth variety, S ⊃ S be a smooth compactifiction such that

S − S = D is a normal crossing divisor. If H is a variation of polarized Hodge structure

over S with unipotent monodromies around D, then the Chern forms of Hodge metric on

various Hodge bundles F p/F q define currents on the compactification S. Moreover, the first

Chern form represents the first Chern class of the canonical extension F̃ p/F q −→ S.

Base on this result, the proof of [Kollár85, Theorem 5.1] gives us the following result for any

subbundle of the variation of Hodge structure H.
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Theorem 4.1.3. Let S be a smooth variety, S ⊃ S be a smooth compactifiction such that

S − S = D is a normal crossing divisor. Let H be a variation of polarized Hodge structure

over S with unipotent monodromies around D and A be a vector subbundle of H. Then the

first Chern form of A with respect to the induced Hodge mtric is integrable. Moreover, let

RH be the curvature form with the induced Hodge metric over A, then we have(
−1

2πi

)n ∫
S

(trRH)n = c1(Ã)n,

where n = dimC S.

4.2 Chern Forms of the Calabi-Yau Moduli with the Hodge Metric

In Section 4.2.1, we construct various Hodge bundles over the Calabi-Yau moduli Mm. In

Section 4.2.2, by a key observation that the tangent bundle of the Calabi-Yau moduli is a

subbundle of the variation of polarized Hodge structure End(Hn) →Mm, we get that the

first Chern form of the Calabi-Yau moduli Mm are integrable with the Hodge metric.

4.2.1 Calabi-Yau Moduli and Hodge Bundles

For a polarized Calabi-Yau manifold X, the polarization L, which is an integer class, defines

a map

L : Hn(X,Q)→ Hn+2(X,Q), A 7−→ L ∧ A.

We denote by Hn
pr(X) = Ker(L) the primitive cohomology groups, where the coefficient ring

can be Q,R or C. We define Hk,n−k
pr (X) = Hk,n−k ∩ Hn

pr(X) and denote its dimension by

hk,n−k. Then we have the Hodge decomposition

Hn
pr(X) = Hn,0

pr (X)⊕ · · · ⊕H0,n
pr (X).

It is easy to see that for a polarized Calabi-Yau manifold, since H2(X,OX) = 0, we have

Hn,0
pr (X) = Hn,0(X), Hn−1,1

pr (X) = Hn−1,1(X).
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The Poincaré bilinear form Q on Hn
pr(X,Q) is defined by

Q(u, v) = (−1)
n(n−1)

2

∫
X

u ∧ v

for any d-closed n-forms u, v on X. Furthermore, Q is nondegenerate and can be extended to

Hn
pr(X,C) bilinearly. Moreover, it also satisfies the Hodge-Riemann relations 2.12 and 2.13.

Therefore, the primitive cohomology groups of the fibers of the versal family XMm →Mm

of Calabi-Yau manifofds defines a polarized variation of Hodge structure over the moduli

space Mm, which is denoted by Hn in this thesis.

Actually, the flat bundle Hn contains a flat real subbundle Hn
R, whose fiber corresponds to the

subspaces Hn
pr(Xp,R) ⊂ Hn

pr(Xp); and Hn
R, in turn, contains a flat lattice bundle Hn

Z , whose

fibers are the images of Hn
pr(Xp,Z) in Hn

pr(Xp,R). Moreover, there exist C∞-subbundles

Hp,q ⊂ Hn with p + q = n, whose fibers over p ∈ Mm are Hp,q
pr (Xp). For 0 ≤ k ≤ n,

F k = ⊕i≥kH i,n−i are then holomorphic subbundles of Hn.

As the holomorphic bundle Hn defines a variation of polarized Hodge structure over Mm,

which is defined over Z. Thus, by the functorial construction of variation of polarized Hodge

structure, the holomorphic bundle End(Hn) →Mm defines a variation of polarized Hodge

structure overMm, which is defined over Z. And then, we have the following main theorem

in this section.

Proposition 4.2.1. Let Mm be the Calabi-Yau moduli, then End(Hn) defines a variation

of polarized Hodge structure over Mm, which is defined over Z. Moreover, with the induced

Hodge metric over the Calabi-Yau moduli Mm, the tangent bundle

TMm ↪→ End(Hn), (4.4)

is a holomorphic subbundle of End(Hn)→Mm with the induced Hodge metric.

