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LAND MARKETS AND THE VALUE OF WATER:
HEDONIC ANALYSIS USING REPEAT SALES OF FARMLAND

STEVEN BUCK, MAXIMILIAN AUFFHAMMER, AND DAVID SUNDING

The lack of robust water markets makes it difficult to value irrigation water. Because water rights
are appurtenant to land, it is possible to infer the value of water from observed differences in
the market price of land. We use panel data on repeat farmland sales in California’s San Joaquin
Valley to estimate a hedonic regression equation with parcel fixed effects. This controls for sources
of omitted variables bias and allows us to recover the value of irrigation water to landowners in
our sample. We show that a more traditional cross-sectional regression results in an artificially low
value of irrigation water.

JEL codes: Q15, Q24, Q25.

Determining the value of surface water used
for crop irrigation is an important economic
policy question. The California Department
of Water Resources estimates that surface
water accounts for two-thirds of the state’s
dedicated water supplies and that irrigated
agriculture in the state uses approximately 34
million acre-feet of water, most of it surface
water, annually. Social policies to protect
aquatic habitat impact the availability of
irrigation water supplies to farmers (see, for
example, Moore, Mulville, and Weinberg).
Reliable estimates of the economic damages
of expected reductions in irrigation water
supplies are of crucial importance to the
design of efficient water policy as well as
the calculation of the benefits from infras-
tructure projects such as those under consid-
eration in California. Economists can help
assess the impacts of such changes in water
availability by developing sound measures of
the marginal value of water in agriculture.

Because of the general lack of robust,
competitive water markets, it can be diffi-
cult to directly observe the marginal value
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of surface water used in agriculture. A com-
mon approach to measuring the value of
irrigation water has been through the use
of programming models that identify the
profit-maximizing input mix given resource
availability constraints, including constraints
on available surface water. The marginal
value of water is determined as a shadow
value of the programming problem. Exam-
ples of this approach include Marques,
Lund, and Howitt and Schaible, McCarl,
and Lacewell, among others.

This article takes a different approach to
the problem of determining the marginal
value of surface water in agriculture. We
estimate a hedonic model of farmland values
with surface water availability as a covari-
able. The estimated parameter on the surface
water availability variable is the capitalized
value of a marginal unit of water availabil-
ity. A novel feature of our article is that we
estimate a hedonic model with parcel fixed
effects to control for unobservable factors
influencing land value. The use of repeat
sales, combined with a significant cross-
section and time-series variation in surface
water availability across the fields in our
sample, allows us to consistently estimate the
capitalized value of a marginal unit of surface
water.

The hedonic approach is commonly used
for evaluating environmental policies; a few
prominent examples include the Clean Air
Act (Chay and Greenstone 2005; Chong,
Phipps, and Anselin 2003) and the Superfund
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program for cleanup of hazardous waste
sites (Greenstone and Gallagher 2008).
The approach is also used for valuing
natural resources such as water quality
(Leggett and Bockstael 2000) and climate
(Mendelsohn, Nordhaus, and Shaw 1994;
Schlenker, Hanemann, and Fisher, 2006).
In recent years there has also been a surge
of methodogical work on hedonic methods
in environmental and resource economics.
Kuminoff and Pope (2012) present a solution
to recover the marginal willingness-to-pay
(MWTP) function from the hedonic model;
specifically, they describe an instrumental
variables strategy to identify the MWTP
from the second stage of Rosen’s original
model. Bishop and Timmins (2011) tackle the
same issue to recover the MWTP function
for air quality without using instrumental
variables. Elsewhere, Gamper-Rabindran
and Timmins (2013) evaluate how the scale
at which localized amenties are measured
affects hedonic estimates of those ameni-
ties. In related work, Abbott and Klaiber
(2011) investigate how the spatial scale of
fixed effects can affect the capitalization of
amenities such as “open space” in the hous-
ing market, which vary spatially. Following
Banzhaf and Walsh (2008), who estimate
the effect of air pollution on demographic
composition, the work of Bishop and that of
Bayer, Keohane, and Timmins (2009) relaxes
the assumption that people can move freely
to consider the costs of migration in a hedo-
nic model used to recover the MWTP for
air quality. Also, Klaiber and Smith (2009)
develop a framework for assessing quasi-
experimental estimates of the willingness to
pay for changes in housing property ameni-
ties and apply their framework to study the
value of converting land cover from xeric to
wetland landscape and the value of clean-
ing up hazardous waste sites. Relatedly,
Kuminoff, Parmeter, and Pope (2010) point
out that the use of econometric models using
spatial fixed effects or quasi-experimental
research designs are now a common way to
control for time-constant omitted variables
and evaluate the performance of such design
specifications at removing omitted variables
bias from hedonic price estimates.

In this vein, we show that, in the pres-
ence of omitted variables, the hedonic price
function for agricultural land can produce
severely biased estimates of the value of irri-
gation water. To demonstrate this bias, we
evaluate the quality of hedonic valuations of

irrigation water supplies treating repeat sales
data as a pooled cross-section compared with
exploiting the repeat sales data to estimate
a model with parcel fixed effects. We base
our analysis on a dataset of farmland trans-
actions in California’s San Joaquin Valley.1
The region is the largest agricultural user of
surface water in California and is one of the
most productive agricultural regions in the
world.

Starting with Selby (1945) , who examines
how irrigated land values averaged at the
county level covary with the cost of irrigation,
a number of empirical studies have analyzed
how access to irrigation water is capital-
ized into farmland values. Other examples
include Hartman and Anderson (1962), Faux
and Perry (1999), Petrie and Taylor (2007),
Shultz and Schmitz (2010), and Schlenker,
Hanemann, and Fisher (2007). Studies such
as these pursue a hedonic valuation of irriga-
tion water because water in the agricultural
setting may not be allocated by a price mech-
anism, and even when it is, competitive water
prices may not be easily observable. There is,
however, evidence of a competitive market
for farmland (Just and Miranowski 1993),
and information on the value of farmland
is often available, which makes the hedonic
approach attractive. Hartman and Anderson
(1962) run a pooled regression using data on
agricultural land sales from 1954 to 1960 in
Colorado and shares of irrigation company
stock appurtenant to the land to estimate a
linear specification of the hedonic regression
equation, which they use to recover a value
irrigation water. Faux and Perry (1999) use
cross-section data on agricultural land sales
from 1991 to 1995 in Oregon and permit
access to different sources of irrigation water;
they also estimate a linear specification of
the hedonic regression equation. Shultz and
Schmitz (2010) run a pooled regression using
data on agricultural land sales from 2000
to 2008 in Nebraska and irrigation access
to recover the value of access on a per-acre
basis. Perhaps the most defensible valua-
tion of irrigation water is the work of Petrie
and Taylor (2007), who use a difference-in-
differences estimation to recover the value
of irrigation water from a policy change in
Georgia. They use data on agricultural land
sales, irrigation permits, and the timing of a

1 The San Joaquin Valley consists of eight counties: Fresno,
Kern, Kings, Madera, Merced, San Joaquin, Stanislaus, and Tulare.
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regional policy affecting irrigation permits
to estimate a log-linear specification of the
hedonic regression equation. Closest to our
own work is that of Schlenker, Hanemann,
and Fisher (2007), who combine a pooled
cross-section of agricultural land values with
measures of surface water deliveries, climate,
groundwater availability, soil quality, and
population density to recover a value of irri-
gation water over a time period (1998–2003)
and location (39 counties in California) that
is similar to that in our own study. However,
there are important differences between our
study and that of Schlenker, Hanemann, and
Fisher—for example, the study area, sample
selection criteria, and the measures of land
values and surface water availability.

