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ABSTRACT OF THE THESIS

Towards Robust and Secure Audio Sensing

Using Wireless Vibrometry and Deep Learning

by

Ziqi Wang

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Mani B. Srivastava, Chair

The number of audio-sensing-related applications is growing rapidly, such as the voice

assistant as an interface between humans and computers, and the automatic-speaker ver-

ification system, which involves personal identity. These applications demand reliability

and security of the audio sensing system. For example, an audio recognition system can

easily get confused by the sound of non-target objects, as everything is fused in the col-

lected audio. Meanwhile, a speaker verification system may fail under spoofing attacks

of the computer-generated audio.

In this work, we focus on reinforcing existing audio sensing technologies to make it

more robust and secure. This work comes in two parts. In the first part, we explore

how we can leverage other modalities to improve the reliability of audio sensing, such as

the impulse-radio Ultra-wideband (IR-UWB) radar. Our experiments show that this IR-

UWB audio-sensing system can penetrate light-building materials to recover the sound.

Meanwhile, the system is capable of measuring the distance between the sound source and

the sensor, with which we can easily recover and separate the sound from multiple sources.

In the second part, we explore how to defend against state-of-the-art acoustic attacks for

critical applications such as voice authentication. We build a deep-learning-based system

designed to determine if an audio clip is genuine human speech or, on the other hand, a

computer-generated or a replayed one. This system is designed to work along with the
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automatic speaker verification system to protect it from spoofing attacks. Our results

show a significant improvement from the baseline and some generalization abilities on

unseen attack types. The work presented in this thesis provides the preliminary steps

towards utilizing multiple modalities for robust audio sensing applications across a variety

of environments, as well as an extra anti-spoofing protection for these applications using

deep learning.
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CHAPTER 1

Introduction

Audio is one of the most popular modalities on mobile sensing platforms. In this thesis,

we show some preliminary e↵orts to enable robust and secure audio sensing in com-

plicated environments, where existing audio sensing systems expose vulnerabilities. For

example, the audio-based recognition and classification system’s performance significantly

downgrades in complicated environments due to the fusion of the target audio and the

non-target ones. Meanwhile, the computer-generated or the replayed audio post a sig-

nificant threat to the systems that use the human voice as a biometric for the personal

identity.

In this work, we explore the possibility of using Wireless Vibrometry as a novel ap-

proach that can perform audio sensing and audio source distance measurement simulta-

neously, as well as protecting audio sensing systems by a deep-learning-based counter-

measure system to defend audio spoofing attacks.

Wireless Vibrometry refers to the research e↵orts that detect vibrations of objects us-

ing wireless signals, which has enabled many applications. Typical examples are acoustic

eavesdropping, machine abnormality detection and activity recognition. In the first part

of this dissertation, we propose an impulse-based ultra-wideband (IR-UWB) radar system

that simultaneously achieves two tasks. Firstly, it is capable of sensing the tiny vibra-

tions caused by sound source activities, e.g. the vibrations of a speaker diaphragm, and

recovering the original sound or voice, without requirements of a transmission medium

or line-of-sight (LOS) condition. Secondly, this system is capable of obtaining a spatial

estimation of the vibrations. We can retrieve audio signals together with distance esti-

mations of those sounds, which enables separations of simultaneous sounds whose sources

are located at di↵erent distances.

This system employs commercial-o↵-the-shelves (COTS) IR-UWB radar operating at
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sub-10GHz bands, which works by sending and retrieving pulse sequences. We demon-

strate mathematically that it is possible to perform audio sensing using impulse-based

radio waves. We then build a real-world system together with a learning-free signal

processing pipeline. In further testings, we show that this system possesses the ability

to obtain target sounds in noisy, non-LOS scenarios. We also showcase some sample

applications of such a system, as well as point out the directions for future e↵orts.

The second part of this work focus on security issues in audio and speech sensing.

Over the past decade, voice control has gained popularity as a practical and comfortable

interface between users and smart devices. Due to the security and privacy-sensitive

nature of many applications (e.g., banking, health, and smart home) running on these

devices, automatic speaker verification (ASV) techniques have emerged as a form of

biometric identification of the speaker. However, ASV systems are threatened by replay

and audio spoofing attacks where an attacker utilizes techniques such as voice conversion

or speech synthesis to gain illegitimate control over user devices.

To enhance reliability against attacks, we combine ASV systems with audio spoofing

detection systems. In this part, we develop such a system that distinguishes between

spoofing attacks and genuine speeches. Our model is inspired by the success of residual

Convolutional Neural Networks (CNNs) in many classification tasks. We build three vari-

ants of a residual CNN that accept di↵erent feature representations (MFCC, Cepstrum,

and CQCC) as the input. We compare the performance achieved by our model variants

and the baseline models. In the case of computer-generated audio, our model shows 25%

improvements from the baseline. While facing replay attacks, our model fusion improves

the baseline scores by over 70%.
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Part I

Audio Sensing Using

Ultra-Wideband Radar
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CHAPTER 2

Background

Mechanical vibrations whose frequencies lie in the auditory range create audible sounds.

In the first part of this thesis, we introduce an audio sensing system based on Impulse-

Radio Ultra-wideband Radar (referred to as UWB radar in the rest of this part). The

most popular audio sensing system nowadays is the microphone. As a transducer, the

microphone works by translating the mechanical sound pressure wave into electrical sig-

nals. The sound wave is mechanical, which can only be detected if it propagates through

a medium to arrive at the sensor. Meanwhile, the audio sensing system using wireless

vibrometry works in an active way. It sends out probe signals to be reflected on the

vibrating surface of the sound source, and recovers the sound directly from the minute

sound source vibrations. In order words, a wireless vibrometry-based audio sensing sys-

tem allows allows the sound to ’propagate’ even in the vacuum. Moreover, our UWB

radar based audio sensing system can simultaneously measure the distance from the sen-

sor to multiple sound sources, making audio sensing distance-aware. In this chapter, we

provide background about some concepts used in this part as well as some closely related

works that have inspired our research.

Wireless vibrometry refers to the research work trying to sense vibrations using wire-

less signals, which is a growing field of research. Recent works have focused on recovering

information from vibrating objects. For example, [YLL16] uses RFID tags to identify

mechanical vibrations periods of spinning targets like a high-speed centrifuge. [ZHC19]

employs commercial WiFi signals to detect human breath status. [NGW15] leverages

frequency modulated continuous wave in ultrasound frequency to detect chest movement

for sleep apnea detection.

As a particular type of mechanical vibration that lies in the human auditory range,

sound is ubiquitous in human life, and naturally draws great attention in this field. Several
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works have emerged in recent years, showing the ability to recover sound from a source of

vibration. For instance, [DRW14] has shown that it is possible to recover audio through

vibrating objects (such as an empty chip bag) using a high-speed camera. WiFi signals

are also used for audio sensing as its channel state information will carry hints of all kind

of movements including fine-grained vibrations, due to micro-Doppler e↵ect and multi-

path. [WWZ15] transmits WiFi signals with software-defined radio to recover sound

from loudspeakers. Although some of those systems enable eavesdropping capabilities

and raise significant privacy concerns, wireless vibrometry can also benefit our daily

life. For example, [ZLH18] employs lasers to detect the vibrations of house appliances,

enabling centralized device usage sensing in smart homes. [XLZ19] uses millimeter wave

(mmWave) to sense human voice and builds a new interface for controlling voice-assistants

in noisy and complicated scenarios.

Prior works in wireless vibrometry show that wireless signals could be used for sound

recovery. However, when it comes to wireless signals, there is always a trade-o↵ between

range resolution and signal penetration. Signal penetration is the ability for a signal to

pass through objects without losing all their energy, while range resolution determines

how accurately we can distinguish between two objects placed close to each other. Pene-

tration abilities o↵ers the potential to perform sensing in non-line-of-sight scenarios, while

a higher spacial resolution can sense objects more accurately. Typically, signals that have

a larger bandwidth have a better range resolution, which can be described as

r =
c

2B
, (2.1)

where c is the speed of light and B is the bandwidth employed. Owing to historical reasons

like spectrum licensing, wide-band communications schemes can usually be found at a

high-frequency range, which employs sub-millimeter or millimeter wavelengths. However,

high-frequency signals have low penetration and hence can only sense objects present in

the line-of-sight. mmWave, laser, visible light (high-speed camera) are all examples with

a high resolution and poor penetration. On the other end of the resolution-penetration

spectrum, we have modalities like WiFi sensing that operates at a lower frequency (com-

pared to mmWave), the signals can penetrate solid walls and still be able to recover

single-tone audio (i.e., a prolonged musical note), but may experience challenges when

sensing fine-grained audio. Also, almost all modalities employed in wireless vibrometry
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uses continuous waves, making most of them energy-hungry and thus challenging for

mobile scenarios.

In this work, we build an audio sensing system on top of Ultra-wideband (UWB) radar.

We prefer UWB radar over other wireless sensing modalities partly because we aim to

strike a balance between signal penetration ability and range resolution. By definition, a

UWB system refers to the radios that occupy more than 500MHz bandwidth. Specifically,

we used impulse-radio UWB. Those devices communicate by sending very short impulses

that occupy a large frequency range. Working under a sub-10GHz band, UWB possesses

the capability of penetrating light building materials. Our experiment shows that UWB

radar is capable of not only retrieving audio though wall, but also giving an estimation

of how far the sound source is from the sensor. UWB devices are widely used in ranging,

tracking, sensing [DGZ18], and health monitoring. Figure 2.1 shows an example of our

preliminary experiments using UWB radar to recover human breath.

Figure 2.1: UWB signal changes under human breath

UWB’s transmission power is limited to ensure co-existence with other communication

schemes in the same frequency band, such as WiFi and Bluetooth. Unlike WiFi and

mmWave, which use a continuous wave, impulse-based UWB is well known for low power

consumption. In addition, UWB sensors are entering the mainstream - for instance, the

new model of iPhone has already incorporated UWB sensors [Shab]. As a result, we

aim to exploit the ubiquity of such sensors to enhance the process of sound recovery in

challenging environments. Moreover, with the ranging ability of UWB radar, we expect to

make audio sensing ”distance-aware”, enabling some applications like sound separation.

The rest part of this part is organized as follows. In Chapter 3, we describe the theory
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of using impulse-based UWB radar for audio sensing mathematically. Then in Chapter 4,

we provide details of the UWB audio sensing system design. In Chapter 5, we explore

the performance limits of such a system and provide some sample applications. Finally,

we summarize some related work in this field in Chapter 6 and conduct some discussions

along with a summary in Chapter 7.

