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ABSTRACT Objective: Identify infants with abnormal suckling behavior from simple non-nutritive suckling
devices. Background: While it is well known breastfeeding is beneficial to the health of both mothers and
infants, breastfeeding ceases in 75 percent of mother-child dyads by 6 months. The current standard of care
lacks objectivemeasurements to screen infant suckling abnormalities within the first few days of life, a critical
time to establish milk supply and successful breastfeeding practices. Materials and Methods: A non-nutritive
suckling vacuum measurement system, previously developed by the authors, is used to gather data from
91 healthy full-term infants under thirty days old. Non-nutritive suckling was recorded for a duration of sixty
seconds.We establish normative data for the mean suck vacuum, maximum suck vacuum, suckling frequency,
burst duration, sucks per burst, and vacuum signal shape.We then apply computational methods (Mahalanobis
distance, KNN) to detect anomalies in the data to identify infants with abnormal suckling. We finally provide
case studies of healthy newborn infants and infants diagnosed with ankyloglossia. Results: In a series of
case evaluations, we demonstrate the ability to detect abnormal suckling behavior using statistical analysis
and machine learning. We evaluate cases of ankyloglossia to determine how oral dysfunction and surgical
interventions affect non-nutritive suckling measurements. Conclusions: Statistical analysis (Mahalanobis
Distance) and machine learning [K nearest neighbor (KNN)] can be viable approaches to rapidly interpret
infant suckling measurements. Particularly in practices using the digital suck assessment with a gloved
finger, it can provide a more objective, early stage screening method to identify abnormal infant suckling
vacuum. This approach for identifying those at risk for breastfeeding complications is crucial to complement
complex emerging clinical evaluation technology. Clinical Impact: By analyzing non-nutritive suckling using
computational methods, we demonstrate the ability to detect abnormal and normal behavior in infant suckling
that can inform breastfeeding intervention pathways in clinic. Clinical and Translational Impact Statement:
The work serves to shed light on the lack of consensus for determining appropriate intervention pathways
for infant oral dysfunction. We demonstrate using statistical analysis and machine learning that normal and
abnormal infant suckling can be identified and used in determining if surgical intervention is a necessary
solution to resolve infant feeding difficulties.

INDEX TERMS Abnormal, ankyloglossia, breastfeeding, clinical, machine learning, diagnosis, digital
assessment, Mahalanobis distance, non-nutritive suckling, vacuum.

I. INTRODUCTION

BREASTFEEDING benefits both mothers and infants
by protecting their health and development [2].

Evident from a growing body of literature, breastfeeding
infants experience lower rates of diabetes, allergies, cardio-
vascular disease, and other chronic conditions [3], [4], [5],
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[6], [7], [8], [9], [10], [11]. Mothers benefit from a decreased
risk of breast cancer, ovarian cancer, and postpartum depres-
sion [12]. The Center for Disease Control and Prevention
(CDC), the World Health Organization (WHO), and the
American Academy of Pediatrics (AAP), among many other
health organizations, recommend infants exclusively breast-
feed for at least six months to attain optimal benefits [13],
[14], [15]. Despite the fact that over 80% of mothers attempt
to breastfeed, breastfeeding rates fall to a paltry 25% at six
months after birth in the United States [16], [17]. While
many factors are responsible for breastfeeding cessation,
abnormal infant suckling behaviors—such as high intraoral
vacuum—are known to contribute to nipple pain and injury,
affecting a mother’s ability to persistently breastfeed [18],
[19], [20]. Other abnormal suckling behaviors, including low
intraoral vacuum and suck disorganization, affect latch and
milk transfer, causing a down-regulation of the mother’s milk
supply [21], [22], [23]. Thus, infant suckling competency is
an essential aspect of successful breastfeeding.

Infant suckling can be described as nutritive sucking (NS)
or non-nutritive sucking (NNS). In nutritive suckling, infants
coordinate sucking, swallowing, and breathing to intake fluid
from a breast or bottle. In non-nutritive suckling, infants do
not receive nutrient flow and the suck is from basic instinct
when offered an empty or uninitiated breast, pacifier, finger,
or object [24], [25], [26]. Prior studies on preterm infants have
shown that non-nutritive suckling establishes the foundation
for nutritive suckling [25], [27]. Non-nutritive suckling is
characterized by suckling vacuum and expression pressure.
In this paper, we focus on suckling vacuum as a starting point
as prior research has shown that infant’s intraoral vacuum
is essential to effective milk extraction [28]. An analysis of
NNS vacuum signals can provide infant oral measurement
information such as mean oral vacuum, suckling frequency,
burst duration, sucks per burst, maximum vacuum, and sig-
nal shape, details important in understanding infant suckling
behavior [23], [29]. These measurements provide key infor-
mation on an infant’s suckling ability and can be used to
determine infant suckling irregularities.

Over the years, there has been considerable work to
produce objective NNS measurements using catheters, pneu-
matic and fluid-based instruments, and compact devices to
measure infant non-nutritive suckling [23], [30], [31], [32],
[33], [34], [35], [36], [37], [38], [39]. These devices have
focused on preterm infants. However, there has been little
consideration of how abnormal non-nutritive suckling shapes
could be detected in otherwise healthy full-term infants,
a much larger patient cohort. Akbarzadeh et al. developed
a sensitized compact pacifier to measure non-nutritive suck-
ling in preterm infants [40]. Features such as oral pressure,
suckling duration, and frequency were used in a predictive
algorithm to determine preterm infant feeding readiness.
Chen et al. proposed a non-nutritive suckling device using
pneumatic pressure sensors and performed a comparative
study between NNS measurements in bottle feeding versus

breastfeeding [23]. Lau et al. introduced a sensitized digital
assessment via a catheter attached to the clinician’s index
finger that measures intraoral vacuum using a pressure trans-
ducer [37], [38], [39]. As these NNS measurement systems
continue to emerge, approaches such as ultrasound [28], [41]
are also being used to provide objective, visual measurements
of infant oral mechanics during breast and bottle feeding.
Despite the advantages of ultrasound, this approach is dif-
ficult to adopt more broadly as a widespread screening tool
and would require the investment in trained personnel and
specialized equipment to utilize.