Despite these differences, when we run
Schlenker, Hanemann, and Fisher’s (2007)
cross-sectional linear specification of the
hedonic regression equation on our sample of
repeat sales, we obtain point estimates for the
value of surface water that are statistically
indistinguishable from, although smaller than,
values obtained by Schlenker, Hanemann,
and Fisher (2007). However, as we include
spatial fixed effects (hydrological unit, city,
school district, and parcel) at an increasingly
finer scale, we obtain larger estimates of the
value of water. The finest scale of spatial
fixed effects, parcel fixed effects, produces
estimates of the value of irrigation water in
California’s San Joaquin Valley that are four
times the estimates obtained from specifica-
tions using the most aggregate level spatial
fixed effects.

In summary, this article contributes two
economically significant findings to the litera-
ture: First, we find that the value of irrigation
water in the San Joaquin Valley may be
significantly higher than that suggested by
previous work in California. Second, we show
evidence that the source of bias, if it exists, in
past empirical estimates may be due to the
impossibility of accounting for unobserved
heterogeneity in cross-sectional/pooled hedo-
nic analyses. These findings both provide
information on the value of irrigation water
of immediate consequence to public policy
makers in California and identify a method-
ological issue worth considering by those
using hedonic analyses to recover water
values in empirical settings.

In this article, we present a simple eco-
nomic model to motivate the empirical anal-
ysis. We follow with a description of the
data sources. We then discuss our empirical

research design and present the main
estimating equations. Next we share the
estimation results along with a discussion.
Finally, we provide a conclusion and indicate
areas for future work.

Economic Model

Rosen’s theory of hedonic price function
allows one to infer the market value of a
good by examining the prices of a composite
good, which includes the good of interest.
Applying the theory, we infer that there is an
implicit market for irrigation water deliveries
that works through the explicit farmland mar-
ket. The main economic concept exploited
in the hedonic price analysis is that the price
of farmland equals the net present value
of economic rents expected from the farm-
land, whereas the price of the differentiated
attribute is the shadow value of the attribute
in terms of net present value.

A potential buyer of a parcel of farm-
land observes that the land comes with an
expected quantity of available water. This
land and water can be combined with vari-
able inputs to produce output in year t. We
define output in year t in terms of a produc-
tion function, f (L, W , vt) where L is land, W
is water available to the parcel, and vt is some
optimal quantity of a variable input in time
period t. We suppress the subscript t on L
and W because we assume these quantities
are fixed inputs that come with a farm par-
cel and do not change over time. The buyer
assumes that the price of the output is pt and
the cost of the variable input is ct in period t;
the cost of the land with its associated water
supply is θ(L, W), which is the hedonic price
or bid function. Based on these factors, the
potential buyer considers the economic rents
that may be derived in a year by choosing the
optimal level of vt given available land and
water and facing prices pt , ct , and θ(L, W).
Said differently, the potential buyer solves
the following profit maximization problem:

max
(vt)

� =
∞∑

t=0

δt · (pt · f (L, W , vt) − ct · vt)

− θ(L, W).(1)

The resulting �∗ equals the economic rent
aggregated across all time periods to be
obtained from the land. Next we consider
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how to assess the shadow value of a perma-
nent change in yearly water availability. First,
we note that a change in W will affect the
economic rent in year t, �∗

t ; this change in �∗
t

is the expected shadow value of additional
water in a year of production, λ. The shadow
value of a permanent change in yearly water
availability is the sum of discounted shadow
values of additional water for each year. The
net present value of a permanent change
in annual water supply can be written as:
λW = ∑∞

t=0 δt · λ(L, W). In this simple frame-
work, λW is the value an additional unit of
irrigation water deliveries in perpetuity.

To complete this analysis, we tie λW to
changes in land prices associated with a unit
change in irrigation water deliveries. Based
on Just and Miranowski (1993), we assume
that land markets are competitive. Therefore,
all economic rents will be bid away so that
the price of land will reflect the net present
value of production on the land, which may
be inferred from productive qualities of the
land such as soil quality and water availabil-
ity. Information on federal surface water
deliveries to a parcel of farmland in the San
Joaquin Valley can be estimated based on
publicly available information on (a) how
much surface water a parcel’s water district
receives from the Bureau of Reclamation
Central Valley Project2 and (b) irrigated
farmland in the water district to which a par-
cel of land belongs.3 Given the availability
of this information, we assume both sellers
and buyers are aware of how much water
is available to farmland parcels. Per Rosen,
implicit water prices are revealed to buy-
ers and sellers by observing the prices of
farmland parcels differentiated by varying
levels of water deliveries. As a consequence,
the partial derivative of the hedonic price
function with respect to W is equivalent to
the shadow value of a permanent increase in
water availability:4

(2)
∂θ(L, W)

∂W
= λW =

∞∑

t=0

δt · λ(L, W).

2 Report of Operations Monthly Delivery Tables. Central Val-
ley Operations Office, United States Bureau of Reclamation.
Available online at: http://www.usbr.gov/mp/cvo/deliv.html.

3 California Department of Conservation. Farmland Map-
ping & Monitoring Program (FMMP). Available online at
http://www.conservation.ca.gov/DLRP/FMMP/Pages/Index.aspx.

4 We direct the reader to the orginal work by Rosen for the full
theoretical development of hedonic prices and implicit markets.

The shadow value of an acre-foot of water to
an acre of land for one year is denoted with
λ(L, W), which will be a function of L and
W unless L is separable from W in θ and θ is
linear in W . The aim of the empirical analysis
is to recover λW .

Data

We collected data on sale prices5 of all land
transactions in eight California counties
between 2001 and 2008, water deliveries
and land acreage for irrigation districts,
groundwater depth measurements, his-
torical temperature and precipitation, soil
quality measures, land classification codes,
and measures of population density. All
data resources are combined into a single
dataset for analysis. This final dataset of
repeat farmland sales represents eight coun-
ties, twenty-seven hydrological unit areas,
thirty irrigation districts, sixty-three cities,
sixty-three school districts,6 and 140 distinct
parcels of farmland.

Outcome Variable: Farmland Sale Price per
Acre

The farmland price data were purchased
from DataQuick, a private firm that collects
data on land sales, mostly from county court-
houses. Each observation is geo-referenced
with latitude and longitude, and the street
address is observed, which allows for clear
identification of repeat observations. In addi-
tion to land prices and the aforementioned
variables, the transaction data include infor-
mation on transaction characteristics, such as
whether the sale was a foreclosed property.
The dataset contains characteristics related to
structures on the property, including whether
there is a building on the property, total
square footage of the building, the number
of bedrooms, and the number of bathrooms,
as well as an estimate of the percentage
improvements made to the property. Other
property characteristics include a measure
of the primary use of the land according to a

5 This is distinct from Schlenker, Hanemann, and Fisher (2007)
who use self-reported land values from the June Agricultural
Survey of the U.S. Department of Agriculture.

6 Cities and school districts are not equivalent; fourteen of the
school districts contain land sale observations from multiple cities;
ten of the cities contain land sale observations from multiple
school districts.
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county administrator and lot size, which we
use to construct the price-per-acre variable.
All prices are converted to year 2012 real
prices.

Explanatory Variable of Interest: Surface
Water Delivery Right per Acre

In 1933 the state of California passed the
Central Valley Project Act. This act autho-
rized the government to begin fundraising
for the construction of water infrastructure
such as reservoirs, dams, and canals to sup-
port irrigated agriculture. Because of the
Great Depression, the federal government
made several financial transfers to the state
of California to complete the project. Today,
the United States Bureau of Reclamation
is responsible for the administration of the
Central Valley Project, which annually deliv-
ers approximately 5 million acre-feet of
surface water to irrigation districts in Cal-
ifornia’s Central Valley. Farmland within
an irrigation district has a contractual right
to buy a fixed amount of water in a given
year from the Bureau of Reclamation. Like
Schlenker, Hanemann, and Fisher (2007), we
assume each irrigable acre within an irriga-
tion district receives the irrigation district’s
average federal surface water deliveries per
irrigable acre.7 Division of water accord-
ing to irrigable acres is an assumption used
elsewhere in the literature, most notably the
Statewide Agricultural Production model (for
an example, see Medellin Azuara et al. 2008);
the most current version of this dynamic
programming model was developed in col-
laboration with the California Department of
Water Resources.

