
UC San Diego
Technical Reports

Title
Proofs of Safety for Untrusted Code

Permalink
https://escholarship.org/uc/item/1487j3fx

Authors
Rosu, Grigore
Segerlind, Nathan

Publication Date
1999-10-27

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1487j3fx
https://escholarship.org
http://www.cdlib.org/

Proofs of Safety for Untrusted Code

Grigore Ro�su and Nathan Segerlind

Department of Computer Science & Engineering

University of California at San Diego

October 19, 1999

Abstract

Proof-carrying code is a technique that can be used to execute untrusted code safely. A

code consumer speci�es requirements and safety rules which de�ne the safe behavior of a system,

and a code producer packages each program with a formal proof that the program satis�es the

requirements. The consumer uses a fast proof validator to check that the proof is correct, and

hence the program is safe. In this report, we discuss applications for which proof-carrying code is

appropriate, explain the mechanics of proof-carrying code, compare it with other techniques and

suggest two research directions for the method.

1 Introduction

We cannot always trust computer programs to

be safe, let alone correct. Given that many pro-

grams are of questionable or unknown origin, for

example, mobile agents and games downloaded

from shady websites, there are often reasons to

believe that a piece of code may attempt to gain

access to private data or cause harm to the sys-

tem.

This problem has been identi�ed for a long

time, and there have been numerous solutions

implemented. Not every solution will always be

appropriate for each use of untrusted code. For

a security mechanism to be useful in a given sit-

uation, it should have the following properties:

E�cacy The system should not have loopholes

which can be used by a clever hacker to cir-

cumvent the system.

E�ciency The system should not incur a cost

which makes running the untrusted code un-

desirable.

Expressiveness The system should allow a

user to guarantee the untrusted code obeys

whatever properties are desired.

Minimal Trust The user should not have to

trust many third parties in order to feel safe

when using the system.

Ease of Use The system should be easy to use,

both for the producer and consumer of the

untrusted code.

These criteria can seem daunting. Many pro-

tection methods have been designed that moni-

tor the code and prevent disallowed accesses, but

this can be expensive and in
exible. Some sys-

tems use cryptographic protocols to authenticate

the code producer, as if large software companies

did not produce buggy software or have nefarious

motives. Indeed, it can seem that there may be

no better solution than to inspect the code, and

convince yourself that it does nothing malicious.

In fact, this solution is not bad at all, rather, it

can be very e�cient and it can allow great free-

dom in the properties that it can ensure. Proof-

carrying code requires the code producer to pro-

vide the consumer with a formal proof that the

given code meets a speci�cation. The consumer

is then able to verify that the proof is correct

and therefore the given code is safe. Because the

veri�cation of safety is done once, the amortized

cost of using the system is very close to running

1

native code. Because the only limit on the sys-

tem is in what the code producer can prove about

the code, it can be very expressive.

We believe that proof-carrying code is an ex-

citing technique, and that it shows great promise

for ensuring safety in performance critical code

and systems with complicated requirements. In

Section 2, we describe some applications that

need e�cient and
exible mechanisms for han-

dling untrusted code. Other methods developed

over the years are brie
y described in Section

3. Section 4 is a tutorial on the mechanics of

proof-carrying code. Comparisons between PCC

and the other methods are made in Section 5,

and Section 6 sketches some promising research

directions.

2 Applications

Modern operating systems and network archi-

tectures present us with numerous situations in

which the safety of untrusted code is a major

concern. We describe some of these applications

here, and the reader is encouraged to keep them

in mind throughout the rest of the paper.

Mobile Code There is a very �ne line de-

limiting a mobile agent, a useful self-replicating

program that travels the internet performing a

task for its master, and a computer virus, a dan-

gererous self-replicating program that spreads

across the internet wreaking havok on those un-

fortunates in its path. For a mobile agent sytem

to be viable, it is necessary for a host to guard

against viruses while welcoming mobile agents.

Telling the di�erence is not always an easy task.

Indeed, a mobile agent with an error in its repli-

cation routines can become a virus. Mobile agent

applications may require safety requirements be-

yond those presently enforced, such as bounds on

resource consumption, and guarantees of termi-

nation.

Extensible Operating Systems An exten-

sible operating system [2], is one which allows the

user to easily replace the kernel code to increase

performance or customize functionality.

There are numerous situations when it is desir-

able to modify kernel provided functions. Video

stream applications can achieve a 50% increase

in throughput by modifying the kernel to trans-

fer data between the network and the video

driver, bypassing a user process [9]. Similarly,

it can be more e�cient to demultiplex network

packets in the kernel rather than a user process.

However, kernel level techniques can be crude,

and require customization. This trade-o� led

to packet �lters being run as interpreted code

within the kernel [18, 16]. For memory intensive

applications such as databases, it can bene�cial

to involve the application with cache manage-

ment [15].

In an extensible operating system, the safety

of the code in question is a critical issue: a bug

or Trojan horse inserted into the kernel could

have grave consequences. However, the safety

mechanisms should not incur too much cost and

thereby negate the intended performance bene-

�ts.

Active Networks Active networks is an ac-

tive area of research, [27], in which nodes in

a network can not only read packet headers

and route them, but also read packet contents

and modify them. For example, when doing a

real-time video transmission, network congestion

may make it necessary to compress the data. A

node in an active network could use information

about network tra�c to make on-the-
y deci-

sions about whether to compress the data, and

to what degree. A more exotic possibility would

be to replace network packets with \code cap-

sules" which are executed by each node upon re-

ceipt. Certainly, for such technologies to come

into widespread use, it should not be possible

for a malevolent user to create code capsules ca-

pable of bringing down the network. Depending

on what the code capsules are allowed to do, a

wide-array of safety requirements may have to

be ensured, with great e�ciency.

3 Methods

Untrusted code has been around since the days

of the �rst time-sharing systems. The advent

of portable disks and the internet only made it

easier for shady programs to enter a system. Dif-

2

ferent methods for ensuring that a piece of un-

trusted code will not cause any harm have been

developed, each with its advantages and disad-

vantages.

3.1 Interpretation

A common way to ensure the safe execution of

untrusted code is to interpret each command and

perform run-time checks. Interpreters imple-

ment a virtual machine de�ning a set of virtual

commands which provide a portable interface be-

tween the program and the processor. User ap-

plications can be written either directly in the

virtual machine's code or in a higher level lan-

guage, like Java, which is then compiled to the

virtual code. Some kernel extensions, such as the

BSD packet �lter [16], are currently implemented

with interpreted languages.

3.2 Hardware Protection

Many processors provide hardware protection,

preventing one process from accessing the mem-

ory of another. This is often done by using ded-

icated base and limit registers, which only the

kernel can set, to delimit the range of memory

a process is allowed to access. The permission

entries in the TLB can also be used to restrict

memory accesses, provided that only the kernel

is allowed to manipulate TLB entries. Calls be-

tween protected domains are handled by the ker-

nel through a remote procedure call mechanism,

[3, 4].