Today, despite all these remarkable developments in
technology for clinical diagnostics, the wealth of science
regarding feeding mechanics, milk supply, and the growth of
trained medical assistance for mothers and infants over the
last decade, the simple digital suck examination remains the
standard in clinical practice [42]. In a digital suck exami-
nation, the trained clinician inserts a finger into the mouth
of the infant to evaluate their suckling vacuum. Evaluating
suckling vacuum via the finger, even by a trained clinician,
is subjective and suffers from variability among clinicians
based on experience. We aim to replace healthy term infant
feeding diagnostics with an objective tool.

To provide context for our objective evaluation, we con-
sider ankyloglossia (tongue-tie), a sporadic oral dysfunction
that can cause difficulty with breastfeeding [43]. The preva-
lence of ankyloglossia is unclear, estimated to be 1 to 10%
[44] due to the lack of diagnostic criteria, but most often
estimated at 7% [45]. However, in recent years, the treatment
of suspected ankyloglossia via frenotomy—where a restricted
lingual frenulum with tissue tying the tongue to the base of
the mouth is cut and released—has grown tenfold in less
than a decade. The growth in frenotomies has largely been an
attempt to improve breastfeeding rates with little to no evi-
dence to support this course of action [46]. Risks associated
with surgical intervention include bleeding, pain, infection,
ulceration, and other complications [47], [48], while imme-
diate and long-term direct benefits of prescribing frenotomy
remain unclear. The clinical community continues to disagree
over the necessity of surgical intervention in ankyloglossia,
principally due to a lack of objective assessment tools to serve
as a basis for making the decision to pursue a frenotomy.
We specifically seek to determine if our NNS data can provide
sufficient objective data to make a clinical decision to pursue
a frenotomy.

In this paper, we apply an two computational methods
using Mahalanobis distance and KNN to detect abnormali-
ties in suckling vacuum signals produced from our real-time
NNS system. The algorithms consider the collective con-
tributions of 91 infant suckling measurements. From these
infants, we establish normative data for eight measurement
parameters in non-nutritive suckling shape: mean suck vac-
uum, max suck vacuum, suckling frequency, burst duration,
sucks per burst, and three frequency parameters that affect
the signal shape. In a series of case evaluations, we report the
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FIGURE 1. An image of the non-nutritive suckling measurement system
developed in prior work [1] to measure intraoral vacuum profiles of
infants. The system is comprised of an instrumented pacifier, pressure
sensor, data acquisition board (DAQ), and computer.

identification of normal versus abnormal suckling behavior
using Mahalanobis distance and KNN in healthy newborn
infants and infants diagnosed with ankyloglossia, a sponta-
neous, congenital condition indicated by a restrictive lingual
frenulum [44]. Our study establishes a foundation for using
computational methodologies applied to objectively collected
data to evaluate infant suckling shapes and patterns, with the
aim of developing early screening tools to guide interventions
to establish, maintain and improve breastfeeding rates.

II. MATERIALS AND METHODS
A. NON-NUTRITIVE SUCKLING MEASUREMENT SYSTEM
In prior work, the authors have demonstrated the applica-
tion and use of a non-nutritive suckling system in a clinical
environment with 30 full-term infants. The system shown
in Figure 1 consists of a modified disposable pacifier with
an integrated feeding tube that is connected to a pressure
sensing unit. A data acquisition board (DAQ) is used to collect
measurements and a custom LabVIEW (National Instru-
ments) software interface was developed to enable clinicians
to immediately visualize and interact with the collected NNS
signals.

B. SUBJECT RECRUITMENT
Healthy full-term infants (37 to 42 weeks) under 30 days
old (n = 91) were recruited from the UC San Diego Cen-
ter for Voice and Swallowing, UC San Diego Health La
Jolla Pediatrics, and the UC San Diego Jacobs Medical Cen-
ter. Approval from the Institutional Review Board (#80070,
13 September 2021) was obtained before recruitment started.
The research aimed to study infant non-nutritive suckling
using an objective measurement system. Mothers and infants
were recruited to participate in the study during routine

postpartum care with their general pediatrician or while con-
sulting with feeding specialists at their respective locations.
Infant inclusion criteria included full-term healthy infants
establishing breastfeeding and without significant birth or
postpartum complications. Mothers provided written and
informed consent to participate in the study.

C. STUDY DESIGN
Infants were evaluated using standard clinical assessments:
a digital (finger-based) suck assessment of their intraoral
vacuum, the Hazelbaker Assessment Tool, and the Bris-
tol Tongue Assessment Tool. The Hazelbaker Assessment
Tool [49] and the Bristol Tongue Assessment Tool [50]
are both validated clinical assessment scales for evaluat-
ing the lingual frenulum’s appearance and tongue mobility.
We define the digital suck assessment scale to be 0 is no
vacuum, 5 is normal vacuum, and 10 is high vacuum. Col-
lectively, these assessments are used to identify infants with
ankyloglossia and provide general metrics for oral dysfunc-
tion. Clinicians were blinded to device data in this study
and performed evaluations solely based on standard prac-
tice. After clinical assessments, parents were provided the
opportunity to introduce the non-nutritive suckling system to
acquire a sixty second measurement of their infant’s intraoral
suckling vacuum.