A separate issue in constructing the
explanatory variable of interest is how one
measures expectations about future surface
water deliveries. Schlenker, Hanemann, and
Fisher (2007) use historical mean deliveries
of federal plus private surface water based on
data from 1992 to 2002, which does not per-
mit changing expectations. However, water
received from the Central Valley Project is
not fixed. Each year farmers may receive a
different allotment of surface water from
the project, which we assume is observed

7 We collected data on annual federal surface water deliveries
from the Bureau of Reclamation. Data on irrigable acres within
an irrigation district were recovered from the Farmland Mapping
& Monitoring Program, which is managed by the California
Department of Conservation.

and used to update expectations about
future deliveries. Table 1 shows temporal
variation in federal deliveries across coun-
ties. Although these depict within-county,
as opposed to within-parcel variation, the
general pattern is emblematic of what we
observe on the parcel level. In our empirical
analysis, we address the issue of expectation
formation by considering moving averages of
deliveries of different window lengths, rang-
ing from a contemporaneous specification up
to a five-year moving average. Naturally, the
measures based on shorter windows of time
contain more information about recent his-
tory, whereas the measures based on longer
windows contain more information of his-
torical persistence of deliveries; accordingly,
these attributes may produce differences in
implicit prices.

Control Variables

All together surface water may account for as
much as 20 million acre-feet in California’s
irrigated agriculture. Besides the Central
Valley Project, other sources of surface
water deliveries in the San Joaquin Valley
are private (local) projects, which are usu-
ally administered by local governments, and
to a lesser degree in our dataset, the State
Water Project; access to both sources of sur-
face water are observed in our dataset. The
last major source of water for agriculture
is groundwater, which varies significantly
across the state and within our sample; on
the whole, groundwater may account for a
little less than one-third of irrigation water
in the state. We gather data on groundwa-
ter availability based on well measurements
of groundwater levels obtained from the
California Department of Water Resources.
Many wells are not measured regularly or
were not measured during the sample period,
and the wells used for groundwater mea-
surements are not evenly distributed across
agricultural land. Therefore, we use regional
averages of groundwater availability to create
parcel measures of groundwater availability;
these are likely measured with error. Data
on groundwater quality and other hydrolog-
ical characteristics such as groundwater flow
direction are not easily collected and so are
unobserved in this analysis. However, hydrol-
ogists have surveyed California and defined
areas with similar hydrological character-
istics; we reference these as “hydrological
units.” These are contiguous areas smaller
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Table 1. The Distribution of Average Deliveries (AF/Acre) across Counties and Years

County 2001 2002 2003 2004 2005 2006 2007 2008 Total

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Fresno 0.02 0.22 0.005 0.24 0.21 0.03 0.004 0.14 0.12
(8) (8) (7) (17) (13) (14) (7) (7) (81)

Kern 0.00 0.00 0.83 1.14 1.06 1.84 0.00 0.32 0.80
(1) (1) (2) (3) (1) (2) (1) (2) (13)

Kings 0.00 NA 0.00 0.01 0.01 0.00 0.00 NA 0.003
(1) (.) (1) (2) (4) (2) (1) (.) (11)

Madera 0.50 0.96 0.72 1.13 0.41 0.58 0.53 0.78 0.74
(2) (3) (3) (4) (3) (2) (2) (3) (22)

Merced 0.00 0.90 1.05 0.57 0.54 NA NA 0.52 0.69
(1) (4) (7) (7) (6) (.) (.) (6) (31)

San Joaquin NA 0.05 0.00 0.47 0.07 0.57 0.04 0.00 0.22
(.) (3) (3) (4) (2) (4) (4) (1) (21)

Stanislaus 0.00 0.00 NA 0.00 0.00 0.00 NA 0.00 0.00
(1) (3) (.) (2) (1) (1) (.) (2) (10)

Tulare 0.55 0.74 0.48 0.78 1.27 0.62 0.60 0.67 0.72
(10) (19) (13) (21) (11) (12) (7) (10) (103)

Total 0.28 0.55 0.48 0.57 0.55 0.40 0.25 0.44 0.47
(24) (41) (36) (60) (41) (37) (22) (31) (292)

Note: Data used to construct values reported are from the U.S. Bureau of Reclamation and from the Farmland Mapping and Monitoring Program,
which is managed by the California Department of Conservation. Number of parcels used in the calculation of each average is reported in paren-
theses beneath each average.

than a county; the land transactions in the
sample are spread across 27 hydrological
units.

We collect data on soil quality from the
United States Department of Agriculture’s
Natural Resources Conservation Service,
which maintains both STATSGO28 and
SSURGO9 soil databases; our measure of
soil quality is the Storie index. Neither of
these soil databases are ideal for parcel
cross-sectional analysis because, as with the
groundwater measures, they are a weighted
average of soil type over large swaths of
land; this implies significant unmeasured
variation within each soil survey unit and
measurement error. This poses a problem if
the unmeasured component of soil quality
is correlated with both deliveries and land
price. For example, there may be a partic-
ularly high-quality piece of land within a
low average soil quality area. If the high-
quality land requires less irrigation water to
effectively water plants, then this source of

8 Soil Survey Staff, Natural Resources Conservation Ser-
vice, United States Department of Agriculture. U.S. General
Soil Map (STATSGO2). Available online at http://soildatamart.
nrcs.usda.gov.

9 Soil Survey Staff, Natural Resources Conservation Service,
United States Department of Agriculture. Soil Survey Geographic
(SSURGO) Database. Available online at http://soildatamart.
nrcs.usda.gov.

measurement error would cause a downward
bias in our point estimate on deliveries.

In addition to irrigation water availability
and soil quality, climate is likely to be another
important determinant of farmland value. We
use the same high-resolution temperature
and precipitation climate data that has been
used by others (Schlenker, Hanemann, and
Fisher 2006). These climate data were orga-
nized by the Spatial Climate Analysis Service
at Oregon State University for the National
Oceanic and Atmospheric Administration;
parcel measures of climate are interpolated
using the PRISM model also developed
by researchers at Oregon State.10 We use
thirty-year historical annual rainfall and both
maximum and minimum temperatures to
control for climate in our analysis. However,
we only use climate measures in the cross-
sectional analysis—the impact of climate on
farmland values will ultimately be parsed out
in the panel data analysis because climate
does not vary in our short sample period.

Another important factor to control for
in any analysis of farmland values is urban
development potential. Our approach to
this problem is to create a one-mile buffer

10 PRISM Climate Group, Oregon State University. Data are
available at http://www.prism.oregonstate.edu/.
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zone around population centers, where pop-
ulation centers are defined to Census block
groups with population densities greater than
1,000 people per square mile and Census
blocks with population densities great than
500 people per square mile. Finally, using
information reported in the data file received
from DataQuick, we construct measures of
whether there is a building on the property,
total square footage of the building, distance
to closest freeway, the primary use of the
land, and lot size.

Sample Selection

For inclusion in the final sample, we only use
observations that satisfy several criteria. We
begin with a sample of 9,683 property sales
received from DataQuick for the period cov-
ering the years 2001 through 2008. Keeping
only parcels for which there are repeat sales
reduces our sample to 1,431 parcels (3,604
land sale observations). We are concerned
that property with higher turnover may be
correlated with unobservable characteristics
correlated with price and water deliveries;
keeping parcels that sold less then four times
in our eight-year window and never within
the same year reduces our sample to 803
parcels (1,696 land sale observations). We
then drop all parcels for which the trans-
action had an unusual characteristic (e.g.,
foreclosure) affecting price.11 Removing
these parcels reduces the sample to 583
parcels (1,211 land sale observations). Of
these, 405 parcels (844 land sale observa-
tions) are designated as irrigable farmland.
Schlenker, Hanemann, and Fisher (2007)
indicate that the most expensive land parcels
in terms of price per acre are located close
to urban areas. They hypothesize that these
land values are driven by urban land markets
rather than the local agricultural economy.
Therefore, in their analysis they consider
three samples of land sales, which are lim-
ited to parcels of land with a price per acre
of less than $10,000/acre, $15,000/acre, and
$20,000/acre. For similar reasons and for
advantage of comparability, we limit the
sample to parcels of land with a price per
acre of less than $20,000/acre (and more than

11 These unusual characteristics include if one of the parcel’s
recorded sales had a price that included additional property not
reported in the sale record (multiproperty sale), or if a recorded
sale price was for only part of the property recorded in the sale
record, or if the property was a foreclosure sale.