3.3 Software Fault Isolation

Software fault isolation, or \sandboxing" [28],

was introduced to avoid the high costs incurred

by placing untrusted code in its own address

space and accessing it via remote procedure

calls. The untrusted code is modi�ed to in-

clude address checks before each memory access

or branch. Then, to avoid context switching, it

is placed in a reserved region of memory belong-

ing to the process calling it. If the untrusted

code ever attempts to read memory or jump to

a location outside of this region, its execution is

terminated and an error is raised.

The performance of sandboxed code is gener-

ally than that seen with code that uses hardware

protections. However, depending on the appli-

cations, sandboxing incurs a slowdown between

20% and 50% over unmodi�ed code [28, 5, 24].

3.4 Author Authentication

Cryptographic message-authentication proto-

cols, [26], make it possible for a code producer to

sign a piece of code, ensuring the consumer that

it came from a reputable source.

This approach has been used in commerce, be-

cause it is e�cient, and relatively easy to imple-

ment with existing technologies. Furthermore,

\guarantees" any property which the consumer

trusts the producer to implement. However, the

method is only as strong as the consumer's faith

in the producer. The consumer must believe that

the code producer is both competent and benev-

olent, a questionable assumption at best.

4 Proof-Carrying Code

The proof carrying code mechanism [22, 19, 23],

or simply PCC, ensures the safety of a mobile

agent by requiring that the code producer pro-

vides a proof of its correctness, which the con-

sumer compares against the object code. The

consumer checks the proof, and if it is correct,

the consumer can safely run the code. Because

the code is not interpreted and no tests have been

added to the code, the only cost incurred is the

one-time o�-line cost of verifying the proof.

Given a safety-speci�cation and a piece of

code

1

it is possible to construct a formula which

is valid if and only if the code satis�es the spec-

i�cation. This formula is called the safety predi-

cate and is the key mechanism underlying proof-

carrying code. PCC implementors focus on ex-

tracting this predicate from a piece of code and

1

It is usually necessary to annotate the code with in-

variants in order for the process to work. This is explained

later in the section.

3

CPU

CODE PRODUCER
USER PROCESS
UNTRUSTED CLIENT

CODE CONSUMER
OS KERNEL
NETWORK SERVER

SAFETY

POLICY

PCC

ENABLE VALIDATION

SOURCE PROGRAM

COMPILATION
&

CODE

SAFETY
BINARY

NATIVE

CERTIFICATION

PROOF

PROOF

Figure 1: Overview of Proof-Carrying Code.

a speci�cation, and code producers focus on pro-

viding proofs of this predicate.

A typical proof-carrying code system would

proceed as follows (see Figure 1):

1. Consumer speci�es requirements for the sys-

tem and provides them to the producer;

2. Producer generates code, keeping in mind

the safety speci�cation and an eventual

proof;

3. Producer annotates the code with invariants

and automatically generates the safety pred-

icate;

4. Producer produces a formal proof of the

safety predicate and encodes it together

with the code in the PCC binary;

5. Consumer receives the PCC binary, extracts

the code and the proof, generates the safety

predicate, and then uses a proof-checker to

ensure that the proof of safety is indeed

valid.

The remainder of this section illustrates these

steps in more detail on an example.

One should keep in mind that proof-carrying

code is a general technique, and it can be param-

eterized by the logical framework used to rep-

resent and verify the proofs, and the machine

model and instruction set for the code. In this

section, we use familiar �rst-order logic and an

instruction set similar to the DEC Alpha ISA.

For simplicity, we do not make speci�c the for-

mal representation of the proofs. In existing im-

plementations, Necula and Lee [19, 23] encode

both the proofs and the safety predicates in the

Edinburgh Logical Framework [14]. The Ap-

pendix presents our formalization based on equa-

tional logic using the speci�cation language OBJ

[12, 13].

Step 1: Predicate from Policy

The user of a proof-carrying code system wishes

to enforce a high-level security policy. These re-

quirements must be speci�ed as a predicate in a

formal logic.

The following example is adapted from [22].

Suppose that a kernel maintains an internal ta-

ble with data pertaining to various user pro-

cesses. Each table entry consists of two consec-

utive memory words - a tag and a data word.

The tag describes whether the data word is user

writable or not. The kernel provides a resource

access service through which user processes are

given permission to access their table entry by

installing native code into the kernel. The kernel

invokes the user-installed code with the address

of the table entry corresponding to the parent

process in register r

0

. This address is guaran-

teed by the kernel to be valid and aligned on an

8-byte boundary.

The safety policy requires the code to follow

these three rules:

1. the user code cannot access other table en-

tries than the one poined to by r

0

;

2. the tag is read only;

3. if the tag is zero than the data item is also

read only.

We now express this safety policy as a formal

safety speci�cation, in �rst-order logic, the lan-

guage of our PCC example. This formula is all

the consumer needs to give the producer.

ReadAccess(r

0

) ^ ReadAccess(r

0

+ 8) ^

^ (Memory[r

0

] 6= 0)WriteAccess(r

0

+ 8))

4

Step 2: Untrusted Code

It can be easily seen that the DEC Alpha assem-

bly language program shown in Figure 2 satis�es

the above safety policy. Initially, r

0

holds the ad-

dress of the tag and the data is at the o�set 8

from r

0

.

% Address of tag in r

0

1 ADD r

0

, 8, r

1

% Address of data in r

1

2 LD r

0

, 8(r

0

) % Data in r

0

3 LD r

2

, -8(r

1

) % Tag in r

2

4 ADD r

0

, 1, r

0

% Increment data in r

0

5 BEQ r

2

, L

1

% Skip if tag is zero

6 ST r

0

, 0(r

1)

% Write back data

L

1

RET

Figure 2: DEC Alpha code for resource access.

The problem now is how to convince the con-

sumer that the code does not violate the safety

rules.

Step 3: Safety Predicate

The safety predicate is a formula which depends

on both the safety speci�cation and the code. It

will be a valid formula if and only if the code

satis�es the speci�cation. To generate the safety

predicate, the code is annotated with invariants,

similar to the Hoare method of preconditions,

postconditions and loop invariants taught in un-

dergraduate programming courses. From the an-

notated code, the safety predicate is constructed

recursively.

Code Annotations The PCC method is dif-

ferent from other methods in that it requires the

producer include more speci�c information in the

code, to make the generation of safety predicates

automatic.

One way to enrich code is to include invari-

ants, assertions about the state of execution at

certain steps, which provide a skeleton for form-

ing the safety predicate. The sample code is an-

notated with invariants in Figure 3.

