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ABSTRACT 

As populations rise and climate change threatens crop yields in food producing regions, 

efficient breeding of crops that are resistant to the extreme weather events while still maintaining 

their yield is important to address the threat to food security. Current methods of evaluating crop 

breeding lines are labor-, time- and cost- intensive, hindering the development of breeding 

improved varieties of crops. Even with advances in plant genotyping, the current methods of 

phenotype evaluation are too impractical to provide the rapid progress required to meet the ever-

growing food supply demands. Without the development and implementation of new high-

throughput phenotyping technologies, plant breeders will not be able to develop new varieties of 

crops quickly and efficiently to meet climate change concerns or provide food security for an 

increasing population.  

The overall goal of this project was to develop and implement an automated high-

throughput phenotyping (HTPP) system to increase the rate of breeding crop cultivars. This 

project focused on the development of a custom sensor platform and processing software for 

tomato and pepper crops in the Solanaceae family due to their nutritional and economic 

importance and their similarities in important phenotypes for breeders, growers, and consumers. 

The objectives of the portion of the project specific to this thesis were to (i) develop software and 

hardware needed to integrate a real-time, proximal plant architecture sensor with sensing systems 

controls and integrated GPS, (ii) develop methods to measure architectural plant phenotypes 

(height, width, and volume) of different genotypes in the Solanaceae family utilizing 3D model 

data from a time of flight camera and compare the results in terms of throughput and spatial and 

temporal resolution with more traditional methods of measurement and to create a visual tool to 

show the growth of the crops over the course of an entire season.  
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A phenotyping platform was developed on using a high clearance tractor (model Classic 

Spider, LeeAgra, Inc. Lubbock, TX, USA), typically used in farming for crop spraying. A 

custom arch was built to hold nine color cameras, nine infrared cameras, and three time of flight 

cameras along with custom lighting modules and a translucent cover to provide consistent 

lighting throughout the day while in motion. A Real Time Kinematic Global Positioning Systems 

(RTK-GPS) was integrated with the time-of-flight camera to efficiently collect data and catalog 

breeding genotype while selectively viewing the plots of interest for this project.  

In this study, three-dimensional model data of a variety of genotypes was collected over 

the course of three growing seasons. Automated algorithms were developed to create 3D models 

(point clouds) utilizing the time-of-flight output data and to sorted by genotype plot (eight plants 

of the same genotype were grouped together in the field). Methods were developed to remove 

noise and extraneous data and then create a single point cloud spanning the entirety of the plot. 

These methods were automated and applied to all three years of the data so that the final plot 3D 

models could be used for architectural phenotype measurements. The study resulted in a very 

large set of 3D point clouds and corresponding architectural phenotypes for full plots (over 4,000 

plots in total) of breeding genotypes for the three years of study.  

Methods of measuring height, width, and volume phenotypes from the point clouds were 

developed and automated. This resulted in numerous measurements of height and width at the 

plant scale for each plot as well as an overall volume measurement for the entire plot over the 

course of the season. Through comparison with traditional measurement methods, no significant 

statistical difference was found between the heights measured by breeders and the heights 

measured utilizing the automated point cloud data. This study shows the potential for automated 
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high throughput phenotyping methods to accelerate genomic breeding in crops to create superior 

varieties. 

  



6 

 

Table of Contents 

1. INTRODUCTION .................................................................................................................. 9 

2. LITERATURE REVIEW ..................................................................................................... 11 

2.1. General Background ....................................................................................................... 11 

2.2. Remote Sensing .............................................................................................................. 12 

2.3. Phenotyping Platforms ................................................................................................... 12 

2.4. Three-Dimensional Phenotyping ................................................................................... 13 

3. BACKGROUND .................................................................................................................. 15 

3.1. Phenotyping Platform ..................................................................................................... 16 

3.2. Real-time Kinematic Global Positioning Systems (RTK GPS) ..................................... 19 

3.3. Phenotyping with a Ground-based vs. Aerial Platform.................................................. 20 

4. OBJECTIVES ....................................................................................................................... 21 

5. MATERIALS AND METHODS .......................................................................................... 23 

5.1. Field Design ................................................................................................................... 23 

5.2. Phenotyping Platform Design ........................................................................................ 24 

5.2.1. Hardware ................................................................................................................. 24 

5.2.2. GPS       ................................................................................................................... 24 

5.2.3. Microsoft Xbox Kinect v2 ...................................................................................... 25 

5.2.4. Kinect-GPS Integration ........................................................................................... 26 

5.3.  Data Collection .............................................................................................................. 27 

5.3.1. Validation Trial ....................................................................................................... 27 

5.3.2. Validation Hand Measurements .............................................................................. 27 



7 

 

5.3.3. 2018 and 2019 ......................................................................................................... 28 

6. Software ............................................................................................................................. 28 

6.1.1. Point Cloud Creation............................................................................................... 29 

6.1.2. Plot Sorting ............................................................................................................. 32 

6.1.3. Point Cloud Concatenation and Plot Creation ........................................................ 33 

6.1.4.  Calibration Data  .................................................................................................... 36 

6.1.5. Automated Height Measurements........................................................................... 39 

6.1.6. Automated Width Measurements ........................................................................... 41 

6.1.7. Automated Volume Measurements......................................................................... 41 

7. RESULTS ............................................................................................................................. 43 

7.1. Automated Height Phenotypes ....................................................................................... 43 

7.1.1. Peppers .................................................................................................................... 43 

7.1.2. Tomatoes ................................................................................................................. 50 

7.2. Automated Width Phenotypes ........................................................................................ 54 

7.2.1. Peppers .................................................................................................................... 54 

7.2.2. Tomatoes ................................................................................................................. 60 

7.3. Automatic Volume Phenotypes ...................................................................................... 63 

7.3.1. Peppers .................................................................................................................... 64 

7.3.2. Tomatoes ................................................................................................................. 68 

8. DISCUSSION ....................................................................................................................... 72 

8.1. Challenges ...................................................................................................................... 72 



8 

 

8.2. High Throughput Phenotyping Scale and Pipeline ........................................................ 73 

8.3. High Throughput Phenotyping Methodology Challenges ............................................. 75 

8.4. Data Validation .............................................................................................................. 76 

9. CONCLUSION ..................................................................................................................... 78 

10. FUTURE WORK .................................................................................................................. 78 

11. REFERENCES ..................................................................................................................... 80 

12. APPENDIX – CODE ............................................................................................................ 86 

 

 

 

  

 

 

 

 

 

 

 

 

 



9 

 

1. INTRODUCTION 

With the ever-increasing global population, crop production must at least double by 2050 

to satisfy the growing food demands (Araus & Cairns, 2014). Farming more crops on more land 

and raising more livestock is not considered a long-term option because of the increase in 

unsustainable resource usage (Njoroge et al., 2018). While many areas are already struggling to 

increase their yield by that amount, climate change and global warming pose a threat to food 

security worldwide. The frequency and severity of droughts have increased globally, 

compromising crop yields (Spinoni et al., 2014). While some cultivars have benefited from the 

increase of CO2 in the atmosphere, there are vastly more instances of currently used crop 

varieties performing poorly to the changes in climate (Furbank & Tester, 2011).  

