Lawrence Berkeley National Laboratory
Recent Work

Title

Theoretical investigations of | = 5/2 quadrupolar spin dynamics in the sudden-passage
regime

Permalink

https://escholarship.org/uc/item/14b128dw

Journal
Journal of Chemical Physics, 117(2)

Authors

Walls, Jamie D.
Lim, Kwang Hun
Logan, John W.

Publication Date
2002-02-09

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/14b128dw
https://escholarship.org/uc/item/14b128dw#author
https://escholarship.org
http://www.cdlib.org/

Theoretical Investigations of I = 5/2 Quadrupolar Spin

Dynamics in the Sudden-Passage Regime

Jamie D. Walls, Kwang Hun Lim, John W. Logan, Jeffry T. Urban, Alexej Jerschow*, and
Alexander Pines'
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

and Department of Chemistry, University of California, Berkeley, California 94720

Abstract

The theoretical approach utilizing bimodal Floquet theory in the
quadrupolar/central-transition interaction frame, presented in an earlier arti-
cle [J. D. Walls, K. H. Lim, and A. Pines, J. Chem. Phys. 116, 79 (2002)], is
extended to describe the more complicated spin dynamics of I = 5/2 spin
systems. Rotary resonance effects occur when the strength of the radio-
frequency irradiation, wi, matches the sample spinning speed, w,, at the
conditions w1 = 2nw, (n integral). At these conditions, conversions of both
triple-quantum and five-quantum coherences to central-quantum coherence
are observed. Between rotary resonance conditions (%"wr <wp < 2(n3—+1)wr),
five-quantum as well as triple-quantum coherences can be created from equi-
librium z-magnetization via a nutation mechanism. In addition, effective
transfer between five-quantum and triple-quantum coherences also is observed
in between rotary resonance conditions. These effects have been investigated

theoretically and verified by both numerical calculations and experimental

results.

*Present address: New York University, Chemistry Department, New York, NY 10003
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I. INTRODUCTION

Approximately sixty percent of all NMR-active nuclei are quadrupolar (I > 1/2), and
due to the high sensitivity of the nuclear quadrupole moment to local electric field gradi-
ents, NMR studies of quadrupolar nuclei have been of great importance in the study of
glasses, minerals, zeolites, and other inorganic materials in the solid state!™®. In high mag-
netic fields, the first-order quadrupolar interaction has no effect on the frequency of the
spectrum’s central transition (CT), and its effect may be removed from the satellite tran-
sitions via rotor-synchronized magic-angle spinning (MAS). However, due to the fact that
the quadrupole coupling is in most cases a large perturbation to the Zeeman energy, the
second-order quadrupolar coupling is non-negligible and broadens the lineshapes, thereby
limiting the resolution and sensitivity of the NMR experiment. The early dynamic angle
spinning (DAS)%! and double rotation (DOR)'! experiments were developed in order to
average away the second-order quadrupolar interaction by purely mechanical means, by
spinning the sample about more than one axis. Frydman et al.'? subsequently proposed the
MQMAS technique, which refocuses the anisotropic second-order quadrupolar interaction
by evolving under various multiple-quantum coherences while magic-angle sample spinning.
The necessity of evolving under various multiple-quantum coherences requires the design of
pulse sequences that are capable of producing the desired excitation and transfers of these
coherences in the presence of a large, time-dependent first-order quadrupolar interaction.
Therefore, in order to design RF pulses to manipulate quadrupolar nuclei for MQMAS spec-
troscopy, an understanding of the spin dynamics under both RF irradiation and MAS is
required.

A. Vega demonstrated that the spin-locking behavior of quadrupolar nuclei under MAS

13,14 The theory of the spin

conditions is drastically different from that of I = 1/2 nuclei
dynamics for I = 1/2 nuclei is relatively well established due to the fact that RF field
strength is usually much larger than the time-dependent spin interactions (such as dipole-

dipole coupling and chemical shift anisotropy), and transforming the Hamiltonian into the



RF interaction frame yields valuable insight. However, the situation becomes quite different
for quadrupolar spin systems (I > 1/2), since the time-dependent quadrupolar interaction
typically is much larger than the time-independent RF field strength under most practical
experimental conditions, resulting in unique quadrupolar spin dynamics. The behavior of
quadrupolar systems has been found to depend strongly on the relative magnitudes of the

RF irradiation, wi, the sample spinning frequency, w,, and the quadrupolar frequency, wg.

An adiabaticity parameter, o = w:"jQ, was introduced by Vega in order to characterize the
spin-locking dynamics.!® In the adiabatic regime (a > 1), where the RF power is high and
the spinning speed is low, CT coherences are transferred to multiple-quantum coherences as
wgq undergoes zero-crossings during the course of the MAS. The quadrupolar spin dynamics
in the sudden-passage regime (o < 1), where the RF power is low and the spinning speed is
high, is markedly different from the dynamics in the adiabatic regime. In Vega’s treatment,
no transfers between CT and MQ coherences are predicted in the sudden-passage limit, and
thus the CT coherence is efficiently spin-locked for all times during the irradiation. This
semiquantitive physical picture has explained successfully some of the main features of the
spin dynamics that have been observed in experiments, such as the coherence transfers in

the adiabatic regime'® and efficient spin-locking at certain RF values in the sudden-passage

limit. However, it has been observed that when the RF power is appropriately matched

Anw,
2I+1

to the spinning speed at the conditions w; = (where n is a positive integer), the
CT coherence does not remain spin-locked.!%!” Additionally, similar resonant effects were
observed in homonuclear dipolar recoupling experiments involving quadrupolar nuclei under
MAS conditions.'® Also, Vosegaard et al.!® reported unusual spin dynamics for I = 3/2
nuclei in the sudden-passage regime. At the conditions w; = nw,, an efficient conversion
between CT and triple-quantum coherences occurs in the sudden-passage limit, whereas the
excitation efficiency of triple-quantum coherence from z-magnetization is enhanced when
n+t1

in between the resonant conditions at Fw, < w; < “T=w,. We have developed recently

a new theoretical approach in order to explain the interesting spin dynamics in I = 3/2



systems using bimodal Floquet theory in a novel interaction frame that combines the CT RF
and first-order quadrupolar interactions.?’ We demonstrated that the basis for the “rotary
resonance” (RR) effects at w; = nw, was the result of a degenerate mixing of the triple-
quantum coherence states |T+) = %(\3/2) +|—3/2)) with the CT coherence states |C+) =
%(H /2)+|—1/2)) at the conditions w; = nw,, whereas triple-quantum excitation was found
to result from higher-order terms in the Hamiltonian.

In this paper, we extend our previous study of the spin dynamics of quadrupolar nuclei
in the sudden-passage regime to I = 5/2 nuclei. We attempt to gain insight into the compli-
cated spin dynamics by again developing a bimodal Floquet treatment using an interaction
frame that combines both the CT RF Hamiltonian with the first-order quadrupolar Hamil-
tonian, only this time evaluating the Floquet Hamiltonian using an effective Hamiltonian

t.2! This theoretical formalism is then compared to exact numerical simulations.

treatmen
Finally, preliminary experimental data are presented on five-quantum to triple-quantum

conversion and triple-quantum to single-quantum conversion in the I = 5/2 2" Al system.