Invariant instructions give the certi�cation

process a hint about the state of execution at

that point in the program They are not exe-

0 INV Pre

c

% Precondition

1 ADD r

0

, 8, r

1

% Address of data in r

1

2 LD r

0

, 8(r

0

) % Data in r

0

3 LD r

2

, -8(r

1

) % Tag in r

2

4 ADD r

0

, 1, r

0

% Increment data in r

0

5 BEQ r

2

, L

1

% Skip if tag is zero

6 INV WriteAccess(r

1

)

7 ST r

0

, 0(r

1)

% Write back data

L

1

RET

Figure 3: Enriched code for resource access.

cutable instructions, and are discarded after the

safety check.

The precondition contains the de�nitions and

assumptions of the consumer's safety policy. In

our example, this includes the de�nition of the

non-logical predicates ReadAccess and WriteAc-

cess. The precondition is simply the speci�cation

formula:

Pre

c

= ReadAccess(r

0

) ^ ReadAccess(r

0

+ 8) ^

^ (Memory[r

0

] 6= 0)WriteAccess(r

0

+ 8))

The second invariant (the one at line 6) hints

to the certi�cation process that if the branch in

line 5 is not taken, then the address in register

r

1

can be safely written.

Sometimes the safety speci�cation may in-

clude a postcondition which must be satis�ed

when the procedure returns, ensuring the ma-

chine is left in a desirable state. The example

speci�cation has no postcondition, or, its post-

condition is simply \true", a condition which is

always satis�ed.

It should be emphasized that the invariants

are not trusted blindly. If the code does not re-

spect the given invariants, then the safety pred-

icate generated will not be valid, and no proof

provided will convince the user of safety. How

the safety predicate depends upon the annota-

tions will be explained next.

The Safety Predicate The safety predicate

P

Safety

is a function of the code, the invariants

provided, and the safety speci�cation that the

consumer provides.

The construction of the safety predicate works

5

Code

i

VC

i

ADD r

a

; op; r

d

[r

d

 r

s

+ op]VC

i+1

LD r

d

; n(r

s

) ReadAccess(r

s

+ n) ^ [r

d

 Memory[r

s

+ n]]VC

i+1

ST r

s

; n(r

d

) WriteAccess(r

d

+ n) ^ [Memory Update[Memory; r

d

+ n; r

s

]]VC

i+1

BEQ r

s

; n ((r

s

= 0)) VC

i+n+1

) ^ ((r

s

6= 0)) VC

i+1

)

RET Post

INV I I

Table 1: The veri�cation condition generator.

by recursively calculating a formula VC

i

, called

a veri�cation condition, for each line of code,

Code

i

. The recursive de�nition is given in Ta-

ble 1. The formulas treat the contents of reg-

isters and memory as free variables. The no-

tation [lhs rhs] �, denotes simple substitution

performed on the formula �, in which the text on

the right-hand side is substituted for the text on

the left-hand side throughout the formula.

Informally, the formula VC

i+1

is the precondi-

tion needed to safely execute the code starting

with the (i+1)th line of code. That is, it is true

whenever the code executes safely through the

ith line of code.

The safety predicate is calculated as follows:

P

Safety

= (8r

k

)

^

i2Inv

(Inv

i

) VC

i+1

)

where Inv is the set of all invariants introduced

in the code, while Inv

i

is the ith invariant; notice

that Inv

0

is the precondition. The safety predi-

cate is quanti�ed over all starting environments.

An involved induction argument can be used to

show that this formula is valid if and only if the

code satis�es the speci�cation.

Putting all this together, Table 2 shows the

safety predicate P

Safety

of our code from Figure

3.

Given the speci�cation, generating the safety

predicate e�ciently can be done by linearly scan-

ning the object code from the end to the begin-

ning, in a method similar to one-dimensional dy-

namic programming.

Step 4: Proof of Correctness

Provided that the code actually satis�es the

speci�cation, the code producer now generates

a formal proof of the validity of the safety

predicate. This step can be partially or fully

automated

2

. The development of such tools is

currently a broad area of research in theoretical

computer science. A large number of tools in-

tended to generate and check proofs have been

devised recently. Such a tool, called Kumo

[10, 11], is being developed at UCSD.

In this section, we deliberately avoid using a

speci�c formalism, as doing so would be beyond

the scope of this report and complicate mat-

ters greatly with the subsequent notation. The

reader should believe that the following proof

of the sample safety predicate, expressed in En-

glish, can be formalized. This formalization is

carried out in the appendix using the OBJ sys-

tem.

The last conjunct of P

Safety

has the form

P) P which is always true, so it can

be eliminated. Similarly, the second

conjunct in the �rst implication has the

form P) true which is also always

true. Since (r

0

+ 8)� 8 is equal to r

0

,

one gets that P

Safety

can be reduced to

\true".

2

It should be said that the process cannot be fully

automated in all cases. The undecidability of the halt-

ing problem prevents the development of an automated

theorem prover capable of proving or disproving whether

an arbitrary piece of code meets a speci�cation. How-

ever, in most cases the programs and speci�cations under

consideration are simple enough that the process can be

automated. This has been the case in practice.

6

P

Safety

= (8 r

0

; r

1

;Memory)fPre

c

) ((ReadAccess((r

0

+ 8)� 8) ^ ReadAccess(r

0

+ 8)) ^

^ ((Memory[(r

0

+ 8)� 8] = 0)) true) ^

^ ((Memory[(r

0

+ 8)� 8] 6= 0))WriteAccess(r

0

+ 8)))g ^

^ fWriteAccess(r

1

)) WriteAccess(r

1

)g

Table 2: Safety Predicate for the code in Figure 3

The producer's job is now �nished. All that is

left to do is to package the code with the proof

and provide it to the consumer.

Steps 5: Consumer End Veri�cation

Upon receipt of the code, the consumer separates

the code and the proof, generates a safety pred-

icate, and then uses a proof-checker to ensure

that the proof of safety is a correct proof of the

safety predicate.

Separating the code and the proof is simply a

matter of conventions. A suggested convention is

to store the proof of correctness in the data seg-

ment of the executable, [23, 19], although other

methods can easily be envisioned.

To generate the safety predicate from the code,

the consumer uses the same algorithm as the pro-

ducer used in Step 3. It is crucial that the pro-

ducer and consumer use the same algorithm for

extracting the safety predicate, to ensure that

they arrive at the same formula. Even if the

code is correct, if their safety predicates do not

match, the proof from the producer cannot con-

vince the consumer.

The consumer must generate the safety predi-

cate on his own from the provided object code and

his own speci�cation. This is why proof-carrying

code works: the consumer generates the safety

predicate for the code he has in hand. If the

safety predicate has a proof, it is valid and there-

fore the code is safe. If all goes well, the proof

provided by the producer will quickly con�rm

this. If the code is unsafe, the safety predicate

is not valid, and thus no proposed proof will be

accepted as correct.