D. SIGNAL PROCESSING
Measurement of the infant’s suckling vacuum using our
non-nutritive suckling (NNS) device over a period of sixty
seconds produces valuable data reflecting the characteristics
of non-nutritive suckling. Data was collected on 91 subjects
to compute the mean suck vacuum, maximum suck vacuum,
suckling frequency, burst duration, sucks per burst, and the
suckling shape, all for each individual. In prior work [1],
we explained how the mean suck vacuum, maximum suck
vacuum, suckling frequency, burst duration, and sucks per
burst were extracted from infant NNS signals. In this work,
we provide an additional evaluation: the infant’s suckling
shape, describing the shape of the vacuum versus time mea-
surement. Normal infant suckling is described as smooth and
regular, almost sinusoidal [28], [37], [51], [52]. Deviations in
the smoothness and periodicity of this suckling shape may be
correlated to irregularities in the infant’s suckling and can be
detected using frequency analysis [1].

In prior work [1], we showed there were three distinct
infant suckling shapes: smooth sinusoidal, ‘‘sharp valley’’,
and ‘‘double valley’’, arbitrary definitions that indicate infor-
mation in the signal that might be correlated to disordered
suckling. The NNS signals can vary in amplitude and period
over the measurement time. To determine contributions
caused by the shape of the suckling vacuum signal with
respect to time, each suckling event was isolated and nor-
malized in both amplitude (−1 to 0) and period (0.5 sec).
Each suckling cycle is defined as the peak-valley-peak profile
during suckling as described in prior work [1]. The complete
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FIGURE 2. An example (top) of a 60-second non-nutritive suckling shape
as measured using the NNS shows the irregular nature of suckling by a
typical infant. Normalization of each suckling event—there were 61 total
events in this measurement—produces (bottom) a far more regular signal
while retaining suckling shape. The normalized parameters are unit-less
in the lower plot. Note the aperiodic details in this normalized signal that
will be useful later.

FIGURE 3. A typical example of the FFT-transformed normalized NNS
data, indicating the clear appearance of principal frequency contributions
at 4, 6, and 8 Hz to the NNS signal. For this reason, the amplitude of the
signal at these frequencies was tracked and included in each infants’
profile. Note that the 2 Hz response is omitted from the later analysis as
it is generally present [1], [53], [54] in the suckling data of all infants.

normalized NNS signal of typically >60 suckling events was
passed through a fast Fourier transform (FFT) to identify the
principal frequencies at 4 Hz, 6 Hz, and 8 Hz in most NNS
signal data. These frequencies are known to appear in infant
suckling measurements [1]. Figure 2 and Figure 3 show our
analysis to isolate the principal frequency components that
contribute to the shape of the NNS signal. Consequently,
the signal amplitudes produced at these frequencies were
recorded and retained as a part of each infant’s suckling
shape.

E. ANOMALY DETECTION USING ROBUST AND
MAHALANOBIS DISTANCE
In this application, we use the Mahalanobis distance to detect
and identify a subgroup of neonates that exhibit NNS mea-
surements that appear to be outliers from the majority of
the population. The NNS characteristic data collected from
91 neonates were found to be normally distributed and veri-
fied using the Shapiro-Wilk test [55]. Among many statistical

distance measuring tools, the Mahalanobis distance, the dis-
tance between a subject and the mean of the distribution in
terms of the number of standard deviations, is known for its
ability to identify outliers, particularly multivariate outliers in
normally distributed data. It and its many variations have been
used in applications from finance [56] and neurocomput-
ing [57] to medical diagnosis [58]. The Mahalanobis distance
may be determined from

MD =

√
(X − µ)T S−1(X − µ). (1)

In Equation 1, the vector X contains all eight NNS mea-
surement parameters, namely, mean suck vacuum, max suck
vacuum, suckling frequency, burst duration, sucks per burst,
and three frequency parameters affecting signal shape (4 Hz,
6 Hz, and 8 Hz), representing the sucking behavior of each
neonate; µ is the arithmetic mean vector; and S is the covari-
ance matrix. Neonates with a large Mahalanobis distance are
classified as outliers [59]. The robust Mahalanobis distance
(RMD) was used in this analysis to reduce effects of outliers
on the mean value of the population. The minimum covari-
ance determinant method introduced by [60] of the robust
Mahalanobis distance is defined as:

RMD =

√
(X − µR)T S

−1
R (X − µR). (2)

In this equation,µR and SR are the robust estimate of themean
vector and the covariance matrix, respectively.

Neonates’ data points whose distance away from the mean
exceeded the threshold value, ξ =

√
χ2
p,r , were identified

as outliers. This threshold value is a function of the num-
ber of degrees of freedom (p) and the outlier fraction (r).
Since the Mahalanobis distance has a chi-square distribution,
we determine the threshold value by calculating the inverse
cumulative distribution function of the chi-square distribution
with degree of freedom p = 8 (number of NNS measurement
features), and outlier fraction r = 0.07 (7% prevalence of
ankyloglossia in infants) [45].

In this way, we are able to delineate infants with outlier
suckling behavior from themain group of infants with normal
suckling behavior, without requiring any additional informa-
tion or graphical interpretation. In the results that follow, the
plots are provided for the reader’s understanding, and show
the results of this process which already identify the outliers
prior to plotting: there is no graphical fitting being performed.