Scientists across the world are working to improve crop breeding and production with 

new genomic tools and techniques (Araus & Cairns, 2014). Developments in DNA sequencing 

have improved the speed and efficiency of genotyping costs (White et al., 2012). There are many 

examples of entire genomes sequenced for plants, some even publicly available (Furbank & 

Tester, 2011). However, these new plant breeds are limited by our ability to understand how their 

performance in terms of yield and growth are affected by their environment compared to other 

varieties. Even genomic tools such as marker-assisted recurrent selection (MARS) and genomic 

selection require phenotypic information to provide relevant performance results (Jannink et al., 

2010). Phenotyping is an essential part of understanding how genotype, environment, and field 

management practices affect crop health and performance (Roitsch et al., 2019). Phenotyping 

constitutes an important bottleneck to be addressed if food production is to expeditiously meet 

the demands of a growing population and changing climate. While some phenotyping techniques 

used in green houses with conveyor belt transporters moving pots through imaging equipment 
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have been successful at identifying phenotypes, greenhouse conditions do not represent the 

outdoor growing environments that majorly impact plant growth and structure (Comar et al., 

2012). Traditional methods of phenotyping in the field are time as well as labor intensive and 

often require multiple destructive harvests throughout the season (Furbank & Tester, 2011). They 

are also often subject to human bias and judgement due to their subjective nature (Martinez-

Guanter et al., 2019) and are frequently limited to simplistic measurement techniques that can be 

easily done manually in an outdoor environment. 

High throughput phenotyping, or the ability to identify and categorize plant 

characteristics nondestructively, quickly, and objectively, can help address the bottleneck issue 

with gathering the location-specific phenotypic feedback needed in plant breeding. Automated 

phenotyping utilizing remote sensing can estimate plant traits such as yield, plant height, Leaf 

Area Index, canopy temperature, nitrogen uptake and many more without destroying plant 

material, additionally allowing this data to be collected over time to understand the overall 

history of the plant is beneficial (Jansen et al., 2014; Sun & Wang, 2019; Vázquez-Arellano et 

al., 2018; Wang & Chen, 2020).  

The goal of this project is to develop and implement an automated high-throughput 

phenotyping (HTPP) system to increase the rate of breeding crop cultivars. This project focuses 

on tomato and pepper crops in the Solanaceae family due to their similarities in important 

phenotypes for breeders, growers, and consumers. Beyond this project, the plan is to adapt HTPP 

methods and technologies to other crops.  
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2. LITERATURE REVIEW 

2.1.  General Background  

The United Nations estimates the world population will increase to between 9.4 and 10.1 

billion by 2050 (UNDESA, 2019). With climate change affecting the yield of many crops 

around the globe, the need to improve the yield of our food production is necessary. But this 

challenge is a multifaceted issue with factors like land availability, resource limitations and 

time sensitivity. Increasing land usage for crop production will lead to increases in 

greenhouse gases in the atmosphere which will exacerbate the effects of climate change 

(Tilman et al., 2011). Scientists are faced with the challenge of increasing food production 

while reducing the amount of resources needed and the impact on the environment. 

California, the United States’ largest producer of specialty crops, has been significantly 

affected by climate change, especially in terms of water availability. California produced 

more than 50 billion dollars’ worth of specialty crops in 2019, the most of any state. 

Vegetable production is a 13-billion-dollar industry in the US, with California producing 

more than half (7.3 billion dollars) of the US’s fresh and processed produce. California is the 

number one producer of tomatoes in the United States and number two producer of peppers. 

These crops represent a significant portion of the tomato and pepper products sold in the 

United States as well as the California’s agricultural economy (USDA_NASS, 2016). 

Approximately 90% of the processing tomatoes grown in the United States are from 

California. However, like many crop varieties, the yield, plant growth and development of 

the Solanaceae family has been affected by climate change. Breeding varieties with more 

adaptable stress tolerances, and better yield in arid environments via breeding is being 

researched but understanding and testing how these new varieties perform in increasingly 
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warmer and drier regions is essential to maintaining or increasing their production levels 

(Tolosa & Zhang, 2020). 

2.2. Remote Sensing  

To address the issue of a lack of phenotypic information, the application of robotics, 

remote sensing, and imaging technologies have been used to detect information about 

cultivars and improve the efficiency of crop production. From robotic platforms to UAVs, 

both government and privately funded groups have worked to develop methods for collecting 

data to detect and categorize plant phenotypes (Araus & Cairns, 2014). With recent 

advancements in the understanding of biological features in plants as well as the capabilities 

of data analysis and processing tools, high throughput phenotyping, or the rapid detection 

and characterization of plant traits, via remote sensing has the potential to accelerate breeding 

processes (Gupta & Varshney, 2013). High throughput phenotyping utilizing partially, or 

fully automated systems can provide detailed and complex analysis of plant structure, 

growth, and morphology without damaging the plant (Humplík et al., 2015). Tools like 

Artificial Neural Networks (ANN), Support vector Machined (SVM) and models 

implementing Fuzzy Logic (FL) based rule systems have greatly increased the accuracy of 

the results from image data, sometimes even surpassing traditional methods of measuring 

(Njoroge et al., 2018) . 

2.3. Phenotyping Platforms  

The best method to collect image or other types of data for high throughput phenotyping 

varies from crop to crop and the desired traits. Unmanned Aerial Vehicles, custom platforms, 

tractors, and other systems have been used to collect data (Araus & Cairns, 2014). For 
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example, researchers from Arizona, focusing on developing a phenotyping platform, created 

one that consisted of four sets of sensors to measure Pima cotton phenotypes across four 

rows at once (Andrade-Sanchez et al., 2014). A semi-automatic phenotyping system was 

designed with two RGB cameras and a hyper spectral radiometer to monitor small plots of 

wheat cultivars and provide information about plant canopy architecture (Comar et al., 2012). 

Heliaphen is an outdoor high throughput phenotyping platform that consists of a fully 

autonomous robot that monitors water levels in plants based on the weight of their pot as well 

as having four digital cameras to take photographs of the plant to monitor characteristics like 

leaf area and seed production. Those characteristics are then utilized to estimate leaf 

transpiration or stress responses in order to simulate the plant varieties’ response to different 

environmental conditions and yield production (Gosseau et al., 2019). The Terra phenotyping 

Referencing (Terra Ref) Project compared NDVI measurements of Durum wheat varieties 

utilizing both UAV’s and ground based phenotyping platforms in order to understand 

drought tolerance across genotypes (Condorelli et al., 2018).  

2.4. Three-Dimensional Phenotyping  

Plant architecture is an important set of plant phenotypes because it provides useful 

insight about the plant’s growing conditions as well as information regarding the 

developmental stage of a plant’s life cycle (Paulus et al., 2014). The size and shape of 

varieties can give breeders insight on which cultivars are best suited for different 

environments  (Chéné et al., 2012). 

While 2D imaging is extremely useful for certain phenotypic and environmental trait 

measurements, it lacks some information when it comes to plant architecture. Because of the 

nature of many plants, occlusions and shadows can greatly decrease the accuracy of 2D 
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measurements. Three-dimensional models of plants, created from 3D reconstruction 

techniques, that utilize depth information can overcome many of the limitations 2D 

information has (Paulus et al., 2014). Using remote sensing to extract phenotypic data has 

shown promising results. For example, as part of the Smart tools for Prediction and 

Improvement of Crop Yield project (SPICY), researchers developed an imaging unit that 

could create a 3D reconstruction model of the plant canopy and detected architectural 

features as well as other statistical information from the raw 2D images collected in a 

greenhouse (Van Der Heijden et al., 2012). Researchers were able to obtain volume, mass 

and berry counts utilizing 3D models via remote sensing (Herrero-Huerta et al., 2015). 

Vineyard characteristics like grapevine classifications, vine dimensions and crop field 

conditions were determined utilizing 3D Digital Surface Models (de Castro et al., 2018).  

However, many 3D sensors are expensive and not practical for commercial purposes. 