II. THEORY

The Hamiltonian for a spin I = 5/2 quadrupolar nucleus in the rotating frame under

22,23

MAS and RF irradiation can be written in a fictitious spin-1/2 operator basis as
H(t) = HY(t) + Hgr
= wo(t)[200572 + 161573 — 16157° — 20I57%] 4 3w, I3
VB I + 157+ 22w [I° + 157, (1)

where w; is the strength of the RF field and w, is the rotor frequency. HS) (t) describes
the first-order quadrupolar interaction, and Hgpr describes the radiofrequency irradiation.
The states are labelled by |1) = |m; = +5/2), |2) = |+3/2), [3) = |+1/2), |4) =
| —1/2), |5) = | —3/2), and |6) = | —5/2). The effects of the second-order quadrupolar



interaction, chemical shift anisotropy (CSA), and resonance offset terms will be discussed

later in the Article. The time-dependent first-order quadrupolar coupling is given by:
wg(t) = wg[Cy cos(w,t + ) + Cy cos(2w,t + 27) + Sy sin(w,t + ) + Sasin(2w,t + 27)], (2)

where C1, Cs, S1, and Sy depend on the angle 6 between the rotor axis and the Zeeman field
axis, and on the crystallite-dependent Euler angles [«, 3, 7| that relate the quadrupolar prin-
cipal axis system (PAS) to the rotor-fixed coordinate system. Expressions for wg, Cy, Cs, S,
and Sy are given in Appendix A.

The propagator for the Hamiltonian is:

Ut)=T {exp [—z’ /0 t H(t')dt'] } , (3)

where T is the Dyson time-ordering operator. The evaluation of this propagator is difficult
due to the fact that in general [H(t), H(t')] # 0 for times t # ¢ . We previously introduced a
transformation into an interaction frame defined by the first-order quadrupolar Hamiltonian
and the CT operator from the RF Hamiltonian that was found to be useful in describing
the spin dynamics in a bimodal Floquet theory treatment.?® Although such a treatment will
be used in the following discussion, it was shown recently®* for the I = 3/2 system that
unimodal Floquet theory also can give the same results (the equivalence between the two
approaches is demonstrated in Appendix B). The quadrupolar/CT transformation for a spin

I=5/2is:

W(t) = {exp [ / dt ( )+ 3w Iy 4)]} (4)

This transformation can be evaluated easily since the CT Hamiltonian commutes with the

first-order quadrupolar Hamiltonian. The Hamiltonian in this interaction frame is given by:

dW (1)
dt

_ Ve [(11 24 56 cos (12/0th(t')dt'>+(If,6 72 si (12/ (t’)dt’)]
28 [0 4+ 1) cos (P20) (134 = 1) sin (P20 cos (6 [ w(t)at )]

5

Hixr(t) = W) H@OW (t) — iWi(t)




+2v/2 [{(I{f‘f’ — I£7?) cos (3621t> + (I° + Iy ") sin (32115) } sin (6 /Ot wQ(t')dt'ﬂ

o

3M
= > > Hyuexp(—iNw,t)exp (-iTMt),

N=—o00 M=0,+1

where

t Ii Ii e
cos(12 / we(t)dt) = S Pyexp(—iNuw,t)
0

N=—o0
t ’ ’ >
sin(l?/o wot)dt) = > Qnexp(—iNwst)
N=—00

t ’ !/ i
cos(6/0 wo(t)dt)= > Ryexp(—iNuw,t)

N=—o00

sin(G/Oth(t')dt') = io: Sy exp(—iNw,t) (6)

Hyq = \/_éwl[(RN +iS)|ITFNC F | + (Ry — iSy)|CEN(T £ ]

Huo = Y2 l(Pu+ Q) (a0 + | + 4T~ )

+(Py —1Qu)([T+){g + [ + |T=){g = |)] (7)

and [T+) = (12) £[5)), |C+) = 5(13) £]4)), and |g£) = 5(|1) £ [6)) are the triple-
quantum coherence, central-quantum coherence, and five-quantum coherence subspaces, re-
spectively. The coefficients QQn, Py, Ry, and Sy are dependent on crystallite orientation.

It can be seen from Eq. 5 that the Hamiltonian is modulated at the “natural” fre-
quencies w, due to the sample rotation and %wl due to the CT RF irradiation. The time
dependence of H;yr can be removed by a transformation into Floquet space.23? The price
to be paid is that instead of working in a finite-dimensional Hilbert space, calculations must
be performed in an infinite-dimensional Floquet space. Since this interaction frame has two
natural frequencies, bimodal Floquet theory must be applied.?” In Floquet space, the spin
states |Ct), |T+), |¢g+) become dressed by states |N, M) that are labelled by the number
of quadrupolar-induced rotational “quanta” and CT RF “quanta”, respectively, yielding the
Floquet states |C+, N, M), |T+, N, M), and |¢+, N, M). A Floquet Hamiltonian then can
be written as

3(,0 ’ '
Hp =w,N" + 71]\71 + (Ho,o + Ho bt + HO,—lb) + Ho,z(bT)2 + Ho,—2b2

(5)



+ Z [HN,l(aT)NbT + H_N,laNbT + HN,_l(aT)Nb + H_N,_1CLNb] (8)
N>0

where the the operators N”, N1, a¥, (a")",b", and (b")" are defined by
(p, N, M|Nr|p’a N’: MI) = N(Sp,p’(sN,N’(sM,M’
(p, N, M|N1|p', N’: M’) = Mép,pléN,N'éM,M'
(p, N,M|a”|p',N’,M’) =0, 0NN —nOnrar’
(p, N, M|(at)n|pla Nla M’) = 5p,p’ 5N,N’+n5M,M'
{(p, N, M|b" |pla N,: M’) = 5p,p’5N,N’ 5M,M’—n

<p’ N7M|(bf)n|p7N 7M) = 5p,p’5N,N’5M,M’+n' (9)
The propagator can be written in Hilbert space in terms of the Floquet Hamiltonian as?®

U(t) = W(t) 3 (N, M exp(~iHp)[0,0) expli( Nesy + > My )], (10)

N,M

The problem arises as to how to evaluate exp(—iHpt). Since Hp is infinite-dimensional,
exact diagonalization is possible in very few cases; therefore, approximations must be
made. Previous techniques have used static perturbation theory to approximate the in-
finite Floquet Hamiltonian.?>3° However, consider dividing Floquet space into an infi-
nite number of three dimensional subspaces D5;", labelled by N and M, where Dy =
{lgx, N, M), |T+,N,M),|C+,N F+n,M + 1)}, as shown in Fig. 1(A). Here n is a positive
integer that minimizes

|Aw)] Inw, — 3w

\/|Aw(0)\2 + (T4, N, M|Hp|C+,N Fn, M £ 1)|? B \/|an = 3w + 2wt Ryn +iSin|?