F. K-NEAREST NEIGHBORS (KNN) CLASSIFICATION
In addition to employing a statistical approach to
autonomously classify normal versus abnormal NNS pat-
terns, we leverage the K-Nearest Neighbors (KNN) algorithm
to further explore the dataset. The KNN algorithm is a widely
utilized machine learning method for classification tasks,
including discerning various patterns in data [61]. Using the
same dataset with eight NNS measurement features from
91 infants, we employ KNN to distinguish normal from
abnormal infants. The KNN algorithm assesses the similarity
between a data point and its nearest neighbors in a feature
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FIGURE 4. Subject 18: A typical infant’s NNS suckling response and the
results of computing the eight parameters that describe its principal
characteristics. (a) Full 60 s NNS measurement, (b) 6-second sample from
the third suckling burst, and (c) statistical distribution plots of all eight
NNS measurements.

space and classifies the data point as a member of one of the
surrounding data point’s sets based on the classification of the
majority of its neighboring data points. Given themultivariate
nature of the dataset, KNN provides a robust method for
classifying suckling patterns based on the collective behavior
of these features.

Prior to conducting the KNN analysis, the dataset con-
taining NNS parameters was imported into MATLAB’s
Classification Learner application, a component of the Statis-
tics and Machine Learning Toolbox. The KNN model was
then created and optimized using the application, which
included options for feature selection, distance metric, and
number of neighboring points (k value). In this work, we dis-
cuss two KNN models: analysis with only two NNS features
(mean suck vacuum and number of sucks per burst) and
analysis on all 8 NNS features introduced earlier. We limit
the number of neighboring points to k = 5 in the analysis,
taking into account the expected number of outliers present
in the data set to be around six (7% outlier fraction) [45].

III. RESULTS
A. NORMAL AND ABNORMAL SUCKLING DATA
We first seek to determine if a simple measurement of the
suckling vacuum is sufficient to identify breastfeeding prob-
lems, and to explore whether a collection of parameters
defined from this measurement may be used to characterize
the infant’s feeding behavior. We present three exemplary
normal and abnormal cases of the suckling profiles and the
distributions of the eight NNS parameters in Figs. 4, 5, and 6
in the context of our entire data set from 91 infants. Each
Figure presents the (a) NNS recording over sixty seconds, a
(b) six-second extraction, and a (c) statistical evaluation of
eight potentially important parameters. The vertical lines in
the statistical plots represent the values obtained for the case
under consideration. Figure 4 plots data taken from a healthy
12-day old infant exhibiting normal suckling behavior, with
the measurements each within one standard deviation from

FIGURE 5. Subject 25: An infant with extended bursts of suckling. (a) Full
60 s NNS measurement, (b) 6-second sample from the first suckling burst,
and (c) statistical distribution plots of all eight NNS measurements.

FIGURE 6. Subject 36: An infant with weak and infrequent suckling.
(a) Full 60 s NNS measurement, (b) 6-second sample from the fifth
suckling burst, and (c) statistical distribution plots of all eight NNS
measurements.

the mean values of the entire population. Moreover, the suck-
ling shape appears to be rhythmic and roughly sinusoidal.

By contrast, Figure 5 provides measurement data from
a 6-day old infant that is approximately two standard
deviations outside the mean values for at least some of
the measurement parameters. Moreover, the suckling shape
appears to be irregular over the entire data collection period—
notice there are three pauses, two of which are exceptionally
brief—and each suckling event exhibits a non-sinusoidal pat-
tern, altogether indicating abnormal suckling behavior. In this
case evaluation, the clinician reported hemorrhagic nipple
lacerations, severe nipple pain, and infant choking caused by
poorly coordinated suck-swallow-breathe events. The contin-
uous suckling without rest, evident from the NNS data, may
underpin these adverse outcomes.

The third infant’s suckling behavior plotted in Figure 6
produces reasonable values from most of the measurement
parameters. The NNS data was taken on day 18 of life.
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FIGURE 7. Robust distance versus Mahalanobis distance plot for the NNS
data from all 91 subjects. The vertical and horizontal threshold (dashed)
lines were calculated to be 3.8 standard deviations based on the
expected 7% outlier fraction from clinical data [45] and the 8 degrees of
freedom of the data set. The lines create four distinct quadrants;
quadrant III contains all the neonates with normal NNS results.
Quadrants II and IV contain the outliers according to either the
Mahalanobis distance or the robust distance, respectively. Quadrant I
contains the outliers according to both definitions.

The suckling shape itself shows brief suckling bursts sepa-
rated by relatively long interludes of no suckling; the detail
of the fifth burst shows some irregularity near the end. Most
importantly, the NNS measured relatively weak mean and
max suckling vacuum at the 26th percentile and 27th per-
centile, respectively. This correlates with clinical notes that
report ineffective latch. This infant was fussy and had gas-
troesophageal reflux; a condition which may be related to
disengagement during feeding.

There are evident differences between normal and abnor-
mal suckling behavior in the NNS data. Next, we examine
NNS data taken from several clinically identified cases of
abnormal feeding behavior.

B. DISTANCE-DISTANCE PLOT
In this section, we show the results of anomaly detection
using the statistical approach. We calculated theMahalanobis
distance and the robust distance for each of the 91 neonates
and plotted them together in a distance-distance plot as
shown in Figure 7. It is important to note that the plotted
results are completely determined from the calculation of the
Mahalanobis and robust distances. The threshold ξ was set
at 3.8 standard distributions from the mean of the data set
defined a priori based on the number of degrees of freedom
p = 8 and the outlier fraction r = 0.07 based upon
the expected incidence from the literature [45]. Among the
91 neonates, 81 fall within the normal quadrant (quadrant III
of Figure 7). Ten of the 91 neonates were classified to be
outliers with either the Mahalanobis distance or the robust
distance—or both values—being greater than the predefined
threshold.

FIGURE 8. Eight of the 91 infants eventually underwent frenotomies,
identified with red boxes. Four are outliers in the robust distance versus
Mahalanobis distance plot of the NNS data; four are in the normal group.
The identification of outliers was based upon computation of the
threshold ξ from a priori knowledge of the number of degrees of
freedom in the system, p = 8, and the outlier fraction, r = 0.07, based
upon clinical incidence data.