$200/acre-foot);12 this reduces our sample
to 263 parcels (546 land sale observations).
Another concern is that parcels with houses
will greatly affect the price per acre. Simi-
lar to urban development potential, parcel
attributes such as housing may dwarf varia-
tion in prices due to surface water deliveries.
To address this issue, we drop all observa-
tions with bedrooms, which leaves 142 parcels
(296 land sale observations). Finally, we
remove all parcels for which the production
activity is timber, poultry, dairy, livestock,
or vacant land; this drops one dairy par-
cel and one vacant land parcel.13 The final
result is an admittedly small panel sample
that has 292 observations representing 140
parcels of farmland. To evaluate the external
validity of our panel estimates, we compare
these parcels of farmland for which we have
repeated observations (sample A) to all
parcels satisfying the described selection cri-
teria (sample B) other than the first criteria
of having repeat sale observations. Table 2
reports the means and sample standard devi-
ations for observable covariables by sample
A and sample B. The explanatory variables
in these samples are comparable, and we do
not observe any statistically significant dif-
ferences between them. There is a significant
difference in the dependent variable, price
per acre, between sample A and sample B.
This is the result of sample composition over
time. In sample A, we only keep the first
transaction for each parcel so that sample
A is weighted more toward the beginning of
our study period when land prices were lower
in real terms. However, the sample mean of
price per acre for all transactions in the sam-
ple of repeat sales is $11,625 (S.E. $6,617),
which is not significantly different than the
sample mean in sample B.

Empirical Research Design

The first empirical modeling decision we
make is the selection of a functional form
for the hedonic price equation. From a the-
oretical perspective, the functional form

12 To follow the Schlenker, Hanemann, and Fisher (2007)
criteria, this is $20,000/acre in Y2000 real prices.

13 Our results are invariant to this final selection criteria because
these types of parcels are already absent. We explicitly maintain
the criteria because we want to drop these types of parcels to
construct a cross-section dataset that is comparable with our
panel dataset.
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Table 2. Comparison of Parcels Sold Repeatedly (Sample A) to All Parcels (Sample B)

Sample A Sample B Sample A
Mean Mean

Minimum Maximum
Sample B

(S.D.) (S.D.) p Value [Minimum] [Maximum]

(1) (2) (3) (4) (5)

Price per acre (Y2012 USD) 9,809a 12,223 0.000 757 31,249
(5,783) (7,070) [319] [31,346]

2 year mean moving average of 0.491 0.481 0.898 0.000 3.687
deliveries (AF/acre) (0.809) (0.832) [0.000] [3.966]

Lot size (acres) 45.26 45.84 0.917 0.99 632.37
(66.08) (61.87) [0.99] [640.00]

Building structure/storage shed (d) 0.079 0.094 0.549 0.000 1.000
(0.270) (0.292) [0.000] [1.000]

Square footage of building structure 223 223 0.998 0 14,192
(1,278) (948) [0.00] [14,210]

Private water deliveries access (d) 0.54 0.50 0.372 0.00 1.00
(0.50) (0.50) [0.00] [1.00]

No groundwater (d) 0.407 0.412 0.909 0.000 1.000
(0.493) (0.492) [0.000] [1.000]

Mean depth to groundwater (ft) 35.49 37.71 0.604 0.00 317.11
(47.20) (48.31) [0.00] [317.11]

Elevation (meters) 88.47 84.23 0.204 0.00 211.10
(38.86) (37.51) [0.00] [228.27]

Historical mean annual rainfall (mm) 283.5 292.3 0.138 172.8 447.6
(47.0) (52.3) [160.2] [478.0]

Historical mean max temp (◦C) 24.90 24.75 0.199 23.31 26.05
(0.57) (0.67) [22.04] [26.05]

Historical mean min temp (◦C) 9.27 9.20 0.120 8.41 11.59
(0.35) (0.36) [8.23] [11.95]

Storie Index for soil quality 0.59 0.61 0.368 0.000 0.98
(0.26) (0.27) [0.000] [0.98]

Orchards (d) 0.364 0.360 0.922 0.000 1.000
(0.483) (0.480) [0.000] [1.000]

Vineyards (d) 0.150 0.210 0.095 0.000 1.000
(0.358) (0.407) [0.000] [1.000]

Distance to freeway (meters) 12,542 11,944 0.413 119 30,479
(8,514) (8,201) [5] [38,690]

1 mile urban buffer (d) 0.26 0.26 0.906 0.00 1.00
(0.44) (0.44) [0.00] [1.00]

Total observations 140 1383

aDifference in price is the result of sample composition across time. For sample A, we have eliminated more than half the observations because
we only keep the first observation per parcel, which by definition occurs earlier in the study period during which land prices were lower in real
terms. Sample A minimums and maximums are reported to the right of the means, and Sample B minimums and maximums are reported in square
brackets.

depends on the structure imposed on the
demand equation, which, as Rosen describes,
generally indicates a nonlinear hedonic price
function except in special cases. Cropper,
Deck, and McConnell (1988) find that the
flexible functional form of the quadratic
Box-Cox performs best among several forms
when there are no omitted variables. How-
ever, they also find evidence that suggests
simple regression forms, including linear,
semi-log, log-log, and linear Box-Cox, per-
form well in terms of average percentage bias

and maximum percentage bias at estimating
the hedonic price function whenever there
are omitted variables. As a result of their
finding and because of concern over omitted
variables, the majority of hedonic analyses
since Cropper, Deck, and McConnell (1988)
have relied on one of these simple forms
(see Kuminoff, Parmeter, and Pope (2010)
for a thorough review). Among the studies
we reviewed that use hedonic analyses of
agricultural land values to recover the value
of irrigation water, the majority have used
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a linear specification of the hedonic price
function, including the study by Schlenker,
Hanemann, and Fisher (2007), who estimate
a value of irrigation water most directly com-
parable with our own estimates. From the
scientific perspective of incrementing on what
has already been done, we consider the linear
specification as the relevant base specification
of functional form. Another reason to use the
linear specification is because it is an approx-
imation of the average first derivative of the
maximum value function, in this case θ(L, W)
differentiated with respect to water deliver-
ies (W). Despite its inadequacies, the linear
specification is a reasonable start to assess
the average behavior of a nonlinear hedonic
price function without a closed form solution.
We suppress the arguments of λ in equation
(2) under the assumption that the hedonic
price function is linear in W , which implies
λ is constant. To test the sensitivity of our
results to this functional form assumption, we
also estimate a quadratic Box-Cox model and
recover very similar mean and median values
of surface water in agriculture.

Putting aside the discussion of functional
form, our main empirical concern is omit-
ted variables bias—particularly that an
unobservable parcel characteristic is cor-
related with both water deliveries and land
prices.

Empirical Challenge: Omitted Variables Bias

To begin, we assume land and water are
the only two factors of production and that
land quality is homogeneous. Therefore, the
hedonic price equation may be estimated
using

(3) Price/Acreit = β0 + β1 · Deliveriesit + εit .

In this equation, i denotes the parcel of land,
the outcome variable is the price per acre
of the land sale, and “deliveries” captures
the expected stream of annual surface water
to be delivered in perpetuity to parcel i.
The parameter β1 can be interpreted as the
shadow value of a permanent shock to water
deliveries supply (λW); β1 is expected to be
positive. If one observes land price and volu-
metric water deliveries, then one can estimate
β1 consistently if the following identifying
assumption holds:

(4) E[εit|Deliveriesit] = 0.