LiDAR creates high resolution 3D models but has a large investment cost for models with a 

larger field of view. 3D model creation from 2D RGB images has a significant amount of 

post processing time and computational requirements. While RGB imaging is typically less 

costly than 3D, it often requires a priori knowledge of the object of interest and environment 

which can be time consuming to collect (Chéné et al., 2012). This has led to an increase in 

use of low cost off the shelf depth sensors on phenotyping systems. Three-dimensional 

modeling with off the shelf sensors has shown promising results in agriculture as well as 

other scientific fields. While more costly laser systems are more reliable and accurate, lower 

cost depth cameras coupled with the RGB information still make these sensors a good option 

compared to expensive alternatives (Paulus et al., 2014).  
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The Microsoft Xbox Kinect (Microsoft Kinect V2, Microsoft Corp., Redmond, WA, 

USA) has proved to be useful as a short-range 3D/4D camera for a variety of feature 

detection applications (Mankoff & Russo, 2013). The Kinect v2 has become more popular in 

agricultural settings due to its technical capabilities like speed and accuracy at an affordable 

price point (Vázquez-Arellano et al., 2016). Paulus et al. (2014) compared the results of high 

precision laser scanners to RGB-D cameras like the Kinect in measuring sugar beet leaves 

and wheat ears and found that these low-cost sensors were capable of replacing their 

expensive counter parts for many phenotyping scenarios. Using the Microsoft Kinect, point 

clouds of maize in fields were developed to extract multiple height measurements from 

individual corn plants as well as develop raster crop height models (Hämmerle & Höfle, 

2016). In another study the Kinect was used to create 3D reconstruction models of weed 

infested maize fields to estimate the volume of the weeds (Andújar et al., 2016). The Kinect 

was also used in greenhouses to take 360-degree views of pepper plants to create a fully 

comprehensive pepper plant model to analyze features of the plant. (Sun & Wang, 2019). 

3. BACKGROUND 

This paper is focused on utilizing 3D models to track architectural plant phenotypes in 

varieties of Solanaceae vegetable plants. The focus of this study was to develop and deploy a 

ground based remote sensing phenotyping system and implement automated methods of 

capturing and processing large quantities of data per day to accelerate the breeding of more 

adaptable crop varieties to combat the effects of climate change. Some of the phenotypes of 

interest of breeders of Solanaceae varieties can be seen in Table 1.  
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Table 1 High-throughput plant phenotyping target traits in tomato and pepper for plant breeders 

Exterior Traits  Interior Traits 

Plant size (height and width)  Fruit Yield 

Plant shape (ratio of height/width)  Proportion of ripe fruit in total yield 

Plant growth habit  Fruit color 

Plant fruit carrying ability  Fruit size 

Canopy light interception  Fruit shape 

Leaf temperature  Days to first: open flower, green fruit, mature fruit 

Plant biomass  Sunburned fruit 

 

3.1. Phenotyping Platform 

A previous version of phenotyping systems developed at UC Davis for Solanaceae plants 

was focused more on high-resolution close-up imaging of eggplants (Nguyen et al., 

2016).While the models created from that project were incredibly detailed, photorealistic and 

useful, the phenotyping tractor had to stop at every plant to capture a large number of images 

of each plant versus continuously driving through the field and post data collection 

processing the data to create the models was extensively time and labor intensive. For the 

collection of large amounts of phenotypes of replicated field trials with many genotypes, this 

time and labor requirement wasn’t feasible. 

   

Figure 1 Previous iteration of UC Davis Phenotyping Platform 
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The goal for this study was to utilize 2D images to create high resolution 3D 

reconstruction models focused on phenotypes related to plant height, leaf segmentation, leaf 

counting and leaf area. Because of the high resolution of the system and its field of view 

width limitations, each camera was located extremely close to the plant once the plant was 

mature. 

Several modifications and design decisions were made during the development of this 

phenotyping tractor to reduce the limitations and improve upon previous designs. The new 

design utilized two types of imaging sensors (the Xbox Kinect v2 and Canon T6 cameras) 

splitting the plant architecture tasks from other imaging tasks with a sensor more suited for 

three-dimensional modeling. The phenotyping system for this project was built on a high 

clearance tractor (model Classic Spider, LeeAgra, Inc. Lubbock, TX, USA) to ensure data 

could be collected all season without disturbing or interfering with the plants. This new 

design also allowed for the platform to move continuously while collecting data rather than 

stopping at each plant. This decreased the time it took to traverse the field while still 

capturing useful data.  
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Figure 2 UC Davis phenotyping platform "The Spider" in field 

Sensor placement in the previous iteration of phenotyping systems from UC Davis was 

constrained by row width, however due to the increased height of the spider, the camera and 

sensor placement in the new design was not constrained by the crop row width. Instead, this 

system extended the sensor mounting positions over adjacent rows allowing each 2D RGB 

camera to be about 225 cm and the Kinects to be 150 cm away from the center of the target 

row, Figure 3. This design also helped better satisfy the breeder’s requirements for capturing 

data of the plants at various stages of growth, including full height plants at maturity.  
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Figure 3 Rendering of the phenotyping platform with distance of the furrows (where the 

plants are located) to the heights of the sensors. 

Another important feature of this version of the phenotyping tractor was the lighting. 

Ambient light conditions vary throughout the day and year which causes issues for most 

imaging sensors (Andújar et al., 2016). To address these challenges, the entirety of the sensor 

system was covered with translucent white corrugated plastic precisely cut to fit to the frame 

holding the sensors. This translucent cover dispersed the ambient light, reducing shadows 

from the tractor and other objects, like the sensors themselves. To ensure there was enough 

light illuminating the plants for in-motion image capture without motion blur, custom LED 

lighting modules were made and mounted on the sensor frame to allow constant bright 

lighting conditions.  

3.2. Real-time Kinematic Global Positioning Systems (RTK GPS)  

Because of the number of plants in the field and the number of sensors on the tractor, it 

was essential to only collect data for the plants of interest and to automate the data collection 
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process. Previous iterations of this machine collected data continuously, resulting in large 

amounts of unwanted image and other data of the soil in between crop rows. However, 

automating the data collection process presented a number of challenges. The plants in this 

study were planted 12 inches apart, with eight plants per plot, and a 36-inch separation along 

the row between plots. A Global Positioning System (GPS) was used to track the location of 

the vehicle and the plants during measurements.  To understand where the images and data 

points were taken, the GPS needed to have more precision than most low-cost consumer-

grade GPS options. Fortunately, georeferencing in agriculture for applications like centimeter 

precision robotic weeding and self-driving tractors have been made possible with Real Time 

Kinematic Global Positioning Systems (RTK-GPS). RTK-GPS has the ability to give real-

time GPS coordinates with centimeter accuracy and has proven effective in mapping 

transplanted row crops (Sun et al., 2010).  

3.3. Phenotyping with a Ground-based vs. Aerial Platform  

UAV’s (Unmanned Aerial Vehicles) have increased in popularity in civil applications 

including agriculture in the last decade. As their overall popularity and production have 

increased, UAV have become more affordable to everyone including researchers (del Cerro 

et al., 2021). UAV’s have some benefits over ground-based options, rugged terrain does not 

pose a problem and they can travel at much higher speeds, maneuvering through fields faster 

than many platforms. There is also a plethora of software that have user friendly autonomous 

route planning. With all these benefits, the UAV is an attractive option for many phenotyping 

projects. However, for this project UAV’s benefits unfortunately do not outweigh the costs. 