Our contribution in this work is as follows:

• We provide theoretical analysis on performing audio sensing using non-continuous,

impulse-based wireless signals.

• We build a e↵ective hardware system from commercial-o↵-the-shelves (COTS) UWB

radar sensor with optimal driver settings, as well as a pure statistical signal pro-

cessing pipeline.

• To the best of the authors’ knowledge, we are the first work to investigate the

possibility of extracting audio from UWB radar responses.

• We explore a few potential applications of the UWB audio sensing system, and also

test its limitations.
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CHAPTER 3

Theory of Audio Sensing Using Ultra-wideband

In this section, we formulate this UWB acoustic problem mathematically. Even though

UWB provides a higher spatial resolution than other wireless modalities like WiFi, it is

still not possible to detect minute millimeter level displacement caused by sound vibra-

tion directly with Time-of-Flight estimation. It is non-trivial to show that, the complex

baseband equivalent processing in UWB radar enables the sensing of sound-related vi-

brations.

Figure 3.1: Impulse-radio UWB radar system in equivalent baseband representation

The equivalent baseband representation of our UWB radar system is shown in Fig-

ure 3.1. We define a frame as a period where one pulse is sent out and its responses are

collected. The notion of time (t) within one frame corresponds to the time-of-flight of the

signal pulse, which is also known as fast time. Meanwhile, UWB radars work by sending

out probe pulses sequentially with interval Ts. We use slow time (tslow) to denote the

probe pulse repetition intervals. Usually, fast time is fine grained in tens of picoseconds,

while slow time has the scale of hundreds of microseconds.

The UWB radar sends Gaussian pulses g(t) modulated on a carrier frequency fc,

which can be mathematically represented as

x(t) = g(t� kTs)cos(2⇡fc(t� kTs)), (3.1)

8



where Ts is the pulse repetition rate, and the baseband Gaussian pulses g(t) are given

in [AGM17] as

g(t) = VTXexp(�
t
2

(⇡fB
p

2log10(e))�2
). (3.2)

fB denotes the -10dB bandwidth. The impulse sequence is sent out to interact with

the objects in the environment and received by the receiving antenna. Note that in

reality, the transmitting antenna and the receiving antenna are co-located. The channel

frequency response in an indoor environment can be characterized as a summation of P

paths with di↵erent time delays and attenuation, i.e.,

h(t) =
PX

p=1

↵p�(t� Tp � T
D
p (t)). (3.3)

Tp is the static delay caused by the path length, and for the line-of-sight scenario it

is determined by the target distance. T
D
p (t) is the time-varying displacement caused by

minute target movement, such as the cone being pushed back and forth by the coil in any

speaker. For static objects, TD
p (t) = 0. Our goal in wireless audio sensing is to recover

the T
D
p (t), which can be translated into sound. For simplicity, we ignore the Doppler

e↵ect cause by large-scale target movements, since it varies very slowly compared to the

pulse repetition rate Ts.

The received signal y(t) can be modeled as a convolution of the transmitted signal

and the channel frequency response, plus additive noise, i.e.,

y(t) =x(t) ⇤ h(t) + n(t)

=
PX

p=1

↵pg(t� kTs � Tp � T
D
p (t))cos(2⇡fc(t� kTs � Tp � T

D
p (t))) + n(t).

(3.4)

On the receiver side, the received signal y(t) is downconverted. y(t) is multiplied with

the carrier frequency in a mixer, and then passed through a loss-pass filter. We take the

in-phase branch as an example. Looking at the cosine part only, we will see that,

m(t) =cos(2⇡fc(t� kTs � Tp � T
D
p (t)))cos(2⇡fc(t� kTs))

=
1

2
[cos(2⇡2fc(t� kTs �

Tp

2
�

T
D
p (t)

2
)) + cos(2⇡fc(Tp + T

D
p (t)))].

(3.5)

The 2fc frequency term is filtered out, leaving 1
2cos(2⇡(Tp+T

D
p (t))) term only. Based

on this, we can rewrite the in-phase baseband signal after down-conversion and filtering

9



as

yin�phase(t) = LPF [y(t)⇥ cos(2⇡fc(t� kTs))]

=
1

2

PX

p=1

↵pg(t� kTs � Tp � T
D
p (t))cos(2⇡fc(Tp + T

D
p (t))) + ñ(t).

(3.6)

Similarly, the in-phase baseband signal after down-conversion and filtering can be

represented as

yquad(t) = LPF [y(t)⇥ sin(2⇡fc(t� kTs))]

=
1

2

PX

p=1

↵pg(t� kTs � Tp � T
D
p (t))sin(2⇡fc(Tp + T

D
p (t))) + ñ(t).

(3.7)

The target time-of-flight Tp can be translated into target distance when multiplied

with the speed of light, allowing us to examine di↵erent targets at di↵erent distances by

setting t = kTs + Tp. For those paths without voice-related movement whose T
D
p (t) = 0,

the response y(t = kTs + Tp) ideally will not change over slow time. We can filter

those static responses out by applying a static clutter suppression algorithm that will be

introduced in Chapter 4.

Suppose the sound-related vibration is captured in path p0, we can isolate the received

signal from such a path by setting t = tp = kTs + Tp0 , which can be written as

yin�phase(tp) =
1

2
↵p0g(T

D
p0 (tp))cos(2⇡fcTp0 + 2⇡fcT

D
p0 (tp)) + ñ(tp). (3.8)

yquad(tp) =
1

2
↵p0g(T

D
p0 (tp))sin(2⇡fcTp0 + 2⇡fcT

D
p0 (tp)) + ñ(tp). (3.9)

We can have an estimation of the scale of TD
p0 (t). Suppose the sound-related displace-

ment is 2mm, and the UWB carrier frequency is 7.5GHz, then

max(TD
p0 ) =

d

c
=

2⇥ 10�3

3⇥ 10�8
= 6.67⇥ 10�12

, (3.10)

max(2⇡fcT
D
p0 ) =6.67⇥ 10�12 ⇥ 2⇥ ⇡ ⇥ 7.5⇥ 109 = 0.314. (3.11)

Both are minimal values. Then using Maclaurin series to expand g(t) around g(0)

and ignoring second-order and above terms, we have

g(t) = g(0) + g
0(0)t+ o(t2) = VTX + 0 · t+ o(t2) = VTX + o(t2). (3.12)
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Plug Equation 3.12 into 3.8 and 3.9, and ignore high order infinitesimals as well as

noise, we get the form of

yin�phase(tp) =
1

2
↵p0VTXcos(2⇡fcTp0 + 2⇡fcT

D
p0 (tp)), (3.13)

yquad(tp) =
1

2
↵p0VTXsin(2⇡fcTp0 + 2⇡fcT

D
p0 (tp)). (3.14)

By Taylor expansion, f(t) =
P1

n=0
f (n)(t0)

n! (t� t0)n, where f (n)(t0) is the nth derivatives

of f(t) at t0, we know that

sin(t) =sin(0) + cos(0)t+ o(t2) ⇡ t, |t| < ✏

cos(t) =cos(
⇡

2
)� sin(

⇡

2
)t+ o(t2) ⇡ �t, |t� ⇡

2
| < ✏

sin(t) =sin(⇡) + cos(⇡)t+ o(t2) ⇡ �t, |t� ⇡| < ✏

cos(t) =cos(
3⇡

2
)� sin(

3⇡

2
)t+ o(t2) ⇡ t, |t� 3⇡

2
| < ✏

(3.15)

In Equation 3.10 we already show that 2⇡fcTD
p0 is a minute number. While 2⇡fcTp0

is very large, mod(2⇡fcTp0 , 2⇡) is going to put the component inside the sine or cosine

within Equation 3.13 and 3.14 near one of the four vicinities above. Without loss of

generality, we assume mod(2⇡fcTp0 , 2⇡) ⇡ 0, then

yquad(tp) =
1

2
↵p0VTX2⇡fcT

D
p0 (tp) =

1

2
↵p0VTX

2

c
d
D
p0(tp)2⇡fc = ↵p0VTX

2

c
⇡fcd

D
p0(tp), (3.16)

where d
D
p0(t) is the distance of sound-related movement, and c is the speed of light. It

is clear that the amount of target micro displacement is linearly proportional to the

amplitude of the quadratic part of the receiving signal. In other cases, it will be linearly

proportional to the amplitude of the in-phase part. Note that tp(k) = kTs + Tp0 , and d
D
p0

changes over slow time. For example, if a sine wave single tone (fmusic) sound is played,

then the d
D
p0 should be modeled as,

d
D
p0(tslow) = max(dDp0)sin(2⇡fmusictslow). (3.17)

We can treat dDp0(tp) = d
D
p0(kTs + Tp) as the speaker movement dDp0 being sampled at

interval Ts, i.e., sampled at the UWB frame rate. yquad(tp) or yin�phase(tp) is proportional

to d
D
p0(tp). Thus we conclude that we can recover the sound-related movement from the

amplitude of UWB in-phase or quadrature data, whichever gives a higher signal quality

11



As a summary, in this chapter, we show mathematically that we can extract the sound-

related vibration information by analyzing the amplitude of the In-phase or Quadrature

of UWB receiving signal, whichever gives is a higher signal-to-noise-ratio. Our work aims

to extract the vibration related information from the UWB radar sensor readings, and

this chapter provides a theoretical guarantee for this goal.
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CHAPTER 4

System Design and Implementation

4.1 System Overview

In the previous chapter, we gave a mathematical proof of the theory using UWB radar

for sound recovery. In this chapter, we build a real-world system from a commercial-o↵-

the-shelf UWB Radar board, and implemented a data processing pipeline to make the

theory a reality. Figure 4.1 gives an overview of our UWB audio sensing system.

Figure 4.1: An overview of our UWB audio sensing system

The system uses a UWB radar that sends out impulses at a constant rate, collects the

reflected impulses, and downconverts the radio frequency data to the baseband in-phase

and quadrature(I/Q) data. The I/Q data is then analyzed o✏ine with our processing

algorithms that consist of a few modules. Firstly, to battle the phase variations caused by

sampling clock jitters, we employ the Phase Noise Correction algorithm. Static Clutter

Suppression removes the reflections caused by static objects like walls and furniture.