Proof. By Griffiths’ transversality, we have the tangent map of the period map Φm :Mm →

D/Γ satisfies that
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(Φm)∗(v) ∈
n⊕
k=1

Hom
(
F k
p /F

k+1
p , F k−1

p /F k
p

)
for any p ∈Mm and v ∈ T 1,0

p Mm

with F n+1 = 0, or equivalently, (Φm)∗(v) ∈
⊕n

k=0 Hom(F k
p , F

k−1
p ) ⊂ End(Hn

p ). There-

fore, the image of the tangent bundle Im((Φm)∗) is a subbundle of the holomorphic bundle

End(Hn)→Mm.

Moreover, by the local Toreli theorem for Calabi-Yau manifolds, the map (Φm)∗ is injec-

tive. So we can view the tangent bunlde TMm as a subbundle of the holomorphic bundle

End(Hn)→Mm via the tangent map (Φm)∗.

4.2.2 Chern Forms of Calabi-Yau Moduli with the Hodge Metric

As the Calabi-Yau moduliMm is quasi-projective, see Theorem 2.1.2, we know that there is

a compact projective manifold Mm such that Mm −Mm = D is a normal crossing divisor.

Also, the local mondromy of the variation of polarized Hodge structure around the divisor is

at least quasi-unipotent. Thus after passing to a finite ramified cover if necessary, the local

monodromy becomes unipotent. Therefore, without loss of generality, we can assume the

Hodge bundles have canonical extensions, which are vector bundles over the compactification

Mm of the Calabi-Yau moduli Mm, due to Proposition 4.1.1.

By Proposition 4.2.1, the tangent bundle of the moduli space TMm is a holomorphic sub-

bundle of the variation of Hodge structure End(Hn)→Mm. So we can make the canonical

extensions to both TMm →Mm and End(Hn)→Mm to get

T̃Mm

��

� � // ˜End(Hn)

��

Mm
//Mm.

This is the same canonical extension of the tangent bundle used by the paper [Lu-Sun06],

the reader can refer to [Lu-Sun06, Remark 4.3].
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And we know the canonical extension ˜End(Hn)→Mm is generated by the basis

(ṽ.)(s) := exp (
−1

2π
√
−1

l∑
i=1

log siNi)(v.)(s)

where (v.)(s) is a flat multivaued basis of End(Hn) locally. And, by the Estimate 4.2, we

know that the Hodge norm of the basis (ṽ.)(s) have at most logarithmic singularities over the

divisor D. Moreover, by the claim on [Zuo00, Page 297], the subbundle TMm(− logD) →
˜End(Hn) is generated by those local sections, whose Hodge norms have at most logarithmic

singularities over the divisor D. Thus, the canonical extension T̃Mm → Mm and the log

tangent bundle TMm(− logD) have the same local generating sections, which implies that

the canonical extension T̃Mm → Mm of the tangent bundle TMm → Mm is the same as

the log tangent bundle of the compactifiction, i.e., TMm(− logD)→Mm.

In this paper, we will continue to use the canonical extension T̃Mm →Mm of the tangent

bundle which is not the tangent bundle TMm of the compactification of the moduli space.

And, by Theorem 4.1.2 and Theorem 4.1.3, we have

Theorem 4.2.2. The first Chern form of the Calabi-Yau moduliMm with the induced Hodge

metric define currents over the compactificationMm with normal crossing boundary divisors.

Moreover, let RH be the curvature form of TMm with the induced Hodge metric, then we

have (
−1

2πi

)N ∫
TMm

(trRH)N = c1(T̃Mm)N

where N = dimCMm.

Proof. By Proposition 4.2.1, with the Hodge metric, the tangent bundle TMm of the Calabi-

Yau moduli Mm is a holomorphic subbundle of the variation of polarized Hodge structure

End(Hn)→Mm. So TMm has the canonical extension, which give us a holomorphic vector

bundle T̃Mm ⊂ ˜End(Hn) over Mm. Therefore, by Theorem 4.1.3, the first Chern form of

TMm → Mm define currents over the compactification Mm of Mm, which represent the

first Chern class of the vector bundle T̃Mm →Mm with the induced Hodge metric.
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4.3 Chern Forms of the Calabi-Yau Moduli with the Weil-Petersson

Metric

In this section, by the standard isomorphism TMm
∼= (F n)∗ ⊗ F n−1/F n under the Weil-

Petersson geometry of the Calabi-Yau moduli, we get that the Chern forms of Calabi-Yau

moduli Mm are integrable with the Weil-Petersson metric.