Assuming equation (4) holds, then β1 can
be estimated using ordinary least squares to
recover the capitalized value of surface water
deliveries. However, the identifying condition
can be violated in many ways. The most basic
way is that there are unobservable environ-
mental quality characteristics of the parcel
that are correlated with deliveries so that

(5) εit = γ · EQi + ηit

where EQi is the underlying environmental
quality of parcel i. If EQi is observable, then
one can consistently estimate the coefficient
of interest if the following condition holds:

(6) E[ηit | Deliveriesit , EQi] = 0.

This is the assumption maintained in pooled
cross-sectional analyses such as in the work
of Schlenker, Hanemann, and Fisher (2007).
This identifying assumption is violated if
there are parcel-specific unobservable char-
acteristics that are correlated with either
the other environmental quality measures
or deliveries. That is, the error term from
equation (3) may take the form

(7) εit = ξi + γ · EQi + νit

where,

(8) E[ξi | EQi, Deliveriesit] �= 0.

Relaxing the assumption of homogeneous
land quality and assuming the expressions in
equations (7) and (8) hold, then the only way
to estimate β1 consistently is using a fixed-
effects estimator, which requires repeat sales
of the same parcel.

Estimating Equations

We begin with a specification that treats our
sample as pooled cross-section data and, like
Schlenker, Hanemann, and Fisher (2007), we
use a random effects estimator. Schlenker,
Hanemann, and Fisher (2007) cluster based
on square mile as defined in the June Agri-
cultural Survey. This level of cluster does
not exist in our dataset, so we cluster on
hydrological units as defined by the Cal-
ifornia Department of Water Resources;
these are regions with common hydrological
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characteristics. The estimating equation is

Price/Acreijt = β1 · Deliveriesit + β2 · Xi

+ τt + ηijt with

ηijt = μj + εijt(9)

where i indicates the parcel; j indicates
the hydrological unit; t indicates the year;
deliveriesit represents water deliveries; Xi
represents time-invariant observables includ-
ing lot size, whether there is building on the
property, the building size, alternative sur-
face water supply availability, groundwater
depth, historical rainfall and temperature, soil
quality, crop production (orchards, vineyards
and row crops/pasture land as the excluded
group), and population density;14 τt is the
year fixed effect; and ηijt is a composite error
term where μj is the hydrological unit inter-
cept and εijt represents all unobservable
factors affecting the outcome variable. It is
worth noting that the interpretation of β1 is
that of λW from equation (1), the capitalized
value of an acre-foot of water in perpetuity.

We later estimate models with spatial
fixed effects at increasingly fine spa-
tial level: hydrological unit fixed effects,
city/municipality fixed effects, and school
district fixed effects. The problem with these
spatial fixed estimators is that they all ulti-
mately rely on cross-sectional variation to
identify the effect of irrigation water avail-
ability on land price. If there still remains
unobserved cross-sectional variation corre-
lated with both water deliveries and land
values, then the point estimate on water will
be biased. Controlling for soil quality using
STATSGO2 measures or through the use
of spatial fixed effects may not be sufficient
because soil quality measures are based on
weighted averages over relatively large areas
and thus, as with spatial fixed effects, assume
homogeneous soil quality for large regions
of land. Hydrological unit, city/municipality,
and school district units may encompass
areas that still exhibit significant variation
in environmental quality. Thus, the use of
more aggregate-level spatial fixed effects
does not satisfy the homogeneity assump-
tion. As already described, to overcome
this, one could collect parcel measures of
soil quality, although if there are remaining

14 For summary statistics of the full list of control variables,
see table 2.

time-invariant omitted variables then the
estimates may still be biased. For this reason,
an estimator using panel data is attractive.

We argue environmental quality is slow
to change over time so one may consider
it time-invariant over the sample period; a
parcel fixed-effects estimator will parse out
all variation due to time-invariant parcel
characteristics. The estimating equation for
the parcel fixed effects analysis is given by:

Price/Acreijt = δ1 · Deliveriesit + ξi

+ τt + εijt(10)

where i, j and t are as before; ξi is the parcel
fixed effect; and δ1 is interpreted as λW from
equation (1), the capitalized value of an acre-
foot of water in perpetuity. This specification
will control for variation in the outcome
variable due to time-invariant characteristics,
including underlying environmental quality
of the land.

Standard Error and Pivotal Statistic
Adjustments

Statistical inference is complicated because of
the clustered structure of the data. To address
clustering and within-cluster heteroskedas-
ticity, we compute robust standard errors
clustered at the county level (eight clusters).
Bertrand, Duflo, and Mullainathan (2004)
show that when there are a small number
of clusters (ten or less), the performance of
statistical inference using cluster-robust stan-
dard errors is unreliable. Cameron, Gelbach,
and Miller (2008) find the same result and
consider a variety of standard error adjust-
ments for clustered data and then evaluate
which adjustments offer reliable performance
for statistical inference. They suggest using
the wild cluster-bootstrap method to obtain
pivotal test statistics because this method
offers asymptotic refinement. We follow their
advice and compute a wild cluster-bootstrap
pivotal test statistic for each regression
coefficient; then the analytically computed
cluster-robust standard error is used with
the adjusted pivotal test statistic to perform
hypothesis testing.

Reconsideration of Functional Form

As suggested earlier, Kuminoff, Parmeter, and
Pope (2010) investigate whether the reliance
on simple functional forms for the hedonic
price function is appropiate given advances in
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data availability and methods for addressing
omitted variables over the past two decades
since the Cropper, Deck, and McConnell
(1988) study. Regarding data availability, half
the studies Kuminoff, Parmeter, and Pope
(2010) review use more than five years of sale
data, which presents the concern of whether
implicit prices should be regarded as time
invariant. In response, we also consider more
general forms in which we interact time-
period dummies with water deliveries and
then test for differences in the capitalized
value of water over time.

With respect to methods, Kuminoff,
Parmeter, and Pope (2010) find evidence
that, when using spatial fixed effects, using a
quadratic Box-Cox functional form performs
better than any of the simpler functional
forms.15 The result is not surprising because
Cropper, Deck, and McConnell (1988) find
that without omitted variables the quadratic
Box-Cox model produces the lowest per-
centage bias of all the forms they consider.
If spatial fixed effects successfully account
for variables omitted from the hedonic price
equation, then the simpler functional forms
may not be justified on a performance basis.
Further, the Box-Cox functional form does
not rule out the simpler functional forms;
indeed, a Box-Cox test allows us to formally
test whether the parameters of the Box-
Cox transformation produce a model that
is distinguishable from the linear or log-
log specifications. Crouter (1987) discusses
the issue at length and finds that the linear
functional form is justified on theoretical
grounds only when water is not appurtenant
to land; otherwise, they recommend using the
Box-Cox method to identify the functional
form of the hedonic price equation. Because
water may be considered appurtenant to land
in our setting, we do not satisfy Crouter’s
theoretical condition, so have additional jus-
tification to evaluate the quadratic Box-Cox
model Kuminoff, Parmeter, and Pope (2010)
and Cropper, Deck, and McConnell (1988)
recommend. The regression equation for this
model is given by:

yijt = δBC
1 · xit + δBC

2 · x2
it

+ ξBC
i + τBC

t + εBC
ijt(11)

15 Regarding specifications exploiting panel data, Kuminoff,
Parmeter, and Pope (2010) point out that in the presence of
time-varying omitted variables, Cropper, Deck, and McConnell’s
(1988) original advice to use simpler functional forms still applies.

where, yijt = (Price/Acreφ

ijt − 1)/φ if φ �= 0
and yijt = ln(Price/Acreijt) if φ = 0. Simi-
larly, xit = (Deliveriesφ

it − 1)/φ if φ �= 0 and
xit = ln(Deliveriesit) if φ = 0; all else is as in
equation (10).