One of the phenotypes of interest for this project was the day of the appearance of the first 

flower on each plant. UAVs are often not close enough to the plant to have a high enough 
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resolution to capture details like flowers  which are often smaller than a few centimeters in 

width. In addition, the limitations on weight capacity and electrical power limit the number 

of sensors the UAV can carry whereas a ground-based platform typically does not have such 

limitations. Lastly, UAVs cannot control or supplement the lighting. While the Kinect v2 

outperforms the Kinect v1 in low and inconsistent lighting, it does still measure distances for 

point clouds more accurately and precisely in consistently well-lit conditions (Zennaro et al., 

2015). For measurements like degree of sunburn on the fruit, the color and level of the 

lighting changes how this appears to a camera. The ground-based phenotyping platform was 

covered in translucent plastic that dispersed ambient light and the platform also providing its 

own supplemental light source, ensuring the lighting between plants, fields, and days were 

consistent, shadow-free, and of sufficient brightness for capturing high quality images.  

Specific to UC Davis, the UC Davis Airport is located next to campus near many of the 

agricultural research fields involved in plant breeding. This limits when drones and other 

aircrafts can collect data in research fields limiting the availability of data collection times 

due to Federal Aviation Agency (FAA) regulations.  

4. OBJECTIVES 

The objective of this project is to develop and implement an automated high throughput 

phenotyping system to increase the rate of breeding new crop cultivars. This project focuses 

on the tomato and pepper crops in the Solanaceae family because it is the third most 

economically important food crop plant taxon and due to their similarities in important 

phenotypes for breeders, growers, and consumers. This document focuses on the collection 

of plant color and three-dimensional depth (RGB-D) data and the creation of an automated 

methods for identifying and measuring architectural plant phenotypes.  
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Objective 1: Sensor implementation 

• Design, fabricate and evaluate the software and hardware needed to integrate a 

proximal plant architecture sensor with sensing system controls and GPS  

Objective 2: Develop and Evaluate Software solutions to detect and identify phenotypes of 

interest  

• Develop a method to measure height, width, and volume of different genotypes of 

pepper and tomato plants utilizing 3D point cloud data from a time-of-flight 

camera and compare with manually taken measurements. In addition, create a 

graphics that shows the change in these measurements over a season 

o Objective 2a: Estimate Height 

▪ Estimate plant/canopy height. This includes analysis of 3D cloud 

data from both a plant-level and plot-level basis, relating time of 

flight point cloud units to breeder’s measurement units and 

comparing the estimated plant heights to manually collected 

heights at the end of season. Analysis of the automated phenotype 

data that shows the height change over an entire season of growth 

will be conducted.  

o Objective 2b: Estimate Width 

▪ Estimate plant/canopy width and compare with end of season 

manual width measurements. Unlike height, the width 

measurement is dependent on the 3D model’s pixel density and 

utilizes pixels at the edge of the point cloud rather than the center 

o Objective 2c: Estimate Volume  
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▪ Estimate plant volume and use tools like smoothing to reduce noise 

and obtain better volume calculations.  

 

5. MATERIALS AND METHODS 

5.1. Field Design  

This project was done on a variety of tomato and pepper genotypes as part of a study to 

examine drought response in Solanaceae varieties, so the fields were divided into drought 

and non-drought treatment blocks using a split-plot design. In 2018 and 2019, there were 

three fields of plants as seen in Figure 1, two tomato fields and one pepper field. The tomato 

fields had 24 rows of plants with four guard rows (one on each end of the field and two in the 

middle of the field). Each plot had eight plants (two guard plants, one on each end of the plot, 

i.e., plants 1 and 8). There were 16 plots per row for the peppers and 12 plots per row for the 

tomatoes. There were 16 pepper genotypes and 30 tomato genotypes with four replicate plots 

of each genotype per treatment block. In adjacent to the field a secure and lockable building 

was added to store the phenotyping platform when not in use.  

 

Figure 4. Field layout for 2018 and 2019 trials. Green represents the control group (non-

drought) and yellow represents the plants with drought treatment 
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5.2. Phenotyping Platform Design 

5.2.1. Hardware 

The data for this project was collected using the High Throughput Phenotyping 

machine developed at UC Davis called “the Spider.” The base of the Spider was a Lee 

Agra Spider tractor (model Classic Spider, LeeAgra, Inc. Lubbock, TX, USA) typically 

used for spraying. A custom sensor mounting arch was mounted behind the vehicle 

driver’s seat and in front of the engine. The sensor mounting arch held 18 Canon DSLR 

cameras, three Microsoft Xbox Kinect V2 and eight lighting modules. The Spider also 

had an RTK GPS receiver mounted, which communicated with the RTK GPS base 

station located at the UC Davis Western Agricultural for Agricultural Equipment.  

  

Figure 5. View of the arc mounted on the Spider taken from the ground looking up at the sensor 

placement (black objects). The Kinects are circled in red.  

5.2.2. GPS       

At the beginning of each season the GPS coordinates of start and end of all of the 

plots were recorded.  These GPS coordinates were used as data collection control points 

and included in the software controlling the cameras (2018, 2019) and Kinect (2019). 

This allowed the cameras and sensors to only record data when located inside the plots, 

which eliminated image and depth data of guard plots and the road in between rows and 

decreased the amount of raw data collected and made data sorting more efficient. To 

achieve this, a ruggedized real-time-kinematic GPS (model 542 RTK-GPS, Trimble Inc., 
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Sunnyvale, CA). was used. The receiver was mounted on the top of the Spider platform 

and connected to the base station located at the UC Davis Western Center for 

Agricultural Equipment.  

5.2.3. Microsoft Xbox Kinect v2 

The Spider was equipped with three Microsoft Kinect V2 sensors. The Kinect is a 

3D sensor made by Microsoft with a 1920 x 1080 resolution RGB camera as well as an 

infrared camera (512x 424-pixel resolution) and infrared emitter. The maximum data 

collection rate of the Kinect is 30 Hz and it has a 3D depth range of 50 cm to 450 cm. 

Microsoft has an official developer's kit for researchers to use the Kinect for non-gaming 

purposes, however the Kinect sensors on the tractor used libfreenect2 (Xiang, 2016), an 

open sourced software, to collect and store the data to create point clouds.  

One of the Kinect sensors was placed directly above the crop row that the tractor 

straddles to collect data in the nadir direction and the other two were placed above 

adjacent rows at a 45-degree angles from the nadir direction, also viewing the same crop 

row that the tractor straddles. The two side angle Kinects were designed, as a precaution, 

to provide an alternative view of the same plants in case a feature of interest was 

occluded from the view of the top Kinect by a part of the plant (e.g., a flower hidden 

below a leaf so it is not visible from above, but is visible from the side). For the 

phenotypes studied in this document, feature occlusion was not an issue and therefore did 

not require the data from the side Kinects. All three Kinect sensors were connected via 

USB 3.0 port to a computer running the Microsoft Windows operating system. A custom 

program was created to allow the Kinect sensors to be turned on and off manually or 

automatically according to GPS location by software.  
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5.2.4. Kinect-GPS Integration 

During the data collection process the three Kinects were connected to a computer 

via USB 3.0 ports. This allowed custom software to turn on and off the Kinects. The 

RTK-GPS outputted a PTNL-PJK string which includes UTC time, Northing (meters) 

and Easting (meters). An algorithm then used the location to calculate the time it would 

take for the platform to enter the next plot and then turn on the time-of-flight camera and 

other sensors. The workflow for this process can be seen in Figure 6. 

 

Figure 6 RTK GPS HTPP Platform integration algorithm flow chart 

The RTK GPS could not be directly connected to the Kinects and required a device to 

read the start and stop times based off the RTK-GPS message. A National Instruments 

USB-6501 digital I/O device, was used to allow the computer to capture a digital GPS 

timing pulse the computer could utilize for accurate geolocation sensing. Custom 

software was created that utilized the GPS signal to turn on and off the data collection 
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from the three Kinects was implemented to allow data to be collected only when within a 

genotype plot and to create the metadata needed to keep track of which the data was 

collected in.  