For each fiber X = Xs, we assign the Calabi-Yau metric g(s) in the polarization Kähler

class. Using the fact that the global holomorphic n-form Ω = Ω(s) is flat with respect to

g(s), it can be shown that the Weil-Petersson metric has the following expression

gWP (v, w) = −Q̃(ivΩ, iwΩ)

Q̃(Ω,Ω)
. (4.5)

Here, for convenience, we write Q̃(·, ·) = (
√
−1)nQ(·, ·), where Q is the intersection product.

The reader can refer to Section 2.3.1 and [Lu-Sun06] for details of the definition.

Formula (4.5) of the Weil-Pertersson metric implies that the natural map H1(X,TX) −→

Hom(F n, F n−1/F n) via the interior product v 7−→ ivΩ is an isometry from the tangent

bundle TMm with the Weil-Petersson metric to the Hodge bundle (F n)∗ ⊗ F n−1/F n with

the induced Hodge metric. So the Weil-Petersson metric is precisely the metric induced from

the first piece of the Hodge metric on the horizontal tangent bundle over the period domain.

More precisely, for the Calabi-Yau moduli Mm, we have the following period map from the

moduli space to the period domain of Hodge structures:

Φm :Mm −→ D/Γ, (4.6)

where Γ denotes the global monodromy group which acts properly and discontinuously on

the period domain D. By going to finite covers of Mm and D/Γ, we may also assume D/Γ

is smooth without loss of generality.

Thus, the differential of the period map gives us the infinitesimal period map at p ∈Mm:

(Φm)∗ : TpMm −→ Hom(F n, F n−1/F n)⊕ Hom(F n−1/F n, F n−2/F n−1)⊕ · · · .
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is an isomorphism in the first piece. By using this isomorphism and Theorem 4.1.3, we have

the following result, which is [Lu-Douglas13, Theorem 6.3]. Our proof is different and much

simpler.

Theorem 4.3.1. The Chern forms of the Calabi-Yau moduli Mm with the Weil-Petersson

metric define currents over the compactificationMm ofMm. Moreover, the first Chern form

represent the first Chern class of the quotient bundle ˜(F n)∗ ⊗ F n−1/ ˜(F n)∗ ⊗ F n →Mm.

Proof. Equipped with the Weil-Petersson metric, the tangent bundle TMm of the Calabi-

Yau moduli Mm is isomorphic to

(F n)∗ ⊗ F n−1/F n ∼= (F n)∗ ⊗ F n−1/(F n)∗ ⊗ F n,

which is a quotient of subbundles of the variation of polarized Hodge structure End(Hn)→

Mm. Here the Hodge bundles F k’s are all equipped with their natural Hodge metrics. So,

by Theorem 4.1.2, the Chern forms of TMm define currents over the compactification Mm

ofMm. Moreover, the first Chern form of the tangent bundle TMm with the Weil-Petersson

metric represent the first Chern class of the canonical extension

T̃Mm
∼= ˜(F n)∗ ⊗ F n−1/ ˜(F n)∗ ⊗ F n.

As a corollary, we have the following result on the Chern numbers,

Corollary 4.3.2. Let f be an invariant polynomial on Hom(TMm, TMm) and RWP repre-

sent the curvature form of the Weil-Petersson metric on the Calabi-Yau moduli Mm. Then

we have ∫
Mm

tr(f(RWP )) <∞. (4.7)

Proof. The proof follows directly from Theorem 4.3.1.

As pointed out in the introduction, it follows from Theorem 4.1.2 easily that the first Chern

form of all of the Hodge bundles with Hodge metrics also represent the Chern classes of
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their canonical extensions. Finally note that the Kähler form of the Weil-Petersson metric

is equal to the first Chern form of the Hodge bundle F n with its Hodge metric,

ωWP = c1(F n)H ,

so we easily deduce that the Weil-Petersson volume is finite and is a rational number, as

proved in [Lu-Sun06] and [Todorov89] by computations.
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