Results and Discussion

The main results of the analysis are summa-
rized in table 3, which presents the implied
capitalized value of an acre-foot of water
from linear regressions that treat the data
as a cross-section and then as a panel. We
begin with a random-effects estimator, and
then, as we move across columns, introduce
estimators using spatial fixed effects at an
increasingly finer scale. The dependent vari-
able in all specifications is the real price of
land, whereas the focal independent variable
is the two-year moving average of federal
surface water deliveries. For each estimated
regression, we present the coefficient on our
water deliveries measures, its cluster-robust
standard error (based on eight county clus-
ters), and the pivotal statistic we obtain from
the wild cluster bootstrap procedure. The
latter should be used in lieu of the usual
critical t values for hypothesis testing and
constructing confidence intervals. In column
1, we present the point estimate from the
results of a random-effects specification,
which assumes clusters at the hydrological
unit level. The implied capitalized value
of an acre-foot of water per acre of land is
$137 and indistinguishable from zero. In the
second specification, we present the esti-
mate from the fixed-effects model clustered
at the hydrological unit level (mhu = 27).
The estimate is $826 per acre-foot, and a
Hausman test shows that the estimates in
columns 1 and 2 are significantly different
at the 1% level. In the third and fourth
columns, we present results from specifica-
tions that, as with the specification in column
2, treat the data as pooled cross-section data.
The specification using city fixed effects
(mcity = 63) estimates the value of water to
be $1,857/acre-foot, whereas the specification
using school district fixed effects (msd = 63)
indicates the capitalized value of water is
$2,416/acre-foot. In the final column, we
present a specification that treats the data as
a panel and thus includes parcel fixed effects
(mplot = 140); the point estimate on the two-
year moving average of federal surface water
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Table 3. Ordinary Least Squares Hedonic Regression Results

Dependent variable: Price per acre of farmland (mean: $11,625, S.D.: $6,617)
Water deliveries variable: 2-year moving average (acre-feet/acre)

(1) (2) (3) (4) (5)

Capitalized value of water
137 826 1,857 2,416 3,723∗∗∗

(537) (950) (767) (1,095) (1,392)
[2.99] [3.18] [3.24] [3.98] [1.85]

Observations R2 292 292 292 292 292
0.316 0.416 0.591 0.593 0.742

Parcel level controls Yes Yes Yes Yes No
Year fixed effects (myear = 9) Yes Yes Yes Yes Yes
Hydrological unit random effects Yes No No No No
Hydrological unit fixed effects (mhu = 27) No Yes No No No
City fixed effects (mcity = 63) No No Yes No No
School District fixed effects (msd = 63) No No No Yes No
Parcel fixed effects (mparcel = 140) No No No No Yes

Note: Cluster-robust standard errors (eight county clusters) are presented in parentheses beneath the coefficient estimates. Hypothesis testing per-
formed using pivotal statistics obtained from the wild cluster bootstrap procedure; pivotal statistics corresponding to two-sided tests of significance
with level α = 0.05 are presented in square brackets beneath the standard errors. The t statistic (the ratio of the coefficient to the S.E.) must be
larger than the pivotal statistic (the value in the square bracket) to demonstrate statistical significance at the level of α = 0.05. A triple asterisk
indicates p < 0.01; a double asterisk indicates p < 0.05; a single asterisk indicates p < 0.10.

deliveries is $3,723/acre-foot and is significant
at the 1% level. Using our bootstrapped
pivotal statistic, the 95% confidence interval
for this estimate is $1,146–$6,300/acre-foot.
The pattern of point estimates as we move
from spatial fixed effects that encompass
larger swaths of land to spatial fixed fixed
effects at the parcel level makes sense—the
finer spatial fixed effects account for more
omitted variables than those encompassing
larger swaths of land. We have evidence
that the estimated capitalized value of water
apparently suffers from downward bias if
fine-scale spatial fixed effects are not taken
into account.

In figure 1, we show how the point esti-
mates from the parcel fixed-effects estimation
changes when we use moving averages of
different window length to measure water
rights. We observe that the point estimates
increase the larger the moving average win-
dow. Further, the value is rising but at a
decreasing rate in window size. One inter-
pretation of these results is that as water
reliablity, measured per window length of
the moving average, increases, then so does
the value of water; a more stable longer term
supply is valued more highly. Adopting a
water rights measure based on a moving
average of greater window length clearly
has a cost in econometric terms. Given our
already small sample size, if we use longer
moving averages, we remove variation from

our main covariable and the coefficients are
less precisely estimated the larger the moving
average window.

In table 4, we present the results of a series
of robustness checks. In column 1, we drop
observations that list a buyer and seller with
the same last name; the goal is to limit our
sample to arms-length sales. The remaining
sample consists of 259 observations; the par-
cel fixed effects estimate is $4,623/acre-foot
and is marginally significant. In column 2,
we drop observations that have access to
surface water from alternative private local
projects. The remaining sample consists of
132 observations; the parcel fixed-effects
estimate is $4,189/acre-foot and is significant
at the conventional level. Our main result
is robust to these alternative samples and
to the designation of other subsamples not
shown. Regarding functional form, Kuminoff,
Parmeter, and Pope (2010) examine two styl-
ized facts: (a) amenities have time-invariant
implicit prices and (b) simple functional
forms such as the linear or log-log models
are less susceptible to omitted variables bias
than more flexible functional forms such as
the quadratic Box-Cox. Based on evidence
from simulation results, they advise analysts
to allow for time-variant implicit prices. In
column 2, we allow for time-variant implicit
prices by interacting our water measure
with an indicator for whether the land sale
occurred after 2004; doing so permits one
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Figure 1. Depiction of how the estimated capitalized value of water changes with moving
average order of deliveries

Note: This figure is based on the results of five separate regressions. Each regression is identical to the one associated with the results present in
column 5 of table 3 except that we vary the measure of water deliveries. For example, 1 on the x-axis denotes the regression using the 1-year
moving average as the relevant measure of deliveries; the corresponding point on the y-axis represents the estimated capitalized value of an
acre-foot of water from regression output. We also present the 95% confidence interval, which is calculated using the cluster-robust standard error
and the relevant pivotal statistic [α = 0.05] obtained from the wild cluster-bootstrap procedure.

implicit price during the first four years of
our sample and a different implicit price dur-
ing the final four years of our sample. The
results in column 3 show that the implicit
price for surface water was slightly less in
the latter years of our sample, although the
difference is statistically indistinguishable.
This result is robust to alternative functional
forms in which we allow implicit prices to
vary over different periods of time. For
example, we estimate separate regressions
that allow the structural break in implicit
prices to occur in every year between 2002
and 2008; we also estimate a model in which
we interact our water measure with year
dummy variables. These alternative speci-
fications do not suggest time-variant price
equilibria, although a larger dataset could
test this more precisely.

Next we estimate a model using the
quadratic Box-Cox form under the assump-
tion that our parcel fixed effects adequately
control for omitted variables. We choose φ
to maximize the likelihood function, which

results in the value φ = 0.229 with a standard
error of 0.113. We run likelihood ratio tests
to evaluate the null hypotheses that φ = 0
and then φ = 1, which correspond to the
log-log and linear models, respectively. We
reject the null hypothesis in both instances,
and estimate the model in equation (11)—a
parcel fixed-effects specification for which
we assume a quadratic Box-Cox functional
form. In column 4 of table 4, we see the
mean predicted value of an acre-foot of
water using the quadratic Box-Cox model—
$3,840/acre-foot; the median predicted value
is $3,482/acre-foot. Further, the range of the
predicted values of an acre-foot of water in
our sample of repeat sales is $2,626/acre-foot
to $7,000/acre-foot, which is a relatively tight
distribution, and the model itself is highly
predictive (R2 = 0.846) when compared with
the other regressions in our analysis.