(11)

where Aw©® = nw, — %wl is the zeroth-order energy difference between |7+, N, M) and
|C+, N Fn, M +1). Eq. 11 groups together those states that most strongly couple to each
other. If the magnitude of the couplings between the various subspaces is less than the

energy differences between these subspaces, i.e.,
! ! ! I
Y Hplit™) — (i Y [Hpli2 "))

! 3 ! . . ! !
= (N = NJwr + 5(M = M)wn| > Z|@2" | Hpl 2 M) (12)



for [AMy € DYM, |8 My € DNoM N M # N, M’ and Z > 1, then an “effective
Hamiltonian” can be constructed within each subspace. Effective Hamiltonian theory is a
perturbative technique that separates the system into different manifolds Dévd’[M that are
weakly coupled to each other, as defined for this case in Eq. 12. The couplings between
the various subspaces are treated perturbatively, and the Hamiltonian in each subspace
is modified to include the effects of these couplings to any desired order. This technique

has been used in optics and atomic physics studies?!3!

and recently has been applied to
the study of homonuclear dipole-coupled spin systems under MAS, with3? and without3?
multiple-pulse homonuclear decoupling. The fraction of crystallites in a randomly oriented
powder for which Eq. 12 is satisfied is given in Fig. 2 as a function of w; for various values
of Z. It can be seen that as w; increases, the fraction of crystallites for which the effective
Hamiltonian treatment is valid decreases, due to the fact that the subspaces Dévﬂ’[M are no
longer weakly coupled.

As shown in Fig. 1(B), an effective Hamiltonian is constructed by generating a Hermitian

operator S such that
exp(iS)Hyp exp(—iS) = Hp, (13)

where Hp is an infinite-dimensional, block-diagonal matrix. The blocks are labelled by
EI\I];V’M, which are the effective Hamiltonians in the subspace ngvj’EM. Eq. 13 guarantees
that the eigenvalues of Hr and H, r are identical to each other. Both S and H f,y M can be
expanded in orders of the coupling between subspaces as follows: S =504 \50 4+ and
HYM = f{\](\(,))M +)‘ﬁz(\},)1v1+ /\Qf{\](\?,)]v[ + ..., where X keeps track of the order of the perturbation
and is set equal to one in the actual calculation. An effective Hamiltonian can be written

L. N.M .
within Dg;" to second order in A as

3IM -
ol +

ﬁé‘v,M: (Nwr+ 2



Vﬁ),qu ‘/q(‘|1')7T+ Vﬁ),mr 0 0 0

VT(“B,W— V’lgi),T-i- VT(iL),CqL 0 0 0

Vc(i),q+ VC(IJE,TJF V(E’%B,CJr — Aw® 0 0 0 y
o o e wawn v, v, |
0 0 0 A Vi vl
o0 0 Ve Vi Ve

where
SO =1
S=—in| ¥ % |k)<j\<k\HF\é> - \é)(lf\(j\HFlk)
jeDNM kgDYM i Tk

Vi§ = il Hrlj)
VO =X S R (b el | (15)
T2 E;—E,  Ei—E

N,M
k¢Dg

Explicit expressions for the various le) and V;(JQ) elements are given in Appendix C. Since
Déver is not coupled to DY within HN"™ | the effective Hamiltonian reduces to two uncou-
pled three-state systems. (For the I = 3/2 case, the problem reduced to two uncoupled two-

state systems: {|T+,N, M), |C+,N—n, M +1)} and {|T—, N, M),|C—,N+n, M —1)}.2)

A. Near RR conditions

Near the RR conditions w; = %"w,«, the states | T4+, N, M) become more strongly coupled
to the CT coherence states |C+, N Fn, M £ 1), since their zeroth-order energy difference
Aw'® is approximately zero, thus requiring explicit mixing of these states. As was demon-
strated for the I = 3/2 case, this degenerate mixing is the basis for conversions of triple-
quantum coherence into CT coherence at RR conditions.?® Conversion of five-quantum co-
herence into C'T coherence also is favored at RR conditions. Although there exists a second-
order coupling V(ﬁ’qi between the five-quantum and CT coherences, these coherences can

be coupled indirectly through the triple-quantum coherences: the five-quantum coherences



are coupled directly to the triple-quantum coherences by the first-order coupling Vq(i),Ti,
and in turn the triple-quantum coherences are coupled directly to the CT coherences by the
first-order coupling VT(li),Ci. The relative importance of the direct versus indirect couplings
for five-quantum to CT conversion is discussed later in the numerical simulations section.
Finally, as a result of the mixing of CT coherence with five-quantum and triple-quantum
coherences at RR conditions, the excitation efficiencies of both five-quantum and triple-

quantum coherences have minima at these conditions, as does the efficiency of conversion

between five-quantum and triple-quantum coherences.

B. Away from RR conditions

Away from RR conditions (w; # %an) the states [T+, N, M) are more weakly coupled to
the states |C+, N', M"). This enables a stronger mixing between the states |7+, N, M) and
lgt, N, M), and in the problem may be simplified further by considering only the dynamics
in the four-dimensional degenerate subspace {|T+, N, M), |¢g+, N, M)}. The energies may
be calculated to second order and the eigenstates to zeroth order in the degenerate subspace

by diagonalizing the following matrix:

52 )
V;I‘HH- Vq+,T+ 0 0
VAOTIRC)
= 3M -~ Tiqr VreTs 0 0
HYM = (Nw, + ——w))T + ! o o (16)
2 0 0 Vo Y
0 VI VA S A

The explicit diagonalization of H ;,V M in Eq. 16 gives some insight into the dynamics away

from rotary resonance conditions. Defining the following:

(1 VBwi(Py +iQo)

_ 1 _
Vq(i),Ti =Vrses = 9
- 2 00
—(2)  _ Olwi PyQ_-n —QnP-n
Vi = 5 > N
T N>0
_ _ X Ni|RyS_ny — SvR_n
VZ(’EI:),T:I: = - q(:i),qzl: + 16(’0%“‘)7 z [ ]

2 _ AN22
NSO Jwi — 4AN?w?

10



|RN|2 + [Sn[?