As we have analyzed in Chapter 3, the sound-related information will appear on the

amplitude of the real or imagery part of the I/Q data. Thus, we juxtapose the in-phase

part and the quadrature part. Since the reflected pulses have various time-of-flight which
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correspond to a wide distance range, it is crucial to ”localize” the distance bins where

vibrations happen using the Vibrating Target Localization module. Finally, we can obtain

the recovered sound with further denoising, such as a spectral subtraction algorithm.

Then we can have a recovered sound for future interfaces, e.g., sound classification or

speech recognition.

4.2 Hardware and Drivers

Our system is implemented with Novelda Xethru X4M05 UWB radar1 board combined

with a Raspberry Pi 3B+. Figure 4.2(a) shows the hardware stack of our system, the blue

board is the UWB radar transceiver, and it is connected with the Raspberry Pi using a

connector board designed by ourselves, whose schematic is shown in Figure 4.2(c). The

connection between the Pi and the radar is realized via the SPI interface.

Figure 4.2: Hardware components overview of the UWB audio sensing system: (a) Hard-

ware appearance (b) Proof-of-concept experiment setup (c) Hardware Connection

4.2.1 UWB Data Collection

The X4M05 radar board consists of an X4A02 Antenna board and a Novelda X4 impulse

radar transceiver System on Chip (SoC). According to its datasheet [XeT], the UWB

radar operates at a center frequency of 7.29GHz with a bandwidth of 1.4GHz. Like other

1Due to strategic realignment of Novelda, the Xethru community website and some of the datasheets,
where many information of the hardware and drivers comes from, is no longer available online.
Some driver examples, hardware design files and datasheets are available on their Github archive:
https://github.com/novelda

14



radars, UWB radar works by sending out a probe carrier-frequency modulated Gaussian

pulse at a constant rate and collecting responses.

The data collected from the probe pulse to the arrival of the last response is called a

frame. In practice, we can set the maximum length of the frames to tune the radar range.

All the frames are ordered chronologically, and Figure 4.3 shows an example of this data

structure. The frames are placed along the Y-axis – the slow time. On the X-axis (fast

time), we have reflective pulse responses with di↵erent time delays. Since the fast time

denotes the round trip time-of-flight(ToF) of a pulse, we can convert the fast time into

distance bins.

Figure 4.3: Illustration of the fast time and slow time

In the UWB radar hardware we use, the Gaussian pulses are modulated on a sub-10

GHz carrier frequency. At the receiver side, a digital down-conversion is performed on

the received Radar Frame (RF) data inside the X4 SoC to retrieve the baseband pulses,

making each data point a complex double representing in-phase and quadrature (I/Q)

baseband data. This down-conversion stage will decimate the RF data by a factor of 8.

The sampling rate of the fast time is 23.328 GSamples/s. With all the information above,

we can calculate the distance between adjacent distance bins in the baseband data as

bb interval =
LightSpeed

2⇥ SamplingRate

=
2.998⇥ 108m/s⇥ 8

2⇥ 23.328⇥ 109Hz
= 0.0514m.

(4.1)

The maximum length of the received Radar Frame (RF) data before the downconver-

sion has 1536 bins. So the maximum range of such a radar system is
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max dist = 1536÷ 8⇥ 0.0514 = 9.87m. (4.2)

As a summary, the collected data is going to be a complex matrix with dimension

fast time⇥ slow time. The fast time dimension indicates the target distance while the

second dimension indicates the elapsed time.

4.2.2 Driver Settings

The Xethru radar driver is implemented based on [XED], with modifications to enable

faster data transfer and to strike a balance between sampling rate and signal-to-noise-

ratio(SNR). In this section, we describe the major challenges in the driver settings to

enable audio sensing.

SPI clock. The X4 radar SoC receives configuration and sends data to Raspberry Pi

using Serial Peripheral Interface Bus (SPI). Once the X4 radar SoC finishes a data frame,

it raised an SPI interrupt so that the controller (in this case, Raspberry Pi) can read the

data. Owing to the fact that the radar SoC only caches the last frame it received, the

clock of SPI should be set higher to ensure that the data can be transported in time. We

set the clock to 32 MHz.

Transmission Power. The radar transceiver can operate at three di↵erent trans-

mitting power settings, which are low(0.48 pJ/pulse), medium(1.47 pJ/pulse), high(2.65

pJ/pulse). In our experiment, we test on both the medium level and the high level, and

they are both capable of audio sensing. A higher power level can increase the sensitivity

and e↵ective range of the system. However, these settings should be performed carefully

to comply with FCC regulations.

E↵ective Range. As analyzed in Section 4.2.1, the maximum range of the UWB

radar can be as far as 9.87m. However, due to the limits of the transmission power and

the SNR requirements, we set the e↵ective range to be 0.3m-4.3m. The first few bins are

discarded since they are usually overfilled by crosstalks between the transmitting antenna

(Tx) and the receiving antenna (Rx).

DAC Settings and Sampling Rate. The X4 uses a swept-threshold sampling

method, according to [APP][AGM17]. The pulse duration is so short that a standard
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DAC will not be fast enough. A Swept-Threshold Sampling method is used to address

this problem. The received signal frame is compared against a threshold to generate

one-bit values for all data points in this frame. The threshold will increase by one step

before the response of the next repeated pulse comes. Due to the extremely high pulse

repetition rate, the vibrating target can be approximated as static in such a short period,

which means that the repeated frames can be treated the same as the previous ones. Then

after a certain number of frames, we can have a multiple-bits digital representation of the

original analog frame. The procedure is denoted as one iteration. It is also possible to

average multiple iterations, or to average multiple pulses during one step (increase pulse-

per-step) to improve SNR. However, if these two knobs are set too high, the sampling

rate will be limited. This relationship can be mathematically described as

FPS =
PulseRepetitionFrequency(15.1875MHz)

Iterations⇥ PulsePerStep⇥ (DACmax(1100)�DACmin(949) + 1)
⇥DutyCycle.

(4.3)

Heuristically, we pick Iterations = 20, PulsePerStep = 2, and FPS = 1.5kHz. Cur-

rently, due to the limitations of SPI transfer speed, the sampling rate can not exceed

1.6kHz, otherwise packet loss will be inevitable.

The data was stored locally in the Raspberry Pi and then transferred to a desktop

computer with AMD Ryzen 7 2700X processor for processing. Figure 4.2(b) demonstrates

a typical setting of our proof-of-concept experiment. The UWB radar system is mounted

on a tripod and placed at a distance from the speaker. The speaker is connected with a

cell phone to play the test tones.

4.3 Signal Processing Pipeline

The collected data is then analyzed o✏ine with our processing algorithms shown in Fig-

ure 4.1 that consist of a few modules: Phase Noise Correction that removes sampling

clock jitters, Static Clutter Suppression that suppresses the reflections caused by static

objects, and Vibration Activity Localization that determines the distances of the vibrat-

ing targets. Finally, we can acquire recovered audio after denoising and normalizing. We

will introduce those modules separately in the rest part of this section.
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4.3.1 Phase Noise Correction

The basic idea behind this work is to measure the amplitude change over time of the in-

phase or quadrature data caused by source vibrations. However, many factors will block

us from retrieving the information related to sound vibration, and one of those factors is

the phase noise. Phase noise is introduced due to the imperfection of the signal sampling

clock. These imperfections may include crystal defects and phase lock loop (PLL) error.

Ideally, if we select out the data from one distance bin and analyze the phase over

time, the phase should remain relatively the same supposing there are no vibrations at

the current bin. However, with phase noise, you can see a rapid change of phase back

and forth, which will then lead to the system mistakenly believe in the existence of a

vibration in this bin. Figure 4.4 shows an example of the phase noise between adjacent

UWB frames.

Figure 4.4: Example of phase noises between adjacent frames

The insight here is that the signal amplitude in the first few bins is always high,

which is due to the ”crosstalks” between the transmitting antenna (TX) and the receiving

antenna (RX), i.e., direct signal leakage from the Tx to the Rx. Our insight is that this

crosstalk can be used as a baseline for phase calibration. Following the method proposed

in [PNC], we first calculate the mean phase of bin 1 and use it as a standard reference

phase. For each frame, we calculate the di↵erence �� between the phase of the first

element (i.e., bin 1 data) and the reference phase. Then we multiply all samples from the

current frame with e
j�� to o↵set the phase error.

18



4.3.2 Static Clutter Suppression

While vibrations can create a unique pattern on the receiving data, static objects like

walls and furniture will also reflect UWB pulses and create strong responses. As shown in

Figure 4.5(a), the high peaks around bin 20 and bin 50 are the evidence of static clutters.

The static responses are so strong that the useful signal is buried underneath. Luckily,

the static clutter is usually time-invariant in a select bin. We apply a Butterworth finite

impulse response filter(FIR) on each distance bin, with the stopping frequency at 20Hz

and the passing frequency at 70Hz. To ensure zeros phase distortion at the beginning of

the sequences, the FIR filtering is applied to input frame data in both the forward and

reverse directions. The stop-band attenuation was set at -80dB.

Figure 4.5: Results of static clutter removal. Left: (a) Raw data after Phase Noise

Correction. Right: (b) After Static Clutter Removal.

Figure 4.5(b) shows the result after static clutter removal. The static peaks in Fig-

ure 4.5(a) are filtered out. Also, in the experiment shown in Figure 4.5, the sound lasts

for about 12500 frames (8.3s), which is reflected in the peaks colored with green. From

the filtered data, we can also see that the speaker is placed about 92.5 cm from the sensor

(the ground truth is 100cm) as we see time-varying patterns around bin 18. Our static

clutter suppression filter is able to remove all the responses caused by static objects, as

well as the low-frequency vibrations caused by human movement or human breathing.

Due to the low-pass nature of UWB audio sensing (to be discussed in future chapters),

we also provide an option of doing pre-emphasis at this stage:

y(t) = x(t)� ↵x(t� 1), (4.4)
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where ↵ 2 (0.95, 1). This di↵erence equation is equivalent to a high-pass filter that

compensates the signal loss in high-frequency ranges.

4.3.3 Vibrating Target Localization

UWB data contains multiple time series(columns) that corresponds to di↵erent distance

bins. As shown in previous cases, we may visually localize the vibrations in some cases.

However, it is vital to select candidate bins with a high signal-to-noise-ratio(SNR), where

SNR is defined as the signal power divided by the noise power. Since the signal is still

pretty noisy in some channels, only doing thresholding or calculating variance in the time

domain will not give satisfying results.