5.3.      Data Collection  

To collect data, the Spider was driven through all the rows in the research plots twice a 

week from June to September. On each day of data collection one pass was made by the 

Kinects to collect data for each plot.  

5.3.1. Validation Trial  

In 2020, the field consisted of three rows of pepper plants and three rows of tomato 

plants. There was only one genotype of pepper and one genotype of tomato plant. Each 

row had 16 plots with an additional two guard plots on either end of the row. The Spider 

ran through the field on three dates since this was not a full trial.  

5.3.2. Validation Hand Measurements  

In 2020 a smaller scale trial was conducted to validate methods developed for 

phenotype analysis. Measurements like height or width per plant instead of by plot were 

not collected in 2018 or 2019 but were important to understanding how accurate the 

measurements collected from the Kinect were. There were six rows of plants (three for 

peppers and three for tomatoes) with no variation in genotype.  

To compare the Kinect results with hand measurements, the height, width, and volume 

data were collected by hand. To measure height, a yard stick was placed next to the main 

stem of the pepper plant and the height was written as the tallest point around the yard 
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stick. The width was taken at the visually widest part of the plant perpendicular to the 

drive direction of the tractor with a measuring tape across the width of the plant. 

Measuring the volume of the plant required destructive measuring techniques and 

therefore were only taken once during this trial (at the end).  

5.3.3. 2018 and 2019  

In 2018 and 2019 there were two tomato fields (North and South) along with a 

pepper field. The pepper field had 24 rows with eight guard rows. Each row had 16 plots 

with eight plants per plot (2048 plants in total). There were 16 genotypes represented 

with four replicate plots for each genotype. The tomato fields each had 24 rows with 12 

plots per row. Each plot consisted of eight plants with 30 different genotypes of tomatoes 

studied. 2018 was the first year that data was collected using the new model of the Spider 

with the new sensor arch mounting design.  

6. Software 

Because of the large amounts of data collected per day (about one terabyte of data from all 

the sensors was collected per day), automated methods of sorting, processing, and analyzing the 

data needed to be developed to produce phenotype measurements in a useful timeframe. The 

overall flow of processing data starting with the data collection and ending with the measurement 

analysis can be seen in Figure 7. 
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Figure 7 Workflow of automated phenotyping process  

6.1.1. Point Cloud Creation 

The point clouds for the plants within each genotype plot were created using depth 

and aligned data files output from the Kinect. Depth frames were one channel 8-bit 

grayscale image that contained all the distance information from the Kinect as seen in 

Figure 8.  
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Figure 8 Depth file output from Kinect 

The aligned files were image registration files that associated the RGB values with the 

corresponding depth value to create an RGB point cloud as seen in Figure 9.  
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Figure 9 Aligned file output from the Kinect 

The depth and aligned data then were processed into point clouds with libfreenect, an 

open-sourced software package as seen in Figure 10.  
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Figure 10 Point cloud created from depth and aligned files 

6.1.2. Plot Sorting  

In 2018, the GPS based data collection was not yet integrated with the Kinect. This 

meant the Kinects were manually turned on and off at the start and end of the run in 

between rows. This required a more labor-intensive approach to sorting. First the data 

was sorted into rows based on the time difference between data points. After the data was 

sorted into rows, the rows were then sorted into plots. Because the plots were all the same 

size in the field and the drive speed of the tractor remained fairly constant, the data was 

divided evenly among the plots and visually checked.  

In 2019 the National Instruments digital I/O device was implemented with the RTK-

GPS to turn on and off the Kinect based on the GPS coordinates of the spider. This turned 

sorting into an automated process. To sort the 2019 field data, first the data was divided 

and sorted into rows. Because the driving time between rows was longer than the driving 
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time between plots, frames that had large time differences were assumed to be the last 

and first frame of two different rows. Once the data was sorted into rows, the time stamps 

of the data in the rows were compared. The time in between frames in a plot was about 

0.4 seconds. The time in between frames that were the last and first frames of adjacent 

plots was about 2 seconds. Using this information, the frames were sorted by plot. Using 

a field map with the corresponding locations and labels, the plots were matched with their 

plot number and genotype. Due to the nature of how the RTK GPS was integrated with 

the phenotyping platform and its sensors, absolute location was not used to mark the start 

and end of the plots and not saved for each frame hence the use of time to sort.  

6.1.3. Point Cloud Concatenation and Plot Creation  

The point clouds for each plot were cut and connected to make a single point cloud 

of an entire plot. The frame rate of the Kinect was fast enough, and the platform travel 

speed was slow enough at about 3.2 km/h to ensure the entirety of the plot was visible in 

the point cloud data collected.  

To determine which point clouds and what section of the point clouds were best to 

concatenate to form a full plot, three different sized cylindrical containers (trash cans) 

were placed in an empty plot and data was collected for those containers during the field 

trials as seen in Figure 11. Because the containers had a known and simple geometry, it 

was easier to visually check the point cloud overlaps and ensure that there were not any 

obvious errors in plot making. The containers were a known size (height, width, and 

volume) as well as a known distance apart, these were used to calibrate the program to 

decide what point clouds to crop and combine to create a single point cloud of the full 
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plot. Once the parameters for creating the single point cloud per plot were determined, 

the full plot point cloud for every sorted date was created.  

 

Figure 11 RGB image of cylindrical containers placed in the field during the field trials 

The point cloud for each plot of plants consisted of 10-15 individual point clouds 

collected at 0.4 second intervals as the platform traveled across the plot. The 3D points 

that were closest to center of the crop row, directly underneath the Kinect, had the least 

amount of noise and the highest density of points and was therefore utilized in the 

phenotype analysis. The rest of the points in the clouds that consisted of points at the 

edges of the planting bed near the platform or were noisy were removed from the 

analysis. The edges of the platform and furrows were consistent in location so those 

locations were identified and saved, then included in the plot creation software to remove 

the non-plant features in the models.  
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Figure 12. Point cloud created from the Kinect pre editing process 

Noisy points were considered points with no adjacent points within 10 cm. Software was 

developed to identify these points based on their isolation and remove them to prevent 

inaccurate phenotype measurements. The cropped point clouds were then concatenated to 

create one larger point cloud of the entire plot as seen in Figure 13.  
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Figure 13 Point cloud of the full plot 

This final point cloud does not contain any of the tractor components or furrow 

included so that any measurements taken are of the plants.  

6.1.4.      Calibration Data  

The point cloud data is output in meters with the Kinect as the origin of the local 

reference frame. For width phenotypes, no additional coordinate system calibration of the 

data was needed. However, the raw height measurement output by the Kinect was the 

distance from the Kinect's sensor to the top of the plant, where a height of zero would be 

a plant that touches the Kinect. To translate that data into a form more suitable to 

compare with traditional methods of measuring height, a calibration equation was created 
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utilizing three different sized cylindrical containers that were painted matte green and 

placed in the field during data collection as seen in Figure 11. The 3D models of these 

containers were reconstructed from the Kinect data as seen in Figure 14. 

 

Figure 14 Containers placed in field to calibrate the height equation for the point cloud 

measurements 

Each of these containers has a known height, which was used to make a calibration 

equation to transform the Kinect data into a breeder-compatible form. A new calibration 

equation was calculated from the container data collected every year. This was necessary 

because while the containers remained consistent from year to year, the height of the 

furrows and other field factors varied.  
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Figure 15 Regression for containers placed in the field for height measurements 

From the measurements taken from the cylinders by hand and the measurements from the 

Kinect, the following calibration equations were calculated:  

𝑦 =  𝑚𝑥 +  𝑏 

( 1) 

Table 1. Slope and intercept values for calibration equation from Kinect heights to real 

world heights. 