C. DETECTING ANOMALIES ASSOCIATED WITH
ANKYLOGLOSSIA
We now examine NNS data captured from healthy full-term
infants that were diagnosed with ankyloglossia, seeking to
determine if our NNS data provides insight and perhaps a
stronger basis to make a decision on frenotomies.

Out of 91 neonates, eight were clinically diagnosed with
ankyloglossia and treated with frenotomies. Ankyloglossia
was diagnosed based on clinical assessment of persistent
nipple pain, inability to maintain latch, feeding fatigue, high
feeding frequency, insufficient weight gain, down-regulation
of milk supply, and visual inspection of tethered lingual
frenulum. NNS data was collected prior to surgical inter-
vention to determine if abnormalities could be detected in
their suckling measurements. Clinical evaluation to deter-
mine frenotomies was performed blinded to the NNS data.
We replot this data in Figure 8, labeling with red boxes all
the infants that went on to have a frenotomy. Four cases
(9, 22, 43, and 73) were within the normal region while
another four cases (60, 71, 79, and 80) were outliers. Freno-
tomy cases falling within the normal region indicate infants
with normal NNS characteristics, but were prescribed a freno-
tomy. These cases highlight on whether a frenotomy could
have been delayed or avoided to remedy breastfeeding strug-
gles. There are six other cases (25, 35, 40, 58, 66, and 88)
in the outlier region that are not frenotomy cases. These
cases indicate abnormal suckling behavior based on NNS
measurements and require further evaluation and follow up
with mother and infant to determine causality.

D. THE EFFECT OF FRENOTOMIES ON THE NNS DATA
An important part of the controversy regarding surgical inter-
vention in ankyloglossia is whether there is a long-term
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FIGURE 9. The effect of a frenotomy is apparent in subject 71. Plots
(a,b,c) and (d,e,f) show NNS data for the full 60 seconds, a 6-second
sample, and statistical evaluation of the eight tracked parameters before
and after frenotomy, respectively. The frequency of suckling and the
suck/burst value moved towards the mean of the entire data set after
the intervention. The NNS data was captured day 1 of life prior to the
frenotomy; the frenotomy was performed on day 1; and the
post-frenotomy NNS data was collected on day 18.

benefit to the infant from a frenotomy [62]. Here we use the
NNS to evaluate the impact of the frenotomy. We discuss
two cases: Subject 71 and 60 to explore the changes before
and after surgical intervention. A pair of complete NNS data
sets is provided in Figure 9 for case 71: before and after a
frenotomy. Before the frenotomy, the subject received a dig-
ital suck vacuum score of 3 out of 10, a Hazelbaker score of
5 out of 14 for function and 2 out of 10 for appearance, and a
Bristol score of 2 out of 8, indicating tongue restriction caused
by tethering of the lingual frenulum sufficient to recommend
a frenotomy. The clinician may also utilize the digital suck
exam to assess infant suckling irregularity using a gloved
finger. The NNS data was captured day 1 of life prior to the
frenotomy; the frenotomy was performed on day 1; and the
post-frenotomy NNS data was collected on day 18. After
the frenotomy, case 71 showed a change in frequency and
suck per burst results, with both moving towards the mean
of the entire data set. Whether these changes are permanent
in the long term was not studied within the scope of this work
and will be explored in future studies.

FIGURE 10. The effect of a frenotomy is also apparent in subject 60. Plots
(a,b,c) and (d,e,f) show NNS data for the full 60 seconds, a 6-second
sample, and statistical evaluation of the eight tracked parameters before
and after frenotomy, respectively. The NNS data was captured
immediately before and immediately after the frenotomy procedure, all
within the first day of life. All parameters—except mean vacuum and the
4-Hz amplitude parameter—moved closer to the mean, falling within half
a standard deviation of the mean after the frenotomy.

Figure 10 shows subject 60 before and after a frenotomy.
In this case, the subject received a Hazelbaker score of 9 out
14 for function and 3 out 10 for appearance, a Bristol score
of 3 out 8, and a digital suck vacuum score 8 out of 10. The
NNS data was captured immediately before and immediately
after the frenotomy procedure, all within the first day of life.
Before the frenotomy, the magnitude of the suck per burst,
burst duration, and the 4 Hz components of the suckling
profile in the frequency domain were in the 95th, 97th, and
87th percentiles, respectively. All parameters—except the
4-Hz amplitude parameter—moved closer to the mean,
falling within half a standard deviation of the mean after the
frenotomy. There were minimal changes to the magnitudes
of the three frequency components before and after the pro-
cedure, indicating that there were few changes to the shape of
the suckling profile. This can be observed in plots (b) and (e)
of Figure 10.

As indicated by the case evaluations and prior research [62],
surgical intervention may help improve infant suckling func-
tion in cases in which frenulum restriction is truly interfering

VOLUME 12, 2024 441



P. Truong et al.: Application of Statistical Analysis and Machine Learning

FIGURE 11. The effect of a frenotomy was not apparent in subject 22. The
6-second NNS sample data and the statistical evaluation of the eight
tracked parameters were largely unchanged before (b,c) and after
(e,f) the frenotomy, with all parameters—except the 4, 6, and 8-Hz
amplitude parameters—remaining unchanged or moving slightly closer to
the mean (statistically insignificant). The 4, 6, and 8-Hz amplitude
parameters all shifted farther away from the mean after the frenotomy.

with suckling mechanics. For infants with corresponding
clinical evaluation and outlier measurements from the NNS,
our results show the abnormal NNS measurements shift to
normal ranges post-frenotomy.