We choose to solve this problem in the frequency domain. Our insight here is that,

compared to noise, a channel(frames within a certain distance bin) with sound vibration

information has a more concentrated spectrum than a noisy channel. For example, music

will have basic notes and their higher order harmonics. While human voice power is

more widely distributed in the spectrum, we can still observe basic frequencies F0 and

their harmonics. Thus, we firstly perform a Discrete Fourier Transform (DFT) over all

channels to get their spectrums. Then the Herfindahl-Hirschman index (HHI) is used to

calculate the concentration level of those spectrums. The Herfindahl-Hirschman index

was introduced in economic fields as a measure of market concentration. It is calculated by

squaring the ”market share” of each frequency and then summing the resulting numbers.

Here the ”market share” is defined as the power of the current frequency divided by

the overall power of the signal time series. The distance bins with the highest HHIs are

selected as the candidates of bins containing vibration information.

4.3.4 Denoising and Normalization

After localizing the vibrating target, we can acquire an audio signal estimation by slicing

that distance bin from the data. However, the recovered sound, while clearly audible, still

contains non-negligible background noise which sounds like winds in microphone record-

ings. This noise is the n(t) which we ignore in Chapter 3. Our observation is that noise

is very close to an Additive White Gaussian Noise(AWGN). This can be demonstrated in
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Figure 4.6. Part (a)-(d) of this figure shows that an original speech signal(a) is decimated

to our sampling rate to acquire (b). It is then low-pass filtered to simulate the UWB

channel response to get (c) and finally added AWGN to get (d). This simulated result

is very similar to (e), which is the same signal measure in reality, and thus supports our

assumption that the noise is AWGN.

Figure 4.6: Gaussian white noise simulation and spectral subtraction denoising

For additive noise, a simple but powerful denoising solution is spectral subtraction

(SS). The underlying idea of SS is straightforward. A typical flow chart of SS is illustrated

in Figure 4.7. Suppose the signal x(t) = s(t) + d(t), where s(t) is the signal part and

d(t) is the noise part. x(t) is divided into overlapping frames. Then after fast Fourier

transform, the spectrum of noise D̂(w) can be estimated and updated continuously using

pure noise frames. What remains to do is to subtract the noise spectrum amplitude from

the noisy signal, i.e.

|X̂(w)| =
q

|X(w)|2 � |D̂(w)|2. (4.5)

The spectrogram amplitude is then multiplied with the original phase to get an esti-

mation of the clean signal s(t), i.e., x̂(t).

Famous variants of the SS methods are linear SS [Bol79], non-linear SS [BSM79] and

multi-band SS [KL02], whose implementations can be found at [Zavb] [Zava] [Zavc]. The
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Figure 4.7: Flow chart of a typical spectral subtraction pipeline

spectral subtraction algorithm has some inherent problems, for example, music noise

introduced by noise residuals. However, even the simplest linear SS works fine on our

data. Figure 4.6(f) shows an example of applying linear spectral subtraction on the

collected data. The output of such a filter is then normalized and output as a .wav file to

generate the recovered sound. Also, we perform a Short Time Fourier Transform (STFT)

to visualize the recovered sound. In the output of STFT, the X-axis stands for time while

the Y-axis represents frequency.

Figure 4.8: Results of the proof-of-concept experiments

The results of the proof-of-concept experiments are shown in Figure 4.8, where we
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play a single tone song Mary has a little lamb. From the visualization, we can see that

all the notes are recovered clearly.

We also notice that sometimes there is an interference of 60Hz and its multiples. This

is probably due to the complicated power frequency electromagnetic field emitted by the

circuit regulator or other devices. We assume an IIR comb filter can help us filter out

the power frequency components.

In the next chapter, we will explore the limits of our UWB audio sensing system.

Factors including distance, target frequency, speaker placement, and the blockage will be

studied by field experiments.
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CHAPTER 5

Micro-benchmarks and Sample Applications

5.1 Micro-benchmarks

In this section, we aim to test the limits of our UWB audio sensing system. The trans-

mission of wireless signals is a↵ected by a number of factors, including but not limited to

distance, angle and blockage. To study how our system performs under real-world condi-

tions, we perform micro benchmark tests to determine the contribution of four di↵erent

factors: (1) distance, (2) blockage, (3) speaker placement angle, and (4) sound frequency.

Distance. As we have analyzed in Chapter 4, the system su↵ers from additive noise

close to Gaussian white noise. Meanwhile, it is common sense that wireless signal strength

will decay in space. In this test, we play a single tone ”C4” music tone whose frequency

is 261.63Hz using a studio speaker. The speaker volume is tuned to 77.1 dB/SPL at one

meter distance measured by a microphone meter. Our system is placed in front of the

speaker at a distance starting from 50 cm and increasing by 50 cm each time. The data

is send to a PC to be processed o✏ine. Figure 5.1(a) shows a typical setting.

We use signal-to-noise-ratio to measure the quality of the recovered sound. The signal

noise ratio (SNR) is defined as

SNR = 10log10(
Es

En
), (5.1)

where Es and En are the energy of the signal and the noise, separately. In experiments,

we notice that the recovered sound may have a slight frequency drift from the test tone

probably due to the sampling clock error. Thus we estimate the power the of signal in

frequency domain by firstly localize the peak in the spectrum near the target frequency

(261.63Hz) and then sum the energy in nearby frequency bins (within 5 Hz) as an esti-

mation of signal frequency, while using the rest energy as an estimation of noise. Due to

the fact that the noise maybe time-varying, we employ a 1.5 second window with a 500
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ms overlap to calculate the short-time SNR. Also, in order to authentically measure the

noise, we remove the denoising stage from the signal processing pipeline.

Figure 5.1: SNR vs speaker placement distance: (a) Experiment Setup (b) SNR plot across

di↵erent distances

Figure 5.1 shows the results. We can see that the system can operate smoothly in free

space for 3 meters with reasonable SNR. The general trend is that the SNR is decreasing

linearly over distances and still have capabilities for a further distance. The reason that

50 cm SNR is worse than that of 100 cm is probably due to the ”current noise” as well

as harmonics caused by clipping are captured by the system, and are count into noise

energy.

Blockage. At the beginning of this part, we discussed the trade-o↵ between the

spatial resolution and the penetration ability. We expect our system can operate in non-

line-of-sight (NLOS) scenarios, i.e., can recover the sound behind light building materials.

The experiment settings are generally the same as the distance experiments. The di↵er-

ence is that the speaker and the sensor is separated by a hollow wooden wall (a normal

wall between the bedroom and the living room) with a thickness of 11.5 cm. The settings

are shown in Figure 5.2(a), where the speaker is put inside the bedroom and the sensor

is placed outside in the living room.

Figure 5.2(b) displays the results of through-wall sound retrieving experiments. Gen-

erally the SNR is still following the linear trend. Compared to that of free space, the

through-wall results su↵ered a one-time loss of around 5dB. Also, the slope of SNR drop-

ping is slightly steeper than that of free space. For human ear, at the distance of 2.92m,

even the SNR becomes relatively low, the test tone is still clearly audible. For machine
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Figure 5.2: SNR vs through-wall speaker placement distance: (a) Experiment Setup (b)

SNR plot across di↵erent distances

processing, however, the e↵ective range may reduce since current models for audio pro-

cessing are usually not very robust noise. Generally speaking, the system can operate

through a wall within a range of 2.5 meters with reasonable performance down-gradation.

Speaker Placement Angle. In reality, it is not practical to require the speaker to

be always aligned to the sensor. Thus it is necessary to understand the relative angle

between the speaker diaphragm surface and the sensor Tx-Rx surface. Then there are

two separate problems. Firstly, if the speaker is aligned to the sensor, but the sensor is

pointing at another direction, then the recovered sound quality will be negatively a↵ected.

Note that currently our sensor is equipped with a directional antenna whose 5dB main

lobe is 50° both in elevation and azimuth. Thus for this problem, we argue that this

problem can be solved with a mechanical system that rotates the sensor, and the target

angle can be given by searching for the direction that gives the highest SNR.

Secondly, if the sensor beam is in the right direction, but the speaker is placed at

di↵erent angles, then the performance may vary. Intuitively, the incoming signal beam

will experience di↵use reflection on the speaker cone, and then a certain proportion of

the signal will be reflected back. We use experiments to measure the e↵ect of speaker

placement angle, whose settings is shown in Figure 5.3(a). The distance is fixed at one

meter and the speaker is rotated to a few certain angles. The speaker volume is turned

down to 74.5 dB/SPL at 1m distance.

From Figure 5.3(b), we can see that the SNR drops quickly after the speaker cone

deviates over 10 degrees. Then the SNR fluctuates up and down and hovers at around
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Figure 5.3: SNR vs speaker placement angle: (a) Experiment Setup (b) SNR plot across

di↵erent angles

2.5dB. This observation coincides with our intuition: The fluctuation is owing to the

speaker cone geometry. At some certain angles the direct reflection will be stronger

than other angles. The di↵used reflection signal can still provide clues about the cone

vibration.

So far, we have only considered the direct reflections. Our experiments show that

it is possible to perform Reflective Audio Sensing using UWB devices, which is demon-

strated in Figure 5.4. The spectrum in the middle and the spectrogram to the right both

prove that sound source vibrations can be recovered from strong reflective paths. This

observation bro-dens the application case of our system.

Figure 5.4: Example of reflective audio sensing

Sound Frequency. The final characteristic of the system that we want to test is

the frequency response. Placing the speaker at 1m distance, we play test tones from

100Hz to 600Hz with increments of 100Hz. Our results in Figure 5.5 generally show a

loss-pass trend, which provide a hint that we should use pre-emphasis in signal processing
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to compensate for this low pass nature.

Figure 5.5: UWB audio sensing system frequency response

5.2 Sample Applications

In the previous section, we explore the limits of such a UWB audio sensing system. In

this section, we will provide some sample use case of our system.

Sound source distance measurement. One of the great advantages of using

UWB lies in the fine ranging resolution brought by its ultra-wide signal bandwidth. As

we introduced at the beginning of this part, UWB audio sensing is distance-aware, which

means we can not only recover the sound-related vibrations, but also know how far the

vibrating source is from the sensors. We aggregate the data from the first two experiments

described in Section 5.1 and estimate the speaker distance from the data. The empirical

cumulative distribution function (CDF) plot of estimation error is shown in Figure 5.6.