The consumer now checks the proof provided

by the producer. This can be done automati-

cally and e�ciently, by checking that the lines

of the producer's proof follow from the rules of

inference of the formal system used. In our ex-

ample, this would amount to scanning the lines

of the formal proof, and checking that each in-

ference made is allowed by the rules of �rst-

order logic. The easiest way to do this may per-

haps be to have a proof assistant, for example

Kumo,[11, 10], as part of the PCC system that

can be used both by producer to generate the

proof and by consumer to check it.

Discussion

This brief description of the PCC mechanism

leaves a crucial issue unresolved: why does the

validity of the safety predicate ensure that the

code satis�es the speci�cation?

We discuss this issue only informally here, the

interested reader is referred to [20, 21] for the

details of the formal proofs. The safety predicate

is true i� each of its conjuncts Inv

i

) VC

i+1

is true. The hasty reader can imagine that the

invariants separate basic blocks of code ended

with either a branch or a return command. It

can be shown that the �rst-order formula Inv

i

)

VC

i+1

is true i�

assuming that the safety rules speci�ed

by Inv

i

are satis�ed by a certain state

of the system, then the code that fol-

lows up to the next invariant in the ex-

ecution
ow does not violate the safety

rules and moreover, state arrived at

upon execution satis�es the subsequent

invariant.

7

From this, a simple induction argument can show

that a safety predicate is true if and only if the

safety rules speci�ed by the consumer are not

violated during the execution of producer's code.

5 Comparisons with Other

Methods

In order to highlight when its use would be

most appropriate, we compare proof-carrying

code with the other methods using the criteria

de�ned in the introduction.

5.1 E�cacy

All of the techniques we have described, with the

arguable exception of author authentication, are

e�ective when properly implemented. Of course,

author authentication does not guarantee safety

per se, but rather guarantees the source of the

code, and in this message authentication proto-

cols are e�ective.

However, there are problems with particular

implementations of these methods. The most

well-known are in the Netscape Java interpreter,

[7]. Complicated software opens the door for

possible bugs and loopholes, and the correctness

of the implementation of the safety system is a

matter the consumer must take on faith. For

this reason, we consider the correctness of the

safety software a matter of trust, and defer its

discussion until the subsection on minimal trust.

5.2 E�ciency

We cite results from two performance tests com-

paring proof-carrying code with other methods

[21, 24]. Because code using a PCC system is

run as native code, it is not surprising that it is

more e�cient than other techniques. However,

one should be careful to amortize the cost of veri-

fying and transmitting a possibly large proof into

the performance of the system.

In the �rst test [21], four packet �lters were im-

plemented and executed many times. The packet

�lters varied in complexity. Filter 1 accepted all

IP packets, �lter 2 accepted all IP packets origi-

nating from a given network, �lter 3 accepted all

IP and ARP packets exchanged between two net-

works, and �lter 4 accepted all TCP packets with

a given destination port. The safety policy en-

forced was that (1) memory reads are restricted

to packet and scratch memory (2) memory writes

are limited to scratch memory (3) all branches

are forward and (4) reserved and callee-saved

registers are not modi�ed. Proof-carrying code

was compared against running the packet �lter

in an interpreter, compiling it from a safe frag-

ment of Modula-3, and inserting software fault

isolation checks into the code. The results are

summarized in Figure 4.

The second test simulated the performance

of an untrusted mobile agent [24]. The mo-

bile agent browses through a database of air-

line ticket and calculates the best price for a

trip. The safety policy enforced was a simple

one: First, memory accesses had to be prop-

erly aligned. Second, an agent was assigned an

access level by the server, and it could access

only records of equal or lesser access level. The

running time was averaged over the number of

records in the database. The results are summa-

rized in Table 3.

System Time Slowdown

(�s)

Proof-Carrying Code 0.030 1.0

Software Fault Isolation 0.036 1.2

Hardware Protections 0.280 9.3

Interpreted Java 1.230 41.0

Table 3: Run Time per Record and Slowdown Fac-

tors for Safety Mechanisms on a Mobile Agent [24]

A discussion of the e�ciency of proof-carrying

code would not be complete or honest without

analyzing the cost of verifying the proof of cor-

rectness. This cost is expected to be amortized.

For the mobile agent discussed in the second

experiment, the proof of correctness required 370

bytes, for 112 bytes of object code. The gener-

ation of the safety-predicate required 400�s, the

veri�cation of the proof required 1200�s, for a

one-time veri�cation cost of 1600�s. Simple al-

8

2.0

1.5

PCC

1.0

0.5

Filter 1 Filter 2 Filter 3 Filter 4

us

0.78

1.92

0.11 0.08

1.46

0.18 0.15

0.24
0.17

0.23
0.17

1.71

0.20
0.25

0.31 0.33

BPF

SFI

M3-VIEW

Figure 4: Average per-packet run time [21]

gebra shows that proof-carrying code will out-

perform the hardware protection scheme pro-

vided that the size of the database contains a

modest 6400 entries, and it will outperform inter-

preted Java when the database has 1334 entries.

Comparison against software fault isolation can-

not be made in this way because the one-time

cost of inserting the checks was not provided.

In the �rst experiment, it was seen that the

amortized cost of proof-carrying code overtook

that of the BPF interpreter after about 1000

packets, Modula-3 after about 7500 packets and

software fault isolation after about 22,000 pack-

ets. Given the high use of a routine such as a

packet �lter, it seems fair to conclude that proof-

carrying is a more e�cient system.

A factor which has not been measured, and is

particularly relevant to mobile agents, is the in-

creased expense of transmitting the proof along

with the code. The proofs tend to be many

times larger than the code itself, so this cost

cannot be ignored. Further studies to establish

the added cost of transmission for proof carrying

code would be advised.

5.3 Expressiveness

The systems which predate proof-carrying code

ensure that untrusted code causes no harm by

monitoring and restricting its behavior. For this

reason, they are limited in the properties which

they can ensure.

The use of hardware protected memory do-

mains is the least
exible safety mechanism we

have mentioned: it cannot enforce any policy

other than than restricting addresses memory ac-

cesses and branch targets.

Interpreters and software fault isolation sys-

tems can be more
exible. Theoretically, any

property which can be detected by monitoring

the execution of the program can be enforced.

The di�culty is then making the interpreter or

the sandbox able to monitor user-speci�ed safety

properties. We do not know if this has been

done for interpreters, but there have been at-

tempts at extending sandbox techniques, [25].

This has been done by formulating safety prop-

erties as �nite automata and implementing them

with the dedicated registers. This has shown lim-

ited promise because of the incurred cost, and

the awkwardness of specifying the �nite automa-

ton for a complicated safety policy.

Proof-carrying code is limited only in what

the formal language used to encode proofs can

specify and what the code producer can prove

about the code. For this reason, it is much more

exible in the properties it can guard against.

Proof-carrying code has been used to ensure that

mobile agents do not consume too many of the

host's CPU cycles or too much of the host's net-

work bandwidth, [24].

It may be possible to extend the proof-carrying

code system to ensure termination and liveness

properties, which are impossible to enforce with

monitor methods. This possibility is discussed

in the section on research extensions.