  

Slope, m 

(cm/m) 

Intercept, b 

(m) 

2018 103.45 154.85 

2019 79.56 128.68 

2020 85.32 142.93 

 

The values for the slope and intercept as seen in Table 1 were then used each year to 

calculate height and volume.  

6.1.5. Automated Height Measurements 

For height measurements, the 3D point cloud was converted into a 2D projection. 

Defining height to be the z-axis and the tractor travel direction as the y-axis, the x-axis 

was the direction perpendicular to the crop row. For height, as measured with a single 

point measurement by the breeder using a ruler, the point cloud x-axis did not provide 

any useful information, so the points were projected onto the y and z plane to create a 2D 

image. Then any additional noise points were removed. At this point, the local 

maximums at evenly spaced intervals (height maximums) were identified. During the 

development of this algorithm one plot was used to test the intervals and maximum 

identifying software. After several iterations with parameter changes (like size of interval 



40 

 

and sensitivity of maximum location software) the heights were identified in locations 

that corresponded to where a human would estimate a height measurement. Once 

parameters were established this method was tested on numerous plots over all the dates 

to verify and find tune the parameters.  

In the beginning of the season there were about three points identified per plant and 

towards the end of the season as the plants grew larger there were about five points per 

plant. This resulted in about 20-40 height measurements per plot per day from automated 

height data.  

 

Figure 16. Two-dimensional representation of the point cloud with potential height 

measurements 

The automated height data was compared with the plant breeders’ manual 

measurements collected from two plants per plot on a single day during the season. In 

2019 a Tukey multiple range test was conducted on the genotype heights between the 

automated Kinect method and the manual method.  
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6.1.6. Automated Width Measurements  

For the width phenotype, the 3D point cloud data did not have to be processed as 

was done for the height because the width was measured along the x-axis. To calculate 

width, the difference between the widest points were calculated at eight sections along 

the plot length. Due to the differences in height across all the genotypes and the dates, 

taking a width for the same height for each plant did not provide a representative 

comparison to traditional measurement methods. Additionally, the projection method 

used for heights could not be adjusted and applied to width because the width is 

dependent on the height so removing the Z data would give inaccurate results. Using the 

base of the plant as zero and the tallest point of the plant as 100, the width was calculated 

using the data from the 30th percentile and above. Each plot had eight plants resulting in 

eight width measurements per plot.  

6.1.7. Automated Volume Measurements  

Volume for the plots were estimated using the same methods as the height 

measurements but over all the points instead of selected maximums. The volume of the 

plants was calculated by measuring the height of each point in the point cloud that was 

plant matter. The same method used in the plant height measurement of converting the 

Kinect height data of the plant relative to the Kinect sensor location into the absolute 

height relative to the soil was implemented here, except this was done for all the points in 

the point cloud without merging the points onto a 2D plane. The absolute heights were 

then multiplied by the ground-level area that each point represented. The resolution of the 

Kinect infrared camera is 512 x 424 pixels. When converted to real world units, each 

pixel images an area of 0.036 mm2 at the soil level. After each height measurement was 
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then multiplied by this point area and the volume values were then summed to get the 

total volume of the entire plot.  

A visual representation of this process can be seen Figure 17 and Figure 18.  

 

Figure 17 Point cloud of a pepper plant plot from Kinect data 

Where Figure 17 is an example of an entire point cloud plot and Figure 18 is a small subset of 

the point cloud with each bar representing a point’s height and the area it covers.  

 

Figure 18 Visual representation of the area covered by each point in the point cloud. Data taken from a small subset of the points 

from the figure above 
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7. RESULTS 

7.1. Automated Height Phenotypes 

Heights were calculated on a plant-by-plant basis for the validation data and plot by plot 

basis for the 2018 and 2019 data to make the data easier to compare to the manual measurements 

that were taken. For the validation data, a single date of measurements were collected and for 

2018 four dates were collected and 2019 five dates were collected.  

7.1.1. Peppers 

The validation data shows how the automated results compare to the manual 

measurements that were taken. As seen in Figure 19, the hand measurements have less 

information about the shape and overall height of the plot compared to the automated results 

from the Kinect. 
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Figure 19 Two-Dimensional presentation of a pepper plot from the validation data in 2020 

Because heights were taken of each plant in 2020, the height data per plant collected by the 

Kinect was compared to the data collected manually on a plant-by-plant basis rather than 

plot-by-plot as seen in Figure 20.  
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Figure 20 Scatter plot with the Kinect measurements plotted against the hand measurements. 
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Figure  

Figure 21 2018 Automatically generated height phenotypes of pepper 

plants calculated from the 3D Kinect data across the 2018 season by 

genotype and date 
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Figure 22. 2019 Automatically generated height phenotypes of pepper plants calculated from the 

3D Kinect data across the 2019 season by genotype and date. 
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In 2019 there were more measurement dates as well as more data per genotype due to improved 

field conditions. Expectedly, as the season progresses the overall height of the plants increases.  

 

Figure 23 Average Kinect Height measurement vs Average of the Manual Measurements 

Because the breeder only collected manual height measurements of the plants on a single 

date, there is not an effective way to compare Kinect generated heights of plants over the 

entire season and across the full range of heights of juvenile to mature plants to a more 

traditional measurement. Additionally, due to the labor-intensive nature of the task and 

the size of the trial, the breeder only measured the heights of two plants per plot 

manually, whereas with the Kinect point cloud had multiple height measurements per 

plot rather than just two. This high temporal and spatial resolution of data obtained by the 

Kinect is simply not realistic for traditional measuring methods.  
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A Tukey Multiple Range test was conducted on the 2019 data to compare the mean 

height of each genotype calculated from the Kinect and the data collected manually in the 

field (the same data displayed in Figure 23). Except for one genotype, none of the 

genotypes have a p value that indicates there is a significant difference between the 

Kinect measurements and the measurements taken manually as seen in Table 1.  

Table 2 Tukey test conducted on the Kinect data and the manually collected data  

 

Genotype Difference Std Err Dif Lower CL Upper CL p-Value

K03  0.4082 3.674877 -14.2883 15.1047 1

K09  3.56725 3.594101 -10.8062 17.94071 1

K10 13.09221 4.018327 -2.9778 29.16223 0.392

K11 3.2799 3.594101 -11.0936 17.65337 1

K12 15.29924 3.594101 0.9258 29.6727 0.0195

K16 9.50729 3.674877 -5.1892 24.20379 0.8984

K18 13.86908 3.674877 -0.8274 28.56559 0.1043

K19 4.12444 3.594101 -10.249 18.4979 1

K20 5.55782 3.594101 -8.8156 19.93129 1

K21  9.07463 3.594101 -5.2988 23.4481 0.9244

K22  4.3266 3.594101 -10.0469 18.70007 1

K23  6.57463 3.594101 -7.7988 20.9481 0.9998

K24  7.10874 3.846619 -8.2746 22.49208 0.9998

K25  11.83972 3.594101 -2.5337 26.21319 0.3639

K26  6.88998 3.594101 -7.4835 21.26344 0.9994

K27  5.96092 3.594101 -8.4126 20.33438 1

K28  9.20694 3.594101 -5.1665 23.5804 0.9097

K29  10.69156 3.594101 -3.6819 25.06502 0.6315

K30  9.62945 3.674877 -5.0671 24.32596 0.8824

K31  7.02663 4.187001 -9.718 23.77121 1

K32  10.99645 3.674877 -3.7001 25.69296 0.6165

K33  11.48945 3.674877 -3.2071 26.18595 0.5008

K34  19.23279 3.594101 4.8593 33.60625 0.0001

K35  8.61507 3.674877 -6.0814 23.31157 0.9733
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In the 2020 trial, the height of each plant was taken in the plot instead of measuring only 

two plants per plot as was the tradition of the breeder. This allowed us to plot the hand 

measurements directly over the two-dimensional Kinect side view of each plot as seen in 

Figure 15.  