:F?(|R0|+|So ) F 24w Z AN

N>0

VR -2,

0= 2
V(E) . (7(2)
1 , T—T—
A,Z\\UWP (—— )’
7(2) (2)
A, = | (1) |2 (‘/:]'1‘,(1‘}‘ - VT+,T+ )2
+ - \ 5q+ 2
7(2) (2)
sin(f,) — Verar = Vit — 284
(2) (2)
2\/‘ VY q+| Vatias 2VT+,T+ —AL)?
V

+) o ORI C)
|VT—|—,q—|—|2 ( q+ q+ 5 T+T+ _ A+)2

VD, =V oA

a—q9—

2\/‘ | V(Q),q—_‘_/i(“z—),Tf o A_)Q
|VT d— |

_ 7@ _y@ ’
T N

SlIl

cos(f_) =

(17)

Consider an initial density matrix equal to Iz but with the CT z-magnetization neglected
(since CT magnetization does not evolve, in the approximation where the CT states are

neglected in Hy™):

5

N,M

3
+§”T+5NaM><T_aNaM‘+‘T_5NaM><T+aNaMH (18)

In the absence of the second-order quadrupolar interaction and resonance offsets, p(0) will
develop multiple-quantum coherences with phase Y. Taking exp(iS) = 1, the expectation

values for both triple-quantum ({IZ°)) and five-quantum ((I;°)) coherences are

(IZ7°)(t) = —5sin(26, ) sin(260_) sin(A _t) sin(A ;¢) sin(6t)

—3[sin*(A, ) sin®*(_) sin((AL — A_ + 6)t)

11



— cos?(6,) cos2(0_)sin((A, — A — 6)t)

+sin2(6,,) cos?(0_) sin((Ay + A_ + 6)t)

—cos?(A,)sin®(0_) sin((A; + A_ — 6)t)] (19)
(Iy °)(t) = 5[sin®(04) sin® () sin((A+ — A =~ 6)¢)

—cos?(04) cos®(0_) sin((Ay — A_ +6)t)

+sin(0) cos?(A_) sin((Ay + A_ — 6)t)

—cos?(0) sin®(0_) sin((Ay + A_ +0)t)]

—3sin(26;) sin(260_) sin(At) sin(A_t) sin(d?) (20)

The triple-quantum and five-quantum excitation efficiencies represented by Eqgs. 19 and
Eq. 20 are plotted in Figures 3(A) and (B) respectively as a function of w; and time

for a powdered sample. In the calculations, VT(i)’Ti is replaced with VT(Zi),Ti (as defined

2

in Appendix C) when near the RR conditions w; = 3

nwy, due to the singularity in the
denominator of V%?’Ti. Note that when 0 (which roughly represents the energy difference
between the states |T+, N, M) and |T—, N, M)) is close to zero, not only does (I3 °)(t) ~ 0

for all times, but also (I} °)(¢) ~ 0. The terms in the expectation values proportional to

1

sin(6t) oscillate between positive and negative values, with zeroes at roughly w; = 3

nwy, as
shown in Figures 3(A) and (B). Such behavior was observed previously in the spin I = 3/2
case and was a result of a destructive interference between the various crystallite orientations
in a powdered sample.?’ Additional zeroes occur due to the other terms in Eqs. 19 and 20
when w, is in between %nwr and %nwr; these zeroes are especially pronounced in the case of
the five-quantum excitation.

Additionally, conversions between five-quantum and triple-quantum coherences, i.e.

+5Q—+3Q and +5Q——3Q, are both possible. Starting with initial +5Q coherence

(p(0) =15/2)(—5/2|) the expectation values for the conversions are

(£3Q(t)) = %[sin2(9+) cos?(0;)(1 — cos(2A ;1)) + sin®(0_) cos?(A_) (1 — cos(2A_t))

+5sin(26, ) sin(260_) sin(A ;t) sin(A_t) cos(dt)]. (21)

12



It can be seen from this equation that when ¢ is small, the +5Q—+3Q pathway is the
most efficient, and the +5Q——3Q pathway is suppressed. Thus, maxima for +5Q—+3Q
are expected at the conditions w; = %nwr, where n is an odd integer. The +5Q—+3Q

conversion efficiency represented by Eq. 21 is plotted in Fig. 3(C) and shows that maxima

in the conversion efficiency occur in between the RR conditions.

C. Second-order quadrupolar effects, resonance offsets and CSA

So far the treatment has neglected the effects of the second-order quadrupolar interaction,
resonance offsets, and chemical shift anisotropy. These effects can be included by adding

the term H () to the Hamiltonian in Eq. 1, where

!

H (t) = H(Z) (t) + Hoﬁset + HCSA(t)

= N;4 Ay exp[—iNw, 1] (|g+){q — [ + lg=){g + )
+By exp[—iNw,t]| (|T+){T — |+ |T—-){T + )

+Cy exp[—iNw,t] (|C+){(C — |+ |C-){(C +]). (22)

The various contributions of Hg ) (t), Hofiset, and Hgsa(t) to the coefficents Ay, By, and
Cly, can be found in the literature®3°. For the case when the CT RF Hamiltonian, 3w, I% %,
is less than or comparable in magnitude to the 3—4 (CT) subspace component of H (t), an

interaction transformation defined by
t 7 !
V(t)=T {exp (-7; | at (S () + 30,15 + 0013—4])} (23)
0

is more appropriate than the one used in Eq. 4. In this case, the effective field in the 3—4
subspace lies in the X—7 plane, with variable magnitude and direction. These variations
cause a broadening of the RR conditions, since each crystallite will experience a different
effective field, leading to different matching conditions, w"* = 1/(3w1)? + C3 = Znw,. In

addition, dephasing of the multiple-quantum coherences will occur under the second-order

13



quadrupolar coupling, leading to a decrease in the efficiency of multiple-quantum coherence
excitation and transfer.
For the case where the RF field is stronger than the magnitude of the 3—4 subspace

component of H' (t), the original interaction frame defined by Eq. 4 can be used to obtain

/

HINT(t) = WT(t)HI (t)W(t)

N;4 Ay exp[—iNw,t] (Jg+){g — | + [g—){g + |)

+By exp|—iNw,t| (|T+)XT — | + |T—){T + )

+Cy exp[—iNw,t] (exp(i3w1t)|C+)(C — | + exp(—i3wit)|C—)(C + |) (24)
Transforming into Floquet space adds the term H} to Eq. 8, where

Hp = Ao (lg+)(g — | + la=Yg+ ) + Bo (IT+){T — | + [T-}T +|)
+Co (PIC+NC — |+ (BN C=)(C +]) + Nz_ {(A_ya" + Ay(ah)™)
x (lg+)(g — |+ lg=){g + |) + (B_xa™ + By(a")™) (IT+}(T — | + [T-}(T +|)

+(C_ya" + Oy (a)N) (b2|C+>(C — |+ ("2 |C-){C + \) : (25)

!’

Hy con-
nects the subspaces Dévj’LM and DévLM via the coupling of |¢g+, N, M)and|T+, N, M) with
lg—, N, M)and|T—, N, M), respectively. In addition, near the conditions w; = %nwr, the
states |C+, N, M) and |C—, N — n, M + 2) are degenerate and are directly coupled to each
other by H}; for n = 1,2, 3,4. This helps to explain the decrease in efficiency for the spin-
locking of the CT coherence in between RR conditions that was reported earlier.!” Although
these additional terms complicate the theoretical treatment, in the past exact numerical

calculations on the I = 3/2 system have shown that the basic features of RR remain even

in their presence.!®?® This will be verified for the I = 5/2 system in the next section.