5.4 Minimal Trust

Author authentication is a system in which trust

is the most critical resource. Is it always accept-

able to assume that because you have heard of a

programmer, you can trust his/her work? More-

over, the method cannot be used by code pro-

ducers who wish to remain anonymous or who

do not yet have a reputation. A possible solution

to this would be to form trusted third-parties ca-

pable of certifying a piece of code as \o�cially

9

safe", but this pushes the trust problem onto dif-

ferent shoulders, and it is unclear how such third-

parties could be both e�ective and e�cient.

The more mechanical solutions are as good

as their implementations. Interpreted languages

and virtual machines can be rather complicated,

so it is no surprise that errors have been found

in commercial implementations of safe inter-

preted languages, [7]. The technique for insert-

ing safety-checks into code can be very compli-

cated, depending on whether on how expressive

system is, and whether or not the safety-checks

require the registers to be reallocated.

A proof-carrying code system requires only

two pieces of trusted code: the safety-predicate

generator and the proof-checker. These are sim-

ple algorithms and that could be implemented

in a few pages of code, thereby minimizing the

possibility of loopholes being introduced by an

implementation bug.

5.5 Ease of Use

Proof-carrying code achieves e�ciency and
ex-

ibility at the cost of placing the responsibility of

producing a formal proof of safety on the shoul-

ders of the code producer. It is for this reason

that proof-carrying code will most likely remain

out of use for some time.

Interpretation and placing untrusted code in

hardware protected memory segments are well-

understood and implemented in contemporary

systems, [18, 16, 3]. Software-fault isolation re-

quires a special program to be run by the user, to

insert the bounds checking, but it imposes no re-

strictions on the code producer other than leav-

ing a few unused registers, which can be easily

handled by the compiler.

In contrast, proof-carrying code requires sub-

stantial e�ort on the part of the code producer.

The �rst di�culty is getting a proof of cor-

rectness out of the code producer. Requiring

the programmer to prove the correctness of a

piece of code is not unreasonable. In a profes-

sional situation, any programmer who cannot

provide a high-level argument as to why their

program works should be rightly canned. How-

ever, requiring the programmer to produce the

details of a formal proof would be cruelly ine�-

cient and unreasonable. Thankfully this is often

unnecessary. The proofs of correctness from [22]

and [24] were generated automatically, given the

safety-predicates, which were in turn generated

automatically from speci�cations and annotated

code.

A more substantial di�culty is the level at

which the code is annotated. Providing loop in-

variants for a high-level language such as C is

a task taught in most undergraduate computer

science curriculums. However, translating high-

level invariants of C code into annotations for the

compiled assembly code would be quite a chore.

For this reason, for proof-carrying code to be-

come practical, compilers capable of transform-

ing high-level invariants into low-level invariants

seem necessary.

Finally, there is a di�culty in getting the con-

sumer's speci�cation of safety to the code pro-

ducer. Without the prior knowledge of the spec-

i�cation, the programmer cannot create the in-

variants necessary to generate a proof. We pro-

pose two possible solutions for this. One, is

to have a trusted organization capable of set-

ting standards publish the safety speci�cations.

For example, Netscape could publish speci�ca-

tions which must be met by any applet to be

downloaded and run by their browser, and Sun

Microsystems could publish speci�cations which

must be met by any module to be inserted into

one of their kernels. The second is for the

code producer to provide a proof of a tight, all-

purpose safety speci�cation for their code. Then,

it is up to the code consumer to verify that this

proof is correct and that their own desired safety

speci�cation is implied by the producer's speci-

�cation. This possibility is discussed in the next

section.

6 Extensions

In this section we disscuss possible extensions of

the PCC mechanism. First, we present, from

a software engineering point of view, a general

framework for combining speci�cations and im-

10

Spec

Start

Commands

Start

Spec

1

Commands

1

Spec

2

Commands

2

.

.

.

Spec

n

Commands

n

Spec

End

Figure 5: A program layout.

plementations, and then we discuss a promising

example of this when the speci�cation language

is that of temporal logic.

6.1 Speci�cation Extension

Combining speci�cation and implementation

languages is a continuous challenge for soft-

ware engineers. Unfortunately, the two tend

to be kept separate, and often the speci�ca-

tion language is just English or another natu-

ral language. This is acceptable in most situa-

tions, in which security and reliability are not

critical. However, speci�cation languages have

the advantage that they allow high level repre-

sentation, design, testing and verifying proper-

ties of systems a priori; additionally, speci�ca-

tion languages allow rigorous proofs of correct-

ness, which is a precious advantage in developing

highly secure and reliable systems.

Inspired by the proof-carrying code mecha-

nism, we propose a technique to combine speci�-

cations and implementations and then we test it

on the code in Section 4 using a speci�cation lan-

guage whose underlying logic is equational logic.

We regard programs as collections of threads

of execution, each thread starting with a speci�-

cation, as in Figure 5. A speci�cation expresses

machine's state before the execution of a thread

and they should be inserted in such a way to eas-

ily allow tracking the state changes between two

speci�cations.

The control
ow of a program can be seen as a

graph whose nodes are speci�cations and whose

edges are sequences of commands. The mean-

ing is that of a state transition system, where a

machine is in a certain node i� its state satis�es

the spec and it changes the state by executing a

series of commands.

Now we de�ne the formal notion of correct-

ness. A program is correct if and only if

for each edge in the control
ow graph, say

Commands

j

: Spec

j

! Spec

k

, and for each

state s

j

satisfying Spec

j

, if t

j

is the state ob-

tained after executing the series of commands

Commands

j

, then t

j

satis�es Spec

k

.

Spec

Start

and Spec

End

specify an abstract en-

vironment in which producer's program exe-

cutes. So that the producer does not have to pro-

duce separate proofs of correctness for each pos-

sible consumer with a potentially di�erent safety

speci�cation, and to increase the consumer's pri-

vacy, we do not ask the safety speci�cation to

be provided by the consumer. Rather, the pro-

ducer, having in mind the intended uses of his

code, speci�es the safety properties of the code

as tightly as possible. An eventual consumer of

producer's code can either prove that his safety

speci�cation implies the one provided by the pro-

ducer.

Despite its simplicity, this technique can be

very powerful depending on the expressiveness of

the speci�cation language. We tested it on the

resource access program introduced in Section 4,

using OBJ [13, 12] as a speci�cation language.

The correctness in this case is the program's

safety. The program in Figure 3 translates to

the one in Figure 6. The interested reader can

�nd the complete proof score of correctness of

this program in the Appendix.