One disadvantage of our estimates from
the parcel fixed-effects specifications is that
we can only consider parcels that are sold
repeatedly, thus leaving us with a small
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Table 4. Ordinary Least Squares Hedonic Regression Results, Robustness Checks

Dependent variable: price per acre of farmland
Water deliveries variable: 2-year moving average

Alternative samples Alternative functional forms

Remove if non- Remove if
arms-length receives other Time-variant Quadratic
sale surface water price equilibria Box-Cox

(1) (2) (3) (4)

Capitalized value of water 4,623∗ 4,189∗∗ 3,924∗ 3,840
(2,085) (2,176) (2,106) 3,482
[2.61] [1.69] [1.64]

Additional value in −165
year 2004 and beyond (877)

[2.53]
Observations 259 132 292 292
R2 0.757 0.780 0.742 0.846
Number of parcels 124 64 140 140
Year fixed effects Yes Yes Yes Yes
Parcel fixed effects Yes Yes Yes Yes

Note: The fourth column reports the mean predicted value of water from the quadratic Box-Cox model; the median predicted value is presented in
italics. Cluster-robust standard errors (eight county clusters) are presented in parentheses beneath the coefficient estimates. Hypothesis testing per-
formed using pivotal statistics obtained from the wild cluster bootstrap procedure; pivotal statistics corresponding to two-sided tests of significance
with level α = 0.05 are presented in square brackets beneath the standard errors. A triple asterisk indicates p < 0.01; a double asterisk indicates
p < 0.05; a single asterisk indicates p < 0.10.

sample that is potentially different from the
general population of land parcels in San
Joaquin Valley. To investigate whether our
sample of repeat observations is similar to
the rest of agricultural land in the region,
we compare the parcels in our sample of
repeat sales (sample A) to parcels in a sam-
ple that is expanded to those land parcels
only sold once (sample B). Table 2 shows the
results of this exercise, and we see that the
parcels in each sample are similar on average.
Although there are no significantly different
explanatory variables, it is noteworthy that
our sample A of repeat sales is slightly hotter
and drier than sample B, which could make
irrigation water more valuable to irrigable
farmland in sample A than in sample B; this
is also true when we compare sample A to
all 7,510 parcels in the original DataQuick
dataset.

If the parcels in sample A are a random
sampling of all agricultural land parcels
sold during the study period, then we would
expect the estimated value of water to be
similar when we estimate identical regres-
sions using sample A and then sample B.
The results of this exercise are presented in
table 5. In the first two columns, we compare
the coefficients from regression specifica-
tions with hydrological unit fixed effects; in

the second two columns, we compare the
coefficients from regression specifications
with city fixed effects; and in the third set,
we compare the coefficients from regres-
sion specifications with school district fixed
effects. For each pair of regressions, we run
a z test to compare whether the regression
coefficients are significantly different from
each other. Although the point estimates
are larger from the regressions using sample
A, which is comprised of repeat sales, than
the point estimates from sample B, we fail
to reject the null hypothesis that the coeffi-
cients are equal (α = 0.05) in all three cases.
These findings are robust to basing sample A
on keeping the most recent transaction for
each parcel among the repeat-sale parcels
rather than on keeping the first transaction.
Although caution should be taken because of
the large standard errors on the coefficient
estimates, the results in table 2 and table 5
provide some evidence that the $3,723/acre-
foot estimate from the parcel fixed-effects
specification using the subsample of repeat
sales is generalizable to agricultural land in
the San Joaquin Valley. This is significant
because the estimate from the school fixed-
effects specification using the full sample of
cross-section data, the basis for our strongest
strawman estimate, is $768/acre-foot, which
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Table 5. Ordinary Least Squares Hedonic Regression Results, Alternative Cross-Sectional
Samples

Dependent variable: price per acre of farmland
Water deliveries variable: 2-year moving average

Sample A B A B A B B

(1) (2) (3) (4) (5) (6) (7)a

Capitalized value of water 359 99 500 356 1,623 768 275
(877) (331) (1,691) (414) (3,117) (448) (373)

z Statistic from test comparing 0.257 0.066 0.218
value of water
Observationsb 131 1,376 109 1,364 109 1,359 1,359
Count of spatial clusters 18 34 32 81 32 108 108
R2 0.473 0.289 0.651 0.334 0.669 0.341 0.255
Time-invariant controls Yes Yes Yes Yes Yes Yes Yes
Year fixed effects (myear = 7) Yes Yes Yes Yes Yes Yes Yes
Hydrological unit fixed effects Yes Yes No No No No No
City fixed effects No No Yes Yes No No No
School district fixed effects No No No No Yes Yes No
School district random effects No No No No No No Yes

aWater deliveries is measured using the historical mean deliveries from 1993 to 2002, not a moving average.
bIn each regression, we drop all observations that are singletons within their cluster. Cluster-robust standard errors (seven county clusters) are pre-
sented in parentheses beneath the coefficient estimates. Hypothesis testing performed using pivotal statistics obtained from the wild cluster bootstrap
procedure. p < 0.01, p < 0.05, p < 0.1.

is, in both statistical (z test with α = 0.05) and
economic terms, significantly less than the
$3,723/acre-foot estimate. Whether or not
our estimate applies generally to California
agriculture, we cannot say; however, our find-
ing is economically significant for the state
given that the San Joaquin Valley is by far the
largest agricultural user of surface water in
California.

In related work, Schlenker, Hanemann, and
Fisher (2007) find the value of surface water
in California agriculture to be $1,046/acre-
foot16 using pooled cross-section data without
the benefit of repeat observations on parcels
because these were not available in their
dataset. Interestingly, our cross-sectional
estimates of the capitalized value of surface
water using cross-section data are between
$99/acre-foot and $1,623/acre-foot. To make a
cleaner comparison, we run a linear specifica-
tion on the pooled cross-section with school
district random effects using historical mean
deliveries as our measure of deliveries—this
is the data and specification most similar to
that implemented by Schlenker, Hanemann,
and Fisher (2007). The resulting point esti-
mate of $275/acre-foot (S.E. $373/acre-foot)
is indistinguishable from their estimate of

16 Converted from Y2000 real prices to Y2012 real prices.

$1,046/AF (S.E. $226/acre-foot). However,
because of differences between this study and
that of Schlenker, Hanemann, and Fisher—
most notably, the study area, sample selection
criteria, and the measures of land values
and water availability—we do not have evi-
dence that Schlenker, Hanemann, and Fisher
(2007) would recover our estimate if only
they had repeat observations on land values.
Nonetheless, we have provided evidence
that accounting for parcel-specific unobserv-
able time-invariant characteristics may be a
requisite to recover the implied value of agri-
cultural surface water from hedonic analyses
of farmland sales.

In terms of magnitude, our estimate of the
capitalized value of an acre-foot of surface
water, $3,723,17 is one and a half to four times
the size of the cross-sectional estimates using
the same data. Conditioned on receiving
federal water deliveries, the average par-
cel of farmland in our sample has a price
of $11,254/acre and receives 1.09 acre-feet
of federal deliveries per acre of land. Our
estimate of $3,723/acre-foot suggests that,
conditioned on receiving federal surface

17 As an approximation, if we assume 5% discount rate then
the implied value of an acre-foot of water in a given year is close
to $190, which is net of any annual costs the land owner must
pay for the surface water received.

D
ow

nloaded from
 https://academ

ic.oup.com
/ajae/article-abstract/96/4/953/2737503 by U

niversity of C
alifornia School of Law

 (Boalt H
all) user on 25 June 2019



968 July 2014 Amer. J. Agr. Econ.

water, 1.09 acre-feet in irrigation water rights
would account for approximately $4,033
of the $11,254/acre sale price (36% of the
average sale price with the 95% confidence
interval of 11%–61%). Taken together, our
results suggest (a) that farmers in the San
Joaquin Valley likely have a higher willing-
ness to pay for surface water than previously
thought and (b) that this result plays a siz-
able role in the determination of irrigated
farmland prices.