We next consider those cases—9, 22, 43, 73—where a clin-
ical decision was made to perform a frenotomy and the NNS
indicated normal suckling behavior. We present case 22 in
Figure 11, where the subject was 8 days old and received
a Hazelbaker score of 7 out of 14 for function and 7 out of
10 for appearance, a Bristol score of 6 out of 8, and a digital
suck vacuum score 3 out of 10. The NNS-based evaluation
was normal based on the distance-distance plot (see Figure 8).
The suckling shape and most of the statistical data remained
statistically similar before and after the frenotomy. The only
significant changes in the data were adverse changes in the
response amplitudes at 4, 6, and 8 Hz to lie farther from
the mean after the surgery. In this case, it would have been
possible to recommend breastfeeding without a frenotomy.

More broadly, we next consider the effects of a frenotomy
in all eight cases where it was performed in Figure 12. The
robust distance is plotted with respect to the Mahalanobis

FIGURE 12. Robust distance versus Mahalanobis distance plot of the NNS
data for cases where a frenotomy was performed. Four cases (a; 60, 71,
79, 80) were identified as abnormal (red) via the NNS measurement;
post-frenotomy, all four cases produced normal (blue) suckling behavior.
Another four cases (9, 22, 42, 73) were clinically identified as abnormal
but were identified as normal from NNS measurements. These four cases
produced no change in suckling behavior according to NNS
measurements after frenotomies. These discrepancies highlight the
controversial nature of the frenotomy procedure: some infants benefit
from frenotomies while others appear to not require the procedure and
produce no suckling improvement after having it done. By using
statistical methods, infants who can potentially benefit from a frenotomy
can be objectively identified and improvements from the procedure, if
any, can be objectively quantified.

distance the same as in Figure 8. In Figure 12 (left)—cases 60,
71, 79, and 80 (in red boxes)—indicate those cases identified
as outliers via the NNS data. In every case, these outliers
moved to the normal region (quadrant I) after the freno-
tomy, indicating that the frenotomy moved their suckling
behavior towards the mean of the overall infant population.
In Figure 12 (right), for infants possessing NNS results
already considered to be in the normal region (quadrant I)
before the frenotomy (cases 9, 22, 43, and 73 (in red boxes)),
there were modestly significant improvement for cases 9 and
43 towards the mean of the population in our study and no
significant change to cases 22 and 73. Altogether, the effect of
a frenotomy was significant on the NNS measurement results
for those infants that had adverseNNS results beforehand. For
those infants with normal NNS results, the effect was weakly
significant to insignificant.

E. DETECTING ANOMALIES WITH KNN MODELS
Due to the multivariate and high dimensional nature of the
data set, we first perform analysis of normal versus outliers
with two features to provide a simplified understanding of
the KNN model’s behavior. Building on this understanding,
we then perform analysis on all eight features of NNS using
KNN and rely on performance metrics to interpret the results.

The 2-parameter KNN model classified subjects number
43, 58, and 79 as outliers. Subjects 43 and 79 were clinically
diagnosed with tongue-tie and received a frenotomy. The
more comprehensive 8-parameter KNNmodel also classified
subject 43 and 79 as outliers, however, it classified subject
58 as normal. This observation shows the importance of con-
sidering the collective features of all eight parameters versus
only two features. In the sucks per burst versus mean suck
vacuum shown in Figure 13, four out of the eight frenotomy
cases are located within the main cluster: subjects 9, 22,
71, and 73. The two KNN models classified these four as
normal due to their close proximity with other normal sub-
jects. These subjects, however, were clinically diagnosedwith
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FIGURE 13. Comparison between clinical evaluation and KNN model
classification using 2 parameters (mean suck vacuum and sucks per
burst).

ankyloglossia. This suggests that subjects diagnosed with
ankyloglossia do not necessarily exhibit abnormal NNS char-
acteristics. Frenotomy may not change the suckling behavior
and feeding outcomes for these subjects, which may explain
the highly controversial nature of surgical intervention to
resolve breastfeeding difficulties.

The confusion matrices in Figure 14 show a summary
of the performance of the two KNN models. The classifi-
cation outcomes of the two KNN models agreed well with
the clinical evaluation with an accuracy of 92.3% for the 2-
parameter model and 93.4% for the 8-parameter model. Both
models performed well in identifying normal subjects, and
in particular the 8-parameter model agreed with the clinical
evaluation in all 83 normal cases. However, both models
showed noticeable discrepancies versus clinical evaluation in
detecting abnormal cases, as shown by the ‘‘false negative’’
boxes. Both KNN models identified the same six subjects
(9, 22, 60, 71, 73, and 80) as normal. However, these six
subjects were clinically evaluated as abnormal (diagnosed
with ankyloglossia) and all underwent frenotomy.

The area under the curve (AUC) value of the receiver
operating characteristic (ROC) curve is another effective
way to evaluate the accuracy of the KNN models. An AUC
value higher than 0.7 is generally viewed as acceptable
accuracy on a diagnostic test [63]. The AUC values for the
2-parameter and 8-parameter KNN models were determined
to be 0.6913 and 0.7214, respectively. The higher number of
false negatives in comparison to the number of false positives
indicated that the two KNN models are quite conservative in
detecting outliers in the data set.

F. ABNORMAL NNS MEASUREMENTS WITH NORMAL
CLINICAL EVALUATION
We finally consider cases in which the NNS identified poten-
tial issues but for which the clinical evaluation was normal.
Subject 58 shown in Figure 15 was clinically evaluated to

FIGURE 14. Confusion matrices illustrating the classification performance
of the 2-parameter and 8-parameter KNN models, comparing the results
of the KNN classification values for normal cases and outlier cases
against their clinical evaluation results.