The mean error is 5.31cm, the median error is 5.24cm, the maximum error is 8.32cm

and the standard deviation is 1.63cm. We can see that the our system can give distance

estimation within two distance bins, which is pretty accurate.

Through-wall acoustic eavesdropping. People feel that whatever they listen to

inside their home is private, that no one can snoop on its contents. However, as a common

proverb goes: ”Walls have ears”. It is a saying that can be brought to life with the help

of such a UWB audio sensing system. Our experiments in Section 5.1(2) show that our

system can operate without line-of-sight, which enables our system to perform through

wall eavesdropping just like [WWZ15]. We have also proved that our system is capable of
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Figure 5.6: UWB audio sensing system distance estimation error empirical CDF curve

measuring the distance of the speaker. Suppose we have multiple instances of our system,

it may be possible also to localize the sound source by trilateration.

Acoustic feedback in vacuum. The underlying philosophy of acoustic eavesdrop-

ping with wireless vibrometry is that, radio frequency wireless signals can penetrate

materials, reach the vibrating source directly and come back, without needing mechani-

cal sound waves that need to transmit through mediums. Note that the materials that

block the sound waves may not necessarily cause trouble for electromagnetic waves, for

instance, sound-absorbing foams or a double-layer vacuum glass wall. Following this

lead, we imaging that such a system can be used to provide acoustic feedback in scientific

experiments that involves a vacuum chamber, or in space missions where sound cannot

propagate.

Sound separation. Sound separation is an active research field. Once voices and

speeches are mixed in the microphone recordings, it is di�cult to separate them apart as

they are entangled both in time and frequency domain. People have been trying to use

deep learning-based methods to solve this problem [KWE19]. Our system proposes a new

potential solution to this problem - separate the sound in UWB fast time domain. Our

system is able to deal with multiple simultaneous sounds occurring at di↵erent distances,

and separate them apart based on the time-of-flight (or fast time). Figure 5.7 demon-

strates our experiments on sound separation. As shown in part (a), the two speakers are

placed at di↵erent distances, one at 58cm playing Mary has a little lamb and another
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Figure 5.7: Sound separation using UWB audio sensing system

Figure 5.8: Example on sensing chopper vibrations

at 122cm playing Twinkle twinkle little star. The spectrogram of the round recorded by

a microphone is shown in part(b), where the two songs are entangled cannot be easily

separated.

Part (c) and (d) show the output of our system. By selecting di↵erent distance bins,

we can separate the two songs without any residual.

Sound recovery from household tools VibroSight [ZLH18] employs lasers to re-
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cover the sound produced by smart home appliances so that their daily usage can be

analyzed. Our system also expresses similar potentials in recovering the sound from

household tools. Figure 5.8 is an example of sensing the vibration of a food chopper. We

turn the chopper to two di↵erent speed settings, and the recovered sound clearly indicates

the speed, the start, and the end phase of the food chopping spins.

31



CHAPTER 6

Related Work

In this chapter, we summarize some related work that involves wireless vibrometry and

applications of the UWB devices and inspires our work.

Sound recovery using side channels has been a hot field of research in the past decade

or so. Most use cases of such techniques are of adversarial nature. As voice-based user

interfaces have become more common, so have the attacks on them. Wei et al. [WWZ15]

use the acoustic-radio transformation (ART) algorithm which can recover sound produced

by a loudspeaker. More specifically, they inspect subtle disturbances in WiFi signals to

recover audio.

Vibration inspection has also been used to sense mechanical vibrations to study

whether a system is working accurately or not. For example, every building or bridge

has a “fundamental frequency” at which it vibrates. However, due to wind or earth-

quakes, these vibrations may increase and threaten the stability of the structure. Yang

et al. [YLL16], use RFID (Radio-frequency Identification) to analyze high-frequency

mechanical vibrations in machines and structures using low-frequency RFID solutions.

Their solution, Tagbeat, can troubleshoot automobile engines and can even monitor the

shaking of blood samples in a high-speed centrifuge.

In WaveEar [XLZ19], the authors create a Voice-User Interface (VUI) using mmWave

radar. The authors point the radar at the vocal cords of a person and collect his/her

vocal vibrations. The received signal, containing the speech information, is fed to their

novel deep neural network for recovering the voice through exhaustive extraction. This

technique is better than microphone based sound sensing because it cannot be easily

polluted by ambient noise.

There are several other methods to sense vibrations. In Vibrosight [ZLH18], the

authors sense physical vibrations at one specific point using long-range laser vibrometry.
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This type of vibration sensing technique can perform robustly even in noisy environments

and allows the detection of simultaneous activities.

Side channel attacks that take advantage of these vibrations have also been studied

in depth. In [KXF], Kwong et al. demonstrate that the mechanical components in

magnetic hard disk drives behave as microphones with su�cient precision to extract and

parse human speech. This type of technique can be used to record secret conversations

because people do not suspect such components to be malicious. This technique is so

accurate that Shazam [shaa], a popular mobile app for recognizing music, was able to

recognize a song recorded by the hard disk drive.

UWB radars are not new to the world of sensing and have in-fact been used for various

sensing tasks. One example is the ‘human presence sensor’ created by Novelda[nov]. This

UWB based device can be used to find out if a user is present in front of a device or not.

One additional advantage is that the radar chip has very small dimensions and can be

hidden inside the plain looking casing of any objects. Those features ensure that we

can achieve the desired functionality while maintaining the aesthetics and avoiding any

physical security concerns.

Another example of sensing using UWB radars is called V
2iFi [ZCC20] in which

the authors use a COTS UWB radio to reliably detect a driver’s vital signs (such as

respiratory rate, heart rate, and heart rate variability) under driving conditions in the

presence of passengers.

33



CHAPTER 7

Discussions and Summary

We explore the characteristics and potential applications of our system in Chapter 5.

However, this system still has some limitations that will point us to some future directions.

We will also provide a short summary of this part of this dissertation in this Chapter.

7.1 Limitations and Future Work

Sampling Rate. A major limitation of our current system is the relatively low sam-

pling rate. While UWB radars have a fast sampling system on the fast time(collecting

responses), the vibrations can only be recovered by analysing a series of frames. Thus

what matters is the granularity of the slow time, i.e., frame rate. Currently, the frame

rate cannot go beyond 1.6kHz owing to that fact that the X4 UWB radar chip only

caches the last frame it receives, and that the data transmission speed is limited by the

SPI interface. In order to perform recovery for human voice, we need a sampling rate of

at least 3kHz (the sampling rate of a landline telephone) to ensure understanding of hu-

man speech, as the voiceless consonants that are critical in human speech understanding

usually have only high-frequency components. In the future, we expect to enable Quad

Serial Peripheral Interface (QSPI) or substitute the Raspberry Pi with FPGA to increase

the data transmission rate.

Noise. Even though Section 5.1 shows that our system is capable of operating in

complicated environments, it still su↵ers from a drop in SNR under unfavorable condi-

tions. In worst cases, the recovered sound may downgrade below the quality threshold for

machine processing or the human auditory system. Here the performance of our system

is limited by the radar board and antennas. We expect that the innovative design of

the hardware that increases the transmission power may help, as when we increase the
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power setting from ”low” to ”high”, the e↵ective range of our system increases. Adding

a controllable low-noise amplifier and a power amplifier between the X4 SoC and the

antenna might help to increase the system performance.

Direction. As discussed before, our system is currently using a directional antenna,

which implies that the sensor can only work if it is pointing to the direction of the sound

source. In the future, we hope this direction problem can be solved by either a mechanical

system that can rotate the sensor, or a system using multiple omnidirectional antennas

so that we can use blind beamforming to localize the vibrating targets.

Target Material. Di↵erent materials of the target interact with the UWB radar wave

di↵erently. It could reflect, absorb, be penetrated by the signal or show a combination of

the three in most cases. For example, our system may work perfectly on metal and wooden

speaker diaphragms, but its e↵ective range might drop in case of paper cones. Moreover,

our tests reveal that the UWB-based system cannot recover voice from a human throat.

Those are the intrinsic disadvantages of using wireless vibrometry. One of the future

directions can be building a comprehensive wireless vibrometry system that combines

modalities like mmWave, impulse UWB, laser, etc. Operating at di↵erent frequency

ranges, those technologies can compensate for each other and make a more powerful

sensing system.

Further application-specific signal processing. Currently, our prototype system

only focuses on the audio recovery. In the future, we expect it to become an interface

that can be integrated with other technologies in audio processing. For example, it might

be possible to couple our system with an end-to-end automatic speech recognition (ASR)

system in order to generate a transcript of the recovered audio clip [WHK18].

7.2 Summary

In this part of the dissertation, we propose an audio sensing system using impulse radio

Ultra-wideband radar. We mathematically prove the theory of recovering audio using

impulse-based wireless vibrometry. We also build a real-world UWB radar system capable

of audio sensing, and provide a learning-free signal processing pipeline. Our results show

that this system is able to retrieve the sound directly from the vibrating source and also
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estimate the distance from the source to the sensor. Such characteristics enable many

applications like sound separation and through-wall acoustic eavesdropping. We also test

the limits of our system and point the directions of future research. We believe that it

is a step towards making audio sensing more robust to use UWB radar as an alternative

sensing modality.

In the next part, we will focus on the security side of audio sensing by looking at the

design of an audio anti-spoofing system that checks the authenticity of collected audio

clips.
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Part II

Audio Anti-Spoofing Using Deep

Neural Networks
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CHAPTER 8

Introduction to Audio Spoofing Detection

The state-of-art models for speech synthesis and voice conversion are capable of generat-

ing synthetic speech that is perceptually indistinguishable from bona fide human speech.

These methods represent a threat to the automatic speaker verification (ASV) systems.

Additionally, replay attacks where the attacker uses a speaker to replay a previously

recorded genuine human speech are also possible. In this part, we present our deep

learning solution in the ASVSpoof2019 challenge [con19] which aims to develop counter-

measure systems that distinguish between spoofing attacks and genuine speeches. Our

model is inspired by the success of residual convolutional networks in many classification

tasks. We build three variants of a residual convolutional neural network that accept

di↵erent feature representations (MFCC, log-magnitude spectrogram, and CQCC) of the

input. We compare the performance achieved by our model variants and the competition

baseline models. In the logical access scenario, the fusion of our models achieves zero

tandem detection cost function (t-DCF) and zero equal error rate (EER), as evaluated

on the development set. On the evaluation set, our model fusion improves the t-DCF

and EER by 25% compared to the baseline algorithms. Against physical access replay

attacks, our model fusion improves the baseline algorithms t-DCF and EER scores by

71% and 75% on the evaluation set, respectively.