Conclusions

Using a small sample of repeat sales of agri-
cultural land in California’s San Joaquin
Valley, we find evidence that existing cross-
sectional estimates of the value of surface
water deliveries in agriculture are vulner-
able to significant downward bias. Using a
parcel fixed-effects estimation, we account
for unobserved factors correlated with deliv-
eries and farmland prices and obtain novel
estimates of the value of surface water deliv-
eries in California agriculture. The estimated
capitalized value of one acre-foot of water
is one and a half to four times larger than
the estimate obtained in the cross-sectional
analyses. Although we have limited evi-
dence on whether the average capitalization
value of $3,723/acre-foot of surface water
extends to all agricultural land in the San
Joaquin Valley, the result that studies relying
on cross-sectional data and methods may
underestimate the capitalized value of irri-
gation water is empirically demonstrated.
Based on this result, changes in water avail-
ability are likely to induce larger changes in
producer welfare than previously thought.
Finally, these findings inform policy analy-
sis on issues related to water infrastructure
projects, the protection of habitat for endan-
gered species, and climate change. A natural
way to extend this work is to explicitly incor-
porate groundwater availability and crop
choice into an agro-economic model to make
predictions about how the shadow value of
surface water varies with these other sources
of heterogeneity.

References

Abbott, J. K., and H. A. Klaiber. 2011. An
Embarrassment of Riches: Confronting
Omitted Variable Bias and Multi-Scale
Capitalization in Hedonic Price Models.

Review of Economics and Statistics
93 (4): 1331–42.

Banzhaf, S. H., and R. P. Walsh. 2008. Do
People Vote with Their Feet? An
Empirical Test of Tiebout’s Mecha-
nism. American Economic Review 98 (3):
843–63.

Bayer, P., N. Keohane, and C. Timmins. 2009.
Migration and Hedonic Valuation: The
Case of Air Quality. Journal of Envi-
ronmental Economics and Management
58 (1): 1–14.

Bertrand, M., E. Duflo, and S. Mullainathan.
2004. How Much Should We Trust
Differences-in-Differences Estimates?
Quarterly Journal of Economics 119 (1):
249–75.

Bishop, K. C. 2010. A Dynamic Model of
Location Choice and Hedonic Valu-
ation. Washington University in St.
Louis.

Bishop, K. C., and C. Timmins. 2011. Hedonic
Prices and Implicit Markets: Estimating
Marginal Willingness to Pay for Differ-
entiated Products Without Instrumental
Variables.

California Department of Water Resources.
2005. California Water Plan Update
2005, Bulletin 160-05. Working Paper,
California Department of Water
Resources.

Cameron, C., J. Gelbach, and D. Miller.
2008. Bootstrap-Based Improvements
for Inference with Clustered Errors.
Review of Economics and Statistics
90 (3): 414–27.

Chay, K., and M. Greenstone. 2005. Does
Air Quality Matter? Evidence from the
Housing Market. Journal of Political
Economy 113 (2): 49.

Chong, W., T. Phipps, and L. Anselin. 2003.
Measuring the Benefits of Air Quality
Improvements: A Spatial Hedonic
Approach. Journal of Environmental
Economics and Management 45 (1):
24–39.

Cropper, M. L., L. B. Deck, and K. E.
McConnell. 1988. On the Choice of
Funtional Form for Hedonic Price Func-
tions. Review of Economics and Statistics
70(4): 668–75.

Crouter, J. 1987. Hedonic Estimation Applied
to a Water Rights Market.” Land
Economics 63 (3): 259–71.

Faux, J., and G. Perry. 1999. Estimating Irri-
gation Water Value Using Hedonic Price
Analysis: A Case Study in Malhuer

D
ow

nloaded from
 https://academ

ic.oup.com
/ajae/article-abstract/96/4/953/2737503 by U

niversity of C
alifornia School of Law

 (Boalt H
all) user on 25 June 2019



Buck, Auffhammer, and Sunding Land Markets and the Value of Water 969

County, Oregon. Land Economics 75 (3):
440–52.

Gamper-Rabindran, S., and C. Timmins.
2013. Does Cleanup Of Hazardous
Waste Sites Raise Housing Values? Evi-
dence of Spatially Localized Benefits.
Journal of Environmental Economics and
Management 65 (3): 345–60.

Greenstone, M., and J. Gallagher. 2008. Does
Hazardous Waste Matter? Evidence
from the Housing Market and the Super-
fund Program. Quarterly Journal of
Economics 123 (3): 951–1003.

Hartman, L., and R. Anderson. 1962. Esti-
mating the Value of Irrigation Water
from Farm Sales Data in Northeastern
Colorado. Journal of Farm Economics
44 (1): 207–13.

Just, R., and J. Miranowski. 1993. Under-
standing Farmland Price Changes.
American Journal of Agricultural
Economics 75 (1): 156–68.

Klaiber, H. A., and V. K. Smith. 2009.
Evaluating Rubin’s Causal Model for
Measuring the Capitalization of Envi-
ronmental Amenities. Working paper,
National Bureau of Economic Research.

Kuminoff, N. V., C. F. Parmeter, and J. C.
Pope. 2010. Which Hedonic Models
Can We Trust to Recover the Marginal
Willingness to Pay for Environmental
Amenities? Journal of Environmental
Economics and Management 60 (3):
145–60.

Kuminoff, N. V., and J. C. Pope. 2012. A
Novel Approach to Identifying Hedonic
Demand Parameters. Economics Letters
116 (3): 374–6.

Leggett, C., and N. Bockstael. 2000. Evi-
dence of the Effects of Water Quality on
Residential Land Prices. Journal of Envi-
ronmental Economics and Management
39(2): 121–44.

Marques, G. F., J. R. Lund, and R. E. Howitt.
2009. Modeling Conjunctive Use Opera-
tions and Farm Decisions with Two-Stage
Stochastic Quadratic Programming. Jour-
nal of Water Resources Planning and
Management 136(3): 386–94.

Medellin Azuara, J., J. J. Harou, M. A. Oli-
vares, K. Madani, J. R. Lund, R. E.

Howitt, S. K. Tanaka, M. W. Jenkins,
and T. Zhu. 2008. Adaptability and
Adaptations of California’s Water Sup-
ply System to Dry Climate Warming.
Climatic Change 87 (1): 75–90.

Mendelsohn, R., W. D. Nordhaus, and D.
Shaw. 1994. The Impact of global Warm-
ing on Agriculture: A Ricardian Analysis.
American Economic Review 84 (4):
753–71.

Moore, M., A. Mulville, and M. Weinberg.
1996. Water Allocation in the American
West: Endangered Fish versus Irrigated
Agriculture. Natural Resources Journal
36 (Spring 1996): 319.

Petrie, R., and L. Taylor. 2007. Estimating the
Value of Water Use Permits: A Hedo-
nic Approach Applied to Farmland in
the Southeastern United States. Land
Economics 83 (3): 302–18.

Rosen, S. 1974. Hedonic Prices and Implicit
Markets: Product Differentiation in Pure
Competition. The Journal of Political
Economy 82(1): 34–55.

Schaible, G. D., B. A. McCarl, and R. D.
Lacewell. 1999. The Edwards Aquifers
Water Resource Conflict: USDA Farm
Program Increase Irrigation Water-
Use? Water Resources Research 35(10):
3171–83.

Schlenker, W., W. M. Hanemann, and A.
C. Fisher. 2006. The Impact of Global
Warming on U.S. agriculture: An Econo-
metric Analysis of Optimal Growing
Conditions. Review of Economics and
Statistics 88 (1): 113–25.

———. 2007. Water Availability, Degree
Days, and the Potential Impact of Cli-
mate Change on Irrigated Agriculture in
California. Climatic Change 81 (1): 19–38.

Selby, H. 1945. Factors Affecting Value of
Land and Water in Irrigated Land. Jour-
nal of Land and Public Utility Economics
21(3): 250–8.

Shultz, S., and N. Schmitz. 2010. The Implicit
Value of Irrigation through Parcel Level
Hedonic Price Modeling. Paper pre-
sented at the Agricultural & Applied
Economics Association’s 2010 AAEA,
CAES & WAEA Joint Annual Meeting,
Denver, CO.

D
ow

nloaded from
 https://academ

ic.oup.com
/ajae/article-abstract/96/4/953/2737503 by U

niversity of C
alifornia School of Law

 (Boalt H
all) user on 25 June 2019


	References