6.2 Liveness Speci�cations

Suppose you don't like your system's thread

scheduler, and you are considering downloading

one o� the internet for experimentation. Proof-

carrying code, and the other systems we have

discussed, can ensure that this unfamiliar code

does not touch memory or devices which are o�

limits. But, there are still other properties one

11

Spec

Start

f

eq Safe(state) = true:

eq okRead(state; state[r0]) = true:

eq okRead(state; 8+ state[r0]) = true:

cq okWrite(state; 8+ state[r0]) = true

if not statefstate[r0]g is 0:

g

ADD r

0

; 8; r

1

LD r0; 8(r0)

LD r2;�8(r1)

ADD r0; 1; r0

BEQ r2; 2

Spec

1

f

eq Safe(state) = true:

cq okWrite(state; state[r1]) = true

if not state[r2] is 0:

g

ST r

0

; 0(r

1

)

RET

Spec

End

f

eq Safe(state) = true:

g

Figure 6: Ressource access program.

would like in a scheduler. For example, that no

thread is starved (that each unblocked thread

will be scheduled in the future). This is very ba-

sic property to be expected of a scheduler. Un-

fortunately, it is impossible to ensure by methods

which simply monitor the execution of the code

and prevent it from taking dangerous actions.

However, it should be possible to ensure with an

appropriate proof-carrying code system.

Properties such as liveness can be expressed

in temporal logic, [8], a variation of �rst-order

logic extended by the operators 2 (always) and

� (eventually). A simple liveness property could

formulated \at all times, each thread will even-

tually be scheduled". Temporal logic has simple

axiom schemas and inference rules, so there is

little added di�culty for e�ciently recognizing

correct proofs. People have long used temporal

logic to prove the formal correctness of concur-

rent and real time systems, [1], so the system

is usable. All that would be necessary to ex-

tend proof-carrying code to prove such a prop-

erty would be to expand the speci�cation pred-

icate generator and the proof-checker to accept

the added syntax, axioms and inference rules for

temporal logic.

This extension is a conceptually simple one,

the formal language for speci�cations and proofs

is enriched but the basic technique is unchanged.

However, it would substantially widen the class

of properties we would be able to guarantee of a

piece of untrusted code.

6.3 Choice of Formal System

When implementing a proof-carrying code sys-

tem, a formal system for specifying safety pred-

icates and doing proofs must be agreed upon.

This could be the most important aspect of the

system design, as it a�ects ease of use, expres-

siveness and e�ciency.

The system should be expressive enough to

specify the safety requirements consumers want,

but it should be simple enough so that it ad-

mits the fastest proof-checking procedure pos-

sible, and programmers can use it without too

much added di�culty. Contrast this observation

with the preceding section on temporal logic.

Temporal logic may indeed be more expressive,

but the di�culty of teaching programmers to

construct proofs in temporal logic may far out-

weigh the bene�ts of such a system.

The �rst work in proof-carrying code systems

by Necula and Lee, [22, 21, 23, 19, 24, 20], used

the Edinburgh Logical Framework, [14], which is

built upon type theory. It is our opinion that

type theory is a specialized �eld, and almost all

of the persons familiar with it hold PhDs in com-

puter science or mathematical logic. The use of

such a formalism may in fact discourage system

designers from using proof-carrying code.

We believe that for many safety policies, �rst-

order equational logic su�ces. We believe such a

system to be more accessible than type-theory, as

knowledge of �rst-order logic is required in most

undergraduate programs in computer science or

engineering. Moreover, this logic has very fast

12

automatic theorem provers available at present,

such as Maude, [17, 6].

Rewriting systems usually work by following a

proof template given by the user, and then au-

tomatically �lling in the details using the rewrit-

ing rules. This would enable the producer to

send only a proof score rather than a full proof.

Because the sizes of the proofs in the ELF in rep-

resentation have been so very large, three to ten

times the size of the code, a great deal transmis-

sion time could potentially be saved.

Claims of usability and e�ciency are highly

subjective, and can only be evaluated after years

of use. However, we believe that �rst-order equa-

tional logic is expressive enough to be useful,

simple enough to be usable, and therefore a sen-

sible choice for implementing a proof-carrying

code system.

7 Conclusions

Proof-carrying code can be thought of as a con-

sumer rights system for computer users: I want

safe, e�cient code, and you have to prove it to

me.

Of course, this is not always needed or even

appropriate. For applications which are not per-

formance critical, the simplicity of an interpreted

language is quite convenient. For applications

which are not executed very often, and the cost

of transmitting and checking the proofs does not

have time to be amortized, hardware-protections

or sandboxing may provide better e�ciency.

However, proof-carrying code does ensure very

high amortized e�ciency, and it is capable of

guaranteeing more requirements than the \wait

till it tries to do something bad and then kill

it" methods. For high-use applications, such as

kernel extensions, or applications with compli-

cated requirements, such as mobile agents, proof-

carrying code is promising.

We identify three areas of future research. The

�rst is making proof-carrying code usable, by

improving automated and semi-automated theo-

rem provers for proving safety and by developing

compilers which correctly transform high-level

loop invariants into assembly level annotations.

The second is extending proof-carrying code to

ensure properties which cannot possibly be en-

sured by other systems, by developing a proof-

carrying code system which makes use of tem-

poral logic. Finally, performance measurements

and comparisons with other methods should be

broadened to allow engineers to make informed

decisions about the use of proof-carrying code,

in particular, measurements which take into ac-

count the transmission of the lengthy proofs

should be made.

Acknowledgement: We thank George Ciprian

Necula, for providing us with two of the �gures

used in this project, and Keith Marzullo, for di-

recting us to this topic. This report originated

as a term paper in Professor Marzullo's graduate

operating systems class at UCSD.

References

[1] B. Banieqbal, H. Barringer, and A. Pnueli, editors.

Temporal Logic in Speci�cation. Lecture Notes in

Computer Science. Springer Verlag, 1987.

[2] B. N. Bershad, S. Savage, P. Pardyak, E. G. Sirer,

M. Fiuczynski, D. Becker, S. Eggers, and C. Cham-

bers. Extensibility, safety and performance in the

SPIN operating system. In Proceedings of the 15th

Symposium on Operating Systems Principles, pages

267{284, Copper Mountain, Colorado, December

1995.

[3] Brian N. Bershad, Thomas E. Anderson, Edward D.

Lazowska, and Henry M. Levy. Lightweight remote

procedure call. ACM Transactions on Computer Sys-

tems, 8(1):37{55, February 1990.

[4] Andrew D. Birrell and Bruce Jay Nelson. Imple-

menting remote procedure calls. ACM Transactions

on Computer Systems, 2(1):39{59, February 1984.

[5] Peter M. Chen, Wee Teck Ng, Subachandra Chan-

dra, Christopher Aycock, Gurushankar Rajamani,

and David Lowell. The Rio �le cache: Surviving

operating systems crashes. In Seventh International

Conference on Architectural Support for Program-

ming Languages and Operating Systems, pages 74{

83, Cambridge, Massachusetts, 1{5 October 1996.

ACM Press.