7.1.2. Tomatoes 

Kinect height data was collected for the tomato genotypes on the same days as the 

pepper plants. Unfortunately, there was no height data collected manually by the breeder 

for the tomato genotypes, but the methodology is the same for each crop. The processed 

Kinect height data is shown in Figure 17. 
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Figure 24. 2018 Automatically generated height phenotypes of tomato plants calculated from the 

3D Kinect data across the 2018 season by genotype and date. 
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The tomato varieties show a different growth pattern than the pepper varieties. 

Peppers generally get taller as the season progresses and once they reach a certain height 

stop growing. Processing tomatoes, which are grown in the field with no trellises, 

generally grow large while producing fruit. Once their fruit reach a critical weight, the 

tomato plant cannot withstand the weight and collapses. The fruit continues to grow and 

ripen after this collapse until harvest.  



53 

 

 

Figure 25. 2019 Automatically generated height phenotypes of tomato plants calculated from the 

3D Kinect data across the 2019 season by genotype and data
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7.2. Automated Width Phenotypes 

7.2.1. Peppers  

Width was estimated utilizing autonomous methods for the genotypes in 2018, 2019 

and 2020 for validation data. A plant-by-plant comparison of width can be seen in Figure 

26. Measuring width in the field in a way that allowed for a meaningful comparison with 

the Kinect width was difficult. As the plants grow, they merge making the boundary of 

one plant difficult to distinguish. These challenges were increasingly obvious when 

determining where to measure width utilizing the point clouds due to the nature of remote 

sensing. In the field, the person first determines the beginning and end of the plant and 

then decides where they believe the widest point of the plant is and measures across that 

distance perpendicular to the row direction to the nearest half inch. With the point cloud 

data, there is guess work to understanding where the plants start and end. It is relatively 

easy to find the widest length across the plants in the plot but there is no way to 

determine if that width was the same location as where the manual measurement was 

taken.  
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Figure 26 2020 Kinect Measured widths vs manually measured widths 

In 2020, manually measured data was collected for each plant to compare with the width 

calculated from the Kinect data. An overall width comparison on a plot-by-plot basis can 

be seen in Figure 27. 
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Figure 27. 2020 Kinect measured widths and hand measured widths



57 

 

 

Unfortunately, there was no hand-measured data collected by the breeder to validate the 

2018 and 2019 Kinect generated widths against, but like height, the automatically 

generated width data calculated from the point clouds has many measurements per 

genotype as well as across the season.  

Plant width was calculated from the point cloud data across four dates for 2018 and five 

dates for 2019. In general, most pepper genotypes increased in width across the season, 

some more than others. Other genotypes had more variation on the width of the plants in 

the same genotype as seen in Figure 28 and Figure 29. 
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Figure 28. 2018 Automatically generated width phenotypes of pepper plants calculated from the 

3D Kinect data across the 2018 season by genotype and date. 
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Figure 29. 2019 Automatically generated width phenotypes of pepper plants calculated from the 

3D Kinect data across the 2019 season by genotype and date. 
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7.2.2. Tomatoes 

Tomato genotype widths were calculated across the season for 2018 and 2019 as seen in 

Figure 26 and Figure 30
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Figure 30 2018 Automatically generated width phenotypes of tomato plants calculated from the 

3D Kinect data across the 2018 season by genotype and date. 
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Figure 31 2019 Automatically generated width phenotypes of tomato plants calculated from the    

3D data 
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In 2019, the tomatoes were at a stage in their growth where they spanned the entire width 

of the furrow the first time (June 14, 2019) the Spider drove through the rows that season 

as seen in Figure 32. In 2018 there was a heat wave about two weeks after the transplant 

date which shocked the plants into early flowering and resulted in breeder intervention. 

Due to this unexpected weather and intervention the plants took longer to mature because 

the plants put more energy into developing flowers and replenishing the removed flowers 

instead of foliage growth.  

 

 

Figure 32 Tomato plot on June 14, 2019 

7.3. Automatic Volume Phenotypes  

Calculating volume presented several challenges. The plant breeders were interested in a 

remote sensing volumetric equivalent to a plant biomass phenotype. This requires an estimate 

of the open cell volume where the interior void space is not included in the plant volume. The 



64 

 

Kinect was able to capture detailed 3D models of the outer surface of the foliage in the plots 

but lacked information about the interior void spaces of the plant. This means the Kinect 

measurements provided a lot of information about the shape and size of the plant but not how 

dense the plant was. Some genotypes (of both peppers and tomatoes) are spread out and have 

long stems with lots of space between the fruit and leaves in the interior of the plant whereas 

others are more densely packed with very little space within the interior of the plant.  

7.3.1. Peppers  

As seen in Figure 33, in 2018 the pepper plants increase in volume over the course 

of the season. The last date, the volume decreases because the plant breeders conducted a 

destructive yield and biomass measurement resulting in the loss of volume for the Kinect 

to measure. In 2019, the Figure 34 shows the increase in pepper volume over the course 

of the season. For this year the last date is a lot earlier due to the breeder taking 

destructive manual measurements over the course of numerous dates which for safety 

reasons prevented the platform from running.  
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Figure 33. 2018 Automatically generated volume phenotypes of pepper plants calculated from 

the 3D Kinect data across the 2018 season by genotype and date. 
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Figure 34. 2019 Automatically generated volume phenotypes of pepper plants calculated from 

the 3D Kinect data across the 2019 season by genotype and date. 
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Figure 35. 2019 Pepper point clouds over the course of the season. (Starting from top middle, 

June 14, Top right June 25, Bottom left July 12, Bottom middle July 23, Bottom right August 6) 
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7.3.2. Tomatoes   

Tomato volume varied greatly across the dates collected. In 2018, the last date (August 

16, 2018) was taken after a destructive harvest and therefore has a much lower volume as seen in 

Figure 36. In 2019 there is more dates as well as data per date due to the implementation of the 

RTK-GPS and fine tuning of the irrigation system from the previous year, as seen in Figure 34. 
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Figure 36. 2018 Automatically generated volume phenotypes of tomato plants calculated from 

the 3D Kinect data across the 2018 season by genotype and date. 
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Figure 30. Automatically generated volume phenotypes of tomato plants calculated from the 3D 

Kinect data across the 2019 season by genotype and date. 
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Figure 31, Tomato plots over time (Starting from top left, June 14, Top middle June 25, Top 

right July 12, Bottom left July 23, Bottom middle August 6) 
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8. DISCUSSION 

Over the course of three years the Spider was taken out to the field every summer to 

collect data of Solanaceae crop varieties. There were obstacles during the data collection process 

that limited what data could be collected, however despite the issues there is a substantial 

database of three dimensional and RGB data for a variety of plants.  

8.1. Challenges  

This project was large and intensive which understandably led to challenges and 

obstacles along the way. Data collection was not a trivial portion of the project. The 

irrigation for these fields were converted to Softline irrigation to allow the Spider to drive 

over irrigation lines without damaging the irrigation systems. Due to inexperience using 

Softline irrigation methods, there were significant irrigation issues that resulted in numerous 

flooded rows during the season. The Spider was not able to run through rows with muddy 

soil, essentially excluding those plants from the study. Due to the inconsistency of the 

irrigation issue and resulting flooding, data was collected of some plants for a portion of the 

dates but not all, which is why 2018 has less data than 2019. In 2018 there was also an 

unexpected heatwave in May. To preserve the integrity of the study, the flower buds for the 

tomatoes and peppers were removed prior to phenotyping because the heat wave induced 

early flowers and fruiting which would not have been representative of how a genotype 

would perform under normal conditions.  