8.1 Background

Over the past decade, voice control has gained popularity as a practical and comfortable

interface between users and smart devices. Due to the security and privacy-sensitive

nature of many applications (e.g., banking, health, and smart home) running on these

devices, automatic speaker verification (ASV) [EKY13] techniques have emerged as a

form of biometric identification of the speaker. ASV system compares a speech sample
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provided by the user and a sample stored in the database to determine if the two samples

come from the same speaker. The number of such voice biometric systems, even under

conservative estimations, will easily exceed 600 million around the world, according to

a report released by Opus Research in 2016 [Mil16]. A single breach of such an ASV

system, e.g., one used for online banking user identification, might lead to a significant

loss of property. Therefore, it becomes increasingly urgent to distinguish between the

bona fide human speech and spoofed audios.

However, ASV systems are currently threatened by replay [KEY17] and audio spoof-

ing attacks where an attacker utilizes techniques such as voice conversion (VC) or speech

synthesis (SS) to gain illegitimate control over user devices. Speech synthesis [ODZ16,

WWK16, JBW18] and voice conversion [TCS16, HLH18] have progressed a lot over the

past decade reaching the point where it has become very challenging to di↵erentiate be-

tween their results and genuine users’ speech. To enhance reliability against attacks, we

combine ASV systems with audio spoofing detection systems that compute countermea-

sure scores to distinguish between spoofed and bona fide (genuine) speech. The automatic

speaker verification spoofing and countermeasure challenge (ASVSpoof [EKY13, WKE15,

KEY17, con19]) competitions have emerged to assess the state-of-art methods for spoofing

detection and promote further research in this critical challenge.

The first edition of the competition, ASVSpoof2015 [WKE15], focused on logical

access scenarios where the attacker is using text-to-speech (TTS) and voice conversion

(VC) algorithms. The second edition of ASVSpoof competition, ASVSpoof2017 [KEY17],

focused on the physical access scenario where the attacker is performing replay attack

by recording the genuine speech and then replay it to deceive the ASV system. The

new edition of the competition, ASVSpoof2019 [con19], extends the previous versions

in several directions. First, it considers all three major forms of attacks: SS, VC, and

replay attacks. In addition, the latest and strongest spoof algorithms are used to generate

more natural counterexamples for spoof detection systems. Finally, while the previous

competitions used the equal error rate (EER) as an evaluation metric, ASVSpoof 2019

adopts a newly proposed tandem decision cost function (t-DCF) as its primary metric

and leaves EER as a secondary metric. t-DCF considers the cooperation between the

ASV system and the Spoofing Countermeasure system, and defines the cost of di↵erent
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system failure types in a more detailed manner.

In this work, we present our models submitted for the ASVSpoof2019 competition [con19].

Inspired by the success of deep neural networks in many tasks [AAA16, SLJ15, EKN17],

we pick a deep neural model as our model family. Among deep neural networks, con-

volutional networks have been the most successful in image classification [SLJ15], and

have been recently applied to other data modalities such as Speech [AMJ14, AAA16],

text [ZZL15] and ECG signals [RHH17]. We consider di↵erent feature extraction al-

gorithms to convert the input (raw time-domain speech waveform) into a 2D feature

representation. That 2D feature representation is fed as an input into our convolutional

model. A practical challenge in training very deep (consisting of many layers) convo-

lutional networks is vanishing gradients that makes it hard for lower-layers (closer to

input) to receive useful update signals during the training [HZR16]. To overcome this

issue, [HZR16] recently proposed an e↵ective solution called residual networks which em-

ploy skip connections that act as shortcuts allowing training updates to back-propagate

faster towards the lower layers during training. Therefore, we also consider adding resid-

ual links to improve and stabilize the training of our models. A detailed description of

our model architecture is provided in Section 9.3. Finally, we show how the fusion of

countermeasure (CM) scores produced by models trained on di↵erent features help to

increase the accuracy of the spoofing detection.

Our contribution in this paper is threefold. First, we design and implement a deep

residual convolutional network to perform audio spoofing detection. Our models are

released as open source1. Second, we provide a comparison between the performance of

three di↵erent feature extraction algorithms (MFCC, log-magnitude Spectrogram, and

CQCC). Third, we evaluate the performance of our residual network with varying choices

of input features against the two attack scenarios of ASVSpoof2019 (logical access and

physical access) using both the development dataset(including only known attacks) and

evaluation dataset (including both known and unknown attacks).

The rest of this paper is organized as follows. Section 8.2 provides a summary of

related work. In Chapter 9 we discuss the realization of our countermeasure (CM)

system, where Section 9.2 describes the feature extraction module of the system, and

1https://github.com/nesl/asvspoof2019
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Section 9.3 then describes our model architecture design and implementation. Chapter 10

includes our experiment results. Finally, Chapter 11 concludes this part of the dissertation

and points the future directions.

8.2 Related Work

While the participants of the previous ASVspoof2015 [WKE15] have built several pow-

erful solutions against audio spoofing, the state-of-the-art of audio spoofing techniques,

e.g., TTS [ODZ16, HLH18] and VC [LYT18], has also progressed a lot over the past

four years. Likewise, last year’s competition ASVSpoof2019 has a more realistic dataset

for replay attacks compared to ASVSpoof2017 [KEY17]. Prominent previous approaches

against logical access attacks include [VMO15], which used spectral-log-filter-bank and

relative phase shift features as input to a model combining a deep neural network with

support vector machine (SVM) classifier. [CQD15] proposed using a DNN to compute a

representative spoofing vector (s-vector). Then it uses normalized Mahalanobis distance

between the s-vector and the class representative vector to calculate countermeasure

scores. [WYK15] uses relative phase information and group delay feature to train a

Gaussian Mixture Model (GMM) for detecting spoofing attacks. Against replay attacks,

[LNM17] have previously developed a deep learning model combining both CNN and RNN

that lead to 6.73% EER on the ASVSpoof2017 evaluation dataset. In ASVSpoof2017,

[CXZ17] also used a residual convolutional network, but with a di↵erent architecture and

input features, to obtain 13.44% EER on the eval set.
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CHAPTER 9

Feature Extraction and Model Design

9.1 System Overview

The goal of ASVspoof challenge is to compute a countermeasure (CM) score for each

input audio file. A high CM score indicates a bona fide speech, and a low CM score

indicates a spoofing attack. In this work, we create a spoof countermeasure (CM) system

that works together with any ASV system in a serial manner.

Figure 9.1: Overall structure of our audio spoofing detction system

Figure 9.1 shows the overall structure of our audio spoofing detection system, which

consists of three major parts. Firstly, various features are extracted from the raw voice

waveform. We emphasize on logarithmic power spectrogram as well as cepstral coe�cients

to capture the time-frequency characteristics of the original sound signal. The features

are then used as inputs as residual neural networks (ResNets) to generate log-softmax

classification scores, indicating the possibility of whether a voice is bona-fide or not.

Finally, we perform a score-level fusion of di↵erent combinations of features and network

structures to generate a final output score.

The core of this system is deep residual networks that perform binary classification.

To prepare the features as the convolutional network inputs, we process the raw audio
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waveform first a by a feature extraction step, which we will discuss in the next section.

9.2 Feature Extraction

We prepare features from raw audio waveform by one of the following feature extrac-

tion algorithms: the Mel-Frequency Cepstral Coe�cients (MFCCs), the Constant Q

Cepstral Coe�cients(CQCCs), and the Logarithmic Magnitude of Short-Time Fourier

Transform(log-magnitude STFT).

Mel-frequency Cepstral Coe�cients (MFCCs): MFCC is a widely used feature

for speech recognition and other applications like music genre classification. Before going

to details of MFCC, we first examine the philosophy of using Cepstral Coe�cients (CCs)

as speech features. The most popular model for human speech generation is the ”source-

filter model”.

In the source-filter model, human speech y(t) is considered to be a convolution of

human voice source excitation s(t) (vocal-cord vibration for voiced speech and noise for

voiceless speech) and human vocal tract filtering f(t) (e.g., articulation of the lips, the

palate and the tongue), i.e.,

y(t) = s(t) ⇤ f(t). (9.1)

In frequency domain, the source and vocal filter are multiplicative, i.e., Y (w) = S(w)⇥

F (w). Figure 9.2 shows the source filter model in frequency domain. The voiced source is

the base frequency of a human speaker and its harmonics. The calculation of CCs is shown

in Figure 9.3, where the audio is analyzed through Short-Time Fourier Transform (STFT)

to get the spectrogram. Then we take the logarithm on the amplitude to the spectrogram

to acquire cepstrum, and finally, use Discrete Cosine Transform (DCT) to convert it to

CC’s. The logarithm in CC algorithm converts the multiplicative relationship between

the source and filter to an additive one, and helps to separate and model the source and

filters separately. Di↵erent speakers may have di↵erent (source) pitch. Meanwhile, the

filter transfer functions may carry biometrics of their articulation organs. Intuitively,

CCs can help us capture more speaker-identity related information.

Mel-frequency Cepstral Coe�cients (MFCC) is a special type of CCs that incorporates
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Figure 9.2: Source-filter model of speech production

Figure 9.3: Calculation pipeline of cepstral coe�cients

the characteristics of the human auditory system. Acoustic research reveals that the

perceived frequency is di↵erent from the natural frequency. The relationship is as follows.

mels = 2595log10(1 +
Hz

700
). (9.2)

MFCC is calculated in a way similar to that of vanilla CCs. The di↵erence is that, the

spectrogram acquired by computing the short-time-Fourier-transform is passed through

a bank of mel-filters shown in 9.4. If we fix the time window, then each filter will output

the in-band energy of the original signal. Finally, by cascading the filter band outputs,

we get a Mel-Spectrogram that reveals filter bank energies varying over time.

In the MFCC features we use in this system, we pick the first 24 coe�cients. We

also find the performance can be improved if we concatenate the MFCC with its first-

order �MFCC and second derivative �2
MFCC to produce our feature representa-

tion which is a 2D matrix whose x-axis is the time and y-axis is the 72 elements of

(MFCC, �MFCC, �2
MFCC). This improvement is because derivatives of MFCC

capture the dynamics in speech, and we believe that the spoofing algorithms may expose
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Figure 9.4: The mel-filter bank in frequency domain

some unnatural flaws in its dynamics.