[6] Manuel Clavel, Steven Eker, Patrick Lincoln, and

Jos�e Meseguer. Principles of Maude. In Jos�e

Meseguer, editor, Proceedings, First International

Workshop on Rewriting Logic and its Applications.

Elsevier Science, 1996. Volume 4, Electronic Notes

in Theoretical Computer Science.

13

[7] Drew Dean, Edward W. Felten, and Dan S. Wal-

lach. Java security: from HotJava to Netscape and

beyond. In IEEE, editor, 1996 IEEE Symposium

on Security and Privacy: May 6{8, 1996, Oakland,

California, pages 190{200, 1109 Spring Street, Suite

300, Silver Spring, MD 20910, USA, 1996. IEEE

Computer Society Press.

[8] E. Allen Emerson. Temporal and modal logic. In

Jan van Leeuwen, editor, Handbook of Theoretical

Computer Science, Volume B: Formal Models and

Semantics, pages 995{1072. Elsevier Science Pub-

lishers, Amsterdam, The Netherlands, 1990.

[9] Kevin Fall and Joseph Pasquale. Exploiting in-kernel

data paths to improve I/O throughput and CPU

availability. In USENIX Association, editor, Pro-

ceedings of the Winter 1993 USENIX Conference:

January 25{29, 1993, San Diego, California, USA,

pages 327{333, Berkeley, CA, USA, Winter 1993.

USENIX.

[10] Joseph Goguen, Kai Lin, Akira Mori, Grigore Ro�su,

and Akiyoshi Sato. Distributed cooperative formal

methods tools. In Michael Lowry, editor, Proceed-

ings, Automated Software Engineering, pages 55{62.

IEEE, 1997.

[11] Joseph Goguen, Kai Lin, Akira Mori, Grigore Ro�su,

and Akiyoshi Sato. Tools for distributed coopera-

tive design and validation. In Proceedings, CafeOBJ

Symposium. Japan Advanced Institute for Science

and Technology, 1998. Nomuzu, Japan, April 1998.

[12] Joseph Goguen and Joseph Tardo. An introduc-

tion to OBJ: A language for writing and testing

software speci�cations. In Marvin Zelkowitz, edi-

tor, Speci�cation of Reliable Software, pages 170{

189. IEEE, 1979. Reprinted in Software Speci�cation

Techniques, Nehan Gehani and Andrew McGettrick,

editors, Addison Wesley, 1985, pages 391{420.

[13] Joseph Goguen, Timothy Winkler, Jos�e Meseguer,

Kokichi Futatsugi, and Jean-Pierre Jouannaud. In-

troducing OBJ. In Joseph Goguen and Grant Mal-

colm, editors, Algebraic Speci�cation with OBJ: An

Introduction with Case Studies. Academic, to ap-

pear. Also Technical Report SRI-CSL-88-9, August

1988, SRI International.

[14] Robert W. Harper, F. Housell, and G. Plotkin. A

framework for de�ning logic. JACM, 40(1):143{184,

1993.

[15] K. Harty and D. Cheriton. Application-controlled

physical memory using external page-cache manage-

ment. In Proceedings of the Fifth International Con-

ference on Architectural Support for Programming

Languages and Operating Systems, October 1993.

[16] S. McCanne and V. Jacobson. The bsd packet �lter:

A new arhitecture for user-level packet capture. In

The Winter 1993 USENIX Conference, 1993.

[17] Jos�e Meseguer. A logical theory of concurrent ob-

jects and its realization in the Maude language. In

Gul Agha, Peter Wegner, and Aki Yonezawa, edi-

tors, Research Directions in Object-Based Concur-

rency. MIT, 1993.

[18] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The

packet �lter: An e�cient mechanism for user-level

network code. In ACM Symposium on Operating

Systems Principles, 1987.

[19] George C. Necula. Proof-carrying code. In POPL'97,

1997.

[20] George C. Necula. Compiling with Proofs. PhD the-

sis, Carnegie Melon University, 1998. School of Com-

puter Science.

[21] George C. Necula and Peter Lee. Proof-carrying

code. Technical Report CMU-CS-96-165, School

of Computer Science, Carnegie Mellon University,

Pittsburgh, Pa., November 1996.

[22] George C. Necula and Peter Lee. Safe kernel exten-

sions without run-time checking. In Proceedings of

the Second Symposium on Operating System Design

and Implementation, Seattle, WA, 1996.

[23] George C. Necula and Peter Lee. Research on proof-

carrying code for untrusted-code security. In Pro-

ceedings of the 1997 IEEE Symposium on Security

and Privacy, Oakland, 1997, 1997.

[24] George C. Necula and Peter Lee. Safe, Untrusted

Agents Using Proof-Carrying Code. In Giovanni Vi-

gna, editor, Mobile Agent Security, Lecture Notes in

Computer Science No. 1419, pages 61{91. Springer-

Verlag, 1998.

[25] Fred B. Schneider. Enforceable security policies.

Technical report, Cornell University, 1998.

[26] Bruce Schneier. Applied Cryptography: Protocols,

Algorithms, and Source Code in C. John Wiley and

Sons, Inc., New York, NY, USA, second edition,

1996.

[27] David L. Tennenhouse and David J. Wetherall. To-

wards an active network architecture. Computer

Communication Review, 26(2), April 1996.

[28] Robert Wahbe, Steven Lucco, Thomas E. Anderson,

and Susan L. Graham. E�cient software-based fault

isolation. In Proceedings of the 14th ACM Sympo-

sium on Operating Systems Principles, pages 203{

216, 1993.

A A Formal PCC Sytem

An automated, formal correctness proof for the

code in Figure 6 is presented. It is done using

the speci�cation language OBJ [13, 12] whose

operational engine is based on term rewriting.

14

open SAFETY-CHECK .

*** ************** ***

***> Initial state ***

*** ************** ***

op init : -> State .

***> Safety Specification for init

eq Safe(init) = true .

eq okRead (init, init[r0]) = true .

eq okRead (init, 8 + init[r0]) = true .

cq okWrite(init, 8 + init[r0]) = true

if not init{init[r0]} is 0 .

***> First segment of code is safe

let temp = init ;

ADD r0, 8, r1 ;

LD r0, 8(r0) ;

LD r2, -8(r1) ;

ADD r0, 1, r0 ;

BEQ r2, 2 .

red Safe(temp) .

***> Some properties of it

*** 1) r2 = value found at address r0

red temp[r2] == init{init[r0]} .

*** 2) if the branch is not taken (r2 =/= 0)

*** then the address r1 is writable

eq init{init[r0]} is 0 = false .

red okWrite(temp, r1) .

*** ************* ***

***> Next State ***

*** ************* ***

op state1 : -> State .

***> Safety Specification for State1

eq Safe(state1) = true .

eq okWrite(state1, state1[r1]) = true .

***> Second segment of code is safe

red Safe(state1 ;

ST r0, 0(r1) ;

RET) .