14



III. NUMERICAL SIMULATIONS

Although the effective Hamiltonian in Eq. 14 can be diagonalized analytically, the exact
solutions are rather complicated and from them little insight is obtained. In order to test
how well the effective Hamiltonian (Eq. 14) describes the spin dynamics, exact numerical
calculations were conducted and compared to the effective Hamiltonian treatment for a
variety of multiple-quantum conversions and excitations. The coefficients in Eq. 6 were
calculated for 2000 crystallite orientations generated using REPULSION sampling®®. In

addition, exp(iS) was approximated as exp(iS) ~ 1 4+ iAS® + O(A2), and therefore

exp(—itHp) = exp(—iS) exp(—itHp) exp(iS)

~ exp(—iHp) — i\[SW, exp(—itHp)). (26)

This transformation is unitary only up to second-order in A, which for high RF powers leads
to errors in the calculation of the intensities of the coherences created by multiple-quantum
excitations/conversions. In Figs. 4—6, exact numerical simulations are compared with
evolution under the effective Hamiltonian in Eq. 14 for the cases of multiple-quantum to
CT coherence conversion, multiple-quantum coherence excitation from z-magnetization, and
five-quantum to triple-quantum coherence conversion, respectively. Maxima in the multiple-
quantum conversion efficiencies occur at RR conditions (Fig. 4), as predicted in the Theory
section. Resonant enhancement of the +3Q — +1Q (CT) coherence conversion (Figs. 4
(A), (B)) is seen only for the first RR condition; this is most likely due to the stronger
coupling of the | T4, N, M) states to the CT states for large w;, thus causing a breakdown
in the perturbative treatment and a “smoothing” of the RR conditions. For +5Q — +1Q
coherence conversion (Figs. 4 (C), (D)), enhancement of the efficiency is observed at the
first two RR conditions. In order to test whether the transfer of 5Q to CT coherence in
the effective Hamiltonian treatment is due mainly to the direct second-order coupling or
to the indirect first-order coupling via the triple-quantum coherence states, calculations

were performed with the second-order couplings set to zero. The resulting profiles showed
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little change, indicating that the transfer of five-quantum to CT coherence occurs indirectly
due to a mixing of the five-quantum coherence states (|g4, N, M)) with the triple-quantum
coherence states (|74, N, M)), which in turn mix with the CT coherence states (|C+, N F
n, M £+ 1)). In Fig. 5, both the effective Hamiltonian treatment [(A), (C)] and the exact
numerical calculations demonstrate that the maxima in the multiple-quantum excitation
efficiencies occur between RR conditions, with additional minima also occurring in between
RR conditions. The reduced effective Hamiltonian treatment presented in the Theory section
(Figs. 3 (A), (B)) agrees quite well with the exact numerical simulations. Finally, Fig. 6
indicates that both the effective Hamiltonian treatment and the exact numerical calculations
agree for [(A), (B)] +5Q — —3Q coherence and [(C), (D)] +5Q — +3Q coherence conversion.
The maxima of the +5Q — +3(@Q coherence conversion efficiency occur roughly in between
RR conditions, as was predicted and calculated earlier in the Theory section (Fig. 3 (C)).

Additionally, maxima of the +5Q — —3Q coherence conversion efficiency occur in between

1

RR conditions when 3

nw, < wy < %nwr, and roughly correspond to the dips in the +5Q
excitation efficiency.

Single crystallite studies were conducted in order to evaluate how well the theory de-
scribes the dynamics of individual spins as opposed than powder-averaged results. Three
crystallite orientations corresponding to § = 10°,45°, and 90° were chosen due to their vary-
ing dependences of wg(t) on w,. In Fig. 7, exact numerical calculations are compared to
the effective Hamiltonian theory for the conversion of +5@Q coherence into +3Q coherence
in single crystallites. The effective Hamiltonian approach gives results for § = 45° and 90°
that are quantitatively very close to the exact numerical simulations, whereas the results for
B = 10° are less quantitative in nature, although qualitatively correct.

The numerical simulations were performed by directly calculating the amount of co-
herence created from various initial density matrices (representing either multiple-quantum

coherence or z-magnetization) while evolving under the system Hamiltonian during an RF

pulse. The experiments, to which the simulations are compared, were multiple-pulse MQ-
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MAS experiments. For example, the experimental study of +5Q — +3Q coherence conver-
sion under RR conditions utilized a “hard” RF pulse to create +5Q coherence, a soft “RR”
+5Q — +3Q coherence conversion pulse, a hard +3Q — +1Q coherence conversion pulse,
and a soft selective inversion pulse to create detectable —1Q coherence. In this case, the
measure of the +5Q — +3Q conversion efficiency was the magnitude of the MQMAS signal

as a function of the RR conversion pulse strength and duration.

IV. EXPERIMENTAL PARAMETERS

The experiments were performed using a Chemagnetics/Varian CMX Infinity 500 spec-
trometer equipped with a 3.2 mm Chemagnetics MAS probe. A 20 kHz spinning speed
was used for all experiments. The 2" Al NMR spectra were obtained at Larmor frequency of
130.3 MHz. Multiple-quantum coherences were generated using a 150 kHz pulse of duration
2.3 us for +3Q creation and 3.4 us for +5Q creation, and a 150 kHz 0.45 us pulse was
used for +3Q to +1Q coherence conversion in the +5Q to +3Q coherence RR. conversion
experiment. The split-¢; version of the MQMAS experiment was used.?” Only 1D MQMAS
experiments were performed, with a fixed t; interval of 2.8 us to separate the pulses. Ex-
perimental profiles of the RR effects in +5Q — +3Q coherence and +3Q — +1Q coherence
conversion pulses were obtained by varying the amplitude of the corresponding pulse in the
split-t; experiment. The phase cycles employed for the +3Q — +1Q and +5Q — +3Q
coherence conversion pulses are given in Table I. The sample of aluminum acetylacetonate
(Aldrich, 99+%, used without further purification) was ground using a mortar and pestle
before it was packed into a zirconia rotor. The quadrupolar parameters for this sample have
been reported to be Cg = 3.0 MHz and n = 0.15.%® Calibration of the RF amplitudes was

performed using a 1 M AlCl;3(aq) sample.
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V. RESULTS AND DISCUSSION

Fig. 8 gives the experimental profiles for (A) +5Q — +3Q coherence conversion and
(B) +3Q — +1Q (CT) coherence conversion, respectively. The experimental profiles show
qualitative agreement with the respective theoretical and numerical results in Fig. 5 and Fig.
6. There is a maximum of triple-quantum conversion efficiency at the first RR condition;
at RR conditions, the triple-quantum states are strongly coupled to the CT states. As w;
increases, the triple-quantum states become more strongly coupled to the CT states, thus
“smoothing” out the RR conditions. This was observed experimentally (Fig. 8(B)).