FIGURE 15. This infant, subject 58, was clinically evaluated to be normal,
yet objective measurements indicate abnormal suckling behavior.

be normal with Hazelbaker scores of 14 out of 14 and
10 out of 10 for function and appearance, respectively. The
Bristol score was 8 out of 8 and the digital suck vacuum
was 10 out of 10. However, this neonate was classified as
an extreme outlier based on the Mahalanobis distance (see
Figure 8) and the 2-parameter KNN model Figure 14. The
NNS measurements indicated that this subject produced an
abnormally long burst duration and a very large number of
suckling events per burst: both were in the 100% percentile.
Also, in assessing the sucking profile, the 6 Hz component of
the signal was two standard deviations away (94th percentile)
from the mean value of the whole group. Though the average
suckling frequency for this neonate is relatively low at 1.4 Hz,
it is within the expected range for infants fewer than 1 day
old [40]. This case is an example of an infant identified to
need further clinical follow up to determine if suck-breathe
coordination improves, to identify any early nipple trauma
due to sustained suckling, and if the infant exhibits choking
during breastfeeding due to lack of resting in between bursts.
This case emphasizes that not all abnormal NNS is due to
ankyloglossia. Other causes of oral motor dysfunction may
exist and could explain the nature of irregularities in suckling
upon further evaluation. The use of devices and systems along
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with Mahalanobis distance algorithm may help clinicians
gather more objective data to investigate suck irregularities.

IV. DISCUSSION
Our NNS device appears to have sufficient sensitivity to
identify infants with suckling irregularities affected by anky-
loglossia and general infant vacuum suckling abnormalities.
Outlier NNS measurements reflecting symptomatic lingual
restriction normalized after frenotomy. Conversely, normal
NNS measurements did not change with surgical interven-
tion. This highlights the controversy of a subjective clinical
diagnosis and conflicting literature about frenotomy benefit
in breastfeeding dyads [43], [46].

Our approach in the use of this technology in the clinical
setting has been the following:

• Keep the technology as simple as possible with off-the-
shelf cost-effective components to facilitate its adoption
in the clinic. Some devices and approaches employ
ultrasound, force sensors, arrayed sensors, and cameras,
which may improve the veracity of the measurements
but at the cost of data complexity, difficulty in use,
and expense. By contrast, our approach seeks to make
as much use of one quantity—the suckling vacuum—
as possible. It may be necessary to later incorporate
other sensing methods, but the richness of the suckling
vacuum versus time data indicates much can be learned
from this single parameter alone.

• Make the measurement results immediately available
to the clinician. Measurements are always challeng-
ing when using technology, and nowhere more so than
with fussy infants in an unfamiliar clinical environment.
By having the measurement results immediately avail-
able, the clinician can identify faulty measurements,
refusal to suckle on a particular pacifier, problems with
the technology, and then overcome these problems by
changing the pacifier type [1], repositioning the infant,
and so on. This application is particularly helpful in
the first days of life as milk supply and breastfeeding
practices are being established.

• Present themeasurement results in a graphical manner in
comparison to the population mean and standard devia-
tion. This helps the clinician to quickly identify outliers
that may represent abnormal suckling in a quantitative
manner but without the complexity of tabulated data.

From the specific cases demonstrated in the results, we show
how these principles can be used to provide quantitative
evaluation sufficient to judge whether a frenotomy may be
necessary, and whether or not the infant benefited from hav-
ing a frenotomy.

In this study, two computational models, Mahalanobis and
KNN, were used to detect outliers in the NNS characteristic
of the 91 subjects. In our first analysis, we implemented
the robust and Mahalanobis distances to identify outliers in
Figure 8, with the threshold from normal to abnormal being
calculated before presentation using an expected 7% outlier
fraction of the overall data corresponding to the clinical

incidence of ankyloglossia [45]. Ten infants produced NNS
data that were outliers from the 91 comprising the entire data
set. Of these ten, four went on to have frenotomies; these four
infants showed significantly improved NNS results as a con-
sequence of having a frenotomy. Of the 81 infants found to
have normal NNS results, four had frenotomies. Two cases—
9 and 43—were relatively close to both thresholds defined
by the robust and Malahanobis distances and showed modest
improvements in their NNS results after their frenotomies.
However, two others—cases 22 and 73—were well within the
normal NNS data and showed slight adverse changes in their
NNS results post-frenotomy.

The importance of the statistical approach is perhaps best
exemplified through case 71, with ostensibly normal NNS
data provided in Figure 9. Manual interpretations of the
suckling shape and the distributions of the eight parameters
suggest that the subject’s NNS is normal, however, the robust
distance placed this infant’s NNS data above the threshold,
indicating abnormality. Moreover, this infant was clinically
diagnosed to need a frenotomy, and the NNS results indicated
a significant improvement in suckling behavior in Figure 12.
Casual inspection of the NNS data is sometimes helpful, but
statistical analysis is necessary to identify the collective devi-
ations of all the measurement parameters that may produce
an abnormal classification.

In our KNNmodels, both the 2-parameter and 8-parameter
KNN models performed reasonably well with high accuracy
(∼92%) and acceptable AUC values (∼.7). However, both
models weremore conservative in classifying outliers, detect-
ing only 2-3 abnormal cases compared to clinical evaluation
with 8 cases, and the Mahalanobis model with 10 cases.
TheMahalanobis and KNNmethods’ approach to identifying
outliers within the dataset is significantly different, offering
alternative avenues to analyzing the NNS dataset. The Maha-
lanobis model centers on the relative distance of a subject
from the mean value of the entire dataset, while the KNN
model focuses on the relative distances from a subject to
its nearest neighbors. This fundamental difference resulted
in disparate classification outcomes between the two meth-
ods. For instance, although subject 35 exhibited generally
normal NNS characteristics across all eight features, falling
within the 29th–69th percentile range, the Mahalanobis dis-
tance flagged it as an outlier. Conversely, both KNN models,
prioritizing local patterns, classified this subject as normal.
Notably, the KNN algorithm’s performance relies on labeled
data for training, typically based on clinical evaluations,
which may be susceptible to inaccuracies. Any misdiagnoses
could potentially undermine the model’s accuracy. By com-
parison, the Mahalanobis approach only requires advance
knowledge of the expected incidence of outliers, which is
reasonable in ankyloglossia in infants [45], but may require
refinement or wholesale changes as the targeted malady
changes.