Constant Q Cepstral Coe�cients(CQCCs): CQCC is another type of CCs

proposed especially for speech anti-spoofing. Instead of using STFT, the CQCC uses

constant-Q transform(CQT), which was initially proposed for music processing. The in-

tuition behind the usage of CQT is simple. In speech processing, it is a common practice

to map the speech into di↵erent frequency bands and analyze accordingly. For example,

one way to understand the STFT is that it firstly filter the signal into linear frequency

bands and then calculate energy in short windows. In CQT, however, the central frequen-

cies of those bands are picked non-linearly. CQT maintains a constant Q-factor, which

is defined as the central frequency divided by the bandwidth. As frequency goes higher,

the band goes wider to give us geometrically spaced frequency bins.

Figure 9.5 1 demonstrates a comparison between CQT and STFT. In the first row,

each red dot is the intersection of ts (the center of sampling window in the time domain)

and fs (the central frequency of a filter in the frequency domain). The blue dotted lines

indicates the boundary of the filter bands, and the spaces between boundaries are the

filter bandwidths. It is clear that, by maintaining a constant Q-factor, we can achieve

a higher frequency resolution in low-frequency bands, and a higher time-resolution when

frequencies go higher. This might be helpful for computers to perceive speech signal and

better extract the identity-related information.

To compute CQCC, after applying CQT, we calculate a power spectrum and take a

logarithm like that in a normal CC calculation. Then a uniform re-sampling is performed,

followed by a DCT to get the CQCCs(which is also a 2D matrix). More details of CQCC

1This first row of this figure is directly imported from [TDE17]
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Figure 9.5: Comparison of STFT and CQT.

can be found in [TDE17].

Logarithmic Magnitude of STFT: An advantage of deep learning models is their

capabilities of representation learning [BCV13, GBC16] by automatically learning high-

level features from raw input data. This ability has led to neural models that process raw

input images to outperform models dealing with human-engineered features. Inspired by

this, we also train models with the log-spectrogram as the input, which is acquired by

directly apply logarithm on the magniture of the STFT output (spectrograms).

We first compute the STFT on the raw audio input using hamming windows (window

size = 2048 with 25% overlap). Then we calculate the magnitude of each component and

convert it to log scale. The output matrix captures the time-frequency characteristics of

the input audio waveform and is fed directly as an input to our neural model without

any further transformations or conversions. While this input representation is rawer than

either MFCC or CQCC, we rely on the representation learning abilities of neural networks
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to transform this input into higher-level representations within the hidden layers of our

model.

9.3 Model Architecture

Convolutional Neural Networks(CNNs) are now the de-facto state-of-the-art in many

classification tasks. Our system uses deep residual convolutional networks as a backend

to process the feature we proposed in the previous section and generate CM scores.

We build three di↵erent models variants MFCC-ResNet, CQCC-ResNet, and Spec-ResNet

which process MFCC, CQCC and log-magnitude spectrogram input features, respectively.

The three variants have a nearly identical architecture, but they di↵er from each other in

the input shape to accommodate the di↵erences in the dimensions of input features, and

consequentially also the number of units in the first fully connected layer which is after

the last residual block, as we will explain later.
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Figure 9.6: Model architecture for the Spec-ResNet model. Detailed structure of residual

blocks is shown in 9.7.

Figure 9.6 shows the architecture of the Spec-ResNet model that takes the log-

magnitude STFT as input features. First, the input is treated as a single channel image

and passed through a 2D convolution layer with 32 filters, where filter size = 3⇥3, stride

length = 1, and padding = 1. The output volume of the first convolution layer has 32

channels and is passed through a sequence of 6 residual blocks. The output from the last

residual block is fed into a dropout layer [SHK14] (with dropout rate = 50%) followed

by a hidden fully connected (FC) layer with leaky-ReLU [HZR15] activation function

(↵ = 0.01). Outputs from the hidden FC layer are fed into another FC layer with two

units that produce classification logits. The logits are finally converted into a probability
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Figure 9.7: Detailed architecture of the convolution block with residual connection

distribution using a final softmax layer. For specifications of the other two variants of

the network, please refer to Figure A.2 in the Appendix.

The structure of a residual block is shown in Figure 9.7. Each residual block has

a Conv2D layer (32 filters, filter size = 3 ⇥ 3, stride = 1, padding = 1) followed by

a batch normalization layer [IS15], a leaky-ReLU activation layer [HZR15], a dropout

(with dropout probability = 0.5) [SHK14], and another final Conv2D layer (also 32 filters

and filter size = 3 ⇥ 3, but with stride = 3 and padding = 1). Dropout is used as a

regularizer to reduce the model overfitting, and batch normalization [IS15] accelerates

the network training progress. A skip-through connection is established by directly add

the inputs to the outputs. To guarantee that the dimension agrees, we apply a Conv2D

layer (32 filters, filter size = 3⇥ 3, stride = 3, padding = 1) on the bypass route. Finally,

batch normalization [IS15] and leaky-ReLU non-linearlity are used to produce the residual

block output.

All models are trained by minimizing a weighted cross-entropy loss function where the

ratio of between weights assigned to genuine and spoofed examples are 9:1, in order to

mitigate the imbalance in the training data distribution. The cost function is minimized

using Adam optimizer [KB14] with learning rate = 5⇥10�5 for 200 epochs with batch size

= 32. After each epoch, we save the model parameters, and we finally use the parameters

with the best performance on the validation dataset.
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The final countermeasure score (CM) is computed from the softmax outputs using

the log-likelihood ratio.

CM(s) = log(p(bona fide|s; ✓))� log(p(spoof|s; ✓)) (9.3)

where s is the given audio file and ✓ represents the model parameters.
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CHAPTER 10

Model Evaluation

In this chapter, we quantitatively evaluate our model using selected metrics. Information

about the dataset and baseline models will also be provided in the chapter. We implement

our neural network model using PyTorch [PGC17] and train our models using a desktop

machine with TitanX GPU. Feature extraction is done using the librosa [MRL15] python

library.1.

10.1 Dataset and Baseline Models

Dataset Overview. The data used in this work comes from ASVSpoof 2019 Challenge

database [TWS19]. The database consists of two partitions separately for logical access

(LA) and physical access (PA) scenarios. The non-overlapping short audio files come from

78 human speakers (33 males, 45 females), derived originally from the VCTK dataset.

Each partition is then divided into three subsets with disjoint sets of speakers: training

(8 male, 12 female), development (4 male, 6 female), and evaluation (21 male, 27 female).

Data distributions over the subsets are shown in Table 10.1.

Logical access Physical access

Subset Bona fide Spoof Bona fide Spoof

Training 2,580 22,800 5,400 48,600

Development 2,5480 22,296 5,400 24,300

Evaluation 7,355 63,882 18,090 116,640

Table 10.1: Number of audio files in the ASVspoof2019 dataset.

Logical Access Scenario. The spoofed audio in the logical access scenario is generated

1For the CQCC for which we used the MATLAB code provided by competition organizers
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using 17 di↵erent speech synthesis and voice conversion toolkits. Six of these attack types

are considered known attacks and are used to generate the training and development

datasets while the other 11 attacks are considered unknown and are used, along with two

of the known attacks, to generate the evaluation dataset. For details of the 17 algorithms

used to generate the spoofed speech, please refer to the Appendix A(1).

Physical Access Scenario. In physical access scenario, the attacker records the voice

of a genuine speaker and replay it to attack the system. The attack scenario is shown in

Figure 10.12. Human speakers standing at the blue point talk to the ASV system marked

in yellow, and an attacker record the speech at the red point. Then during the attacking

phase, the attacker replays the recording speech at the blue point to interact with the

ASV system.

Figure 10.1: Physical access attack scenario and data generation.

The data in the physical access partition is simulated. The simulation of genuine

speech is conducted using Roomsimove3. The room size S, reverberation R, distance

Ds (distance between the speaker and the ASV system), and the speaker directivity is

taken into consideration. The attacker audio, however, has two extra phases: The first

one is the sound propagation channel response. This impulse response (IR) is similar

to the IR of a bona fide speech except that the speaker is not facing the recorder, and

(2) the distance Da (distance between the speaker and the recorder) is di↵erent from

Ds. Secondly, the IR of the recording device also needs to be considered. For example,

the recorded speech using a Hi-Fi recorder will be much di↵erent from that of a tape

recorder. This IR is simulated with the generalized polynomial Hammerstein model and

2The figure is directly imported from the challenge evaluation plan [con19].

3http://homepages.loria.fr/evincent/software/Roomsimove 1.4.zip
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the Synchronized Swept Sine tool4.

The Training and the Development subsets are recorded and replayed in the 27 di↵er-

ent acoustic configurations (3 room sizes S, 3 levels of reverberation R, and 3 speaker-to-

ASV distances Ds). Evaluation subset of the physical access partition are generated from

di↵erent impulse responses and therefore represents unknown attacks. Also, for spoofed

data inside those subsets, there are 9 di↵erent attack settings (3 record zone distances

Da and 3 recorder qualities Q).

Baseline Models. For each track of the competition, the organizers have provided imple-

mentations for two baseline models, which are using Gaussian mixture models (GMMs)

[RR95, RQD00] using the Linear Frequency Cepstral Coe�cients (LFCC) and CQCC

features.

10.2 Evaluation Metrics

The evaluation scores are computed using the following metrics on both the development

dataset (known attacks) and evaluation dataset (both known and unknown attacks):

EER: the Equal Error Rate is used as a secondary metric. EER is determined by the

point at which the miss (false negative) rate and false alarm (false positive) rate are equal

to each other.

t-DCF [KLD18]: the tandem detection cost function is the new primary metric in the

ASVSpoof 2019 challenge. It was proposed as a reliable scoring metric to evaluate the

combined performance of ASV and CMs. One of the disadvantages of EER is that this

metric did not take the cooperation between the ASV system and the CM system. For

example, under a zero-e↵ort attack, where a genuine human claims himself to be someone

else without any e↵ort of voice imitation, the CM system will give a high CM score as the

voice is indeed a human voice. However, the EER will drop as it is actually an attack.

In reality, it is the job of the ASV system to reject such attacks.