The +5Q — +3Q coherence conversion shows maxima in between RR conditions, as
predicted in the Theory section. Although the exact numerical calculation and the effective
Hamiltonian theory both predict that the most efficient conversion occurs around 3* = 6.5
kHz, the experimental results give a slightly larger intensity at $ ~ 20 kHz (Fig. 8). This
discrepency is a result of the second-order quadrupolar coupling, as shown by exact numerical
calculation in Fig. 9. Using larger RF power helps to lessen the effects of the second-order
quadrupolar coupling and resonance offsets, making the coherence transfer more efficient, as
explained earlier in the Theory section. The design of low power sequences that are robust
to offsets, CSA, and second-order quadrupolar coupling therefore would help to improve the
efficiencies of these techniques.

In conventional MQMAS experiments for I = 5/2 quadrupolar nuclei, evolution of either
the +5Q or +3Q coherence followed by evolution of the CT coherence is used to cancel
the remaining (after MAS) anisotropic second-order quadrupolar interaction. It was shown
recently that evolution of the +5Q coherence followed by evolution of the +3Q coherence
can in some cases improve the resolution of the MQMAS by increasing the scaling factor for
the chemical shift and isotropic quadrupolar interactions, a technique called mixed multiple-
quantum MAS (MMQMAS).3%4% The efficiency of the +5Q — +3Q coherence transfer can be
greatly improved using the low power conversion pulses in between RR conditions, enabling

greater sensitivity for the MMQMAS experiments. Such work will be presented elsewhere.

18



VI. CONCLUSIONS

The theoretical formalism we developed for the spin dynamics of I = 3/2 quadrupolar
nuclei in the sudden-passage limit?*® has been applied successfully to the I = 5/2 case.
Transforming into the Quadrupolar/Central-Transition frame clearly shows the conditions
at which mixing between the various spin states occurs, thus enabling the prediction of the
various multiple-quantum coherence conversions and excitations that occur under conditions
of low RF power and fast MAS (i.e., the sudden-passage limit). Bimodal Floquet theory was

utilized in this frame, and the spin dynamics could be understood by examining the effective

2

Hamiltonian in two three-dimensional subspaces (Fig. 1). When w; = 3

nw, (n integral), the
triple-quantum Floquet states [T+, N, M) and the CT Floquet states |C+, N Fn, M + 1)
are strongly mixed. This results in coherence transfer between the triple-quantum and
CT coherences, and thus in poor spin-locking efficiency of the CT coherences. Transfer
of five-quantum to CT coherence also is possible, mostly due to the fact that the five-
quantum Floquet states |¢+, N, M) are directly coupled to the triple-quantum Floquet states
|T+, N, M). In between RR conditions, the triple quantum and CT Floquet states are only
weakly coupled, and thus efficient spin locking is possible. This also enables the coherence
transfer between five-quantum and triple-quantum coherences to become more effective, by
suppressing the competing triple-quantum to CT coherence pathway. For multiple-quantum
excitations from equilibrium z-magnetization, maxima in the efficiencies occur in between
RR conditions, with minimum efficiency at the RR conditions. Additional minima also
occur almost halfway between the RR conditions. These additional minima, similar to
those observed in I = 3/2 systems, are a result of the powder averaging over crystallite
orientations, whereas the minima at the RR conditions are due to direct coupling between
the multiple-quantum and CT coherences. Excitation of five-quantum coherence is a result of
the coupling between the five-quantum |g+, N, M) and triple-quantum [T+, N, M) states.
For +5Q — +3Q coherence conversion, maxima in the efficiency occur roughly halfway

between RR conditions; this is a result of the weak coupling between the triple-quantum

19



and CT coherences, along with a near-degeneracy of the |T+, N, M) states. Our theoretical
model was tested against exact numerical simulations and compared to experiment, and the
theoretical predictions were found to agree with both.

An understanding of the dynamics of quadrupolar nuclei is useful in the design of experi-
ments that optimize the signal produced from various coherence pathways. We are currently
using our theoretical framework to examine the possibility of using “slow” amplitude and
phase modulation in order to enhance multiple-quantum coherence excitations and conver-
sions beyond those obtained by simple spin-locking. We also are developing sequences that

are more robust to the second-order quadrupolar interaction.
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Appendix A

The coefficients introduced in Eq. 2 are given by:

I . n
C) = 3 sin(26) sin(28)[1 — 3 cos(2a)]
Cy = gsinz(ﬁ)[sinZ(ﬁ) + g(COSQ(ﬂ) + 1) cos(2)]

S) = —g sin(26) sin() sin(2a)
Sy = gsinZ(H) cos(B) sin(2«)
&

W = QWm (27)
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h

where Cgp = is the quadrupolar coupling constant and 7 is the quadrupolar asymme-
try parameter. The Euler angles («, 3,7) relate the quadrupolar PAS to the rotor-fixed
coordinate system, and 6 relates the rotor axis to the Zeeman field. For the case of MAS,

0 = arctan(v/2).

Appendix B

As was shown in an earlier work for the case of I = 3/2 nuclei, a transformation into
bimodal Floquet space can give quantitative insight into the spin dynamics in the sudden
passage limit.?° However, the same results also can be obtained by using unimodal Floquet
theory, where the interaction frame is defined only by the first-order quadrupolar interaction.
In this quadrupolar interaction frame the I = 3/2 Hamiltonian under MAS and spin locking
is given by

Hing = 20,1573 + V3w, (I 2+ I5Y) cos(/ot dt wo(t)) + (IF* - IK7?) sin(/ot dt we(t))
= 2w I573
+v/3w; i Ay exp(—iNw,t)(I5 % 4+ I¥*) + By exp(—iNw,t)(I+* — I17?)

N=—o00

(28)

The time dependence can be removed by transforming into Floquet space, giving the uni-
modal Floquet Hamiltonian

U V3 .
Hp = N'w, + w1 |CH+)(C + | —w|[C—)(C — | + 7”1[(‘40 +iBy)(|T+)(C + | + |[T—)(C — |)

o0

+ (Ao — iBo)(|C+N(T + |+ |[C—N(T = )]+ NZ_I((LT)N[(AN +iBy)(|T+){C + |+ |T=)(C - )