Furthermore, the KNN algorithm operates on the assump-
tion that similar subjects are located close to each other in
the feature space. Its localized classification approach makes
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it particularly suitable for grouping subjects with similar
conditions (abnormal NNS characteristics). This highlights
the intricate nature of medical diagnosis, especially concern-
ing the evaluation of neonatal suckling behavior. Objective
evaluation of NNS characteristics such as using the mod-
els presented in this paper can help clinicians make more
informed decisions on how to best treat the subjects.

Our study here focused upon the diagnosis of abnormalities
influenced by ankyloglossia. Improvements in use of theNNS
data for other oral dysfunction requires the collection of more
clinical evaluation data correlated to NNS measurements to
identify and characterize these relatively rare oral deficien-
cies. Moreover, there is undoubtedly a benefit in pursuing
ultrasound studies [28] alongside the clinical and NNS-based
evaluations in order to improve the veracity of the diagno-
sis and interpretation of the NNS data, particularly when
including a broader array of possible suckling dysfunction
phenomena. It is hoped, however, that the simple NNS-based
approach will provide a useful triage tool in the clinical
diagnosis of suckling issues.

A limitation with all existing methodologies remains
continuous and long-term monitoring of infant suckling
maturation. As with any single-point measurement, infants
mature and learn beyond the clinical evaluation time that
may lead to improvements, regression, or sustained suckling
patterns not captured by the data. Future studies will need
to consider multiple time points in infants with and without
intervention to determine and distinguish between interven-
tion impact versus infant maturation. With computational
analysis, infant suckling maturity (affected by age and infant
learning) can be overcome with significantly more data to
intrinsically account for age (suckling data from every age
group can contribute to the establish a norm for each age
point).

Our study reflects vacuum data and in the future will incor-
porate expression pressure as another parameter to consider
in the algorithm. While expression pressure is important to
infant suckling, vacuum is a significant contributor to milk
extraction [28] and was the focus of this paper.

V. CONCLUSION
Infant oral suckling is a highly complex biomechanical
process that requires a comprehensive evaluation. While
ultrasound, force sensors, sensor arrays, and similar methods
provide powerful measurement capabilities for understanding
infant oral motor function, it can be challenging to translate
this technology to front-line clinical use due to the equipment,
training, and time required to collect and interpret such data.
A simpler approach may be beneficial in the context of early
screening, where simple abnormality indicators represent a
first step to providing timely intervention and comprehensive
care.

With such instrumentation and computational methodolo-
gies, families and clinicians are more informed on objective
metrics that may guide next intervention steps. This work
provides a methodology via a simple non-nutritive device

to quickly assess infant suckling and identify abnormalities.
Non-nutritive suckling has long been established as an impor-
tant foundation to understanding nutritive suckling [25], [27],
and our NNS device supports this perspective. Non-nutritive
measurements using our simple pacifier combined with a
vacuum sensor and computer interface with a classification
algorithm is sufficient to provide early and rapid identifica-
tion of ankyloglossia. More importantly, in contexts where
resources are limited, leveraging neonatal sucking reflex
(NNS) data enables breastfeeding medicine providers to allo-
cate their efforts more effectively towards maternal care,
particularly when infant sucking patterns are within normal
range.

It also appears to identify cases where ankyloglossia is not
impacting suck vacuum, and cases that might need further
evaluation and treatment of suckling problems. Moreover,
it appears to indicate a beneficial outcome from frenotomies
in those infants exhibiting outlier NNS results before inter-
vention. Early intervention is necessary during the critical
period in which milk supply is being established to pre-
vent damaged tissue and pain that may lead to breastfeeding
cessation.

Equally important is the possibility such an NNS device
may assist with determining infant-focused interventions ver-
sus mother-focused interventions. Clinicians may use these
tools to build intuition grounded on objective data as they
compare their own tactile feedback with objective measure-
ments. Often, a mother’s perception of infant inability to
suckle as a result of ankyloglossia may not truly reflect the
infant’s suckling competence. An objective determination
based on NNSmeasurements and computational analysis can
guide intervention strategies and overcome biases associated
with breastfeeding, turning focus to the mother as necessary.

With respect to the diagnosis of ankyloglossia, while
tongue-tie may be indicated based on current clinical metrics
such as Hazelbaker or Bristol Assessment tools, our data
shows frenotomies may not be a blanket solution to resolv-
ing breastfeeding difficulties in infants with ankyloglossia.
As identified by our computational analysis, infants with
normal NNS mechanics exhibit very little changes from such
procedures. Future longitudinal studies will follow infants
long term to determine the true benefits and changes induced
by surgical intervention.

While there are numerous research activities underway to
understand the detailed mechanics of breastfeeding and its
disorders, evidence of diagnosis and treatment problems in
breastfeeding infants together with the data collected from
our relatively simple approach demonstrate the need for more
objective screening tools in the clinical setting. Due to the
harried nature of outpatient clinical care in healthcare today,
simple tools that are easy to use for an initial screening are
clearly needed. Our interdisciplinary approach to solve this
problem has produced a NNS tool that we have translated to
clinical research use, and hopefully such an approach can be
used to produce better tools for the outpatient clinic, paired
with comprehensive follow up and support for mother and
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infant to reduce misdiagnosis, overtreatment, and improve
breastfeeding outcomes.
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