*** ********************************** ***

*** End. Therefore, the code is safe. ***

*** ********************************** ***

close

Notice that a template of the proof above can

be generated automatically from the code, but

there might still be intermediate proofs that re-

quire human intervention. Our experience with

OBJ suggests that most proofs can be performed

automatically using OBJ.

The proof score above can be now given to

OBJ for certi�cation, obtaining the output:

\|||||||||||||||||/

--- Welcome to OBJ3 ---

/|||||||||||||||||\

OBJ3 version 2.04oxford built: 1994 Feb 28

Copyright 1988,1989,1991 SRI International

1999 May 13 Thu 4:20:36

OBJ> =====================================

obj DEC-COMMANDS

==

obj DEC-EXP

==

obj ABSTRACT-MACHINE

==

obj SAFETY-CHECK

==

open

==

***> Initial state ***

==

op init : -> State .

==

***> Safety Specification for init

==

eq Safe (init) = true .

==

eq okRead (init, init [r0]) = true .

==

eq okRead (init, 8 + init[r0]) = true .

==

cq okWrite (init,8 + init[r0]) = true

if not init { init [r0] } is 0 .

==

***> First segment of code is safe

==

let temp = init ;

ADD r0, 8, r1 ;

LD r0, 8(r0) ;

LD r2, -8(r1) ;

ADD r0, 1, r0 ;

BEQ r2, 2 .

==

reduce in SAFETY-CHECK : Safe(temp1)

rewrites: 48

result Bool: true

==

***> Some properties of it

==

reduce in SAFETY-CHECK :

temp[r2] == init{init[r0]}

rewrites: 63

result Bool: true

==

eq init { init [r0] } is 0 = false .

==

reduce in SAFETY-CHECK : okWrite(temp,r1)

rewrites: 213

result Bool: true

==

***> Next State ***

==

op state1 : -> State .

==

***> Safety Specification for State1

==

eq Safe (state1) = true .

==

eq okWrite (state1, state1[r1]) = true .

==

***> Second segment of code is safe

==

reduce in SAFETY-CHECK :

Safe((state1 ; ST r0,0(r1)) ; RET)

rewrites: 3

result Bool: true

==

close

OBJ> Bye.

Now the code can be safely executed on the

15

consumer's machine.

The DEC Alpha's speci�cation, the abstract

machine associated with it, and the safety

checker are independent from programs and hop-

fully are modules in specialized libraries. In the

sequel we list these modules.

obj DEC-COMMANDS is pr INT .

sorts Reg Operand Cmd .

subsorts Reg Int < Operand .

ops r0 r1 r2 : -> Reg .

op ADD _,_,_ : Reg Operand Reg -> Cmd .

op LD _,_(_) : Reg Int Reg -> Cmd .

op ST _,_(_) : Reg Int Reg -> Cmd .

op BEQ _,_ : Reg Int -> Cmd .

op RET : -> Cmd .

endo

obj DEC-EXP is pr DEC-COMMANDS .

sort Exp .

subsorts Operand < Exp .

vars E E' : Exp .

op _+_ : Exp Exp -> Exp .

op _ is _ : Exp Exp -> Bool .

cq E is E' = true if E == E' .

endo

obj ABSTRACT-MACHINE is pr DEC-EXP .

sort State .

op _;_ : State Cmd -> State .

*** value in a memory location

op _{_} : State Exp -> Int [prec 5] .

*** evaluation of an expression

op _[_] : State Exp -> Int [prec 5] .

vars R R' R'' : Reg . var OP : Operand .

vars E E' E'' E1 E2 : Exp .

var S : State . var N : Int .

eq S[N] = N .

eq S[E1 + E2] = S[E1] + S[E2] .

op subst : Reg Exp Exp -> Exp .

eq subst(R, E, OP) =

if OP == R then E else OP fi .

eq subst(R, E, E1 + E2) =

subst(R, E, E1) + subst(R, E, E2) .

eq subst(R, E, S{E'}) = S{subst(R, E, E')} .

eq subst(R, E, S[E']) = S[subst(R, E, E')] .

op update : State Exp Exp -> State .

cq update(S, E, E'){E''} = S[E']

if S[E''] is S[E] .

eq (S ; ADD R, OP, R') {E} =

S{subst(R', R + OP, E)} .

eq (S ; ADD R, OP, R') [E] =

S[subst(R', R + OP, E)] .

eq (S ; LD R, N(R')) {E} =

S{subst(R, S{N + S[R']}, E)} .

eq (S ; LD R, N(R')) [E] =

S[subst(R, S{N + S[R']}, E)] .

eq (S ; ST R, N(R')) {E} =

update(S, N + S[R'], R){E} .

eq (S ; ST R, N(R')) [E] =

update(S, N + S[R'], R)[E] .

eq (S ; BEQ R, N) {E} = S{E} .

eq (S ; BEQ R, N) [E] = S[E] .

eq (S ; RET) {E} = S{E} .

eq (S ; RET) [E] = S[E] .

endo

obj SAFETY-CHECK is pr ABSTRACT-MACHINE .

op Safe : State -> Bool .

op okRead : State Exp -> Bool .

op okWrite : State Exp -> Bool .

vars R R' R'' : Reg . var OP : Operand .

vars E E' E'' E1 E2 : Exp .

var S : State . var N : Int .

*** *****************************

eq Safe(S ; ADD R, OP, R') = Safe(S) .

eq Safe(S ; LD R, N(R')) =

okRead (S, N + S[R']) .

eq Safe(S ; ST R, N(R')) =

okWrite(S, N + S[R']) .

eq Safe(S ; BEQ R, N) = Safe(S) .

eq Safe(S ; RET) = Safe(S) .

*** *****************************

*** *****************************

eq okRead((S ; ADD R, OP, R'), E) =

okRead(S, subst(R',S[R] + S[OP],E)) .

eq okRead((S ; LD R, N(R')), E) =

okRead(S, N + S[R']) and

okRead(S, subst(R, N + S[R'], E)) .

eq okRead((S ; ST R, N(R')), E) =

okWrite(S, N + S[R']) and

okRead(update(S, N + S[R'], S[R]), E) .

eq okRead((S ; BEQ R, N), E) =

okRead(S, E) .

eq okRead((S ; RET), E) =

okRead(S, E) .

*** *****************************

*** *****************************

eq okWrite((S ; ADD R, OP, R'), E) =

okWrite(S,subst(R',S[R] + S[OP],E)) .

eq okWrite((S ; LD R, N(R')), E) =

okRead(S, N + S[R']) and

okWrite(S, subst(R, N + S[R'], E)) .

eq okWrite((S ; ST R, N(R')), E) =

okWrite(S, N + S[R']) and

okWrite(update(S, N + S[R'], S[R]), E) .

eq okWrite((S ; BEQ R, N), E) = okWrite(S, E) .

eq okWrite((S ; RET), E) = okWrite(S, E) .

*** *****************************

endo

16