+ (Ay = iBW)(C+HT + | + [C=)T = )]+ [(A_y = iB_y)(CHNT + |+ |C=)T = |

+ (A-y +1B_y) (|[T+XC + |+ [T=)(C - |)] (29)
As in the I = 5/2 case, an effective Hamiltonian can be constructed in order to help simplify

the analysis of HY. The subspaces DY, = {|T+, N),|C+, N F n)} are constructed, where
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n is a positive integer that minimizes

|nw, — wi|

(30)
V(w, — w)? + 3wl A, +iB, 2

which is analogous to Eq. 11 for the I = 5/2 case. The effective Hamiltonian in each D¥,

subspace is given by

Vides  Vives 0 0
N v VP L+ AL 0 0
Y — N+ c+r1+  YC+,0+ (31)
0 0 VP ol =A@ v
0 0 V“J,C, VD p
where Aw® = w; — nw, and
3 (Ay —iBy)(A_n +iB_y)
V(Z) e 2
T+’T+ 4 “i N;éz—n w1 + Nwr
e 3w2 (Ay +iBn)(A N —iB_y)
CH0+ T g 1N¢n w1 — N,
3 (Ay +iBn)(A_n —iB_y)
V(Z) —_°2. 2
C=C- 4w1 N;ézn w1 + Nw,.
V_yT_ § 9 Z AN—iBN)(A_N+iB_N)
i NZn — Nw,
; \/§w .
Vi oo = v, = ‘f““ (A_n+iB_y) (32)
In the bimodal Floquet treatment, the I = 3/2 Floquet Hamiltonian is given by
B _ r 1 fwl + .
Hy =w,N" +wiN + ——{b"[(Ag + iBy)|T—){C — | + (Ag — iBo)|C+){T +|]
+b[(Ag + z’BO)\T+)(C + |+ (Ao — iBy)|C =T — |]
V3w & . .
#2225 (@)Y [(Ax + iBy)[T-)C — | + (A — iBy)|C+)T + ]
N=1
+a" b [(A_y +iB_N)|T—){C — | + (A_y — iB_y)|C+)(T + ]
+(a)YVb[(Ax 4+ iBn)|TH+)(C + | + (Ay — iBy)|C—NT — ||
+a"b[(A_N +iB_§)|[T+){C + |+ (A_y — iB_y)|C—}(T — |, (33)
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where b, b', a,a’ act similarly to the raising and lowering operators defined in Eq. 9. An
effective Hamiltonian can be constructed in order to simplify the analysis of HZ. The
relevant subspaces are given by D" = {|T+,N,M),|C+, N = n, M + 1)}, where n is

chosen using Eq. 30. An effective Hamiltonian, EI\;;V’M, is given to second-order as

2 1
Videe  Vites 0 0
. V) e V) o+ Aw© 0 0
HYM = (Nw, + Mo+ | 7 7% ) 1 (34)
0 0 VP oL =A@ VD
0 0 Vi oo Vi

where V;f?)and‘/;f]l-) are given in Eq. 32. The effective Hamiltonians in Eq. 31 and Eq. 34
differ only by a constant energy term, and there exists a one-to-one mapping, |7+, N) <
T+, N,M) and |C+,N Fn) <> |C+, N Fn, M +1). Therefore, it can be seen that the
bimodal Floquet treatment is just a convenient way to keep track of the energy differences

between the |T+) states and the |C't) states, as shown in Fig. 10.

Appendix C

Neglecting second-order quadrupolar coupling and resonance offset terms, the coefficients

(Eq. 15) of the effective Hamiltonian f{\g’M of Eq. 14 are given explicitly by

V(f—)q-l— V(2) _ biw? i PynQ_n —QnP_n

q q— 2w’r N0 N
* * \/50.)1 (PO + ZQO)
Vq(+ T+ = VTS: o+ = V(I)T— = VT(—I,)q— - 2
52&1 PyQ N — QprN 2 (Ry —iSn)(R N + 1S n)
VT(2)T : Z — 2wy Z
B 2w, Non 31 + Nw,
V(Q) 5zw1 Z PNQ N — QNP_ 2 Z RN - ZSN)(R N+ iS_N)
T=T=""" 9y, N30 N “i NZn —w1 Nuw,

1 * 1 .
VT(+),C+ = CS— v = V2w (R, +i85,)

Vil o = Vel = V2w (Ron +4S-0)

i - Q- |52 1
— > " (Rusny + iSmany) (Pon +iQ-n) Nw T3 sw— (N +n)w,
ro3

(2) *(2)
V;H c+ — VC+,q+
N#0
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V(2) _y@  _ \/_w1 (Rayn + Sy (P -
e 1%0 won S (P 1) Noy, (N = n)ar — Swi
2 (RN - ZSN)(R N —iS )
VC+ oy = 2w ]gn —w1 No,
@ _ g2 v By+iSy)(Roy —iS )
VC’—,C— wl N;n %wl + Nwr (35)

Diagonalization of Eq. 14 in the subspaces Dy;" gives the eigenvalues to second order

in A and the eigenvectors to zeroth order.

Appendix D

Consider the case of a crystallite with the Euler angles («, 3,7v) = (0°,90°,0°) relating
its quadrupolar PAS to the Zeeman field axis. From Appendix A, wq(t) = 22 cos(2w,t), and

SO

t ! !
/ wo(t)dt = ;"Q sin(2w,1). (36)
0

Wr

Therefore, the coefficients in Eq. 6 can be written in terms of spherical Bessel functions as

t ! ! e

cos(12 [ wo(t)it) = Y JQN(?;“’Q ) exp(—idNew,)
0 N=—0o0 T

sin(12 / wo(t)dt) )exp(—i[4N ~ 2ort)
t o0

cos(6/ w (—idNw,t)
0

sin 6/ wo(t)dt) )exp(—i[4N — 2]w, ). (37)

For this crystallite, the first-order matrix elements V;Ii ry for the effective Hamiltonian of

Eq. 14 are given by

fw1

3wQ
2w,

Jo(52). (38)

V0 = Vil = Vi, =V, =

Consider the +5Q — +3Q coherence transfer away from rotary resonance conditions.

Its efficiency depends on the magnitude of Vi 1+, as shown in the Theory section. As can
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be seen in Fig. 11, the transfer depends rather sensitively on the ratio 32“]7?’ with little or no
transfer occuring when ?;UT? is near a zero of the Bessel function Jy(z). This phenomenon
has been studied in the past in the context of the suppression of tunneling in two-state
systems under intense radiation fields.*' ** A more detailed description connecting these
phenomena will be presented in the future. Even though the size and time dependence of
the quadrupolar frequency wgq(t) (Appendix A) varies for each crystallite in a powdered
sample, it is a tempting possibility that by properly tuning the spinning speeds and the

RF power, preferential excitations and/or conversions based on the quadrupolar frequency

could be performed.
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FIGURES

FIG. 1. Partitioning of the Floquet Hamiltonian into three-dimensional subspaces. (A) Four
N,M N .M . . . . .
such subspaces, Dg;" and Dg,’™ , are depicted in the figure. (B) Effective Hamiltonians are

calculated within each subspace, treating the coupling to the other subspaces as a perturbation.

FIG. 2. The fraction of crystallites satisfying the perturbation criterion (Eq. 12) for various
values of Z. The parameters used were Cq = 3.2 MHz, n = 0, and 5= = 20 kHz. Two thou-
sand crystallite orientations were generated using the REPULSION technique®, from which the

coefficients in Eq. 6 were calculated. (A) Z = 5, and (B) Z = 10.

FIG. 3. Calculation of (A) Iz — 3Q, (B) Iz — 5@, and (C) +5Q — +3Q coherence conversion,
using the reduced effective Hamiltonian treatment given in Egs. 19—21. The parameters used were
Cq = 3.2 MHz, n = 0, and 5= = 20 kHz. Two thousand crystallite orientations were generated
using the REPULSION technique®®, from which the coefficients in Eq. 6 were calculated. These
coefficients then were used to evaluate Eq. 17. Negative contours are drawn with a dotted line,
and RR conditions are denoted by a dashed line. In (A) and (B), zeroes away from RR conditions

are a result of a destructive interference over the powdered sample.