In 2019, Davis received a rather unprecedented amount of rainfall in May that flooded 

the field and delayed the start date for the phenotyping platform.  
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Figure 37 2019 Field after unexpected rain early in the trial  

Because this rain occurred quickly after the initial transplanting from the greenhouse to the 

field, many of the pepper plants were stunted for several weeks due to decreased soil 

temperature, resulting in root temperature stress and delayed growth. While the rain did not 

seem to affect the tomato varieties in terms of growth because the tomatoes were planted 

earlier than the peppers, the platform was unable to traverse the field until later in the growth 

cycle, so early-stage tomato growth was not available for that year.  

8.2. High Throughput Phenotyping Scale and Pipeline  

The goal of High Throughput Phenotyping is to provide phenotypic data for various 

genotypes on a large scale quickly. With any high throughput phenotyping project comes the 

challenge of handling and processing large amounts of data quickly. A single field run 

generated about one terabyte of data from the sensors, all of which needed to be sorted, 
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processed, and analyzed into meaningful results. After the point cloud creation, one day of 

data from a single Kinect was just over 100 gigabytes of data. When compared to traditional 

methods of architectural phenotype measurement, which generally consisted of an excel 

sheet with one to two measurements per plot, the Kinect provides significantly more 

information, but that information is not useful unless processed and output in a meaningful 

way.  

To ensure that the data collected was secure and not susceptible to hardware failure, all 

the data collected was uploaded onto a cloud-based server as well as saved on external hard 

drives. Because the platform traversed through the fields twice a week, twice a week a 

terabyte of data had to be checked (ensure no obvious errors or equipment malfunctions) and 

backed up twice a week.  

 After the raw data was saved came the task of establishing automated methods of sorting, 

processing, and analyzing the data. In 2018, the RTK GPS had not yet been integrated with 

the Time-of-Flight Camera (Kinect) and therefore was manually turned on at the start of each 

row and turned off. While this time difference between rows allowed the row sorting 

algorithm to be relatively straight forward, understanding where the plots started and stopped 

was not a trivial automated task. Dividing the number of point clouds per row by the number 

of plots and sorting it was successful but required many hours of manually checking that the 

plots were sorted properly. In 2019, the integration of the RTK GPS allowed for much more 

rapid sorting with less human intervention because the time in between plots was consistent. 

In the end, over 4,000 point clouds of full plots were created over the course of the three 

years. 
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 Now that this process has been developed and automated, a single person could run the 

phenotyping platform through a set of fields of similar size and have automated results of 

height, width and volume returned in less than 5 days. This would include multiple height 

measurements per plant (as well as averages), a width estimation per plant, and a volume 

estimation of the plot. In addition, there would be 3D models of each plot which could be 

used for future analysis of features not measured in this study. Traditional phenotyping 

methods cannot provide this quality of data using a single person over five days.  

8.3. High Throughput Phenotyping Methodology Challenges  

 Developing automated methods for the measurement of height, width and volume proved 

to be a difficult problem. In Figure 38, it is not difficult for a human to pick several points 

where they would take a height from.  

 

Figure 38 Automated 3D model generated from Kinect Data of a pepper plot 

If the figure could be rotated in a text document like this, it would also be easy to decide 

where to take the width measurements also. But it is not a trivial problem to automate 

those measurements. Heights taken at the same location for every plot do not give an 

accurate comparison to how a person would take a manual measurement in the field, or 
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even from a 3D model like in Figure 38. Plants, like any biological specimen, have 

variations from individual to individual and require adaption in the measurement process 

that are difficult to automate.  

 Volume was not easy to phenotype to measure or validate. There is no obvious 

way for a human to estimate volume by hand which made automating the process tricky. 

Numerous methods like Convex Hull which was utilized in line scans by del Campo et al, 

was tested but concluded not to be viable for this data set. Once settling on the method 

used in this paper, validating, or comparing the data was not like height or width. The 

breeders understandably did not have a similar method of measurement because volume 

is not a straightforward field measurement.  

8.4. Data Validation 

Even so, phenotyping via remote sensing has shown promising results. This project’s 

objective of creating an autonomous method to process 3D data to measure architectural 

phenotypes was successful. This method of phenotyping captured high spatial resolution data 

in all three fields twice a week (2-3 hours per run including set up) across the entire season 

with only one person whereas traditional methods require a large time investment and large 

amount of manual labor to find similar measurements. As seen with height measurements, 

the Kinect’s results were not proven to be statistically different compared to the manually 

measured heights. All p values when compared were greater than 0.01 with the exception of 

one genotype (K34, 2019). But the Kinect results had more samples per plot as well a 

relatively high temporal resolution. The traditional method resulted in only two 

measurements taken per plot whereas the Kinect point cloud had millions of points in the 

point clouds of the plot.  
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While not all types of measurements can be replicated with remote sensing with the 

methods in this project (mass), comparable types of measurements that are more efficient to 

collect could potentially change how plant characteristics are measured and analyzed. For 

example, mass or weight is traditionally the metric used to measure the size of plants because 

it is relatively easy to bring a scale to the field or collect samples and bring them back to a 

laboratory to measure mass. A measurement like volume is not easy to collect by hand for 

plants and therefore has not been utilized in phenotyping.  

 

Figure 39 Phenotypes measured by hand by researchers for tomato varieties 

However, overall volume is a more feasible measurement to collect via remote 

sensing whereas mass is much more difficult due to the unknown density of an object. 

Volume measurements via remote sensing are also nondestructive in nature allowing for 

temporal data on the same plant across the growing season. Measurements like volume that 

have not widely been used in describing plant architecture due to ease of measurement are 
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now much more feasible and have the potential to provide a more comprehensive picture of 

plant growth over the season.  

9. CONCLUSION  

The objective of this study was to identify and measure architectural plant phenotypes 

(height, width, and volume) of the Solanaceae family by utilizing remote sensing and a fully 

automated post experiment processing system. Data for those phenotypes were successfully 

collected and measured over the course of three years. Of the data that could be validated against 

traditional phenotyping methods, there was not a significant statistical difference between the 

data measured via remote sensing and the data measured manually. The data collected and 

processed using automated methods also create a more comprehensive picture of the growth of a 

genotype over the course of a season with many more sample points, higher temporal resolution 

and an entire 3D model. The phenotyping platform and automated analysis methods could allow 

a single person to collect architectural phenotypes of Solanaceae varieties in less than five days 

which is not possible with traditional measurement methods. There is potential for this high-

speed phenotyping to improve the efficiency of breeding crop varieties in California and the rest 

of the world.  

10. FUTURE WORK 

Based on observations made during this study, the following suggestions for future work are 

proposed below:  

i) A similar project as the one conducted but with fewer genotypes and more 

replications of each genotype should be conducted. These genotypes should be 
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specifically chosen for their architectural differences to allow a wide range of 

phenotype values to be present and better facilitate comparison across methods.  

a. In this project, standardize the way manual measurements are collected (where to 

measure height and width) and take these measurements for every plant instead of 

a very small sample of the plot  

ii) Utilizing the data from this project or through repeating a similar project, merge all 

three Kinect views together in a single point cloud to have more comprehensive 

models of the plants with less obstruction. Side views would provide more detail and 

a higher density of points in views that are not possible from the top Kinect view.  

iii) Utilizing the data from this project or through repeating a similar project, estimate the 

visible fruit volume to understand size of yield  

iv) Utilizing the data from this project explore more thorough and robust filtering 

methods for noise reduction  
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12. APPENDIX – CODE  

Access to the code for this project can be found here: 

https://github.com/csroo/architecturalphenotypes_solonaceae.git 

 

 

 

 

 

 

 