As we mentioned before, our CM system work together will the ASV system in a serial

manner. We can classify the system input into three categories: target speech, non-target

4https://ant-novak.com/pages/sss/
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speech (human voice of another user), and spoof speech, with probability ⇡tar, ⇡non and

⇡spoof . An ideal CM system will assign a low score to the third case and a high score on

the first two. Similarly, an ideal ASV system should only accept the target speech while

rejecting the rest.

Both the ASV system and the CM system has two options: reject or accept. We

define ”miss” as the case that a legitimate trial is rejected, and ”fa” (false acceptance) as

a case where an attack or non-target speech is accepted. Specifically, for a CM system,

a ”miss” happens if it rejects a human speech, and a ”fa” happens when it accepts a

spoofed voice. For an ASV system, ”miss” denotes the rejection of a target speech, and

”fa” means it accepts anything else.

Also, we denote the threshold of CM system as s, where an utterance with score

beyond s is treated as a bona fide speech. Similarly, the threshold of the ASV system

is denoted as t. In our experiment, t is fixed5, and s is flexible, so that we can measure

the performance of our CM system. Then in total, there are two general cases that will

cause a problem.

• The speech is a target speech, but one or more systems in ASV and CM reject this

trial. This will cause a legitimate customer to lose his or her access, which will

incur a cost Cmiss = 1. The probability of this happening is

pa(s) = ⇡tar(p
asv
miss ⇥ (1� p

cm
miss(s)) + p

cm
miss(s))

= ⇡tar(p
asv
miss + p

cm
miss(s)� p

asv
missp

cm
miss(s))).

(10.1)

• The speech is a non-target or spoofed speech, and both the ASV system and the CM

system let it through. This case will incur a high cost Cfa = 10. The probability

that this case happens is

pb(s) = ⇡non(p
asv
fa ⇥ (1� p

cm
miss(s))) + ⇡spoof ⇥ p

asv
fa (s)⇥ p

asv
fa

= ⇡nonp
asv
fa � ⇡nonp

cm
miss(s)p

asv
fa + ⇡spoofp

asv
fa (s)p

asv
fa .

(10.2)

The final empirical t-DCF is given by,

t�DCF = Cmiss ⇥ pa(s) + Cfa ⇥ pb(s) = pa(s) + 10pb(s). (10.3)

5For notation simplicity we will ignore the t in the next few equations
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All the ⇡’s, pasvfa , p
asv
miss is known once the ASV system and the dataset are fixed. The

only unknown terms are p
cm
miss(s) and p

cm
fa (s). They can be calculated with

p
cm
miss(s) =

# of bona fide speech with score  s

# of bona fide speech

p
cm
fa (s) =

# of spoofed speech with score � s

# of spoofed speech
.

(10.4)

Finally, the empirical t-DCF is normalized by dividing a t-DCF score from a CM

system that either accepts or rejects all the trials, whichever is better. For more details

about t-DCF, please refer to [KLD18].

10.3 Results

Table 10.2 shows a comparison between the scores of our three model variants (MFCC-Resnet,

Spec-ResNet, CQCC-ResNet) and the baseline algorithms (LFCC-GMM, and CQCC-GMM) on

both the development and evaluation datasets. Fusion represents the result of doing

a weighted average of the individual ResNet models’ CM scores to provide a final CM

score, where fusion weights are assigned based on the single model’s performance on the

validation dataset.

Logical Access Physical Access

Development Evaluation Development Evaluation

Model t-DCF EER t-DCF EER t-DCF EER t-DCF EER

Baseline LFCC-GMM 0.0663 2.71 0.2116 8.09 0.2554 11.96 0.3017 13.54

Baseline CQCC-GMM 0.0123 0.43 0.2366 9.57 0.1953 9.87 0.2454 11.04

MFCC-ResNet 0.1013 3.34 0.2042 9.33 0.3770 15.91 - -

Spec-ResNet 0.0023 0.11 0.2741 9.68 0.0960 3.85 0.0994 3.81

CQCC-ResNet 0.0002 0.01 0.2166 7.69 0.1026 4.30 0.1070 4.43

Fusion 0.0000 0.00 0.1569 6.02 0.0581 2.65 0.0693 2.78

Table 10.2: t-DCF and EER scores for the di↵erent models as measured on the develop-

ment and evaluation sets for both logical and physical access scenarios.
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10.3.1 Logical Access Results

As shown in Table 10.2, Our Spec-ResNet and CQCC-ResNet have a significantly smaller

t-DCF and EER scores than the baseline algorithms on the development set (known

attacks) of the logical access scenario. The fusion of the models achieves a perfect score

of zero EER and t-DCF on the development set. However, in the evaluation set results,

our models outperform the baseline models only in the EER of CQCC-ResNet and the t-

DCF score of MFCC-ResNet. This di↵erence between results on the development set and

the evaluation set (contains unseen attack types) highlights the di�culty of generalizing a

spoofing detection system to unknown attack algorithms. Nevertheless, our model fusion

shows t-DCF = 0.1569 and EER = 6.02, which are approximately a 25% improvement

over the best scores of baseline algorithms.

Figure 10.2: t-DCF scores of di↵erent models against di↵erent attack types in the logical

access scenario.

To provide a better analysis of the performance of our model against both known and

unknown attacks, the t-DCF scores of our models against each attack type are shown in

Figure 10.2.

Attacks from A01 to A06 come from the development set, and are known attacks (i.e.,

the same attacks as that used in the training set). Meanwhile, attacks from A07 to A19

are the 11 unknown and two known attacks, where (A16 = A04, A06 = A16) are known

algorithms. From Figure 10.2, we can see that our models achieve near-zero t-DCF on all

known attacks. Meanwhile, it still works well against most attack types except for only
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two types of unknown attacks, namely A17 and A18.

Both A17 and A18 are voice conversion algorithms. A17 uses Variational Auto-

Encoder (VAE) as the acoustic model and uses waveform filtering as the waveform gener-

ator. In comparison to the baseline models, the CQCC-GMM model also performs poorly on

A17 (t-DCF=0.9820). It would be interesting in the future to understand when this VAE

based method is capable of deceiving CQCC and neural networks. A18 uses i-Vector and

PLDA as the acoustic model and uses ”MFCC-to-waveform” as a method of waveform

generation. Both the CQCC-GMM and LFCC-GMM work fine on A18, so it is possible that

ResNet is more vulnerable to this type of vocoder attack.

10.3.2 Physical Access Results

Attack

Type

CQCC-

ResNet
Spec-ResNet Fusion

t-DCF EER t-DCF EER t-DCF EER

AA 0.2857 10.59 0.2473 9.17 0.1845 6.78

AB 0.0690 2.57 0.0638 2.22 0.0468 1.77

AC 0.0464 1.75 0.0436 1.56 0.0219 0.80

BA 0.1404 5.46 0.1300 4.82 0.0855 3.29

BB 0.0295 1.18 0.0374 1.34 0.0230 0.79

BC 0.0213 0.84 0.0240 0.86 0.0086 0.36

CA 0.1173 4.55 0.1105 4.01 0.0705 2.71

CB 0.0266 1.00 0.0342 1.19 0.0171 0.59

CC 0.0209 0.82 0.0254 0.87 0.0074 0.28

Table 10.3: Detailed comparison between the two best single models and the fusion model

in Physical Access scenario under di↵erent replay attack settings.

In the physical access scenario, both Spec-ResNet and CQCC-ResNet have significantly

improved both the EER and t-DCF compared to the baseline. As shown in Table 10.2,

our best single model (Spec-ResNet) is 50% and 60% better than the best baseline

results according to the development set EER and t-DCF, respectively. According to the
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evaluation set scores, Spec-ResNet reduces the t-DCF and EER of baseline algorithms

by 60% and 65%, respectively. Furthermore, the fusion of our models leads to 71% and

75% improvement.

Table 10.3 provides detailed results of model performance over di↵erent replay attack

settings. Each setting is marked with two letters. The first letter stands for the distance

between the recording device and the bona-fide speaker, i.e., Da. ’A’ means 10-50 cm,

’B’ means 50-100 cm, and ’C’ means >100cm. The second letter indicates the quality of

replay devices, where A means perfect, B means high, and C means low. From the results,

it is easy to see that, as the distance decreasing and the recording device getting better, the

anti-spoof task becomes more and more di�cult. The worst results are achieved at setting

‘AA’. Another thing to notice is that, while Spec-ResNet is generally performing better

than CQCC-ResNet while in some cases like ’BB’, ’BC’, ’CB’, and ’CC’, CQCC-ResNet

outperforms Spec-ResNet.

Generally, the system performs better on physical access scenarios that on logical

access. This is probably caused by the challenge of generalization, as in logical access,

most attacks in the testing dataset are diverse and unknown, while in physical access, the

features come from the replay channel properties and are easier to learn and generalize.
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CHAPTER 11

Conclusion

In the second part of this dissertation, we present a novel audio spoofing detection system

for both logical access and physical access scenarios. We provide comparisons between

the performance of our model combined with three feature di↵erent feature extraction

algorithms. According to the evaluation dataset scores, against replay attacks, the fusion

of our models CM scores improves the t-DCF and EER metrics of baseline algorithm by

71% and 75%, respectively. Also, against the TTS and VC attacks, our fusion of models

improves the t-DCF and EER metrics by approximately 25% each. Our future work is

to study how to improve the generalization of our model against unknown attacks. One

possible solution is to employ advanced fusion to build a ’wide-and-deep’ network, as

proposed in [CKH16]. The key idea of this new proposal is to concatenate the features

from each model’s last fully connected layers and use a shared softmax layer as the output

layer. This might be able to ”teach” the networks to collaborate with each other and

achieve a better fusion result.

As a summary, in this dissertation, we firstly work towards robust audio sensing using

IR-UWB radar. This new sensing modality can give extra information about sound

source distance, bringing new applications such as sound separation and through-wall

eavesdropping. Then in the second part, we enable secure acoustic sensing by building a

DNN-based countermeasure to protect the ASV system from audio spoofing attack. Our

results show that this system is not only capable of defending attacks that the system is

trained on, but can also generalize to some unseen attack types. Generally speaking, we

are making a small step towards robust and secure acoustic sensing through the e↵ort

described in this work.
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APPENDIX A

Additional Details of Part II

(1) Spoofing Algorithms in Logical Access1

Figure A.1: Spoofed speech sample generation algorithms used in logical access

(2) ResNet Model Variants Specifications

1Information directly imported from https://www.asvspoof.org/interspeech2019 slides.pdf
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Figure A.2: ResNet model variants specifications
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