FIG. 4. Comparison of exact numerical calculation [(B), (D)] with the effective Hamiltonian

treatment [(A), (C)] given by Eq. 14 for the conversion of multiple-quantum to CT coherence as

a function of spin-locking power, g%, and time. The parameters used were Cg = 3.2 MHz, n = 0,
5= = 20 kHz. RR conditions are denoted with a dashed line. Calculation of powder-averaged CT
coherence (Cx (5=,t)) from initial [(A), (B)] triple-quantum coherence, p(0) = I%°° and [(C), (D)]

five-quantum coherence, p(0) = I3 ®. Three contour levels are shown at (A) [0.07, 0.14, 0.21], (B)

[0.075, 0.15, 0.225], and at [(C),(D)] [0.05, 0.1, 0.15].

26



FIG. 5. Comparison of exact numerical calculation [(B), (D)] with the effective Hamiltonian
treatment [(A), (C)] given by Eq. 14 for multiple-quantum coherence creation from Iz as a function
of spin-locking power (5%) and time. The parameters used were Cg = 3.2 MHz, n = 0, 5= = 20 kHz.
RR conditions are denoted with a dashed line. For p(0) = Iz, powder-averaged triple-quantum

[(A), (B)] (Iz7°) and five-quantum [(C), (D)] (I3 ®) coherences were calculated. Three contour

levels, with negative contours represented with dashed lines, are shown at [—0.55, —0.10, 0.35].

FIG. 6. Comparison of exact numerical calculation [(B), (D)] with the effective Hamiltonian
treatment [(A), (C)] given by Eq. 14 for the powder-averaged conversion of +5Q coherence to
[(A), (B)] —3Q coherence and [(C), (D)] +3Q coherence as a function of spin-locking power (%)
and time. The parameters used were Cg = 3.2 MHz, n = 0, and §* = 20 kHz. RR conditions are
denoted with a dashed line. Three contour levels are shown at [(A), (B)] [0.05, 0.10, 0.15] and at

[(C), (D)] [0.15, 0.30, 0.45)].

FIG. 7. Comparison of exact numerical calculation [(B), (D), (F)] with the effective Hamil-
tonian treatment [(A), (C), (E)] given by Eq. 14 for the conversion of +5Q coherence to +3Q
coherence as a function of spin-locking power (5%) and time for three different crystallite orien-
tations. The parameters used were Cg = 3.2 MHz, = 0, and 5= = 20 kHz. RR conditions
are denoted with a dashed line. [(A), (B)] 8 = 10°, [(C), (D)] 8 = 45°, and [(E), (F)] B = 90°.
Three contour levels are shown, with dashed contours indicating negative values, with [(A),(B)]
[0.2, 0.4, 0.6], [(C), (D)] [0.3, 0.6, 0.9], and [(E), (F)] [0.25, 0.5, 0.75]. Good agreement is obtained

between the theory and simulations for crystallites with § = 45° and 90°, whereas less agreement

is obtained for g = 10°.
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FIG. 8. Contour plots of the maximum intensity of experimental 1D MQMAS absolute-value
spectra, as functions of the RF amplitude and pulse width of the RR pulse. (A) +5Q coherence —
+3Q coherence conversion. The maximum efficiency for +5Q coherence — +3Q coherence transfer
occurs away from the rotary resonance conditions of w; = %nwr for n =1 or 2. (B) +3Q coherence

— +1Q coherence conversion.

FIG. 9. Exact numerical calculation of +5Q — +3Q coherence transfer for a powdered sample,
including the effects of the second-order quadrupolar coupling. Twelve-hundred crystallite orien-
tations were chosen. The parameters used were Cg = 3.2 MHz, n = 0, and 5= = 20 kHz. RR
conditions are denoted by a dashed line. Contours are drawn at the levels [0.07, 0.14, 0.21, 0.28].
Fig. 6 [(C), (D)] (exact simulation with no second-order quadrupolar coupling) shows the same
basic features, although the intensities of the conversion are smaller here, due to dephasing by the

second-order quadrupolar coupling.

FIG. 10. Comparison of the unimodal Floquet treatment with the bimodal Floquet treatment
for a spin I = 3/2. In unimodal Floquet theory, the states |C+, N') are split by energy 2w, where
wy is the RF field strength. In bimodal Floquet theory, the states |C+, N) are dressed by the |M)

RF “oscillator” state, which is used instead to keep track of the energy splitting.

FIG. 11. Exact numerical calculation of the effects of the ratio ‘:—‘f on the +5Q — +3Q coherence

transfer efficiency for the single crystallite given by [«, 8,7] = [0°,90°,0°]. Here 2= = 20 kHz, and

™

an RF field strength of 52 = 8 kHz was chosen in order to be away from any RR condition. The
coupling between the states | £ 5/2) and | £ 3/2) is proportional to the Bessel function Jy(Z,),
where Z, = ?jfTQ (A) 32 =430 kHz, Jo(Z,) = 0.1404, (B) 52 = 50 kHz, Jy(Z,) = —0.4014, and

(C) 32 = 157.22 kHz, Jo(Z,) = —8.6 x 107°. The coherence transfer in (C) is practically negligible

over this time scale, since the corresponding Z, is nearly a zero of the Bessel function Jy(z).
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TABLES

TABLE 1. Phase cycles for the +3Q — +1Q and +5Q — +3Q conversion experiments. The

labels ¢1 23 4 denote the phase of the pulse or receiver. The phases are given in degrees. Subscripts

indicate the number of repetitions of the phase cycle in the parentheses, brackets, or braces. There

are 96 and 640 steps in the +3Q — +1Q and +5Q — +3Q conversion and phase cycles, respectively.

experiment phases phase list

3Q — 1Q con. ¢,
b2
b3
br
5Q — 3Q con. ¢

b2
3
b4
br

(0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330)s

(0)96

(0)12, (45)12, (90)12, (135)12, (180)12, (225)12, (270)12, (315) 12

[(0, 270, 180, 90)3, (90, 0, 270, 180)3, (180, 90, 0, 270)3, (270, 180, 90, 0)3 ]2

(0, 18,36, 54, 72, 90, 108, 126, 144, 162,

180, 198, 216, 234, 252, 270, 288, 306, 324, 342) 3

[(0)20, (90)20, (180)20, (270)20]s

(0)s0, (45)s0, (90)s0, (135)s0, (180)s0, (225)s0, (270)s0, (315)s0

(0)640

{[(0, 270,180, 90)s5, (180, 90, 0, 270)5 ]2, [(90, 0, 270, 180), (270, 180, 90, 0)5 ]2,

[(180, 90,0, 270)s, (0, 270, 180, 90)5 ]2, [(270, 180, 90, 0)5, (90, 0, 270, 180)5 ]2 }»
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